[go: up one dir, main page]

CN1292824C - Selective absorption method for reducing propylene in catalytic cracking dry gas - Google Patents

Selective absorption method for reducing propylene in catalytic cracking dry gas Download PDF

Info

Publication number
CN1292824C
CN1292824C CNB2004100374330A CN200410037433A CN1292824C CN 1292824 C CN1292824 C CN 1292824C CN B2004100374330 A CNB2004100374330 A CN B2004100374330A CN 200410037433 A CN200410037433 A CN 200410037433A CN 1292824 C CN1292824 C CN 1292824C
Authority
CN
China
Prior art keywords
absorbent
dry gas
propylene
gas
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100374330A
Other languages
Chinese (zh)
Other versions
CN1689688A (en
Inventor
王清遐
徐龙伢
刘盛林
李建保
张银龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CNB2004100374330A priority Critical patent/CN1292824C/en
Publication of CN1689688A publication Critical patent/CN1689688A/en
Application granted granted Critical
Publication of CN1292824C publication Critical patent/CN1292824C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种从炼油厂催化裂化装置产生的干气中吸收丙烯的方法。该方法是将无需任何净化和精制的催化裂化干气通过对烯烃有选择吸收的吸收装置来除去丙烯。干气和吸收剂的接触方式为对流形式。吸收剂包括苯、乙苯、二乙苯、三乙苯、三以上的乙基苯(多乙基苯)、柴油、汽油等中的一种或几种的混合物。吸收剂对干气中丙烯的吸收条件:操作温度为-10-40℃,压力为0.1-3.5MPa,吸收剂/干气体积比(ml/L):3-25。吸附气体后的吸收剂解吸条件:温度为20-300℃,压力为0.1-3.5MPa,吹扫气体/吸收剂体积比:1-15,吹扫时间为1-10小时。吹扫气体包括N2、H2、甲烷、乙烷等中一种或几种的混合物。解吸后的吸收剂可循环使用。A process for absorbing propylene from dry gas produced by a refinery catalytic cracking unit. The method is to remove propylene through an absorption device that selectively absorbs olefins without any purification and refining of catalytic cracking dry gas. The contact mode of dry gas and absorbent is convective. The absorbent includes one or a mixture of benzene, ethylbenzene, diethylbenzene, triethylbenzene, three or more ethylbenzenes (polyethylbenzenes), diesel oil, gasoline, etc. Absorption conditions of absorbent for propylene in dry gas: operating temperature is -10-40°C, pressure is 0.1-3.5MPa, absorbent/dry gas volume ratio (ml/L): 3-25. Absorbent desorption conditions after gas adsorption: temperature 20-300°C, pressure 0.1-3.5MPa, purge gas/absorbent volume ratio: 1-15, purge time 1-10 hours. The purge gas includes one or a mixture of N 2 , H 2 , methane, ethane, etc. The desorbed absorbent can be recycled.

Description

一种选择吸收降低催化裂化干气中丙烯的方法A method for selectively absorbing and reducing propylene in catalytic cracking dry gas

技术领域technical field

本发明涉及混合气分离和净化领域,特别涉及通过选择吸收来降低催化裂化干气中丙烯的方法。The invention relates to the field of separation and purification of mixed gas, in particular to a method for reducing propylene in catalytic cracking dry gas through selective absorption.

背景技术Background technique

近十年来我国乙烯工业发展速度相对较快,至今已建成大中型乙烯生产装置18套。2000年以后,开始对一批乙烯装置进行改造和扩建,到2005年全国乙烯生产能力可达到840万吨。我国与国外乙烯工业相比还存在很大差距。诸多因素使乙烯的成本比国外高,从而影响国内乙烯的发展。工业我国许多炼油厂仍将大量含乙烯12%~25%(体积分数)的催化裂化干气作为燃气或放火炬烧掉,造成资源的浪费与环境的污染。目前,我国催化裂化装置规模居世界第二位,干气产量为112MtPa~315MtPa,干气中的乙烯数量相当可观。若能将其回收,可提高炼油企业的竞争力,也将缓和国内乙烯的供求矛盾。从催化裂化干气中提取乙烯具有重要意义。In the past ten years, my country's ethylene industry has developed relatively rapidly, and 18 sets of large and medium-sized ethylene production units have been built so far. After 2000, a number of ethylene plants began to be transformed and expanded. By 2005, the national ethylene production capacity will reach 8.4 million tons. There is still a big gap between our country and foreign ethylene industry. Many factors make the cost of ethylene higher than that of foreign countries, thus affecting the development of domestic ethylene. Industry Many oil refineries in my country still use a large amount of catalytic cracking dry gas containing 12% to 25% (volume fraction) of ethylene as gas or burn it with a torch, resulting in waste of resources and pollution of the environment. At present, the scale of catalytic cracking units in my country ranks second in the world, with a dry gas output of 112MtPa to 315MtPa, and a considerable amount of ethylene in the dry gas. If it can be recovered, it can improve the competitiveness of oil refining enterprises and ease the contradiction between supply and demand of domestic ethylene. It is of great significance to extract ethylene from catalytic cracking dry gas.

