CN1312625A - Dynamic average length regulating method and device for channel estimation - Google Patents
Dynamic average length regulating method and device for channel estimation Download PDFInfo
- Publication number
- CN1312625A CN1312625A CN 01115569 CN01115569A CN1312625A CN 1312625 A CN1312625 A CN 1312625A CN 01115569 CN01115569 CN 01115569 CN 01115569 A CN01115569 A CN 01115569A CN 1312625 A CN1312625 A CN 1312625A
- Authority
- CN
- China
- Prior art keywords
- average length
- channel
- maximum doppler
- data accumulation
- estimator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 title 1
- 238000009825 accumulation Methods 0.000 claims abstract description 14
- 238000012935 Averaging Methods 0.000 claims description 10
- 238000010295 mobile communication Methods 0.000 abstract description 6
- 230000001360 synchronised effect Effects 0.000 abstract 1
- 230000001427 coherent effect Effects 0.000 description 8
- 238000005562 fading Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000010267 cellular communication Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明方法包括以下步骤:(1)估计移动信道最大多普勒频移;(2)根据最大多普勒频移计算最佳平均长度;(3)根据计算出的最佳平均长度进行动态调整。本发明装置包括瞬时信道参数估计器1、最大多普勒频移估计器2、最佳平均长度计算器3和M个数据累加平均器4,其中瞬时信道参数估计器1同时与最大多普勒频移估计器2和M个数据累加平均器4连接。本发明计算简单易行,可用于任何具有连续导频的CDMA移动通信系统,包括3GPP WCDMA和3GPP2 CDMA2000系统。克服了固定平均长度进行信道估计所带来的估计误差,大大提高RAKE接收机的接收性能。The method of the present invention comprises the following steps: (1) estimating the maximum Doppler frequency shift of the mobile channel; (2) calculating the optimal average length according to the maximum Doppler frequency shift; (3) dynamically adjusting according to the calculated optimal average length . The device of the present invention includes an instantaneous channel parameter estimator 1, a maximum Doppler frequency shift estimator 2, an optimal average length calculator 3 and M data accumulation averagers 4, wherein the instantaneous channel parameter estimator 1 is simultaneously synchronized with the maximum Doppler frequency shift The frequency shift estimator 2 is connected with M data accumulation averagers 4 . The invention is simple and easy to calculate, and can be used in any CDMA mobile communication system with continuous pilot frequency, including 3GPP WCDMA and 3GPP2 CDMA2000 systems. The estimation error caused by channel estimation with fixed average length is overcome, and the receiving performance of RAKE receiver is greatly improved.
Description
本发明属于CDMA(码分多址)蜂窝通信系统领域。The invention belongs to the field of CDMA (Code Division Multiple Access) cellular communication system.
CDMA蜂窝通信技术以其频率规划简单、系统容量大、抗多径能力强、通信质量好、电磁干扰小等特点显示出巨大的发展潜力,是包括第三代的未来移动通信的主流技术。CDMA扩频信号接收机分为相干接收机和非相干接收机两种。相干接收机需要得知接收信号的相位信息,而非相干接收机不需要接收信号的相位信息,但要求发送信号为正交调制方式。本发明主要考虑在未来CDMA蜂窝系统中占主导地位的相干接收方式。CDMA cellular communication technology shows great development potential due to its simple frequency planning, large system capacity, strong anti-multipath ability, good communication quality, and low electromagnetic interference. It is the mainstream technology of future mobile communication including the third generation. CDMA spread spectrum signal receivers are divided into coherent receivers and non-coherent receivers. The coherent receiver needs to know the phase information of the received signal, while the non-coherent receiver does not need the phase information of the received signal, but requires the transmitted signal to be in a quadrature modulation mode. The present invention mainly considers the coherent receiving mode that will dominate in the future CDMA cellular system.
