CN1308255C - Method for manufacturing erbium-doped high silica infrared luminescent glass - Google Patents
Method for manufacturing erbium-doped high silica infrared luminescent glass Download PDFInfo
- Publication number
- CN1308255C CN1308255C CNB2005100310225A CN200510031022A CN1308255C CN 1308255 C CN1308255 C CN 1308255C CN B2005100310225 A CNB2005100310225 A CN B2005100310225A CN 200510031022 A CN200510031022 A CN 200510031022A CN 1308255 C CN1308255 C CN 1308255C
- Authority
- CN
- China
- Prior art keywords
- glass
- erbium
- ion
- temperature
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims abstract description 60
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- -1 erbium ions Chemical class 0.000 claims abstract description 62
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 54
- 239000005373 porous glass Substances 0.000 claims abstract description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 17
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 8
- 238000001778 solid-state sintering Methods 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 claims 4
- 238000009413 insulation Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 17
- 238000004020 luminiscence type Methods 0.000 abstract description 7
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 239000007790 solid phase Substances 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 3
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 6
- 239000000243 solution Substances 0.000 description 47
- 150000002500 ions Chemical class 0.000 description 27
- 230000005284 excitation Effects 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000001748 luminescence spectrum Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 6
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- DBUHPIKTDUMWTR-UHFFFAOYSA-K erbium(3+);triacetate Chemical compound [Er+3].CC([O-])=O.CC([O-])=O.CC([O-])=O DBUHPIKTDUMWTR-UHFFFAOYSA-K 0.000 description 1
- YBYGDBANBWOYIF-UHFFFAOYSA-N erbium(3+);trinitrate Chemical compound [Er+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YBYGDBANBWOYIF-UHFFFAOYSA-N 0.000 description 1
- HDGGAKOVUDZYES-UHFFFAOYSA-K erbium(iii) chloride Chemical compound Cl[Er](Cl)Cl HDGGAKOVUDZYES-UHFFFAOYSA-K 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Images
Landscapes
- Lasers (AREA)
- Glass Compositions (AREA)
Abstract
一种掺铒高硅氧红外发光玻璃的制造方法,包括下列步骤:①选取高硅氧多孔玻璃,该玻璃中SiO2的含量为95~98wt%;②制备含铒离子的溶液,铒离子的浓度范围为0.02~0.42摩尔/升;③将所述的高硅氧多孔玻璃浸没在所述的含铒离子的溶液中,以使所述的含铒离子的溶液浸入该高硅氧多孔玻璃中,形成含铒离子的高硅氧多孔玻璃;④经过干燥,将该含铒离子的高硅氧多孔玻璃放入高温炉,在1050-1200℃温度下固相烧结。本发明方法制造的玻璃在1.53微米的频带附近产生红外发光,在激光谐振腔中可产生1.54微米的激光。
A method for manufacturing erbium-doped high-silicon oxide infrared luminescent glass comprises the following steps: ① selecting high-silicon oxide porous glass, wherein the content of SiO2 in the glass is 95-98wt%; ② preparing a solution containing erbium ions, wherein the concentration of erbium ions is in the range of 0.02-0.42 mol/L; ③ immersing the high-silicon oxide porous glass in the solution containing erbium ions, so that the solution containing erbium ions is immersed in the high-silicon oxide porous glass, thereby forming high-silicon oxide porous glass containing erbium ions; ④ after drying, placing the high-silicon oxide porous glass containing erbium ions in a high-temperature furnace, and solid-phase sintering at a temperature of 1050-1200°C. The glass manufactured by the method of the present invention generates infrared luminescence near the frequency band of 1.53 microns, and can generate 1.54 micron laser in the laser resonant cavity.
Description
技术领域technical field
本发明涉及发光玻璃,特别是一种掺铒高硅氧红外发光玻璃的制造方法。The invention relates to luminescent glass, in particular to a method for manufacturing erbium-doped high-silica infrared luminescent glass.
背景技术Background technique
掺铒离子氧化物玻璃可以用作为光纤放大器和平面光波导放大器等有源器件的工作物质,并且掺铒玻璃的1.54微米的激光波长可被水吸收,适合于做成对人眼安全的测距机等,由于有着这些应用前景,人们广泛地研究了铒离子在硅酸盐、磷酸酸、硼酸酸、锗酸盐和石英玻璃中的发光特性,并且掺铒石英光纤放大器(EDFA)已经成为目前光纤通信系统中必不可少的关键器件。但是,在上述多种玻璃系统中,目前只有掺铒离子石英玻璃光纤得到了实际应用,其原因是掺铒离子石英玻璃的光学损耗远低于其它氧化物玻璃,并且有着良好的稳定性。但是,掺铒石英玻璃存在着一些缺点:一是铒离子浓度不高;这是因为铒离子在石英玻璃中容易自发形成群集,从而产生浓度消光。低浓度就会使得光纤的单位长度的增益小,不利于器件小型化的发展。二是铒离子在石英玻璃中的发光带宽较窄,为放大带宽的扩展带来了困难。因此,尽管掺铒石英玻璃光纤已经在光纤通信系统中得到了应用,但是,如果能够研究发现一种合适的基质材料或者是制备方法,不仅使得石英玻璃的基本特性得到保持,同时,又有较高的铒离子掺杂浓度和较宽的发射带宽,如果这样,无疑可以弥补目前掺铒石英玻璃的不足,有着重要的实用价值。Erbium-doped ion oxide glass can be used as the working material of active devices such as optical fiber amplifiers and planar optical waveguide amplifiers, and the laser wavelength of 1.54 microns in erbium-doped glass can be absorbed by water, which is suitable for distance measurement that is safe for human eyes Due to these application prospects, people have extensively studied the luminescence characteristics of erbium ions in silicate, phosphoric acid, boric acid, germanate and quartz glass, and the erbium-doped silica fiber amplifier (EDFA) has become the current It is an indispensable key component in optical fiber communication system. However, among the various glass systems mentioned above, only erbium ion-doped silica glass fiber has been practically used at present. The reason is that the optical loss of erbium-doped ion silica glass is much lower than that of other oxide glasses and has good stability. However, there are some disadvantages in erbium-doped quartz glass: first, the concentration of erbium ions is not high; this is because erbium ions tend to spontaneously form clusters in quartz glass, resulting in concentration extinction. A low concentration will make the gain per unit length of the optical fiber small, which is not conducive to the development of device miniaturization. The second is that the luminescence bandwidth of erbium ions in quartz glass is relatively narrow, which brings difficulties to the expansion of the amplification bandwidth. Therefore, although erbium-doped silica glass fibers have been applied in optical fiber communication systems, if a suitable matrix material or preparation method can be found through research, not only the basic characteristics of silica glass can be maintained, but also relatively High erbium ion doping concentration and wide emission bandwidth, if so, can undoubtedly make up for the deficiency of the current erbium-doped quartz glass, which has important practical value.
发明内容Contents of the invention
本发明的目的在于提供一种掺铒高硅氧红外发光玻璃的制造方法,以获得1.53微米的频带附近产生红外发光,在激光谐振腔中产生1.54微米的激光。The object of the present invention is to provide a method for manufacturing erbium-doped high-silica infrared luminescent glass, so as to obtain infrared luminescence near the frequency band of 1.53 microns, and generate laser light of 1.54 microns in the laser resonant cavity.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种掺铒高硅氧红外发光玻璃的制造方法,其特征是该方法包括下列步骤:A method for manufacturing erbium-doped high-silica infrared luminescent glass, characterized in that the method comprises the following steps:
①选取高硅氧多孔玻璃,该玻璃中SiO2的含量为95~98wt%,小孔的孔径为1.0~10纳米,小孔占玻璃的体积为23~28%;1. Select high-silica porous glass, the content of SiO in the glass is 95-98wt%, the aperture of the small hole is 1.0-10 nanometers, and the small hole accounts for 23-28% of the volume of the glass;
②制备含铒离子的溶液,铒离子的浓度范围为0.02~0.42摩尔/升;②Preparing a solution containing erbium ions, the concentration range of erbium ions is 0.02~0.42 mol/liter;
③将所述的高硅氧多孔玻璃浸没在所述的含铒离子的溶液中,以使所述的含铒离子的溶液浸入该高硅氧多孔玻璃中,形成含铒离子的高硅氧多孔玻璃;③ immerse the high-silica porous glass in the solution containing erbium ions, so that the solution containing erbium ions is immersed in the high-silica porous glass to form a high-silica porous glass containing erbium ions. Glass;
④经过干燥,将该含铒离子的高硅氧多孔玻璃放入高温炉,在1050-1200℃温度下固相烧结:从室温到400℃的升温速率≤每分钟5℃,从400℃到900℃的升温速率为每分钟10℃,从950℃到1050-1200℃的升温速率≤每分钟5℃,在1050-1200℃保温30分钟以上,然后降温至室温。④ After drying, put the high-silica porous glass containing erbium ions into a high-temperature furnace, and solid-state sintering at a temperature of 1050-1200°C: the heating rate from room temperature to 400°C is ≤ 5°C per minute, from 400°C to 900°C The heating rate of ℃ is 10 ℃ per minute, the heating rate from 950 ℃ to 1050-1200 ℃ is ≤ 5 ℃ per minute, keep warm at 1050-1200 ℃ for more than 30 minutes, and then cool down to room temperature.
所述的含铒离子的溶液,其中还含有镱离子/铝离子共溶,所述的镱离子的浓度范围为0.27~0.71摩尔/升,所述的铝离子的浓度范围为0.11~0.53摩尔/升。The solution containing erbium ions also contains ytterbium ions/aluminum ions co-dissolved, the concentration range of ytterbium ions is 0.27-0.71 mol/liter, and the concentration range of aluminum ions is 0.11-0.53 mol/liter Lift.
所述的含铒离子的溶液的溶剂为水、酸、酒精或丙酮。The solvent of the solution containing erbium ions is water, acid, alcohol or acetone.
所述的酸为硝酸、盐酸或硫酸。Described acid is nitric acid, hydrochloric acid or sulfuric acid.
所述的高硅氧多孔玻璃是采用以硼硅酸盐玻璃分相方法制备的多孔玻璃,该玻璃SiO2的含量为95~98wt%(重量百分比),由于制备过程中酸处理不可能完全溶去其它成分,所以玻璃中还残留有1~3wt%的B2O3和1~2wt%Al2O3。这种多孔玻璃的孔径为1.0~10纳米,小孔占玻璃体积为23~28%。Described high silica porous glass adopts the porous glass prepared by borosilicate glass phase separation method, and the SiO2 content of this glass is 95~98wt% (percentage by weight), because the acid treatment in the preparation process can not dissolve completely Other components are removed, so 1-3wt% of B 2 O 3 and 1-2wt% of Al 2 O 3 remain in the glass. The pore diameter of the porous glass is 1.0-10 nanometers, and the small pores account for 23-28% of the volume of the glass.
经过干燥,将所述的含铒离子的高硅氧多孔玻璃放入高温炉,在和1050~1200℃高温烧结0.5~2小时,多孔玻璃变成无孔透明的红外发光玻璃。继续高温烧结玻璃的发光性能不再产生变化。经过抛光后,铒离子掺杂的高硅氧玻璃在808nm激光泵浦下,铒和镱离子共掺的高硅氧玻璃在980nm的激光泵浦下,可以在1.53微米的频带附近产生红外发光;同时共掺铝离子可以明显增强在1.53微米频带附近的发光强度。这种玻璃可以进一步加工成光纤和平面光波导,在激光谐振腔中可以产生1.54微米的激光。After drying, the high-silica porous glass containing erbium ions is put into a high-temperature furnace, and sintered at a high temperature of 1050-1200°C for 0.5-2 hours, and the porous glass becomes non-porous transparent infrared luminescent glass. The luminescent properties of the glass continue to sinter at high temperature no longer change. After polishing, the high-silica glass doped with erbium ions can produce infrared luminescence near the frequency band of 1.53 microns under the laser pumping of 808nm, and the high-silica glass co-doped with erbium and ytterbium ions can be pumped at 980nm; At the same time, co-doping aluminum ions can significantly enhance the luminous intensity near the 1.53 micron frequency band. This glass can be further processed into optical fibers and planar optical waveguides, which can produce 1.54 micron laser light in the laser resonator.
所述的铒离子溶液是将硝酸铒或者是氧化铒、氯化铒、乙酸铒等可以被水、酸(包括硝酸溶液、盐酸溶液、硫酸溶液)、乙醇和丙酮溶液完全溶解,并且高温下可以完全分解并形成铒离子氧化物的材料溶入上述溶液中,制备成掺铒离子溶液的水、酸溶液,包括硝酸溶液、盐酸溶液、硫酸溶液、乙醇溶液和丙酮溶液。Described erbium ion solution is that erbium nitrate or erbium oxide, erbium chloride, erbium acetate etc. can be dissolved completely by water, acid (comprising nitric acid solution, hydrochloric acid solution, sulfuric acid solution), ethanol and acetone solution, and can The material that completely decomposes and forms erbium ion oxide is dissolved in the above solution to prepare water and acid solution doped with erbium ion solution, including nitric acid solution, hydrochloric acid solution, sulfuric acid solution, ethanol solution and acetone solution.
为了提高铒离子的发光性能,在用溶液法引入铒离子同时,还可以同时引入镱Yb3+和铝离子Al3+,这些离子的在玻璃烧结后占玻璃中的重量百分比约为0.1~4.0wt%,既可以同时引入,也可以分别引入,引入铒、镱和铝离子的上限条件是玻璃烧结后不失透,引入这些离子后玻璃组成中二氧化硅的含量超过91%。镱离子和铝离子的引入与铒离子同样,将镱和铝的硝酸化合物、氯化物或者乙酸化合物溶入水、酸(包括硝酸溶液、盐酸溶液、硫酸溶液)、乙醇和丙酮溶液中制备成它们的水溶液、酸溶液、乙醇溶液和丙酮溶液。引入铒离子以及镱和铝离子之后,将掺有这些离子的高硅氧多孔玻璃放入高温炉,经过1050-1200℃的高温固相烧结,消除微孔成为密实透明的高硅氧玻璃。烧结过程中,从室温到400℃要慢速升温,每分钟5℃以下的速度,以避免多孔玻璃的开裂,从950℃左右到1050-1200℃要慢速升温,每分钟5℃以下的速度,以避免玻璃变形。到达烧结温度(1050-1200℃)后,保温0.5~2小时,多孔玻璃变成无孔玻璃,因此,继续高温烧结玻璃发光性能不再产生变化。In order to improve the luminescent performance of erbium ions, ytterbium Yb 3+ and aluminum ions Al 3+ can also be introduced at the same time as erbium ions are introduced by the solution method. The weight percentage of these ions in the glass after sintering is about 0.1-4.0 wt% can be introduced simultaneously or separately. The upper limit condition for introducing erbium, ytterbium and aluminum ions is that the glass does not devitrify after sintering. After these ions are introduced, the content of silicon dioxide in the glass composition exceeds 91%. The introduction of ytterbium ions and aluminum ions is the same as that of erbium ions, and the nitrate compounds, chlorides or acetic acid compounds of ytterbium and aluminum are dissolved in water, acids (including nitric acid solutions, hydrochloric acid solutions, sulfuric acid solutions), ethanol and acetone solutions to prepare them. aqueous solution, acid solution, ethanol solution and acetone solution. After introducing erbium ions, ytterbium and aluminum ions, the high-silica porous glass doped with these ions is placed in a high-temperature furnace, and undergoes high-temperature solid-state sintering at 1050-1200°C to eliminate micropores and become dense and transparent high-silica glass. During the sintering process, the temperature should be raised slowly from room temperature to 400°C, at a speed of less than 5°C per minute, to avoid cracking of the porous glass, and the temperature should be raised slowly from about 950°C to 1050-1200°C, at a speed of less than 5°C per minute , to avoid glass deformation. After reaching the sintering temperature (1050-1200°C), keep it warm for 0.5-2 hours, and the porous glass becomes non-porous glass. Therefore, the luminescent properties of the glass will not change when the high-temperature sintering continues.
实验表明:烧结后的掺铒及铒、铝和镱离子共掺的高硅氧玻璃经过抛光后,在808nm或者是980nm的激光泵浦下,可以在1.53微米的频带附近产生红外发光,在激光谐振腔中可以产生1.54微米的激光。Experiments show that after sintering the erbium-doped and erbium-, aluminum-, and ytterbium-ion-doped high-silica glass, after polishing, it can produce infrared luminescence near the frequency band of 1.53 microns under the laser pump of 808nm or 980nm. Laser light of 1.54 microns can be generated in the resonator.
附图说明Description of drawings
图1是利用本发明方法制造的掺铒高硅氧玻璃在波长为808nm的激光激发下的发光光谱Fig. 1 is the luminescent spectrum of the erbium-doped high-silica glass manufactured by the method of the present invention under the laser excitation with a wavelength of 808nm
图2是利用本发明方法制造的掺铒高硅氧玻璃在波长为980nm的激光激发下的发光光谱Fig. 2 is the luminescent spectrum of the erbium-doped high-silica glass manufactured by the method of the present invention under the excitation of a laser with a wavelength of 980nm
图3是利用本发明方法制造的掺铒高硅氧玻璃在波长为980nm的激光激发下的发光光谱Fig. 3 is the luminescent spectrum of the erbium-doped high-silica glass manufactured by the method of the present invention under the laser excitation with a wavelength of 980nm
具体实施方式Detailed ways
以下结合实施例对本发明作进一步说明。The present invention will be further described below in conjunction with embodiment.
实施例1Example 1
将分解后相当于1.0g的Er2O3的2.32g分析纯的Er(NO3)3·5H2O放入25毫升的去离子水溶液中,完全溶解后,配成Er3+离子浓度为0.21摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为97wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有铒离子的高硅氧多孔玻璃放入高温炉,在空气或者氧气中经过1150℃的固相烧结,消除微孔成为密实透明的掺Er2O3浓度约为1.0%的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃前后,然后,以每分钟5℃以下的速度从该温度升到1150℃并在该温度保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在808nm的激光激发下,可以发出中心位于1530nm的红外发光。图1中的曲线(1)就是该玻璃的发光光谱曲线。Put 2.32g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 1.0g of Er 2 O 3 after decomposition into 25 milliliters of deionized aqueous solution, after completely dissolving, the Er 3+ ion concentration is formulated as 0.21 mol/liter solution, and then put the porous glass with a size of 5×5×3mm and a SiO content of 97wt% into the solution and soak for more than 10 minutes; after that, the high-silica porous glass doped with erbium ions Put it into a high-temperature furnace and undergo solid-state sintering at 1150°C in air or oxygen to eliminate micropores and become dense and transparent high-silica glass doped with Er 2 O 3 with a concentration of about 1.0%. During the sintering process, after rising from room temperature to 400°C at a speed of less than 5°C per minute, it rises to around 950°C at a speed of 10°C per minute, and then rises from this temperature at a speed of below 5°C per minute. After reaching 1150°C and keeping the temperature at this temperature for more than 30 minutes, turn off the power of the high-temperature furnace and let the glass cool with the furnace. Under the excitation of 808nm laser, the glass can emit infrared light centered at 1530nm. Curve (1) in Fig. 1 is exactly the luminescence spectrum curve of this glass.
实施例2Example 2
将分解后相当于0.1g的Er2O3的0.23g分析纯的Er(NO3)3·5H2O放入25毫升的乙醇溶液中,完全溶解后,配成Er3+离子浓度为0.02摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为98wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将该高硅氧微孔玻璃放入高温炉内,在空气或者氧气中经过1200℃度温度的固相烧结,消除微孔成为密实透明的掺Er2O3浓度约为0.1%的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃前后,然后,以每分钟5℃以下的速度从该温度升到1200℃并在该温度保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在808nm的激光激发下,可以发出中心位于1530nm的红外发光。Put 0.23g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 0.1g of Er 2 O 3 after decomposition into 25 ml of ethanol solution, and after completely dissolving, the Er 3+ ion concentration is 0.02 mol/liter solution, and then put the porous glass with a size of 5×5×3mm and a SiO2 content of 98wt% into the solution and soak for more than 10 minutes; after that, put the high-silica microporous glass into a high-temperature furnace In the air or oxygen, after solid-phase sintering at a temperature of 1200°C, micropores are eliminated to become dense and transparent high-silica glass doped with Er 2 O 3 with a concentration of about 0.1%. During the sintering process, after rising from room temperature to 400°C at a speed of less than 5°C per minute, it rises to around 950°C at a speed of 10°C per minute, and then rises from this temperature at a speed of below 5°C per minute. After reaching 1200°C and keeping the temperature at this temperature for more than 30 minutes, turn off the power of the high-temperature furnace and let the glass cool down with the furnace. Under the excitation of 808nm laser, the glass can emit infrared light centered at 1530nm.
实施例3Example 3
将分解后相当于1.0g的Er2O3的2.32g分析纯的Er(NO3)3·5H2O和5.0g分析纯的Al(NO3)3·9H2O放入25毫升的1个当量的盐酸溶液中,完全溶解后,配成Er3+离子浓度为0.21摩尔/升,Al3+离子浓度为0.53摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为97wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有这些离子的高硅氧微孔玻璃放入高温炉,在空气或者氧气中经过1120℃度温度的固相烧结,消除微孔成为密实透明的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃。然后,以每分钟5℃以下的速度从950℃升到1120℃并在1120℃保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在808nm的激光激发下,可以发出中心位于1530nm的红外发光。图1中的曲线2就是该玻璃的发光光谱曲线。2.32g of analytically pure Er(NO 3 ) 3 5H 2 O and 5.0g of analytically pure Al(NO 3 ) 3 .9H 2 O equivalent to 1.0g of Er 2 O 3 after decomposition were put into 25 ml of 1 In the hydrochloric acid solution of one equivalent, after completely dissolving, be made into the solution that Er 3+ ion concentration is 0.21 mol/liter, Al 3+ ion concentration is 0.53 mol/liter, then the size is 5×5×3mm, SiO 2 The porous glass with a content of 97wt% is immersed in the solution for more than 10 minutes; after that, the high-silica microporous glass doped with these ions is placed in a high-temperature furnace, and undergoes solid-state sintering at a temperature of 1120°C in air or oxygen , Eliminate micropores and become dense and transparent high-silica glass. During the sintering process, the temperature is raised from room temperature to 400°C at a speed of less than 5°C per minute, and then raised to 950°C at a speed of 10°C per minute. Then, raise from 950°C to 1120°C at a speed of less than 5°C per minute and keep the temperature at 1120°C for more than 30 minutes, then turn off the power of the high-temperature furnace and let the glass cool with the furnace. Under the excitation of 808nm laser, the glass can emit infrared light centered at 1530nm.
