CN1292824C - Selective absorption method for reducing propylene in catalytic cracking dry gas - Google Patents
Selective absorption method for reducing propylene in catalytic cracking dry gas Download PDFInfo
- Publication number
- CN1292824C CN1292824C CNB2004100374330A CN200410037433A CN1292824C CN 1292824 C CN1292824 C CN 1292824C CN B2004100374330 A CNB2004100374330 A CN B2004100374330A CN 200410037433 A CN200410037433 A CN 200410037433A CN 1292824 C CN1292824 C CN 1292824C
- Authority
- CN
- China
- Prior art keywords
- absorbent
- dry gas
- propylene
- gas
- catalytic cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 37
- 238000004523 catalytic cracking Methods 0.000 title claims abstract description 27
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000002250 absorbent Substances 0.000 claims abstract description 41
- 230000002745 absorbent Effects 0.000 claims abstract description 41
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims abstract description 36
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000010926 purge Methods 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 14
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000003795 desorption Methods 0.000 claims abstract description 7
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000002283 diesel fuel Substances 0.000 claims abstract description 4
- 150000005194 ethylbenzenes Chemical class 0.000 claims abstract description 3
- 239000003502 gasoline Substances 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 80
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 25
- 239000005977 Ethylene Substances 0.000 claims description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 238000012856 packing Methods 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000000746 purification Methods 0.000 abstract description 3
- 238000007670 refining Methods 0.000 abstract description 3
- 150000001336 alkenes Chemical class 0.000 abstract 1
- 239000003463 adsorbent Substances 0.000 description 17
- 238000000926 separation method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- UVJUBINWVUOSDZ-UHFFFAOYSA-N acetic acid ethane-1,2-diol Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.OCCO UVJUBINWVUOSDZ-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
一种从炼油厂催化裂化装置产生的干气中吸收丙烯的方法。该方法是将无需任何净化和精制的催化裂化干气通过对烯烃有选择吸收的吸收装置来除去丙烯。干气和吸收剂的接触方式为对流形式。吸收剂包括苯、乙苯、二乙苯、三乙苯、三以上的乙基苯(多乙基苯)、柴油、汽油等中的一种或几种的混合物。吸收剂对干气中丙烯的吸收条件:操作温度为-10-40℃,压力为0.1-3.5MPa,吸收剂/干气体积比(ml/L):3-25。吸附气体后的吸收剂解吸条件:温度为20-300℃,压力为0.1-3.5MPa,吹扫气体/吸收剂体积比:1-15,吹扫时间为1-10小时。吹扫气体包括N2、H2、甲烷、乙烷等中一种或几种的混合物。解吸后的吸收剂可循环使用。A process for absorbing propylene from dry gas produced by a refinery catalytic cracking unit. The method is to remove propylene through an absorption device that selectively absorbs olefins without any purification and refining of catalytic cracking dry gas. The contact mode of dry gas and absorbent is convective. The absorbent includes one or a mixture of benzene, ethylbenzene, diethylbenzene, triethylbenzene, three or more ethylbenzenes (polyethylbenzenes), diesel oil, gasoline, etc. Absorption conditions of absorbent for propylene in dry gas: operating temperature is -10-40°C, pressure is 0.1-3.5MPa, absorbent/dry gas volume ratio (ml/L): 3-25. Absorbent desorption conditions after gas adsorption: temperature 20-300°C, pressure 0.1-3.5MPa, purge gas/absorbent volume ratio: 1-15, purge time 1-10 hours. The purge gas includes one or a mixture of N 2 , H 2 , methane, ethane, etc. The desorbed absorbent can be recycled.
Description
技术领域technical field
本发明涉及混合气分离和净化领域,特别涉及通过选择吸收来降低催化裂化干气中丙烯的方法。The invention relates to the field of separation and purification of mixed gas, in particular to a method for reducing propylene in catalytic cracking dry gas through selective absorption.