目前,从催化裂化干气等混合气中提取乙烯分离丙烯的技术主要有深冷分离法、吸收分离法、水合物分离法、膜分离法和吸附分离法。其中水合物分离法是新出现的分离方法,膜分离法和吸附分离法正处在实验室研究或工业试验阶段,而深冷分离法、吸收分离法已相当成熟,并实现了工业化,取得了良好经济效益。深冷分离法能得到聚合级的乙烯,但由于干气中的乙烯浓度低,一般适合处理大量干气的情况,特别适合于炼厂集中地区。若炼厂规模比较小时,则不经济。At present, the technologies for extracting ethylene and separating propylene from mixed gas such as catalytic cracking dry gas mainly include cryogenic separation, absorption separation, hydrate separation, membrane separation and adsorption separation. Among them, hydrate separation method is a new separation method. Membrane separation method and adsorption separation method are in the stage of laboratory research or industrial experiment, while cryogenic separation method and absorption separation method are quite mature, and have achieved industrialization, and achieved great achievements. Good economic benefits. The cryogenic separation method can obtain polymer grade ethylene, but due to the low concentration of ethylene in the dry gas, it is generally suitable for dealing with a large amount of dry gas, especially suitable for areas where refineries are concentrated. If the refinery scale is small, it is not economical.

吸收分离法主要是利用催化裂化干气各组分在吸收剂中溶解度不同来进行分离的。中冷油吸收工艺一般是利用C3、C4和芳烃等油品作吸收剂,首先除去甲烷和氢,然后用精馏把吸收的各组分逐一分离开来。操作温度最低为-70℃,一般为-20-40℃,乙烯纯度约为90%,收率为85%[吴茨萍,孙利.炼厂干气的分离回收和综合利用,现代化工,2001,21(5):20-23].。Mehra工艺由美国休斯顿AET公司开发。该工艺采用Mehrsolr溶剂,在常规的气体加工装置上即可将裂解气体分离成富氢、富甲烷和乙烯等气体,供下游进行常规分馏。该工艺可获得纯度为90%的氢气和甲烷燃料气,氢气可在变压吸附装置中进一步净化达到99%的纯度。Mehrsolr溶剂一般是聚烷撑二醇二烷基醚、N-甲基毗咯酮、二甲基甲酚胺、碳酸丙烯酯、环丁砜和乙二醇三乙酸酯的特殊混合物。此外,C8~C10芳烃化合物也可作为该工艺的溶剂。操作温度一般为-37℃左右,压力为1.7MPa[1.Mehra Y R.Using Extraction to treat hydrocarbongases,Chem.Eng.1986,93(20):53-55;2.Savage P.,Brooks K.,Refinery gases:a quick source of ethylene,Chem.Week,1988,142(19):16]。The absorption separation method mainly uses the different solubility of each component of the catalytic cracking dry gas in the absorbent to separate. The intercooler oil absorption process generally uses oils such as C3, C4 and aromatics as absorbents, first removes methane and hydrogen, and then separates the absorbed components one by one by rectification. The lowest operating temperature is -70°C, generally -20-40°C, the purity of ethylene is about 90%, and the yield is 85% [Wu Ciping, Sun Li. Separation, recovery and comprehensive utilization of refinery dry gas, Modern Chemical Industry, 2001, 21(5): 20-23]. The Mehra process was developed by AET in Houston, USA. The process uses Mehrsolr solvent, and the cracked gas can be separated into hydrogen-rich, methane-rich and ethylene-rich gases on a conventional gas processing device for conventional fractionation downstream. The process can obtain hydrogen and methane fuel gas with a purity of 90%, and the hydrogen can be further purified in a pressure swing adsorption device to reach a purity of 99%. Mehrsol solvents are typically special mixtures of polyalkylene glycol dialkyl ethers, N-methylpyrrolidone, dimethylcresylamine, propylene carbonate, sulfolane and ethylene glycol triacetate. In addition, C 8 -C 10 aromatic compounds can also be used as solvents in this process. The operating temperature is generally around -37°C, and the pressure is 1.7MPa [1. Mehra Y R. Using Extraction to treat hydrocarbongases, Chem. Eng. 1986, 93(20): 53-55; 2. Savage P., Brooks K. , Refinery gases: a quick source of ethylene, Chem. Week, 1988, 142(19): 16].