移动通信系统中存在多径衰落现象,会造成严重的多径干扰。在采用了扩展频谱技术的CDMA蜂窝移动通信系统中,通过接收带有确知信息的导频(Pilot)信号,可以对多径信号的幅度和相位信息进行估计,从而使得多径分集和相干接收成为可能。针对多径衰落信号进行分集处理的相干扩频接收机称为RAKE接收机,它可对多个携有相同信息且衰落特性相互独立的单径信号进行相位校正并进行最大比合并处理,从而达到克服多径衰落,提高接收信号干扰比之目的。There is multipath fading phenomenon in the mobile communication system, which will cause serious multipath interference. In the CDMA cellular mobile communication system using spread spectrum technology, by receiving the pilot (Pilot) signal with definite information, the amplitude and phase information of the multipath signal can be estimated, so that the multipath diversity and coherent reception become possible. The coherent spread spectrum receiver that performs diversity processing for multipath fading signals is called a RAKE receiver, which can perform phase correction and maximum ratio combining processing on multiple single-path signals that carry the same information and have independent fading characteristics, so as to achieve The purpose of overcoming multipath fading and improving the received signal-to-interference ratio.
为了实现相干接收,需要估计出衰落信道的时变参数即进行信道估计。而对信道估计的要求有及时性和准确性两个方面,及时性是指信道快速变化时,信道估计能快速跟踪信道的变化;准确性是指,在保证及时性的前提下,尽可能地提高信道估计的精度。在连续导频体制的CDMA系统中,进行信道估计时采用的经典方法是RAKE接收机的每一分支利用导频符号估计出的连续多个信道数据的采样值进行平均以抑制估计噪声,平均区间越大,噪声所带来的干扰越小。但是另一方面,这种在一定区间进行平均的方法是建立在信道参数在此范围是缓慢变化的基础之上的,而这个信道参数相对变化缓慢的估计区间又随移动台移动速度(多普勒频移)而变化,移动速度越大,此区间越小,反之则越大。综合考虑,信道估计的长度存在一个相对的平衡点,此点能兼顾信道的时变特性及抑制噪声两个方面。在传统的连续导频CDMA系统的RAKE接收机中,信道估计器的平均长度设定为一个固定的值。而对于第三代综合业务移动通信系统来说,如果采用固定平均长度,移动速度越大,信道相对稳定的时间也就越短,信道估计器的平均长度也应该越短,随着信道估计平均长度的缩短,信道估计值所含噪声成份逐渐增大,信道估计的准确度会下降。为了使RAKE接收机达到从静止到500公里/小时的速度适应能力,信道估计采用固定平均长度的方法不是最佳方案,因此我们必须动态调整这一估计长度。In order to achieve coherent reception, it is necessary to estimate the time-varying parameters of the fading channel, that is, to perform channel estimation. The requirements for channel estimation have two aspects: timeliness and accuracy. Timeliness means that when the channel changes rapidly, channel estimation can quickly track the change of the channel; Improve the accuracy of channel estimation. In the CDMA system of the continuous pilot system, the classic method used for channel estimation is that each branch of the RAKE receiver uses the sampling values of multiple continuous channel data estimated by the pilot symbols to average to suppress the estimation noise, and the average interval The larger the value, the smaller the interference caused by the noise. But on the other hand, this method of averaging in a certain interval is based on the fact that the channel parameters change slowly in this range, and this relatively slow-changing estimation interval of the channel parameters varies with the moving speed of the mobile station (Doppler Le frequency shift), the greater the moving speed, the smaller this interval, and vice versa. Considering comprehensively, there is a relative balance point in the length of channel estimation, which can take into account both the time-varying characteristics of the channel and the suppression of noise. In the RAKE receiver of the traditional continuous pilot CDMA system, the average length of the channel estimator is set as a fixed value. For the third-generation integrated service mobile communication system, if a fixed average length is adopted, the greater the moving speed, the shorter the time for the channel to be relatively stable, and the shorter the average length of the channel estimator. As the length shortens, the noise component contained in the channel estimation value gradually increases, and the accuracy of the channel estimation decreases. In order to make the RAKE receiver achieve the speed adaptability from static to 500 km/h, the method of channel estimation using a fixed average length is not the best solution, so we must dynamically adjust the estimated length.