背景技术Background technique
近十年来我国乙烯工业发展速度相对较快,至今已建成大中型乙烯生产装置18套。2000年以后,开始对一批乙烯装置进行改造和扩建,到2005年全国乙烯生产能力可达到840万吨。我国与国外乙烯工业相比还存在很大差距。诸多因素使乙烯的成本比国外高,从而影响国内乙烯的发展。工业我国许多炼油厂仍将大量含乙烯12%~25%(体积分数)的催化裂化干气作为燃气或放火炬烧掉,造成资源的浪费与环境的污染。目前,我国催化裂化装置规模居世界第二位,干气产量为112MtPa~315MtPa,干气中的乙烯数量相当可观。若能将其回收,可提高炼油企业的竞争力,也将缓和国内乙烯的供求矛盾。从催化裂化干气中提取乙烯具有重要意义。In the past ten years, my country's ethylene industry has developed relatively rapidly, and 18 sets of large and medium-sized ethylene production units have been built so far. After 2000, a number of ethylene plants began to be transformed and expanded. By 2005, the national ethylene production capacity will reach 8.4 million tons. There is still a big gap between our country and foreign ethylene industry. Many factors make the cost of ethylene higher than that of foreign countries, thus affecting the development of domestic ethylene. Industry Many oil refineries in my country still use a large amount of catalytic cracking dry gas containing 12% to 25% (volume fraction) of ethylene as gas or burn it with a torch, resulting in waste of resources and pollution of the environment. At present, the scale of catalytic cracking units in my country ranks second in the world, with a dry gas output of 112MtPa to 315MtPa, and a considerable amount of ethylene in the dry gas. If it can be recovered, it can improve the competitiveness of oil refining enterprises and ease the contradiction between supply and demand of domestic ethylene. It is of great significance to extract ethylene from catalytic cracking dry gas.
目前,从催化裂化干气等混合气中提取乙烯分离丙烯的技术主要有深冷分离法、吸收分离法、水合物分离法、膜分离法和吸附分离法。其中水合物分离法是新出现的分离方法,膜分离法和吸附分离法正处在实验室研究或工业试验阶段,而深冷分离法、吸收分离法已相当成熟,并实现了工业化,取得了良好经济效益。深冷分离法能得到聚合级的乙烯,但由于干气中的乙烯浓度低,一般适合处理大量干气的情况,特别适合于炼厂集中地区。若炼厂规模比较小时,则不经济。At present, the technologies for extracting ethylene and separating propylene from mixed gas such as catalytic cracking dry gas mainly include cryogenic separation, absorption separation, hydrate separation, membrane separation and adsorption separation. Among them, hydrate separation method is a new separation method. Membrane separation method and adsorption separation method are in the stage of laboratory research or industrial experiment, while cryogenic separation method and absorption separation method are quite mature, and have achieved industrialization, and achieved great achievements. Good economic benefits. The cryogenic separation method can obtain polymer grade ethylene, but due to the low concentration of ethylene in the dry gas, it is generally suitable for dealing with a large amount of dry gas, especially suitable for areas where refineries are concentrated. If the refinery scale is small, it is not economical.
吸收分离法主要是利用催化裂化干气各组分在吸收剂中溶解度不同来进行分离的。中冷油吸收工艺一般是利用C3、C4和芳烃等油品作吸收剂,首先除去甲烷和氢,然后用精馏把吸收的各组分逐一分离开来。操作温度最低为-70℃,一般为-20-40℃,乙烯纯度约为90%,收率为85%[吴茨萍,孙利.炼厂干气的分离回收和综合利用,现代化工,2001,21(5):20-23].。Mehra工艺由美国休斯顿AET公司开发。该工艺采用Mehrsolr溶剂,在常规的气体加工装置上即可将裂解气体分离成富氢、富甲烷和乙烯等气体,供下游进行常规分馏。该工艺可获得纯度为90%的氢气和甲烷燃料气,氢气可在变压吸附装置中进一步净化达到99%的纯度。Mehrsolr溶剂一般是聚烷撑二醇二烷基醚、N-甲基毗咯酮、二甲基甲酚胺、碳酸丙烯酯、环丁砜和乙二醇三乙酸酯的特殊混合物。此外,C8~C10芳烃化合物也可作为该工艺的溶剂。操作温度一般为-37℃左右,压力为1.7MPa[1.Mehra Y R.Using Extraction to treat hydrocarbongases,Chem.Eng.1986,93(20):53-55;2.Savage P.,Brooks K.,Refinery gases:a quick source of ethylene,Chem.Week,1988,142(19):16]。The absorption separation method mainly uses the different solubility of each component of the catalytic cracking dry gas in the absorbent to separate. The intercooler oil absorption process generally uses oils such as C3, C4 and aromatics as absorbents, first removes methane and hydrogen, and then separates the absorbed components one by one by rectification. The lowest operating temperature is -70°C, generally -20-40°C, the purity of ethylene is about 90%, and the yield is 85% [Wu Ciping, Sun Li. Separation, recovery and comprehensive utilization of refinery dry gas, Modern Chemical Industry, 2001, 21(5): 20-23]. The Mehra process was developed by AET in Houston, USA. The process uses Mehrsolr solvent, and the cracked gas can be separated into hydrogen-rich, methane-rich and ethylene-rich gases on a conventional gas processing device for conventional fractionation downstream. The process can obtain hydrogen and methane fuel gas with a purity of 90%, and the hydrogen can be further purified in a pressure swing adsorption device to reach a purity of 99%. Mehrsol solvents are typically special mixtures of polyalkylene glycol dialkyl ethers, N-methylpyrrolidone, dimethylcresylamine, propylene carbonate, sulfolane and ethylene glycol triacetate. In addition, C 8 -C 10 aromatic compounds can also be used as solvents in this process. The operating temperature is generally around -37°C, and the pressure is 1.7MPa [1. Mehra Y R. Using Extraction to treat hydrocarbongases, Chem. Eng. 1986, 93(20): 53-55; 2. Savage P., Brooks K. , Refinery gases: a quick source of ethylene, Chem. Week, 1988, 142(19): 16].