炼厂的催化裂化干气中除含有10-25%的乙烯外,还有一定量的丙烯和丁烯,其含量取决催化裂化装置生产条件,由于丙烯、丁烯和苯的烷基化速率比乙烯快,除了生成乙苯和二乙苯外,还存在如下副反应:丙烯+苯=丙苯(1);丁烯+苯=丁苯(2)。反应(1)和(2)都需消耗苯,使过程的苯耗率增加,影响乙苯生产成本,为此,王清遐等[选择转化提纯催化裂化干气中乙烯的研究,辽宁化工,1989,4:32]采用改性ZSM-5沸石催化剂,可使催化裂化干气中丙烯,丁烯转化为烃类,其中95%的乙烯被保留。In addition to 10-25% ethylene, there is a certain amount of propylene and butene in the catalytic cracking dry gas of the refinery. Fast, in addition to generating ethylbenzene and diethylbenzene, there are also the following side reactions: propylene+benzene=propylbenzene (1); butene+benzene=butylbenzene (2). Reaction (1) and (2) all need to consume benzene, make the benzene consumption rate of process increase, influence ethylbenzene production cost, for this reason, Wang Qingya et al. 4:32] Using modified ZSM-5 zeolite catalyst can convert propylene and butene in catalytic cracking dry gas into hydrocarbons, and 95% of ethylene is retained.

发明内容Contents of the invention

本发明的目的是在上述现有技术的基础上提供一种通过选择吸收来降低催化裂化干气中丙烯的方法。使用本发明提供的方法用于催化裂化干气制乙苯时,可明显降低苯耗和提高乙烯的利用率。The purpose of the present invention is to provide a method for reducing propylene in catalytic cracking dry gas by selective absorption on the basis of the above prior art. When the method provided by the invention is used to produce ethylbenzene by catalytic cracking dry gas, the consumption of benzene can be obviously reduced and the utilization rate of ethylene can be improved.

为实现上述目的,本发明提供的通过吸收剂将催化裂化干气中丙烯吸收从而提高干气中乙烯纯度的方法,用吸收剂吸收丙烯,然后用吹扫气体对吸收有丙烯的吸收剂进行解吸,用吹扫气体解吸后的吸收剂再循环使用。其中:In order to achieve the above object, the present invention provides a method for absorbing propylene in catalytic cracking dry gas through an absorbent to improve the purity of ethylene in the dry gas, absorbing propylene with an absorbent, and then desorbing the absorbent that has absorbed propylene with a purge gas , The absorbent after desorption with purge gas is recycled. in:

吸收剂对干气中丙烯的吸收条件:Conditions for absorbent to absorb propylene in dry gas:

干气从吸收装置的下端通入,吸收剂从上端进料,干气和吸收剂在装有填料的吸收塔内的接触方式为对流形式;The dry gas is introduced from the lower end of the absorption device, and the absorbent is fed from the upper end, and the contact mode between the dry gas and the absorbent in the absorption tower equipped with packing is convective;

温度为-10-40℃,压力为0.1-3.5MPa,吸收剂/干气体积比(ml/L):3-25;The temperature is -10-40°C, the pressure is 0.1-3.5MPa, the absorbent/dry gas volume ratio (ml/L): 3-25;

吸收剂包括苯、乙苯、二乙苯、三乙苯、三以上的乙基苯(多乙基苯)、柴油和汽油中的一种或几种的混合物;Absorbents include one or more mixtures of benzene, ethylbenzene, diethylbenzene, triethylbenzene, more than three ethylbenzenes (polyethylbenzenes), diesel oil and gasoline;

吸附气体后的吸收剂解吸条件为:The desorption condition of absorbent after adsorbing gas is:

温度为20-300℃,压力为0.1-3.5MPa,吹扫气体/吸收剂体积比为1-15,吹扫时间为1-10小时;The temperature is 20-300°C, the pressure is 0.1-3.5MPa, the purge gas/absorbent volume ratio is 1-15, and the purge time is 1-10 hours;

吹扫气体包括N2、H2、甲烷和乙烷中一种或几种的混合物。The purge gas includes one or a mixture of N 2 , H 2 , methane and ethane.

所述干气是从炼油厂催化裂化装置产生的干气,干气中丙烯50ppm以上,其余气体为氢气、甲烷、乙烷、乙烯、一氧化碳和二氧化碳。The dry gas is the dry gas produced from the catalytic cracking unit of the refinery, the propylene in the dry gas is more than 50ppm, and the remaining gases are hydrogen, methane, ethane, ethylene, carbon monoxide and carbon dioxide.