本发明的目的是根据移动台不同的移动速度,确定信道估计时最佳的平均长度,由此建立对信道估计平均长度进行动态调制,从而克服固定平均长度进行信道估计所带来的估计误差,大大提高RAKE接收机的接收性能。The purpose of the present invention is to determine the optimal average length for channel estimation according to the different moving speeds of mobile stations, thereby establishing a dynamic modulation for the average length of channel estimation, thereby overcoming the estimation error caused by performing channel estimation with a fixed average length, Greatly improve the receiving performance of RAKE receiver.
本发明的方法及装置分别是按以下方案实现的:Method and device of the present invention are respectively realized according to the following scheme:
本发明提出了动态调整信道估计平均长度的调整方法,其基本思路是:首先估计出信道的最大多普勒频移,再利用最佳信道估计平均长度的闭合公式对平均长度进行动态调整。The present invention proposes an adjustment method for dynamically adjusting the estimated average length of the channel. The basic idea is: first estimate the maximum Doppler frequency shift of the channel, and then use the closed formula of the optimal channel estimated average length to dynamically adjust the average length.
本发明方法包括以下步骤:(1)估计移动信道最大多普勒频移;(2)根据最大多普勒频移计算最佳平均长度;(3)根据计算出的最佳平均长度进行动态调整。The method of the present invention comprises the following steps: (1) estimating the maximum Doppler frequency shift of the mobile channel; (2) calculating the optimal average length according to the maximum Doppler frequency shift; (3) dynamically adjusting according to the calculated optimal average length .
以下结合公式分别进行介绍。The following combined formulas are introduced separately.
1、信道最大多普勒频移的估计:CDMA系统中的导频(Pilot)信道用于传送事先确知的导频序列,可用于系统定时和载波的提取、信道估计、越区切换等。1. Estimation of channel maximum Doppler frequency shift: Pilot channel in CDMA system is used to transmit pre-known pilot sequence, which can be used for system timing and carrier extraction, channel estimation, handover, etc.
设RAKE接收机所用的指峰数为L,考虑第l个指峰。接收导频信道数据经过与发送信号导频信道的扰码及信道码相关解扩后得到受衰落信道影响的导频接收符号序列rl(n),即Let the number of finger peaks used by the RAKE receiver be L, and consider the lth finger peak. The received pilot channel data is despread in correlation with the scrambling code and channel code of the transmitted signal pilot channel, and then the received pilot symbol sequence rl(n) affected by the fading channel is obtained, namely
rl(n)=dp(n)cl(n)+v(n)r l (n)=d p (n)c l (n)+v(n)
cl(n)=clI(n)+jclQ(n) [公式1]c l (n)=c lI (n)+jc lQ (n) [Formula 1]
dp(n)=dpI(n)+jdpQ(n)其中,dp(n)是导频信道的发送符号,cl(n)是第l径第n个符号区间信道参数,v(n)是复加性高斯白噪声。rl(n)及v(n)的采样时间间隔为符号间隔Δt。根据导频符号估计出的信道参数序列为:其中,是cl(n)的符号瞬时估值,z(n)是v(n)引入的估计白噪声,其方差为σ2 n。d p (n)=d pI (n)+jd pQ (n) Among them, d p (n) is the transmission symbol of the pilot channel, c l (n) is the channel parameter of the nth symbol interval of the lth path, v (n) is compound additive white Gaussian noise. The sampling time interval of r l (n) and v(n) is the symbol interval Δt . The channel parameter sequence estimated from the pilot symbols is: in, is the symbolic instantaneous estimate of c l (n), z(n) is the estimated white noise introduced by v(n), and its variance is σ 2 n .
设xl,T(n)为 的包络,我们利用xl,T(n)在区间1≤n≤N的值来估计信道的最大多普勒频移ωd。RAKE接收机能够分辨出很小的多径时延,并能搜索出其中的最强径,设最强径为第l径。构造如下变量G:ωd的估计为: Let x l,T (n) be The envelope of , we use the value of x l,T (n) in the interval 1≤n≤N to estimate the maximum Doppler shift ω d of the channel. The RAKE receiver can distinguish very small multipath time delay, and can search for the strongest path among them, and set the strongest path as the lth path. Construct the variable G as follows: The estimate of ωd is:
2、计算最佳平均长度2. Calculate the best average length
利用连续导频估计第n点的信道参数时,采用平均的方法,即将输入到一个平均长度为2N+1的平均系统模型中,如图1所示。When using continuous pilots to estimate the channel parameters of the nth point, the average method is adopted, that is, Input into an average system model with an average length of 2N+1, as shown in Figure 1.