炼厂的催化裂化干气中除含有10-25%的乙烯外,还有一定量的丙烯和丁烯,其含量取决催化裂化装置生产条件,由于丙烯、丁烯和苯的烷基化速率比乙烯快,除了生成乙苯和二乙苯外,还存在如下副反应:丙烯+苯=丙苯(1);丁烯+苯=丁苯(2)。反应(1)和(2)都需消耗苯,使过程的苯耗率增加,影响乙苯生产成本,为此,王清遐等[选择转化提纯催化裂化干气中乙烯的研究,辽宁化工,1989,4:32]采用改性ZSM-5沸石催化剂,可使催化裂化干气中丙烯,丁烯转化为烃类,其中95%的乙烯被保留。In addition to 10-25% ethylene, there is a certain amount of propylene and butene in the catalytic cracking dry gas of the refinery. Fast, in addition to generating ethylbenzene and diethylbenzene, there are also the following side reactions: propylene+benzene=propylbenzene (1); butene+benzene=butylbenzene (2). Reaction (1) and (2) all need to consume benzene, make the benzene consumption rate of process increase, influence ethylbenzene production cost, for this reason, Wang Qingya et al. 4:32] Using modified ZSM-5 zeolite catalyst can convert propylene and butene in catalytic cracking dry gas into hydrocarbons, and 95% of ethylene is retained.
发明内容Contents of the invention
本发明的目的是在上述现有技术的基础上提供一种通过选择吸收来降低催化裂化干气中丙烯的方法。使用本发明提供的方法用于催化裂化干气制乙苯时,可明显降低苯耗和提高乙烯的利用率。The purpose of the present invention is to provide a method for reducing propylene in catalytic cracking dry gas by selective absorption on the basis of the above prior art. When the method provided by the invention is used to produce ethylbenzene by catalytic cracking dry gas, the consumption of benzene can be obviously reduced and the utilization rate of ethylene can be improved.
为实现上述目的,本发明提供的通过吸收剂将催化裂化干气中丙烯吸收从而提高干气中乙烯纯度的方法,用吸收剂吸收丙烯,然后用吹扫气体对吸收有丙烯的吸收剂进行解吸,用吹扫气体解吸后的吸收剂再循环使用。其中:In order to achieve the above object, the present invention provides a method for absorbing propylene in catalytic cracking dry gas through an absorbent to improve the purity of ethylene in the dry gas, absorbing propylene with an absorbent, and then desorbing the absorbent that has absorbed propylene with a purge gas , The absorbent after desorption with purge gas is recycled. in:
吸收剂对干气中丙烯的吸收条件:Conditions for absorbent to absorb propylene in dry gas:
干气从吸收装置的下端通入,吸收剂从上端进料,干气和吸收剂在装有填料的吸收塔内的接触方式为对流形式;The dry gas is introduced from the lower end of the absorption device, and the absorbent is fed from the upper end, and the contact mode between the dry gas and the absorbent in the absorption tower equipped with packing is convective;
温度为-10-40℃,压力为0.1-3.5MPa,吸收剂/干气体积比(ml/L):3-25;The temperature is -10-40°C, the pressure is 0.1-3.5MPa, the absorbent/dry gas volume ratio (ml/L): 3-25;
吸收剂包括苯、乙苯、二乙苯、三乙苯、三以上的乙基苯(多乙基苯)、柴油和汽油中的一种或几种的混合物;Absorbents include one or more mixtures of benzene, ethylbenzene, diethylbenzene, triethylbenzene, more than three ethylbenzenes (polyethylbenzenes), diesel oil and gasoline;
吸附气体后的吸收剂解吸条件为:The desorption condition of absorbent after adsorbing gas is:
温度为20-300℃,压力为0.1-3.5MPa,吹扫气体/吸收剂体积比为1-15,吹扫时间为1-10小时;The temperature is 20-300°C, the pressure is 0.1-3.5MPa, the purge gas/absorbent volume ratio is 1-15, and the purge time is 1-10 hours;
吹扫气体包括N2、H2、甲烷和乙烷中一种或几种的混合物。The purge gas includes one or a mixture of N 2 , H 2 , methane and ethane.
所述干气是从炼油厂催化裂化装置产生的干气,干气中丙烯50ppm以上,其余气体为氢气、甲烷、乙烷、乙烯、一氧化碳和二氧化碳。The dry gas is the dry gas produced from the catalytic cracking unit of the refinery, the propylene in the dry gas is more than 50ppm, and the remaining gases are hydrogen, methane, ethane, ethylene, carbon monoxide and carbon dioxide.
采用本发明所述方法用于选择性吸收催化裂化干气中丙烯时,催化裂化干气原料无需任何净化和精制。When the method of the invention is used to selectively absorb propylene in the catalytic cracking dry gas, the raw material of the catalytic cracking dry gas does not need any purification and refining.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步阐述,但并不对本发明产生任何限制。The present invention will be further described below in conjunction with the examples, but the present invention is not limited in any way.
实施例1-7Example 1-7
在吸收塔高110cm,内径32mm吸收装置上装添惰性Φ3球填料高约90cm,干气从下部进入,吸收剂从顶部进入的条件下,得到如下的实施例1-7结果。从实施例结果中可看出,吸附剂/干气体积比越大,吸收后干气中的丙烯越少,吸附温度越高,吸收后干气中的丙烯越多。Under the conditions that the absorption tower is 110 cm high, the absorption device with an inner diameter of 32 mm is filled with inert Φ3 spherical packing with a height of about 90 cm, the dry gas enters from the bottom, and the absorbent enters from the top, the following results of Examples 1-7 are obtained. It can be seen from the results of the examples that the larger the adsorbent/dry gas volume ratio, the less propylene in the absorbed dry gas, and the higher the adsorption temperature, the more propylene in the absorbed dry gas.
实施例1 苯在17℃的吸收结果
实施例2 反烃化料(二乙苯30w%,三乙苯30w%,多乙苯40w%)在15℃的吸收结果
实施例3 乙苯在17℃的吸收结果
实施例4 柴油在17℃的吸收结果
表5 乙苯/反烃化料(重量比1/1)在10℃的吸收结果
实施例6 乙苯/反烃化料(重量比1/1)在20℃的吸收结果
实施例7 乙苯/反烃化料(重量比1/1)在40℃的吸收结果
实施例8:Embodiment 8:
吸收剂乙苯/反烃化料(重量比1/1)在10℃,0.8MPa,吸附剂/干气体积比(ml/L)为11.3的条件下对催化裂化干气进行吸收后(结果见实施例5),用N2吹扫气,在30℃,0.1MPa,吹扫气体/吸收剂体积比为5的条件下连续吹扫时间3小时,分析结果表明吸收剂中没有检测到甲烷,乙烷,乙烯和丙烯气体,说明在该条件下吸收剂吸附的气体几乎全部解吸。解吸后的吸收剂乙苯/反烃化料(重量比1/1)连续10次进行吸附/解吸循环操作,性能良好。Absorbent ethylbenzene/transhydrocarbon feedstock (weight ratio 1/1) absorbs catalytic cracking dry gas under the conditions of 10°C, 0.8MPa, and adsorbent/dry gas volume ratio (ml/L) of 11.3 (results See Example 5), with N purge gas, at 30°C, 0.1MPa, the purge gas/absorbent volume ratio is 5 for a continuous purge time of 3 hours, the analysis results show that no methane is detected in the absorbent , ethane, ethylene and propylene gases, indicating that almost all the gases adsorbed by the absorbent are desorbed under this condition. After desorption, the absorbent ethylbenzene/anti-hydrocarbonated material (weight ratio 1/1) has been subjected to 10 consecutive adsorption/desorption cycle operations, and the performance is good.