采用本发明所述方法用于选择性吸收催化裂化干气中丙烯时,催化裂化干气原料无需任何净化和精制。When the method of the invention is used to selectively absorb propylene in the catalytic cracking dry gas, the raw material of the catalytic cracking dry gas does not need any purification and refining.

具体实施方式Detailed ways

下面结合实施例对本发明做进一步阐述,但并不对本发明产生任何限制。The present invention will be further described below in conjunction with the examples, but the present invention is not limited in any way.

实施例1-7Example 1-7

在吸收塔高110cm,内径32mm吸收装置上装添惰性Φ3球填料高约90cm,干气从下部进入,吸收剂从顶部进入的条件下,得到如下的实施例1-7结果。从实施例结果中可看出,吸附剂/干气体积比越大,吸收后干气中的丙烯越少,吸附温度越高,吸收后干气中的丙烯越多。Under the conditions that the absorption tower is 110 cm high, the absorption device with an inner diameter of 32 mm is filled with inert Φ3 spherical packing with a height of about 90 cm, the dry gas enters from the bottom, and the absorbent enters from the top, the following results of Examples 1-7 are obtained. It can be seen from the results of the examples that the larger the adsorbent/dry gas volume ratio, the less propylene in the absorbed dry gas, and the higher the adsorption temperature, the more propylene in the absorbed dry gas.

                                       实施例1  苯在17℃的吸收结果 吸附剂/苯                    吸收压力/0.8MPa                               实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)  N2  CH4  CO2  C2=  C2  C3=  C3  C2  C2= C3= 17  120  20  6  17.63  39.12  3.47  24.01  15.58  0.19  0.07  12.57  2.70  83.19 17  150  20  7.5  18.14  40.65  3.33  23.10  14.68  0.08  0.02  17.62  6.39  92.92 17  180  20  9  19.04  40.89  3.27  22.61  14.15  0.04  0  20.59  8.37  96.46                       催化裂化干气原料组成  16.32  36.16  3.65  24.68  17.82  1.13  0.22 Example 1 Absorption result of benzene at 17°C Adsorbent/Benzene Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 17 120 20 6 17.63 39.12 3.47 24.01 15.58 0.19 0.07 12.57 2.70 83.19 17 150 20 7.5 18.14 40.65 3.33 23.10 14.68 0.08 0.02 17.62 6.39 92.92 17 180 20 9 19.04 40.89 3.27 22.61 14.15 0.04 0 20.59 8.37 96.46 Feedstock Composition of Catalytic Cracking Dry Gas 16.32 36.16 3.65 24.68 17.82 1.13 0.22

                             实施例2  反烃化料(二乙苯30w%,三乙苯30w%,多乙苯40w%)在15℃的吸收结果 吸附剂/反烃化料                     吸收压力/0.8MPa                                    实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)   N2   CH4  CO2  C2=  C2  C3=  C3  C2  C2=  C3= 15  200  20  10   18.89   40.92  3.79  22.64  13.72  0.03  0  20.37  10.27  97.41 15  250  20  12.5   18.97   42.11  3.83  22.11  12.98  0  0  24.67  12.37  100                             催化裂化干气原料组成   15.90   36.43  3.83  25.23  17.23  1.16  0.20 Example 2 Absorption results of transhydrocarbonated materials (diethylbenzene 30w%, triethylbenzene 30w%, polyethylbenzene 40w%) at 15°C Adsorbent/antihydrocarbon feed Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 15 200 20 10 18.89 40.92 3.79 22.64 13.72 0.03 0 20.37 10.27 97.41 15 250 20 12.5 18.97 42.11 3.83 22.11 12.98 0 0 24.67 12.37 100 Feedstock Composition of Catalytic Cracking Dry Gas 15.90 36.43 3.83 25.23 17.23 1.16 0.20

                                                               实施例3  乙苯在17℃的吸收结果 吸附剂/乙苯                    吸收压力/0.8MPa                                      实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)   N2  CH4  CO2  C2=  C2  C3=  C3  C2  C2=  C3= 17  150  20  7.5   18.04  40.06  3.72  23.38  14.63  0.13  0.03  10.25  3.43  88.07 17  200  20  10   18.22  40.21  3.72  23.20  14.59  0.05  0  10.49  4.17  95.41 17  250  20  12.5   18.88  41.42  3.60  22.44  13.64  0.03  0  16.32  7.31  97.25                           催化裂化干气原料组成   19.71  34.92  3.57  24.21  16.30  1.09  0.20 Example 3 Absorption results of ethylbenzene at 17°C Adsorbent/Ethylbenzene Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 17 150 20 7.5 18.04 40.06 3.72 23.38 14.63 0.13 0.03 10.25 3.43 88.07 17 200 20 10 18.22 40.21 3.72 23.20 14.59 0.05 0 10.49 4.17 95.41 17 250 20 12.5 18.88 41.42 3.60 22.44 13.64 0.03 0 16.32 7.31 97.25 Feedstock Composition of Catalytic Cracking Dry Gas 19.71 34.92 3.57 24.21 16.30 1.09 0.20

                                                           实施例4  柴油在17℃的吸收结果 吸附剂/柴油                  吸收压力/0.8MPa                                         实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)  N2  CH4  CO2  C2=  C2  C3=  C3  C2  C2= C3= 17  150  20  7.5  18.05  40.29  3.67  23.85  14.04  0.10  0  17.19  5.07  91.30 17  200  20  10  18.65  40.89  3.96  23.19  13.28  0.04  0  21.68  7.70  96.52 17  250  20  12.5  21.55  45.14  3.88  21.07  8.34  0.02  0  50.81  16.14  98.26                             催化裂化干气原料组成  15.99  36.71  3.89  25.13  16.96  1.15  0.19 Example 4 The absorption result of diesel oil at 17°C Adsorbent/diesel Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 17 150 20 7.5 18.05 40.29 3.67 23.85 14.04 0.10 0 17.19 5.07 91.30 17 200 20 10 18.65 40.89 3.96 23.19 13.28 0.04 0 21.68 7.70 96.52 17 250 20 12.5 21.55 45.14 3.88 21.07 8.34 0.02 0 50.81 16.14 98.26 Feedstock Composition of Catalytic Cracking Dry Gas 15.99 36.71 3.89 25.13 16.96 1.15 0.19

                                               表5  乙苯/反烃化料(重量比1/1)在10℃的吸收结果 吸附剂/乙苯/反烃化料=1/1(w/w)          吸收压力/0.8MPa                                        实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)  N2  CH4  CO2  C2=  C2  C3=  C3  C2  C2=  C3= 10  100  20  5  17.43  40.39  3.93  23.78  14.22  0.21  0.04  9.60  5.30  75.58 10  142  19.5  7.3  18.27  40.91  3.93  23.21  13.58  0.10  0  13.67  7.57  88.37 10  190  20  9.5  18.68  42.20  3.89  22.43  12.75  0.04  0  18.94  10.67  95.35 10  230  20.4  11.3  19.08  42.72  3.90  22.01  12.29  0  0  21.87  12.35  100                        催化裂化干气原料组成  16.15  38.11   3.94  25.11  15.73  0.86  0.10 Table 5 Absorption results of ethylbenzene/transhydrocarbon feedstock (weight ratio 1/1) at 10°C Adsorbent/ethylbenzene/transhydrocarbonate=1/1(w/w) Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 10 100 20 5 17.43 40.39 3.93 23.78 14.22 0.21 0.04 9.60 5.30 75.58 10 142 19.5 7.3 18.27 40.91 3.93 23.21 13.58 0.10 0 13.67 7.57 88.37 10 190 20 9.5 18.68 42.20 3.89 22.43 12.75 0.04 0 18.94 10.67 95.35 10 230 20.4 11.3 19.08 42.72 3.90 22.01 12.29 0 0 21.87 12.35 100 Feedstock Composition of Catalytic Cracking Dry Gas 16.15 38.11 3.94 25.11 15.73 0.86 0.10

                                             实施例6  乙苯/反烃化料(重量比1/1)在20℃的吸收结果 吸附剂/乙苯/反烃化料=1/1(w/w)            吸收压力/0.8MPa                                   实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)   N2  CH4  CO2  C2=  C2  C3= C3  C2  C2=  C3= 20  193  18.9  10.2   18.39  42.32  3.92  22.48  12.83  0.10  0  18.64  10.26  87.95 20  253  18  14.1   19.53  43.48  3.88  21.38  11.72  0.02  0  25.68  14.65  97.59                          催化裂化干气原料组成   15.91  38.26  4.06  25.05  15.77  0.83  0.12 Example 6 Absorption results of ethylbenzene/transhydrocarbonated material (weight ratio 1/1) at 20°C Adsorbent/ethylbenzene/transhydrocarbonate=1/1(w/w) Absorption pressure/0.8MPa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 20 193 18.9 10.2 18.39 42.32 3.92 22.48 12.83 0.10 0 18.64 10.26 87.95 20 253 18 14.1 19.53 43.48 3.88 21.38 11.72 0.02 0 25.68 14.65 97.59 Feedstock Composition of Catalytic Cracking Dry Gas 15.91 38.26 4.06 25.05 15.77 0.83 0.12

                                               实施例7  乙苯/反烃化料(重量比1/1)在40℃的吸收结果 吸附剂/乙苯/反烃化料=1/1(w/w)      吸收压力/0.8Mpa                                   实验结果     吸收率(%) 温度(℃)  吸附剂流量(ml/h)  干气流量(L/h)  体积比(ml/L)  N2  CH4  CO2  C2=  C2  C3=  C3  C2  C2=  C3= 40  155  22  7.1  18.17  40.12  3.98  23.41  13.85  0.39  0.08  10.53  6.13  54.65 40  180  22  8.2  18.70  40.43  3.93  23.06  13.57  0.25  0.05  12.34  7.54  70.93 40  271  21.7  12.6  19.57  41.65  3.85  22.23  12.59  0.11  0  18.67  10.87  87.21                          催化裂化干气原料组成  16.63  37.98  3.96  24.94  15.48  0.86  0.17 Example 7 Absorption results of ethylbenzene/transhydrocarbonated material (weight ratio 1/1) at 40°C Adsorbent/ethylbenzene/transhydrocarbonate=1/1(w/w) Absorption pressure/0.8Mpa Experimental results Absorption rate(%) temperature(℃) Adsorbent flow(ml/h) Dry gas flow(L/h) Volume ratio (ml/L) N2 CH4 CO2 C2= C2 C3= C3 C2 C2= C3= 40 155 twenty two 7.1 18.17 40.12 3.98 23.41 13.85 0.39 0.08 10.53 6.13 54.65 40 180 twenty two 8.2 18.70 40.43 3.93 23.06 13.57 0.25 0.05 12.34 7.54 70.93 40 271 21.7 12.6 19.57 41.65 3.85 22.23 12.59 0.11 0 18.67 10.87 87.21 Feedstock Composition of Catalytic Cracking Dry Gas 16.63 37.98 3.96 24.94 15.48 0.86 0.17

实施例8:Embodiment 8:

吸收剂乙苯/反烃化料(重量比1/1)在10℃,0.8MPa,吸附剂/干气体积比(ml/L)为11.3的条件下对催化裂化干气进行吸收后(结果见实施例5),用N2吹扫气,在30℃,0.1MPa,吹扫气体/吸收剂体积比为5的条件下连续吹扫时间3小时,分析结果表明吸收剂中没有检测到甲烷,乙烷,乙烯和丙烯气体,说明在该条件下吸收剂吸附的气体几乎全部解吸。解吸后的吸收剂乙苯/反烃化料(重量比1/1)连续10次进行吸附/解吸循环操作,性能良好。Absorbent ethylbenzene/transhydrocarbon feedstock (weight ratio 1/1) absorbs catalytic cracking dry gas under the conditions of 10°C, 0.8MPa, and adsorbent/dry gas volume ratio (ml/L) of 11.3 (results See Example 5), with N purge gas, at 30°C, 0.1MPa, the purge gas/absorbent volume ratio is 5 for a continuous purge time of 3 hours, the analysis results show that no methane is detected in the absorbent , ethane, ethylene and propylene gases, indicating that almost all the gases adsorbed by the absorbent are desorbed under this condition. After desorption, the absorbent ethylbenzene/anti-hydrocarbonated material (weight ratio 1/1) has been subjected to 10 consecutive adsorption/desorption cycle operations, and the performance is good.

实施例9:Embodiment 9:

吸收剂乙苯/反烃化料(重量比1/1)在10℃,0.8MPa,吸附剂/干气体积比(ml/L)为11.3的条件下对催化裂化干气进行吸收后(结果见实施例5),用H2吹扫气,在150℃,1.0MPa,吹扫气体/吸收剂体积比为12的条件下连续吹扫时间1小时,分析结果表明吸收剂中没有检测到甲烷,乙烷,乙烯和丙烯气体,说明在该条件下吸收剂吸附的气体几乎全部解吸。解吸后的吸收剂乙苯/反烃化料(重量比1/1)连续10次进行吸附/解吸循环操作,性能良好。Absorbent ethylbenzene/transhydrocarbon feedstock (weight ratio 1/1) absorbs catalytic cracking dry gas under the conditions of 10°C, 0.8MPa, and adsorbent/dry gas volume ratio (ml/L) of 11.3 (results See Example 5), with H purge gas, at 150°C, 1.0MPa, purge gas/absorbent volume ratio is 12 for a continuous purge time of 1 hour, the analysis results show that no methane is detected in the absorbent , ethane, ethylene and propylene gases, indicating that almost all the gases adsorbed by the absorbent are desorbed under this condition. After desorption, the absorbent ethylbenzene/anti-hydrocarbonated material (weight ratio 1/1) has been subjected to 10 consecutive adsorption/desorption cycle operations, and the performance is good.