由此得到新的信道参数的估计序列 由以下等式右端的三部分组成:其中,εs(n)是由于平均长度所带来的误差,εz(n)是由于噪声所带来的误差。εTotal(n)是两种误差的总和。From this, the estimated sequence of new channel parameters is obtained Consists of three parts on the right-hand side of the following equation: Among them, ε s (n) is an error caused by the average length, and ε z (n) is an error caused by noise. ε Total (n) is the sum of the two errors.
本发明给出一个完整的误差平均功率的表达式。ωd为信道最大多普勒频移。因此,由于平均所产生的误差均方值为: The present invention provides a complete expression of error average power. ω d is the maximum Doppler frequency shift of the channel. Therefore, the mean square error due to averaging is:
在已知ωd及符号间隔Δt时,由上式可求得在不同运动速度下的最佳平均时间2N+1。设M=2N+1,则由[公式6]可知,最佳的M为使下式最小的整数其中a=6.51×10-4(ωdΔt)4σ2 l,b=σ2 n [公式8]利用基本不等式,易得在
3、得到最佳平均长度后由数据累加平均器对瞬时信道参数进行动态调整,即对瞬时信道参数估计进行累加、求和及平均。3. After the optimal average length is obtained, the instantaneous channel parameters are dynamically adjusted by the data accumulative averager, that is, the instantaneous channel parameter estimates are accumulated, summed and averaged.
本发明装置如图2所示,他包括瞬时信道参数估计器1、最大多普勒频移估计器2、最佳平均长度计算器3和M个数据累加平均器4,其中瞬时信道参数估计器1同时与最大多普勒频移估计器2和M个数据累加平均器4连接。The device of the present invention is shown in Fig. 2, and it comprises instantaneous channel parameter estimator 1, maximum Doppler frequency shift estimator 2, optimal average length calculator 3 and M data accumulative averager 4, wherein instantaneous channel parameter estimator 1 is connected with the maximum Doppler frequency shift estimator 2 and the M data accumulation averager 4 at the same time.
本发明优点:Advantages of the present invention:
(1)本发明计算简单易行,可用于任何具有连续导频的CDMA移动通信系统,包括3GPP WCDMA和3GPP2 CDMA2000系统。(1) The calculation of the present invention is simple and easy, and can be used for any CDMA mobile communication system with continuous pilots, including 3GPP WCDMA and 3GPP2 CDMA2000 systems.
(2)克服了固定平均长度进行信道估计所带来的估计误差,大大提高RAKE接收机的接收性能。(2) The estimation error caused by channel estimation with fixed average length is overcome, and the receiving performance of the RAKE receiver is greatly improved.
附图说明:Description of drawings:
图1为连续导频平均法估计第n点信道参数示意图Figure 1 is a schematic diagram of estimating the channel parameters of the nth point by the continuous pilot averaging method
图2为动态调整最佳平均长度进行信道估计的装置总框图Figure 2 is a general block diagram of a device for dynamically adjusting the optimal average length for channel estimation
图3为瞬时信道参数估计器Figure 3 shows the instantaneous channel parameter estimator
图4为最大多普勒频移估计器Figure 4 shows the maximum Doppler shift estimator
图5为信道估计最佳平均长度计算器Figure 5 is the best average length calculator for channel estimation
图6为M个数据累加平均器Figure 6 is M data accumulative averager
图7为采用动态调整最佳平均长度进行信道估计装置的实施示例Figure 7 is an implementation example of a device for channel estimation by dynamically adjusting the optimal average length
以下结合本发明装置详细说明实施例:Embodiments are described in detail below in conjunction with the device of the present invention:
本发明装置如图2所示,他包括瞬时信道参数估计器1、最大多普勒频移估计器2、最佳平均长度计算器3和M个数据累加平均器4,其中瞬时信道参数估计器1同时与最大多普勒频移估计器2和M个数据累加平均器4连接。The device of the present invention is shown in Fig. 2, and it comprises instantaneous channel parameter estimator 1, maximum Doppler frequency shift estimator 2, optimal average length calculator 3 and M data accumulative averager 4, wherein instantaneous channel parameter estimator 1 is connected with the maximum Doppler frequency shift estimator 2 and the M data accumulation averager 4 at the same time.