实施例4Example 4
将分解后相当于1.0g的Er2O3的2.32g分析纯的Er(NO3)3·5H2O和分解后相当于1.35g的Yb2O3的3.2g分析纯的Yb(NO3)3·6H2O放入25毫升的1个当量的硝酸溶液中,完全溶解后,配成Er3+离子浓度为0.21摩尔/升,Yb3+离子浓度为0.27摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为97wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有这些离子的高硅氧微孔玻璃放入高温炉,在空气或者氧气中经过1100℃度温度的固相烧结,消除微孔成为密实透明的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃。然后,以每分钟5℃以下的速度从950℃升到1100℃并在1100℃保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在980nm的激光激发下,可以发出中心位于1530nm的红外发光。图2中的曲线2就是该玻璃的发光光谱曲线。2.32g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 1.0g of Er 2 O 3 after decomposition and 3.2g of analytically pure Yb(NO 3 ) equivalent to 1.35g of Yb 2 O 3 after decomposition ) 3.6H 2 O is put into 25 milliliters of 1 equivalent of nitric acid solution, after completely dissolving, be made into the solution that Er 3+ ion concentration is 0.21 mol/liter, Yb 3+ ion concentration is 0.27 mol/liter, and then Put a porous glass with a size of 5×5×3mm and a SiO2 content of 97wt% into the solution and soak for more than 10 minutes; after that, put the high-silicon-oxygen microporous glass doped with these ions into a high-temperature furnace, in the air Or undergo solid-state sintering at a temperature of 1100°C in oxygen to eliminate micropores and become dense and transparent high-silica glass. During the sintering process, the temperature is raised from room temperature to 400°C at a speed of less than 5°C per minute, and then raised to 950°C at a speed of 10°C per minute. Then, raise the temperature from 950°C to 1100°C at a rate of less than 5°C per minute and keep the temperature at 1100°C for more than 30 minutes, then turn off the power supply of the high-temperature furnace and let the glass cool down with the furnace. Under the excitation of 980nm laser, the glass can emit infrared light centered at 1530nm.
实施例5Example 5
将分解后相当于1.0g的Er2O3的2.32g分析纯的Er(NO3)3·5H2O和分解后相当于1.35g的Yb2O3的3.2g分析纯的Yb(NO3)3·6H2O以及5.0g分析纯的Al(NO3)3·9H2O放入25毫升的1个当量的硫酸溶液中,完全溶解后,配成Er3+离子浓度为0.21摩尔/升,Yb3+离子浓度为0.27摩尔/升,Al3+离子浓度为0.53摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为96wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有这些离子的高硅氧微孔玻璃放入高温炉,在空气或者氧气中经过1080℃度温度的固相烧结,消除微孔成为密实透明的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃。然后,以每分钟5℃以下的速度从950℃升到1080℃并在1080℃保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在980nm的激光激发下,可以发出中心位于1530nm的红外发光。图3中的曲线2就是该玻璃的发光光谱曲线。2.32g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 1.0g of Er 2 O 3 after decomposition and 3.2g of analytically pure Yb(NO 3 ) equivalent to 1.35g of Yb 2 O 3 after decomposition ) 3 ·6H 2 O and 5.0g of analytically pure Al(NO 3 ) 3 ·9H 2 O were put into 25 ml of 1 N sulfuric acid solution, and after they were completely dissolved, the Er 3+ ion concentration was 0.21 mol/ liters, Yb 3+ ion concentration is 0.27 mol/liter, Al 3+ ion concentration is 0.53 mol/liter solution, then put the porous glass with the size of 5×5×3mm and SiO content of 96wt% into the solution After that, put the high-silica microporous glass doped with these ions into a high-temperature furnace, and undergo solid-phase sintering at a temperature of 1080°C in air or oxygen to eliminate micropores and become dense and transparent high-silica glass. Glass. During the sintering process, the temperature is raised from room temperature to 400°C at a speed of less than 5°C per minute, and then raised to 950°C at a speed of 10°C per minute. Then, raise the temperature from 950°C to 1080°C at a speed of less than 5°C per minute and keep the temperature at 1080°C for more than 30 minutes, then turn off the power of the high-temperature furnace and let the glass cool down with the furnace. Under the excitation of 980nm laser, the glass can emit infrared light centered at 1530nm.
实施例6Example 6
将分解后相当于2.0g的Er2O3的4.64g分析纯的Er(NO3)3·5H2O和分解后相当于2.0g的Yb2O3的4.74g分析纯的Yb(NO3)3·6H2O以及2.5g分析纯的Al(NO3)3·9H2O放入25毫升的1个当量的盐酸溶液中,完全溶解后,配成Er3+离子浓度为0.42摩尔/升,Yb3+离子浓度为0.4摩尔/升,Al3+离子浓度为0.28摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为96wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有这些离子的高硅氧微孔玻璃放入高温炉,在空气或者氧气中经过1070℃度温度的固相烧结,消除微孔成为密实透明的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度从室温升到950℃。然后,以每分钟5℃以下的速度从950℃升到1070℃并在1070℃保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在980nm的激光激发下,可以发出中心位于1530nm的红外发光。4.64g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 2.0g of Er 2 O 3 after decomposition and 4.74g of analytically pure Yb(NO 3 ) equivalent to 2.0g of Yb 2 O 3 after decomposition ) 3 ·6H 2 O and 2.5g of analytically pure Al(NO 3 ) 3 ·9H 2 O were put into 25 ml of 1 N hydrochloric acid solution, and after they were completely dissolved, the Er 3+ ion concentration was 0.42 mol/ liter, Yb 3+ ion concentration is 0.4 mole/liter, Al 3+ ion concentration is 0.28 mole/liter solution, then put the porous glass with size 5×5×3mm and SiO content of 96wt% into the solution After that, put the high-silica microporous glass doped with these ions into a high-temperature furnace, and undergo solid-phase sintering at a temperature of 1070°C in air or oxygen to eliminate micropores and become dense and transparent high-silica glass. Glass. During the sintering process, after rising from room temperature to 400°C at a speed of less than 5°C per minute, the temperature rises from room temperature to 950°C at a speed of 10°C per minute. Then, raise the temperature from 950°C to 1070°C at a speed of less than 5°C per minute and keep the temperature at 1070°C for more than 30 minutes, then turn off the power of the high-temperature furnace and let the glass cool down with the furnace. Under the excitation of 980nm laser, the glass can emit infrared light centered at 1530nm.
实施例7Example 7
将分解后相当于0.5g的Er2O3的1.2g分析纯的Er(NO3)3·5H2O和分解后相当于3.5g的Yb2O3的8.3g分析纯的Yb(NO3)3·6H2O以及1.0g分析纯的Al(NO3)3·9H2O放入25毫升的乙醇和丙酮的溶液,完全溶解后,配成Er3+离子浓度为0.11摩尔/升,Yb3+离子浓度为0.71摩尔/升,Al3+离子浓度为0.11摩尔/升的溶液,再将大小为5×5×3mm、SiO2的含量为95wt%的多孔玻璃放入该溶液中浸泡10分钟以上;之后,将掺有这些离子的高硅氧微孔玻璃放入高温炉,在空气或者氧气中经过1050℃温度的固相烧结,消除微孔成为密实透明的高硅氧玻璃。在烧结过程中,以每分钟5℃以下的速度,从室温升到400℃后,以每分钟10℃的速度升到950℃。然后,以每分钟5℃以下的速度从950℃升到1050℃并在1050℃保温30分钟以上后,关掉高温炉的电源,让玻璃随炉冷却。这个玻璃在980nm的激光激发下,可以发出中心位于1530nm的红外发光。1.2g of analytically pure Er(NO 3 ) 3 5H 2 O equivalent to 0.5g of Er 2 O 3 after decomposition and 8.3g of analytically pure Yb(NO 3 ) equivalent to 3.5g of Yb 2 O 3 after decomposition ) 3 6H 2 O and 1.0 g of analytically pure Al(NO 3 ) 3 9H 2 O were put into 25 ml of ethanol and acetone solution, and after they were completely dissolved, the Er 3+ ion concentration was 0.11 mol/liter. A solution with a concentration of Yb 3+ ions of 0.71 mol/liter and a concentration of Al 3+ ions of 0.11 mol/liter, and then put a porous glass with a size of 5×5×3mm and a content of SiO 2 of 95wt% into the solution for soaking More than 10 minutes; after that, put the high-silica microporous glass doped with these ions into a high-temperature furnace, and undergo solid-state sintering at a temperature of 1050°C in air or oxygen to eliminate micropores and become dense and transparent high-silica glass. During the sintering process, the temperature is raised from room temperature to 400°C at a speed of less than 5°C per minute, and then raised to 950°C at a speed of 10°C per minute. Then, raise the temperature from 950°C to 1050°C at a speed of less than 5°C per minute and keep the temperature at 1050°C for more than 30 minutes, then turn off the power of the high-temperature furnace and let the glass cool down with the furnace. Under the excitation of 980nm laser, the glass can emit infrared light centered at 1530nm.
由图可见,图1中的曲线1是实施例1仅掺有铒离子的高硅氧玻璃在波长为808nm的激光激发下的发光光谱,曲线2是实施例3铒和铝离子共掺的高硅氧玻璃在波长为808nm的激光激发下的发光光谱,共掺铝离子后,发光强度增加约1倍左右。图2中的曲线1与图1中的曲线1是同一光谱,图2中的曲线2是实施例4铒和镱离子共掺的高硅氧玻璃在波长为980nm的激光激发下的发光光谱,在同样功率的激光激发下,铒和镱离子共掺玻璃的发光强度增加了12倍左右以上。另外,掺铒离子的高硅氧玻璃和铒和铝离子共掺的高硅氧玻璃的发光光谱半高宽为30nm左右,而铒和镱离子共掺的高硅氧玻璃的发光光谱的半高宽为74nm左右,增加了1倍以上。图3中的曲线1与图2中的曲线2是同一曲线,图3中的曲线2是实施例5铒、镱和铝三种离子共掺玻璃在波长为980nm的激光激发下的发光光谱,共掺铝离子后,发光强度又增加了约1倍左右,并且其发光光谱的半高宽保持在70nm左右。这种铒离子掺杂高硅氧玻璃红外发光玻璃,从单掺铒改进到共掺铒、镱和铝三种离子,在同样功率的激光激发下,其发光强度增加了25%左右。As can be seen from the figure, curve 1 in Fig. 1 is the luminescence spectrum of the high-silica glass doped with erbium ions in embodiment 1 only under laser excitation with a wavelength of 808 nm, and
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100310225A CN1308255C (en) | 2005-10-21 | 2005-10-21 | Method for manufacturing erbium-doped high silica infrared luminescent glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100310225A CN1308255C (en) | 2005-10-21 | 2005-10-21 | Method for manufacturing erbium-doped high silica infrared luminescent glass |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1785873A CN1785873A (en) | 2006-06-14 |
CN1308255C true CN1308255C (en) | 2007-04-04 |
Family
ID=36783493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100310225A Expired - Fee Related CN1308255C (en) | 2005-10-21 | 2005-10-21 | Method for manufacturing erbium-doped high silica infrared luminescent glass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1308255C (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102030480B (en) * | 2009-09-24 | 2014-04-09 | 海洋王照明科技股份有限公司 | Porous glass doped with nickel nano particle and preparation method thereof |
CN102030479B (en) * | 2009-09-24 | 2014-04-09 | 海洋王照明科技股份有限公司 | Copper nanoparticle-doped porous glass and preparation method thereof |
CN102030481B (en) * | 2009-09-24 | 2013-09-11 | 海洋王照明科技股份有限公司 | Cobalt nanoparticle-doped cellular glass and preparation method thereof |
EP2594537A4 (en) * | 2010-07-14 | 2015-10-28 | Oceans King Lighting Science | Rare earth ions doped alkali metal silicate luminescent glass and the preparation method thereof |
CN107162441B (en) * | 2017-04-28 | 2019-06-18 | 华中科技大学 | A kind of glass doped with ITO nanoparticles and preparation method thereof |
CN107082571B (en) * | 2017-04-28 | 2019-06-18 | 华中科技大学 | An upconversion luminescent glass doped with ITO nanoparticles and its preparation method and application |
CN113934079B (en) * | 2021-09-30 | 2023-04-07 | 华中科技大学 | Optical waveguide amplifier and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618760A (en) * | 2004-11-05 | 2005-05-25 | 中国科学院上海光学精密机械研究所 | Preparation method of neodymium-doped high-silica blue-light emitting glass |
-
2005
- 2005-10-21 CN CNB2005100310225A patent/CN1308255C/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618760A (en) * | 2004-11-05 | 2005-05-25 | 中国科学院上海光学精密机械研究所 | Preparation method of neodymium-doped high-silica blue-light emitting glass |
Also Published As
Publication number | Publication date |
---|---|
CN1785873A (en) | 2006-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991011401A1 (en) | Quartz glass doped with rare earth element and production thereof | |
CN107390315B (en) | A method for suppressing photo-darkening effect in active optical fibers | |
US11780768B2 (en) | Photodarkening-resistant ytterbium-doped quartz optical fiber and preparation method therefor | |
CN1944297A (en) | Method for manufacturing neodymium-ytterbium co-doped high silica laser glass | |
CN1308255C (en) | Method for manufacturing erbium-doped high silica infrared luminescent glass | |
CN101717201A (en) | Rare earth doped bismuth titanate up-conversion luminescence ferroelectric film and preparation method thereof | |
CN1994946B (en) | Quartz-based bismuth-gallium-erbium-aluminum co-doped optical fiber and manufacturing method thereof | |
CN1736920A (en) | Method for producing green-emitting high-silica glass | |
CN103397302B (en) | A preparation method of Er/Yb co-doped TiO2 film with upconversion and luminescence | |
CN1291936C (en) | Ytterbium-doped high-silica laser glass and manufacturing method thereof | |
CN102421715A (en) | Improved method for preparing rare-earth (RE)-doped optical fibers with novel co-dopants | |
CN114634311B (en) | Method for improving near-infrared fluorescence intensity of bismuth-doped quartz glass | |
CN1278970C (en) | Method for manufacturing bismuth-doped high-silica near-infrared broadband luminescent glass | |
CN106495470A (en) | Neodymium ytterbium codope quartz laser glass and preparation method thereof | |
CN1259265C (en) | Method for manufacturing neodymium-doped high silica laser glass | |
CN117023984A (en) | Erbium-doped tellurate glass and preparation method and application thereof | |
CN103274597B (en) | The method of the near-infrared luminous glass of a kind of bismuth ion doped micropore molecular sieve | |
JP2931026B2 (en) | Method for producing rare earth element doped glass | |
CN1562833A (en) | Tm3+/Yb3+Codoped heavy metal oxyfluoride silicate glass and preparation method thereof | |
JP3475109B2 (en) | Rare earth element doped glass | |
JPH0350130A (en) | Production of quartz-based doped glass | |
JP3157000B2 (en) | Optical waveguide | |
CN115032735B (en) | Active optical fiber for reducing C + band noise coefficient and preparation method thereof | |
CN1752041A (en) | Method for manufacturing high silica blue light emitting glass | |
JP2004231473A (en) | Method of manufacturing rare earth element-added optical fiber preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070404 Termination date: 20121021 |