Claims (3)

1.一种选择吸收降低催化裂化干气中丙烯的方法,用吸收剂吸收干气中的丙烯,然后用吹扫气体对吸收有丙烯的吸收剂进行解吸;其中:1. A method for selectively absorbing and reducing propylene in the catalytic cracking dry gas, absorbing the propylene in the dry gas with an absorbent, and then desorbing the absorbent that absorbs propylene with a purge gas; wherein: 吸收剂对干气中丙烯的吸收条件:Conditions for absorbent to absorb propylene in dry gas: 干气从吸收装置的下端通入,吸收剂从上端进料,干气和吸收剂在装有填料的吸收塔内的接触方式为对流形式;The dry gas is introduced from the lower end of the absorption device, and the absorbent is fed from the upper end, and the contact mode between the dry gas and the absorbent in the absorption tower equipped with packing is convective; 温度为-10-40℃,压力为0.1-3.5MPa,吸收剂/干气体积比3-25ml/L;The temperature is -10-40°C, the pressure is 0.1-3.5MPa, and the absorbent/dry gas volume ratio is 3-25ml/L; 吸收剂包括苯、乙苯、二乙苯、三乙苯、三以上的乙基苯、柴油和汽油中的一种或几种的混合物;Absorbents include one or more mixtures of benzene, ethylbenzene, diethylbenzene, triethylbenzene, more than three ethylbenzenes, diesel oil and gasoline; 吸收后的吸收剂解吸条件为:The desorption condition of the absorbent after absorption is: 温度为20-300℃,压力为0.1-3.5MPa,吹扫气体/吸收剂体积比为1-15,吹扫时间为1-10小时;The temperature is 20-300°C, the pressure is 0.1-3.5MPa, the purge gas/absorbent volume ratio is 1-15, and the purge time is 1-10 hours; 吹扫气体包括N2、H2、甲烷和乙烷中一种或几种的混合物。The purge gas includes one or a mixture of N 2 , H 2 , methane and ethane. 2.如权利要求1所述的方法,其特征在于,所述干气中丙烯50ppm以上,其余气体为氢气、甲烷、乙烷、乙烯、一氧化碳和二氧化碳。2. The method according to claim 1, characterized in that, more than 50 ppm of propylene in the dry gas, and the rest of the gases are hydrogen, methane, ethane, ethylene, carbon monoxide and carbon dioxide. 3.如权利要求1所述的方法,其特征在于,用吹扫气体解吸后的吸收剂再循环使用。3. The method according to claim 1, characterized in that, the absorbent after desorption with purge gas is recycled.
CNB2004100374330A 2004-04-30 2004-04-30 Selective absorption method for reducing propylene in catalytic cracking dry gas Expired - Fee Related CN1292824C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100374330A CN1292824C (en) 2004-04-30 2004-04-30 Selective absorption method for reducing propylene in catalytic cracking dry gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100374330A CN1292824C (en) 2004-04-30 2004-04-30 Selective absorption method for reducing propylene in catalytic cracking dry gas

Publications (2)

Publication Number Publication Date
CN1689688A CN1689688A (en) 2005-11-02
CN1292824C true CN1292824C (en) 2007-01-03

Family

ID=35345629

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100374330A Expired - Fee Related CN1292824C (en) 2004-04-30 2004-04-30 Selective absorption method for reducing propylene in catalytic cracking dry gas

Country Status (1)

Country Link
CN (1) CN1292824C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802266B2 (en) 2017-05-04 2023-10-31 Cargill, Incorporated Genetically modified trehalose-expressing yeasts and fermentation processes using such genetically modified yeasts

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665396B (en) * 2009-09-15 2013-01-02 中国石油化工集团公司 Refining method of virgin gas containing ethane used in process for preparing ethylbenzene by ethane
CN101665397B (en) * 2009-09-15 2013-07-10 中国石油化工集团公司 Refining method of propylene containing ethane used in process for preparing ethylbenzene by ethane
CN101659590A (en) * 2009-09-15 2010-03-03 中国石油化工集团公司 Refining method of raw material gas containing ethene in process of preparing ethylbenzene from ethene
CN101659589B (en) * 2009-09-15 2013-01-02 中国石油化工集团公司 Refining method of raw material gas containing ethene in process of preparing ethylbenzene from ethene
CN102039080B (en) * 2009-10-21 2013-08-28 中国石油化工股份有限公司 Concentration homogenization method of hydrocarbon-containing waste gas
CN102778073B (en) * 2012-08-10 2015-03-25 中石化广州工程有限公司 Refrigerating device and process for recycling propylene by using waste heat and waste pressure in intensified gas fractionation device
CN108713052B (en) * 2016-04-15 2021-03-19 沙特基础工业全球技术公司 Off-gas and C in propane dehydrogenation process3Separation of hydrocarbons
CN114432843B (en) * 2020-11-04 2023-09-08 中国石油化工股份有限公司 Method and device for separating gaseous hydrocarbon material
CN114773137B (en) * 2022-03-10 2023-09-19 吉首大学 Method for preparing olefin from synthesis gas and reaction separation integrated reaction device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051166A (en) * 1990-12-18 1991-05-08 中国石油化工总公司 The process of producing ethylbenzene by reacting dilute ethylene and benzene
CN1085821A (en) * 1992-10-19 1994-04-27 中国科学院大连化学物理研究所 A kind of from catalytic cracked dry gas the method for separating hydrocarbon
CN1235146A (en) * 1999-04-09 1999-11-17 中国石油天然气集团公司 Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene
US6395952B1 (en) * 1996-08-16 2002-05-28 Stone & Webster Process Technology, Inc. Chemical absorption process for recovering olefins from cracked gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051166A (en) * 1990-12-18 1991-05-08 中国石油化工总公司 The process of producing ethylbenzene by reacting dilute ethylene and benzene
CN1085821A (en) * 1992-10-19 1994-04-27 中国科学院大连化学物理研究所 A kind of from catalytic cracked dry gas the method for separating hydrocarbon
US6395952B1 (en) * 1996-08-16 2002-05-28 Stone & Webster Process Technology, Inc. Chemical absorption process for recovering olefins from cracked gases
CN1235146A (en) * 1999-04-09 1999-11-17 中国石油天然气集团公司 Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802266B2 (en) 2017-05-04 2023-10-31 Cargill, Incorporated Genetically modified trehalose-expressing yeasts and fermentation processes using such genetically modified yeasts

Also Published As

Publication number Publication date
CN1689688A (en) 2005-11-02

Similar Documents

Publication Publication Date Title
US10960343B2 (en) Methods and systems for performing chemical separations
US11001543B2 (en) Separation methods and systems for oxidative coupling of methane
US11186529B2 (en) Advanced oxidative coupling of methane
CN105749699B (en) Full-temperature-range pressure swing adsorption gas separation, purification and purification method
KR101681388B1 (en) Process for Separating Propylene from Dehydrogenation Products of Propane-containing Feedstock
CN103068779B (en) The displacement desorption method of separating light olefine
CN105264052B (en) For the method and apparatus from PSA tail gas recycles LPG
CN1292824C (en) Selective absorption method for reducing propylene in catalytic cracking dry gas
JP2009532565A (en) Membrane method for recovering LPG
US9090522B2 (en) Method and apparatus for recovering ethylene from fluidized catalytic cracking (FCC) off-gas
US6483001B2 (en) Layered adsorption zone for hydrogen production swing adsorption
CN107778124A (en) A kind of oil refinery dry gas recovery H2 and C2+ full temperature journey sorption extraction partition method
CN112723976A (en) Method and system for recycling refinery dry gas as ethylene raw material by using metal organic framework material
CN112961712A (en) System and method for preparing LNG (liquefied Natural gas) and hydrogen by deeply purifying coke oven gas
CN112827321A (en) SiC-CVD chlorine-free epitaxial hydrogen extraction and recycling method for FTrPSA (fluorine-doped silica gel) tail gas containing low-concentration silane/C2 +
WO2013026958A2 (en) Method for naphthalene removal
CN105777471A (en) Full-temperature process pressure swing adsorption method for preparing pure methane from natural gas
KR101285124B1 (en) Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same
CN116036798B (en) Method, system and application for separating hydrogen mixed gas
CN100364943C (en) Pressure swing adsorption method of separating and recovering C3+ hydrocarbons from C3+ hydrocarbons contained mixture gas
CN102329642B (en) Remove the method for propylene and more than C3 component in catalytic cracked dry gas
CN114478167B (en) A method and system for recovering refinery dry gas using metal organic framework materials
WO2024036169A1 (en) Nitrogen removal system for methane purification from landfill gas, and method thereof
US20160090336A1 (en) Removal of aromatic contaminants in olefin stream from paraffin dehydrogenation
CN114524702A (en) Method for removing impurities in catalytic dry gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070103

Termination date: 20160430

CF01 Termination of patent right due to non-payment of annual fee