瞬时信道参数估计器1包括:复数乘法装置101,如图3所示;The instantaneous channel parameter estimator 1 includes: a
最大多普勒频移估计器2包括:复数求模装置201、延时装置202、减法器203、平方器204、平方器205、N-1个数据累加平均装置206、N个数据累加平均装置207、除法器208、求二次方根装置209、乘法器210,并且减法器(203)同时与延时装置(202)、复数求模装置(201)及平方器(204)连接,除法器(208)同时与N个数据累加平均装置(207)、N-1个数据累加平均装置(206)及求二次方根装置(209)连接,如图4所示;The maximum Doppler frequency shift estimator 2 includes: a complex number modulo device 201, a delay device 202, a subtractor 203, a squarer 204, a squarer 205, N-1 data accumulation and averaging devices 206, and N data accumulation and averaging devices 207, divider 208, find quadratic root device 209, multiplier 210, and subtractor (203) is connected with delay device (202), complex number modulus device (201) and squarer (204) simultaneously, divider (208) is simultaneously connected with N data accumulative average devices (207), N-1 data accumulative average devices (206) and seeking quadratic root device (209), as shown in Figure 4;
信道估计最佳平均长度计算器3包括:乘法器301、四次方装置302、乘法器303、求5次方根装置304,并且这四个装置串联连接如图5所示;Channel estimation optimum average length calculator 3 comprises:
M个数据累加平均器4包括:M个数据累加平均器401,如图6所示。The M data accumulative averagers 4 include: M data accumulative averagers 401 , as shown in FIG. 6 .
下面对装置1、2、3、4分别进行介绍Devices 1, 2, 3, and 4 are introduced respectively below
对于装置1,它的输入是经过解扩后的导频信道以符号速率采样的复数信道参数,其中101的复数乘法器完成[公式2]所示的运算,之所以用乘法器是由于导频数据是已知的。装置1的结果数据分别送往装置2和装置4。For device 1, its input is the complex channel parameters sampled at the symbol rate by the pilot channel after despreading, and the complex multiplier of 101 completes the operation shown in [Formula 2]. The reason why the multiplier is used is because the pilot Data is known. The result data of device 1 is sent to device 2 and device 4 respectively.
对于装置2,它的输入是来自装置1估计出的瞬时信道参数,输出是估计出的信道最大多普勒频移,它送往装置3。其中,201完成对输入的复数进行取模运算,202、203完成相邻两值的差值运算,其结果由204完成平方运算,由206完成平均运算。205、207完成[公式3]所示的分母部分的平方及累加平均运算。208完成[公式3]所示的除法运算,其结果送往209求二次方根,并在210完成与已知数据2/Δt的相乘运算并求出最大多普勒频移送往装置3。For device 2, its input is the estimated instantaneous channel parameters from device 1, and its output is the estimated channel maximum Doppler shift, which is sent to device 3. Among them, 201 completes the modulo operation for the input complex number, 202 and 203 complete the difference operation between two adjacent values, the result is completed by 204 for square operation, and by 206 for average operation. 205 and 207 complete the squaring and cumulative average calculation of the denominator part shown in [Formula 3]. 208 completes the division operation shown in [formula 3], and the result is sent to 209 to find the quadratic root, and at 210 completes the multiplication operation with the known data 2/Δt and obtains the maximum Doppler frequency shift and sends it to device 3 .
对于装置3,它的输入来自装置2计算出的最大多普勒频移,它完成[公式8]、[公式9]所示的运算并求出最佳的平均长度M送往装置4。For device 3, its input comes from the maximum Doppler frequency shift calculated by device 2, it completes the operations shown in [Formula 8] and [Formula 9] and finds the best average length M and sends it to device 4.