实施例9:Embodiment 9:
吸收剂乙苯/反烃化料(重量比1/1)在10℃,0.8MPa,吸附剂/干气体积比(ml/L)为11.3的条件下对催化裂化干气进行吸收后(结果见实施例5),用H2吹扫气,在150℃,1.0MPa,吹扫气体/吸收剂体积比为12的条件下连续吹扫时间1小时,分析结果表明吸收剂中没有检测到甲烷,乙烷,乙烯和丙烯气体,说明在该条件下吸收剂吸附的气体几乎全部解吸。解吸后的吸收剂乙苯/反烃化料(重量比1/1)连续10次进行吸附/解吸循环操作,性能良好。Absorbent ethylbenzene/transhydrocarbon feedstock (weight ratio 1/1) absorbs catalytic cracking dry gas under the conditions of 10°C, 0.8MPa, and adsorbent/dry gas volume ratio (ml/L) of 11.3 (results See Example 5), with H purge gas, at 150°C, 1.0MPa, purge gas/absorbent volume ratio is 12 for a continuous purge time of 1 hour, the analysis results show that no methane is detected in the absorbent , ethane, ethylene and propylene gases, indicating that almost all the gases adsorbed by the absorbent are desorbed under this condition. After desorption, the absorbent ethylbenzene/anti-hydrocarbonated material (weight ratio 1/1) has been subjected to 10 consecutive adsorption/desorption cycle operations, and the performance is good.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100374330A CN1292824C (en) | 2004-04-30 | 2004-04-30 | Selective absorption method for reducing propylene in catalytic cracking dry gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100374330A CN1292824C (en) | 2004-04-30 | 2004-04-30 | Selective absorption method for reducing propylene in catalytic cracking dry gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1689688A CN1689688A (en) | 2005-11-02 |
CN1292824C true CN1292824C (en) | 2007-01-03 |
Family
ID=35345629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100374330A Expired - Fee Related CN1292824C (en) | 2004-04-30 | 2004-04-30 | Selective absorption method for reducing propylene in catalytic cracking dry gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1292824C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11802266B2 (en) | 2017-05-04 | 2023-10-31 | Cargill, Incorporated | Genetically modified trehalose-expressing yeasts and fermentation processes using such genetically modified yeasts |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665396B (en) * | 2009-09-15 | 2013-01-02 | 中国石油化工集团公司 | Refining method of virgin gas containing ethane used in process for preparing ethylbenzene by ethane |
CN101665397B (en) * | 2009-09-15 | 2013-07-10 | 中国石油化工集团公司 | Refining method of propylene containing ethane used in process for preparing ethylbenzene by ethane |
CN101659590A (en) * | 2009-09-15 | 2010-03-03 | 中国石油化工集团公司 | Refining method of raw material gas containing ethene in process of preparing ethylbenzene from ethene |
CN101659589B (en) * | 2009-09-15 | 2013-01-02 | 中国石油化工集团公司 | Refining method of raw material gas containing ethene in process of preparing ethylbenzene from ethene |
CN102039080B (en) * | 2009-10-21 | 2013-08-28 | 中国石油化工股份有限公司 | Concentration homogenization method of hydrocarbon-containing waste gas |
CN102778073B (en) * | 2012-08-10 | 2015-03-25 | 中石化广州工程有限公司 | Refrigerating device and process for recycling propylene by using waste heat and waste pressure in intensified gas fractionation device |
CN108713052B (en) * | 2016-04-15 | 2021-03-19 | 沙特基础工业全球技术公司 | Off-gas and C in propane dehydrogenation process3Separation of hydrocarbons |
CN114432843B (en) * | 2020-11-04 | 2023-09-08 | 中国石油化工股份有限公司 | Method and device for separating gaseous hydrocarbon material |
CN114773137B (en) * | 2022-03-10 | 2023-09-19 | 吉首大学 | Method for preparing olefin from synthesis gas and reaction separation integrated reaction device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051166A (en) * | 1990-12-18 | 1991-05-08 | 中国石油化工总公司 | The process of producing ethylbenzene by reacting dilute ethylene and benzene |
CN1085821A (en) * | 1992-10-19 | 1994-04-27 | 中国科学院大连化学物理研究所 | A kind of from catalytic cracked dry gas the method for separating hydrocarbon |
CN1235146A (en) * | 1999-04-09 | 1999-11-17 | 中国石油天然气集团公司 | Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene |
US6395952B1 (en) * | 1996-08-16 | 2002-05-28 | Stone & Webster Process Technology, Inc. | Chemical absorption process for recovering olefins from cracked gases |
-
2004
- 2004-04-30 CN CNB2004100374330A patent/CN1292824C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051166A (en) * | 1990-12-18 | 1991-05-08 | 中国石油化工总公司 | The process of producing ethylbenzene by reacting dilute ethylene and benzene |
CN1085821A (en) * | 1992-10-19 | 1994-04-27 | 中国科学院大连化学物理研究所 | A kind of from catalytic cracked dry gas the method for separating hydrocarbon |
US6395952B1 (en) * | 1996-08-16 | 2002-05-28 | Stone & Webster Process Technology, Inc. | Chemical absorption process for recovering olefins from cracked gases |
CN1235146A (en) * | 1999-04-09 | 1999-11-17 | 中国石油天然气集团公司 | Method for preparing ethylbenzene and/or isopropylbenzene from thin ethylene and/or propylene |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11802266B2 (en) | 2017-05-04 | 2023-10-31 | Cargill, Incorporated | Genetically modified trehalose-expressing yeasts and fermentation processes using such genetically modified yeasts |
Also Published As
Publication number | Publication date |
---|---|
CN1689688A (en) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10960343B2 (en) | Methods and systems for performing chemical separations | |
US11001543B2 (en) | Separation methods and systems for oxidative coupling of methane | |
US11186529B2 (en) | Advanced oxidative coupling of methane | |
CN105749699B (en) | Full-temperature-range pressure swing adsorption gas separation, purification and purification method | |
KR101681388B1 (en) | Process for Separating Propylene from Dehydrogenation Products of Propane-containing Feedstock | |
CN103068779B (en) | The displacement desorption method of separating light olefine | |
CN105264052B (en) | For the method and apparatus from PSA tail gas recycles LPG | |
CN1292824C (en) | Selective absorption method for reducing propylene in catalytic cracking dry gas | |
JP2009532565A (en) | Membrane method for recovering LPG | |
US9090522B2 (en) | Method and apparatus for recovering ethylene from fluidized catalytic cracking (FCC) off-gas | |
US6483001B2 (en) | Layered adsorption zone for hydrogen production swing adsorption | |
CN107778124A (en) | A kind of oil refinery dry gas recovery H2 and C2+ full temperature journey sorption extraction partition method | |
CN112723976A (en) | Method and system for recycling refinery dry gas as ethylene raw material by using metal organic framework material | |
CN112961712A (en) | System and method for preparing LNG (liquefied Natural gas) and hydrogen by deeply purifying coke oven gas | |
CN112827321A (en) | SiC-CVD chlorine-free epitaxial hydrogen extraction and recycling method for FTrPSA (fluorine-doped silica gel) tail gas containing low-concentration silane/C2 + | |
WO2013026958A2 (en) | Method for naphthalene removal | |
CN105777471A (en) | Full-temperature process pressure swing adsorption method for preparing pure methane from natural gas | |
KR101285124B1 (en) | Desorbent for continuous adsorptive removal process of sulfur-oxidated compounds, and removal methods of sulfur-oxidated compounds from hydrocarbon stream using the same | |
CN116036798B (en) | Method, system and application for separating hydrogen mixed gas | |
CN100364943C (en) | Pressure swing adsorption method of separating and recovering C3+ hydrocarbons from C3+ hydrocarbons contained mixture gas | |
CN102329642B (en) | Remove the method for propylene and more than C3 component in catalytic cracked dry gas | |
CN114478167B (en) | A method and system for recovering refinery dry gas using metal organic framework materials | |
WO2024036169A1 (en) | Nitrogen removal system for methane purification from landfill gas, and method thereof | |
US20160090336A1 (en) | Removal of aromatic contaminants in olefin stream from paraffin dehydrogenation | |
CN114524702A (en) | Method for removing impurities in catalytic dry gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070103 Termination date: 20160430 |
|
CF01 | Termination of patent right due to non-payment of annual fee |