对于装置4,它根据装置3计算出的最佳M值由M个数据累加平均器401对由装置1发送来的M个复数进行累加求和及平均,此即为动态调整,其结果即是动态调整平均长度后估计出的信道参数。For device 4, according to the optimal M value calculated by device 3, the M complex numbers sent by device 1 are summed and averaged by M data accumulative averagers 401, which is dynamic adjustment, and the result is Channel parameters estimated after dynamically adjusting the average length.
在图7中,为本发明装置应用于RAKE接收机中的实施示例,除本发明装置外,其余均为RAKE接收机中的一般装置,其功能和连接关系分述如下:In Fig. 7, it is the implementation example that the device of the present invention is applied in the RAKE receiver, except the device of the present invention, all the other are general devices in the RAKE receiver, and its function and connection relationship are described as follows:
●抽头延迟线●Tapped delay line
抽头延迟线完成对接收基带数据的采样及延迟抽头输出,其结果通过时分复用的方式送往数据信道相关解扩器及导频信道相关解扩器。The tapped delay line completes the sampling of the received baseband data and delays tap output, and the result is sent to the data channel related despreader and the pilot channel related despreader through time division multiplexing.
●数据信道相关解扩器● Data channel correlation despreader
数据信道相关解扩器完成对抽头延迟线输出的采样数据中数据信道的相关解扩,其结果送往乘法器。The data channel correlation despreader completes the correlation despreading of the data channel in the sampling data output by the tapped delay line, and the result is sent to the multiplier.
●导频信道相关解扩器●Pilot channel correlation despreader
导频信道相关解扩器完成对抽头延迟线输出的采样数据中导频信道的相关解扩,其结果送往瞬时信道参数估计器。The pilot channel correlation despreader completes the correlation despreading of the pilot channel in the sampling data output by the tapped delay line, and the result is sent to the instantaneous channel parameter estimator.
●乘法器●Multiplier
乘法器完成对数据信道相关解扩器输出的数据信道数据与长度为M的数据平均器输出的信道参数估计值的复数相乘,即对接收信号进行相位校正。其结果送往RAKE接收机的最大比合并器。The multiplier completes the complex multiplication of the data channel data output by the data channel correlation despreader and the channel parameter estimation value output by the data averager with length M, that is, performs phase correction on the received signal. The result is sent to the maximum ratio combiner of the RAKE receiver.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB011155698A CN1150710C (en) | 2001-04-29 | 2001-04-29 | A method and device for dynamically adjusting average length for channel estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB011155698A CN1150710C (en) | 2001-04-29 | 2001-04-29 | A method and device for dynamically adjusting average length for channel estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1312625A true CN1312625A (en) | 2001-09-12 |
CN1150710C CN1150710C (en) | 2004-05-19 |
Family
ID=4662065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011155698A Expired - Fee Related CN1150710C (en) | 2001-04-29 | 2001-04-29 | A method and device for dynamically adjusting average length for channel estimation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1150710C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003021980A1 (en) * | 2001-09-03 | 2003-03-13 | The Research Institute Of Telecommunication Transmission, Mii | A method and equipment for regulating dynamically an average area of a channel estimation |
WO2004109949A1 (en) * | 2003-06-05 | 2004-12-16 | Huawei Technologies Co., Ltd. | Method for estimation of maximum doppler frequency |
CN100345453C (en) * | 2003-09-16 | 2007-10-24 | 三星电子株式会社 | Apparatus and method for estimating a velocity of a mobile terminal in a mobile communication system |
CN100350760C (en) * | 2006-01-04 | 2007-11-21 | 东南大学 | Multi antenna channel feedback method based on instantaneous and statistic channel information |
CN100359959C (en) * | 2004-06-01 | 2008-01-02 | 华为技术有限公司 | Method for implementing channel estimation in OFDMA system |
CN101425987B (en) * | 2007-10-30 | 2011-05-04 | 华为技术有限公司 | Channel estimation method and apparatus |
CN101212433B (en) * | 2007-12-25 | 2011-12-28 | 北京创毅视讯科技有限公司 | Channel estimating method and device |
CN104702539A (en) * | 2015-01-29 | 2015-06-10 | 武汉剑通信息技术有限公司 | CDMA 2000 reverse-access channel balancing method |
-
2001
- 2001-04-29 CN CNB011155698A patent/CN1150710C/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003021980A1 (en) * | 2001-09-03 | 2003-03-13 | The Research Institute Of Telecommunication Transmission, Mii | A method and equipment for regulating dynamically an average area of a channel estimation |
US7376176B2 (en) | 2001-09-03 | 2008-05-20 | The Research Institute Of Telecommunication Transmission, Mii | Method and equipment for regulating dynamically an average area of a channel estimation |
WO2004109949A1 (en) * | 2003-06-05 | 2004-12-16 | Huawei Technologies Co., Ltd. | Method for estimation of maximum doppler frequency |
CN100345453C (en) * | 2003-09-16 | 2007-10-24 | 三星电子株式会社 | Apparatus and method for estimating a velocity of a mobile terminal in a mobile communication system |
US7302267B2 (en) | 2003-09-16 | 2007-11-27 | Samsung Electronics Co., Ltd. | Apparatus and method for estimating a velocity of a mobile terminal in a mobile communication system |
CN100359959C (en) * | 2004-06-01 | 2008-01-02 | 华为技术有限公司 | Method for implementing channel estimation in OFDMA system |
CN100350760C (en) * | 2006-01-04 | 2007-11-21 | 东南大学 | Multi antenna channel feedback method based on instantaneous and statistic channel information |
CN101425987B (en) * | 2007-10-30 | 2011-05-04 | 华为技术有限公司 | Channel estimation method and apparatus |
CN101212433B (en) * | 2007-12-25 | 2011-12-28 | 北京创毅视讯科技有限公司 | Channel estimating method and device |
CN104702539A (en) * | 2015-01-29 | 2015-06-10 | 武汉剑通信息技术有限公司 | CDMA 2000 reverse-access channel balancing method |
CN104702539B (en) * | 2015-01-29 | 2018-03-30 | 武汉剑通信息技术有限公司 | A kind of equalization methods of CDMA2000 Reverse Access Channels |
Also Published As
Publication number | Publication date |
---|---|
CN1150710C (en) | 2004-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7376176B2 (en) | Method and equipment for regulating dynamically an average area of a channel estimation | |
US6647055B2 (en) | Adaptive channel estimation using continuous pilot signal based on doppler period | |
JP3805520B2 (en) | Speed estimation apparatus and method in mobile communication | |
WO2002078213A1 (en) | Method and apparatus for estimating doppler spread | |
JP2009071876A (en) | Channel gain estimation in rake receiver | |
CN1114294C (en) | Speed adaptive channel estimation method and its equipment | |
CN1150710C (en) | A method and device for dynamically adjusting average length for channel estimation | |
US7526012B2 (en) | Interference reduction apparatus and method | |
CN1151622C (en) | Pilot channel tracking method based on multipath channel energy window gravity center tracking loop | |
WO2003052952A1 (en) | Interference suppression in a cdma radio receiver | |
CN1471252A (en) | Frequency deviation correction method for base station received signal and Rake receiver | |
US7352799B2 (en) | Channel estimation in spread spectrum system | |
US7711041B2 (en) | Signal-to-interference ratio estimation | |
US7190940B2 (en) | Method and system for frequency offset estimation | |
US7286593B1 (en) | System and method for channel estimation in a radio frequency receiver | |
CN1269325C (en) | Channel estimation method for WCDMA communication system | |
US7181185B2 (en) | Apparatus and method for performing channel estimations using non-linear filter | |
JP4231058B2 (en) | Speed estimation apparatus and method in mobile communication | |
CN102611647B (en) | Channel estimation methods and device in Wideband Code Division Multiple Access (WCDMA) RAKE receiver | |
JP2005012386A (en) | SIR estimation method and receiving apparatus | |
CN1131615C (en) | Pilot interference cancellation method of code division multiple address system | |
KR20070073064A (en) | Adaptive Channel Estimation Apparatus and Estimation Method in Mobile Communication Systems | |
KR20010054456A (en) | channel estimation method, and apparatus for the same | |
JP2003324367A (en) | Apparatus and method for radio reception |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |