[go: up one dir, main page]

CN1289665C - Recombined aspergillus oryzae tannase and its expression and purification - Google Patents

Recombined aspergillus oryzae tannase and its expression and purification Download PDF

Info

Publication number
CN1289665C
CN1289665C CN 200410027497 CN200410027497A CN1289665C CN 1289665 C CN1289665 C CN 1289665C CN 200410027497 CN200410027497 CN 200410027497 CN 200410027497 A CN200410027497 A CN 200410027497A CN 1289665 C CN1289665 C CN 1289665C
Authority
CN
China
Prior art keywords
tannase
expression
aspergillus oryzae
gly
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200410027497
Other languages
Chinese (zh)
Other versions
CN1584023A (en
Inventor
徐安龙
董美玲
郑穗兰
彭立胜
孙孜孜
任宇峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN 200410027497 priority Critical patent/CN1289665C/en
Publication of CN1584023A publication Critical patent/CN1584023A/en
Application granted granted Critical
Publication of CN1289665C publication Critical patent/CN1289665C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a method for expressing and purifying a recombinat aspergillus oryzae tannase. The present invention amplifies a nucleotide sequence coding an aspergillus oryzae tannase mature protein from an aspergillus oryzae gene by a PCR method, clones the nucleotide sequence to a methanol yeast expression vector pPIC9K, constructs an expression vector pPIC9K-TAN, uses an electric shock method to convert pichia KM71 to obtain a recombinat strain and uses a high density fermentation method for the induction expression of the recombinant tannase. Expression products are distributed in fermentation supernatant liquid, and the expression amount is 200 mg/L. The present invention establishes a method for purifying the recombinant aspergillus oryzae tannase, and DEAE anion-exchange column chromatography for one-step purification. The present invention also comprises a step of constructing constitutive expression vectors of pGAPZalpha A-TAN and pGAPZalpha A-ETAN of the recombinant tannase in the pichia, obtains an engineering strain with tannase activity by converting the pichia strain KM71H and is capable of expressing the recombinant tannase in a secretion mode. The recombinant aspergillus oryzae tannase has bioactivity.

Description

重组米曲霉单宁酶及其表达和纯化方法Recombinant Aspergillus oryzae tannase and its expression and purification method

技术领域technical field

本发明涉及重组米曲霉单宁酶及其在甲醇酵母中的分泌表达、纯化。本发明还涉及重组米曲霉单宁酶在工业生产中的应用。The invention relates to a recombinant aspergillus oryzae tannase and its secretion, expression and purification in methanolic yeast. The invention also relates to the application of the recombinant Aspergillus oryzae tannase in industrial production.

背景技术Background technique

单宁(tannin)又称鞣酸,在高等植物中广泛分布,包括单子叶植物、双子叶植物以及蕨类植物中。Howes列举了世界含单宁植物共87科600多种。单宁广泛存在于食品和饲料中,是食品尤其是饲料中的主要抗营养因子之一。单宁的抗营养作用主要有三个方面:(1)单宁和唾液蛋白、糖蛋白在口腔中相互作用,使组织产生收敛性,引起一系列的不适口反应。饲料中单宁可导致动物减少对饲料的采食量。当牧草中单宁含量超过20mg/g干物质时,家禽拒食。(2)单宁分子中存在大量酚羟基团和芳香环结构,可与蛋白质形成络合物,使蛋白质凝结沉淀,影响蛋白质的消化和吸收。单宁与蛋白质复合物(Tannin Protein Complex)在哺乳动物肠道中,难以被蛋白酶等分解。豆科牧草单宁含量过高则其饲料营养价值降低。(3)单宁能降低哺乳动物肠道消化酶的活性,并对胃肠黏膜产生不良影响。单宁与消化酶构成复合物,干扰酶生物活性。体外实验表明饲料中含有单宁浸提物(蚕豆壳等)降低了胰蛋白酶、糜蛋白酶、α-淀粉酶活性。单宁酸或氯化单宁酸导致鼠胃和十二指肠黏膜发生变化,引起胃黏液过度分泌,胃黏膜坏死,胆囊萎缩,小肠上皮细胞氧耗下降等不良反应。另外,单宁对反刍动物的毒性很大,牛羊采食含单宁的栎树和一些热带豆科树子实和茎叶时会发生急性中毒。在水溶液清凉茶饮料的生产中,茶中富含的单宁引起茶乳沉淀。单宁与啤酒和果汁中的蛋白质生成沉淀,会引起产品混浊。在食品、饮料、禽畜饲料的生产中必须去除不必要的单宁成分[9]。用单宁酶降解多余的单宁,是一种有广泛应用前景的工艺。Tannin, also known as tannin, is widely distributed in higher plants, including monocots, dicots and ferns. Howes listed more than 600 species of 87 families of tannin-containing plants in the world. Tannin widely exists in food and feed, and is one of the main antinutritional factors in food, especially in feed. The anti-nutritional effect of tannin mainly has three aspects: (1) Tannin interacts with salivary proteins and glycoproteins in the oral cavity, causing tissue astringency and causing a series of unpleasant reactions. Tannins in feed can cause animals to reduce feed intake. When the tannin content in pasture exceeds 20mg/g dry matter, poultry refuses to eat. (2) There are a large number of phenolic hydroxyl groups and aromatic ring structures in tannin molecules, which can form complexes with proteins, causing protein coagulation and precipitation, and affecting protein digestion and absorption. Tannin and protein complex (Tannin Protein Complex) are difficult to be decomposed by proteases in the intestinal tract of mammals. If the tannin content of leguminous pasture is too high, the nutritional value of the feed will be reduced. (3) Tannins can reduce the activity of digestive enzymes in the mammalian intestine and have adverse effects on the gastrointestinal mucosa. Tannins form complexes with digestive enzymes and interfere with their biological activity. In vitro experiments showed that tannin extracts (such as broad bean shells) in the feed reduced the activity of trypsin, chymotrypsin and α-amylase. Tannic acid or chlorinated tannic acid caused changes in the gastric and duodenal mucosa of rats, causing excessive gastric mucus secretion, gastric mucosal necrosis, gallbladder atrophy, and decreased oxygen consumption of small intestinal epithelial cells and other adverse reactions. In addition, tannins are very toxic to ruminants, and cattle and sheep will be acutely poisoned when eating tannin-containing oak trees and some tropical leguminous trees, stems and leaves. In the production of aqueous herbal tea beverages, the rich tannins in the tea cause the precipitation of tea milk. Tannins precipitate with proteins in beer and juice, causing cloudiness in the product. Unnecessary tannins must be removed in the production of food, beverages, and poultry feed [9] . Using tannase to degrade redundant tannins is a technique with broad application prospects.

单宁是大多数微生物的拮抗物,对微生物有毒害作用,但一些微生物对单宁有抗性。这些微生物通过各种机制和方法降解单宁。1913年,Knudson分离到黑曲霉(Aspergillusniger)及青霉(Penicillum sp.)具有降解单宁酸的作用,首次对单宁发酵降解进行研究。近十年来,许多肠道细菌被发现具有降解单宁的能力。Osawa从树獭的粪便和盲肠中先后分离到降解单宁-蛋白质复合物的牛链球菌和肠杆菌。Nenuetr等人报告在马肠道分离出降解单宁的细菌。1994年Makkai发现毛孢属真菌(Sportrichum Preluerulentum)能有效降解栎树中的缩合单宁。白腐霉(Ceriporiopsis subvermispora)能对树叶中富含的缩合单宁进行化学修饰,从而提高树叶的消化性三倍。单宁酰基水解酶(EC3.1.1.20)通常称为单宁酶(Tannase).单宁酶水解单宁的酯键,产生没食子酸和葡萄糖。单宁酶是单宁生物降解的关键酶。单宁酶的进展性研究始于六十年代。先后从米曲霉和黑曲霉,念珠菌中分离纯化到单宁酶。也从某些细菌培养液中分离单宁酶。Adachi对米曲霉单宁酶的理化性质研究,证明单宁酶是典型的丝氨酸酯酶,与1994年Barthomeuf等的实验结果一致。Tannin is the antagonist of most microorganisms and has toxic effects on microorganisms, but some microorganisms are resistant to tannins. These microorganisms degrade tannins through various mechanisms and methods. In 1913, Knudson isolated Aspergillus niger and Penicillum sp. to degrade tannin, and for the first time studied the fermentation degradation of tannin. In the past decade, many gut bacteria have been found to have the ability to degrade tannins. Osawa successively isolated Streptococcus bovis and Enterobacteriaceae degrading tannin-protein complexes from the feces and cecum of sloths. Nenuetr et al. reported the isolation of tannin-degrading bacteria in the gut of horses. In 1994, Makkai found that Sportrichum Preluerulentum could effectively degrade condensed tannins in oak. White rot (Ceriporiopsis subvermispora) chemically modifies the condensed tannins that are abundant in the leaves, thereby increasing the digestibility of the leaves threefold. Tanninyl hydrolase (EC3.1.1.20) is commonly called Tannase (Tannase). Tannase hydrolyzes the ester bond of tannin to produce gallic acid and glucose. Tannase is the key enzyme in the biodegradation of tannins. Progressive research on tannase began in the 1960s. Tannase was isolated and purified from Aspergillus oryzae, Aspergillus niger and Candida successively. Tannase is also isolated from certain bacterial cultures. Adachi's research on the physical and chemical properties of Aspergillus oryzae tannase proved that tannase is a typical serine esterase, which is consistent with the experimental results of Barthomeuf et al. in 1994.

单宁酶在工业生产中用途广泛,日益受到人们的关注。在水溶性清凉茶饮料的生产中,单宁酶用于降解茶中富含的单宁,以避免单宁引起生成茶乳。单宁与啤酒和果汁中的蛋白质生成沉淀,引起混浊,单宁酶可作为澄清剂应用于此类饮料的生产中。饲料加工中,添加单宁酶可减少单宁的不良影响,提高饲料的利用率。在利用单宁沉淀蛋白质的特性纯化蛋白质时,单宁酶可用来除去沉淀物中的单宁。另外,单宁酶还用于生产没食子酸和没食子酸酯。没食子酸是一种用途广泛精细化工原料,医药上用于制甲氯苄嘧啶(为磺胺增效剂),联苯双酯(治肝病),克冠草(治冠心病)等药物。没食子酸丙酯、没食子酸甘油脂等用作食品的抗氧剂及防腐剂。没食子酸还用于合成染料、化学分析用试剂等用途。Tannase has a wide range of applications in industrial production and has attracted increasing attention. In the production of water-soluble herbal tea beverages, tannase is used to degrade the tannins rich in tea, so as to avoid the formation of tea milk caused by tannins. Tannins precipitate with proteins in beer and fruit juices, causing turbidity, and tannase can be used as a clarifying agent in the production of such beverages. In feed processing, adding tannin enzyme can reduce the adverse effects of tannin and improve the utilization rate of feed. When purifying proteins by taking advantage of the protein-precipitating properties of tannins, tannase can be used to remove tannins from the precipitate. In addition, tannase is also used in the production of gallic acid and gallic acid esters. Gallic acid is a kind of widely used fine chemical raw material. It is used in medicine to make triclopyrim (for sulfonamide synergist), bifendate (for liver disease), and keguancao (for coronary heart disease) and other drugs. Propyl gallate, glycerol gallate, etc. are used as antioxidants and preservatives in food. Gallic acid is also used in the synthesis of dyes and reagents for chemical analysis.

单宁酶一直以来都从产单宁酶菌株发酵液中提取。1997年Lane等从米曲霉中制备了单宁酶制剂。但是产酶量相对少,又难以提纯,所以从产单宁酶菌株发酵液提取单宁酶成本高、效率低,难以推广应用。Hatameto于1996年克隆出米曲霉的单宁酶基因。将带有单宁酶基因的质粒PT1转化单宁酶产量低的菌株Aspergillus orygze Aol,提高宿主菌的单宁酶的产量。这为利用高效表达系统生产重组单宁酶打下了基础。Tannase has traditionally been extracted from the fermentation broth of tannase-producing strains. In 1997, Lane et al prepared a tannase preparation from Aspergillus oryzae. However, the amount of enzyme produced is relatively small, and it is difficult to purify, so the cost of extracting tannase from the fermentation broth of tannase-producing strains is high and the efficiency is low, so it is difficult to popularize and apply. Hatameto cloned the tannase gene of Aspergillus oryzae in 1996. The plasmid PT1 with the tannase gene was transformed into the strain Aspergillus orygze Aol with low tannase production to increase the tannase production of the host bacteria. This lays the foundation for the production of recombinant tannase using a high-efficiency expression system.

作为新一代酵母表达系统,甲醇酵母表达系统与现有主要的重组蛋白生产系统相比拥有多方面的优势。作为真核生物,甲醇酵母表达系统拥有真核表达系统如酿酒酵母表达系统的优点,具有真核生物的蛋白质翻译后加工功能,有适于真核生物基因表达产物正确折叠的细胞内环境和糖链加工系统,还能分泌外源蛋白质到培养基中利于纯化。这是大肠杆菌(E.coli)等原核表达系统所没有的。与动物细胞表达系统相比,甲醇酵母系统具有繁殖快速、培养容易、成本低的特点,同时还容易进行分子遗传操作。甲醇酵母比酿酒酵母拥有优势表现在:重组株传代稳定、表达水平高及生产规模容易工业放大等。甲醇酵母系统外源蛋白表达水平比酿酒酵母系统高10-100倍。这是因为甲醇酵母拥有AOX启动子。AOX启动子是目前已研究过的启动子中最强的调控性真核启动子之一,因而由AOX启动子驱动的外源基因表达具有非常大的高效表达能力。自1987年Gzegy等首次在毕赤酵母(P.pastoris)中表达乙型肝炎表面抗原(HbsAg)以来,短短几年时间,至少有40种外源蛋白在P.pastoris中获得表达。1997年Waterham等分离克隆了毕赤酵母中3-磷酸甘油醛脱氢酶(GAP)启动子,它是一个组成型高效启动子。GAP启动子能够启动外源基因在细胞的生长过程中高效表达,不需进行诱导。由于GAP启动子的高效性以及操作上更为方便,因此它具有巨大的应用潜力,是AOX启动子的有效替代者。另外P.pastoris分泌表达有一个非常好的优点就是P.pastoris自身分泌蛋白质水平很低。这意味着在P.pastoris基本培养基上生长时,在培养中的大部分蛋白为目标蛋白质,这有利目标蛋白质的纯化。在分泌蛋白的糖基化修饰上,毕赤酵母不会象酿酒酵母的超糖基化,这是毕赤酵母的另一优点。As a new generation of yeast expression system, methanol yeast expression system has many advantages compared with the existing major recombinant protein production systems. As a eukaryote, the methanol yeast expression system has the advantages of eukaryotic expression systems such as Saccharomyces cerevisiae expression system, has the post-translational processing function of eukaryotic proteins, and has the intracellular environment and sugar suitable for the correct folding of eukaryotic gene expression products. The chain processing system can also secrete exogenous proteins into the medium for purification. This is not found in prokaryotic expression systems such as Escherichia coli (E.coli). Compared with animal cell expression systems, the methanol yeast system has the characteristics of rapid reproduction, easy cultivation, and low cost, and it is also easy to carry out molecular genetic manipulation. Methanol yeast has advantages over Saccharomyces cerevisiae in the following aspects: stable passage of recombinant strains, high expression level and easy industrial scale-up of production scale. The expression level of exogenous protein in methanolic yeast system is 10-100 times higher than that in Saccharomyces cerevisiae system. This is because methanolic yeast possesses the AOX promoter. The AOX promoter is one of the strongest regulatory eukaryotic promoters among the promoters that have been studied so far, so the expression of foreign genes driven by the AOX promoter has a very large and efficient expression ability. Since Gzegy et al first expressed hepatitis B surface antigen (HbsAg) in Pichia pastoris (P. pastoris) in 1987, at least 40 foreign proteins have been expressed in P. pastoris in just a few years. In 1997, Waterham isolated and cloned the promoter of glyceraldehyde-3-phosphate dehydrogenase (GAP) in Pichia pastoris, which is a constitutive efficient promoter. The GAP promoter can promote the high-efficiency expression of foreign genes during the growth of cells without induction. Due to its high efficiency and more convenient operation, the GAP promoter has great application potential and is an effective substitute for the AOX promoter. In addition, the secretory expression of P. pastoris has a very good advantage that the level of secreted protein of P. pastoris is very low. This means that when growing on P. pastoris minimal medium, most of the protein in the culture is the target protein, which facilitates the purification of the target protein. In the glycosylation of secreted proteins, Pichia pastoris does not hyperglycosylate like Saccharomyces cerevisiae, which is another advantage of Pichia pastoris.

发明内容Contents of the invention

本发明提供了一种新的米曲霉单宁酶及其编码基因;本发明还提供了上述新基因的表达以及表达产物的纯化方法和应用。The invention provides a new Aspergillus oryzae tannase and its coding gene; the invention also provides the expression of the above-mentioned new gene and the purification method and application of the expression product.

本发明通过设计了一对特异引物,将编码米曲霉单宁酶成熟蛋白(其编码的成熟肽序列如序列表中<400>2序列所示)的核苷酸序列(如序列表中<400>1序列所示)用PCR方法从米曲霉基因中扩增出来,克隆到毕赤酵母表达载体pPIC9K(购自Invitrogen公司),构建表达载体载体pPIC9K-TAN,采用电击法转化毕赤酵母KM71(购自Invitrogen公司)获得重组菌株。宿主菌类型,摇瓶培养条件,发酵培养条件等摸索和优化,重组蛋白的表达量达到200mg/L。The present invention has designed a pair of specific primers to encode the nucleotide sequence of Aspergillus oryzae tannase mature protein (its encoded mature peptide sequence is shown in <400>2 sequence in the sequence listing) (as <400 in the sequence listing) >1 sequence) was amplified from the Aspergillus oryzae gene by PCR method, cloned into Pichia pastoris expression vector pPIC9K (purchased from Invitrogen Company), constructed expression vector pPIC9K-TAN, and transformed Pichia pastoris KM71 ( purchased from Invitrogen Company) to obtain recombinant strains. The type of host bacteria, shake flask culture conditions, and fermentation culture conditions were explored and optimized, and the expression level of the recombinant protein reached 200mg/L.

本发明还将单宁酶基因克隆到毕赤酵母表达载体pGAPZαA(购自Invitrogen公司)中,并通过PCR的方法对基因的表达框架进行了改造,构建了组成型表达载体pGAPZαA-TAN及pGAPZαA-ETAN。采用电击法转化毕赤酵母菌株KM71H(购自Invitrogen公司)获得重组菌株,并在摇瓶培养条件下以分泌形式表达。In the present invention, the tannase gene is also cloned into the Pichia pastoris expression vector pGAPZαA (purchased from Invitrogen Company), and the expression framework of the gene is transformed by the PCR method, and the constitutive expression vectors pGAPZαA-TAN and pGAPZαA-TAN and pGAPZαA- etan. The Pichia pastoris strain KM71H (purchased from Invitrogen) was transformed by electroporation to obtain the recombinant strain, which was expressed in a secreted form under shake flask culture conditions.

本发明还摸索和优化了重组单宁酶蛋白的纯化条件,表达产物采用DEAE Sepharose(购自Amersham Biosciences公司)阴离子交换层析一步纯化,可得到纯度达95%以上的重组单宁酶蛋白。The present invention also explores and optimizes the purification conditions of the recombinant tannase protein, and the expression product is purified by one-step DEAE Sepharose (purchased from Amersham Biosciences) anion exchange chromatography, and the recombinant tannase protein with a purity of more than 95% can be obtained.

本发明获得的重组单宁酶具有生物活性。The recombinant tannase obtained by the invention has biological activity.

本发明构建了含有米曲霉单宁酶蛋白成熟肽编码序列的表达质粒pPIC9k-TAN(构建过程见图13)以及含有表达质粒pGAPZαA-TAN及pGAPZαA-ETAN(构建过程见图14)The present invention constructs the expression plasmid pPIC9k-TAN containing the mature peptide coding sequence of Aspergillus oryzae tannase protein (see Figure 13 for the construction process) and the expression plasmids pGAPZαA-TAN and pGAPZαA-ETAN (see Figure 14 for the construction process)

本发明构建了米曲霉单宁酶成熟蛋白编码序列的表达质粒pPIC9K-TAN,由该表达质粒载体经EcoRI/NotI双酶切,可得到1.7kbp的片段,即为米曲霉单宁酶成熟肽编码序列。表达质粒pGAPZαA-TAN及pGAPZαA-ETAN中单宁酶基因通过XhoI和NotI克隆,由于单宁酶成熟蛋白编码序列中1405bp处含有一个XhoI酶切位点,表达质粒经XhoI/NotI双酶切可得到约300bp和1.4kb的两个片段。The present invention constructs the expression plasmid pPIC9K-TAN of the Aspergillus oryzae tannase mature protein coding sequence, and the expression plasmid vector can be digested by EcoRI/NotI to obtain a 1.7kbp fragment, which is the Aspergillus oryzae tannase mature peptide encoding sequence. The tannase genes in the expression plasmids pGAPZαA-TAN and pGAPZαA-ETAN were cloned by XhoI and NotI. Since the tannase mature protein coding sequence contains an XhoI restriction site at 1405 bp, the expression plasmids can be obtained by XhoI/NotI double restriction digestion Two fragments of about 300bp and 1.4kb.

本发明的表达质粒载体的复制方法:参照Sambrook(Sambrook,et al.1989,Molecularcloing.Cold Spring Harbor Labroratory Press.USA)方法,按CaCl2法在E.Coli.DH5α菌株中转化质粒,转化了pPIC9K-TAN的细菌用含100μg/ml氨苄青霉素的LB培养基进行培养,转化了pGAPZαA-TAN及pGAPZαA-ETAN的细菌用含有25μg/ml的低盐LB培养基进行培养,碱法提取质粒。The replication method of the expression plasmid vector of the present invention: with reference to the Sambrook (Sambrook, et al.1989, Molecularcloing.Cold Spring Harbor Laboratory Press.USA) method, transform the plasmid in the E.Coli.DH5α bacterial strain by the CaCl method, and transform pPIC9K -TAN bacteria were cultured with LB medium containing 100 μg/ml ampicillin, bacteria transformed with pGAPZαA-TAN and pGAPZαA-ETAN were cultured with 25 μg/ml low-salt LB medium, and the plasmid was extracted by alkaline method.

附图说明Description of drawings

图1为从米曲霉基因中PCR扩增的单宁酶基因电泳结果。1:PCR扩增的单宁酶基因;2:阴性对照;M:1kb DNAmarker。Fig. 1 is the electrophoresis result of the tannase gene amplified from the Aspergillus oryzae gene by PCR. 1: PCR-amplified tannase gene; 2: negative control; M: 1kb DNA marker.

图2为单宁酶甲醇酵母表达载体载体pPIC9k-TAN的酶切鉴定电泳结果。1:pPIC9k-TAN(EcoR I+Not I);2:pPIC9k(EcoR I+Not I);M1:1kb DNAmarker。Fig. 2 is the electrophoresis result of enzyme digestion and identification of tannase methanol yeast expression vector vector pPIC9k-TAN. 1: pPIC9k-TAN(EcoR I+Not I); 2: pPIC9k(EcoR I+Not I); M1: 1kb DNAmarker.

图3为整合了载体pPIC9k-TAN的重组甲醇酵母菌株PCR鉴定电泳结果。1:阳性克隆;2:阴性对照;M1:1kb DNA marker。Fig. 3 is the electrophoresis result of PCR identification of the recombinant methanolic yeast strain integrated with vector pPIC9k-TAN. 1: Positive clone; 2: Negative control; M1: 1kb DNA marker.

图4为重组单宁酶通过表达载体pPIC9k-TAN,用甲醇进行诱导表达的表达产物SDS-PAGE电泳结果。1:诱导前发酵上清液;2~5:经甲醇诱导后1~4天的发酵上清液;6:蛋白分子量标准。Fig. 4 is the result of SDS-PAGE electrophoresis of the expression product of recombinant tannase induced by expression vector pPIC9k-TAN with methanol. 1: fermentation supernatant before induction; 2-5: fermentation supernatant 1-4 days after methanol induction; 6: protein molecular weight standard.

图5为重组单宁酶的纯化结果SDS-PAGE电泳分析。1:发酵上清液;2:DEAE阴离子交换纯化的单宁酶(非还原);3:纯化的单宁酶去糖基化(非还原);4:蛋白分子量标准;5:DEAE阴离子交换纯化的单宁酶(还原);6:纯化的单宁酶去糖基化(还原)。Figure 5 is the SDS-PAGE electrophoresis analysis of the purification results of recombinant tannase. 1: Fermentation supernatant; 2: DEAE anion exchange purified tannase (non-reducing); 3: Purified tannase deglycosylated (non-reducing); 4: Protein molecular weight standard; 5: DEAE anion exchange purification tannase (reduction); 6: deglycosylation (reduction) of purified tannase.

图6为重组单宁酶的最适反应温度曲线。Fig. 6 is the optimal reaction temperature curve of recombinant tannase.

图7为重组单宁酶的热稳定性曲线。Figure 7 is the thermostability curve of recombinant tannase.

图8为重组单宁酶的最适反应pH曲线。Fig. 8 is the optimal reaction pH curve of recombinant tannase.

图9为重组单宁酶的酸碱稳定性曲线。Figure 9 is the acid-base stability curve of recombinant tannase.

图10为重组单宁酶通过表达载体pGAPZαA-TAN进行表达的细胞培养上清液SDS-PAGE电泳结果。1:蛋白分子量标准;2~9:培养2~9天的培养物上清液。Fig. 10 is the SDS-PAGE electrophoresis result of the cell culture supernatant expressed by the recombinant tannase through the expression vector pGAPZαA-TAN. 1: protein molecular weight standard; 2-9: culture supernatants cultured for 2-9 days.

图11为转化了表达载体pGAPZαA-TAN及pGAPZαA-ETAN的毕赤酵母菌株KM71H的单宁平板筛选结果。A:转化了pGAPZαA-TAN的毕赤酵母菌株KM71H;B:转化了pGAPZαA-ETAN的毕赤酵母菌株KM71H。Fig. 11 is the screening result of the tannin plate of the Pichia pastoris strain KM71H transformed with the expression vectors pGAPZαA-TAN and pGAPZαA-ETAN. A: Pichia strain KM71H transformed with pGAPZαA-TAN; B: Pichia strain KM71H transformed with pGAPZαA-ETAN.

图12为表达载体pGAPZαA-TAN及pGAPZαA-ETAN中单宁酶的表达框架示意图。A:表达载体pGAPZαA-TAN中单宁酶基因的表达框架;B:表达载体pGAPZαA-ETAN中单宁酶基因的表达框架。Fig. 12 is a schematic diagram of the expression framework of tannase in the expression vectors pGAPZαA-TAN and pGAPZαA-ETAN. A: the expression framework of the tannase gene in the expression vector pGAPZαA-TAN; B: the expression framework of the tannase gene in the expression vector pGAPZαA-ETAN.

图13为单宁酶甲醇酵母表达载体载体pPIC9k-TAN的构建示意图。Figure 13 is a schematic diagram of the construction of the yeast expression vector pPIC9k-TAN for tannase methanol.

图14为表达载体pGAPZαA-TAN及pGAPZαA-ETAN构建示意图。Figure 14 is a schematic diagram of the construction of expression vectors pGAPZαA-TAN and pGAPZαA-ETAN.

具体实施方式Detailed ways

下面结合附图及实施例对本发明作进一步说明,将有助于本领域的普通技术人员理解本发明,但不以任何形式限制本发明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, which will help those of ordinary skill in the art understand the present invention, but the present invention is not limited in any form.

实施例一、米曲霉单宁酶基因的PCR扩增Embodiment one, the PCR amplification of Aspergillus oryzae tannase gene

米曲霉基因组的提取参考《现代分子生物学实验技术》的实验方案,根据单宁酶基因编码的成熟蛋白两端序列和毕赤酵母表达载体pPIC9K(购自Invitrogen公司)的多酶切位点,合成一对引物,序列如下:The extraction of the Aspergillus oryzae genome refers to the experimental scheme of "Modern Molecular Biology Experimental Technology", according to the two-terminal sequence of the mature protein encoded by the tannase gene and the multi-enzyme cutting site of the Pichia pastoris expression vector pPIC9K (purchased from Invitrogen Company), Synthesize a pair of primers with the following sequence:

上游引物,5’G GAATTCGCTTCTTTTACCGATGTGTGCAC3’(单下划线部分为EcoRI酶切序列);Upstream primer, 5'G GAATTC GCTTCTTTTTACCGATGTGTGCAC3' (single underlined part is EcoRI restriction sequence);

下游引物, (单下划线部分为NotI酶切序列,双下划线为终止密码子)。downstream primers, (The single underlined part is the NotI restriction sequence, and the double underlined part is the stop codon).

PCR扩增、基因克隆皆按常规方法进行。PCR产物约1700bp,如图1,编码570个氨基酸残基。PCR amplification and gene cloning were carried out according to conventional methods. The PCR product is about 1700bp, as shown in Figure 1, encoding 570 amino acid residues.

实施例二、单宁酶甲醇酵母表达载体pPIC9k-TAN的构建Example 2. Construction of Tannase Methanol Yeast Expression Vector pPIC9k-TAN

PCR扩增的米曲霉单宁酶基因用EcoRI和NotI双酶切克隆到甲醇酵母表达载体pPIC9K相应的酶切窗口,获得表达载体pPIC9K-TAN,构建过程见图13,经酶切鉴定(图2)和测序分析表明克隆的基因为目的基因。The Aspergillus oryzae tannase gene amplified by PCR was cloned into the corresponding restriction restriction window of the methanolic yeast expression vector pPIC9K with EcoRI and NotI double digestion, and the expression vector pPIC9K-TAN was obtained. The construction process is shown in Figure 13 and identified by restriction digestion (Fig. ) and sequencing analysis showed that the cloned gene was the target gene.

实施例三、酵母菌株的转化及阳性克隆的筛选Example 3. Transformation of yeast strains and screening of positive clones

表达质粒pPIC9K-TAN用PmeI单切线性化,采用电击法转化毕赤酵母KM71(购自Invitrogen公司),同时转化同样线性化的空载体pPIC9K作为对照。在MD固体培养平板筛选阳性克隆,并用含G418抗性的YPD平板进一步筛选阳性克隆。转化子通过PCR的方法进一步进行了鉴定,PCR引物为α-factor sequencing primer(5’-TACTATTGCCAGCATTGCTGC-3’)和3’AOX1 sequencing primer(5’-GCAAATGGCATTCTGACATCC-3’),采用Taq DNA聚合酶进行PCR反应,以提取的阳性克隆基因组为模板,反应循环条件为,94℃5分钟,94℃45秒,52℃30秒,72℃2分钟,32个循环,72℃10分钟,4℃保存。琼脂糖凝胶电泳检测显示图3,PCR扩增得到一特异性约1.8kb DNA条带,与预期的大小相符。The expression plasmid pPIC9K-TAN was single-cut and linearized with PmeI, and Pichia pastoris KM71 (purchased from Invitrogen) was transformed by electroporation, while the same linearized empty vector pPIC9K was transformed as a control. Positive clones were screened on MD solid culture plates, and positive clones were further screened with G418-resistant YPD plates. The transformants were further identified by PCR. The PCR primers were α-factor sequencing primer (5'-TACTATTGCCAGCATTGCTGC-3') and 3'AOX1 sequencing primer (5'-GCAAATGGCATTCTGACATCC-3'), and Taq DNA polymerase was used for The PCR reaction uses the extracted positive clone genome as a template, and the reaction cycle conditions are 94°C for 5 minutes, 94°C for 45 seconds, 52°C for 30 seconds, 72°C for 2 minutes, 32 cycles, 72°C for 10 minutes, and 4°C storage. Agarose gel electrophoresis detection shows that in Figure 3, a specific DNA band of about 1.8 kb was obtained by PCR amplification, which was consistent with the expected size.

实施例四、重组米曲霉单宁酶的高密度发酵诱导表达Embodiment four, the high-density fermentation induction expression of recombinant Aspergillus oryzae tannase

从YPD平板上选取单克隆,接种于20ml BMGY培养基中,30℃、240rpm培养20h。以1∶50的比例接种到300ml BMGY培养基中,30℃、240rpm培养至OD600=2~6,用以接种发酵罐。Single clones were selected from the YPD plate, inoculated in 20ml BMGY medium, and cultured at 30°C and 240rpm for 20h. Inoculate into 300ml BMGY medium at a ratio of 1:50, cultivate at 30°C and 240rpm until OD600=2-6, and inoculate the fermenter.

7L发酵罐,加入3L发酵基础培养基,121℃灭菌20min,调节温度至30℃,用氨水调节pH至5.5,加入PTM1(4.35ml L-1),接入种子菌(1∶10)。发酵过程中,温度控制在30℃,通气量维持在2vvm,转速控制在300~800rpm之间以维持溶氧20%以上。Add 3L fermentation base medium to a 7L fermenter, sterilize at 121°C for 20 minutes, adjust the temperature to 30°C, adjust the pH to 5.5 with ammonia water, add PTM1 (4.35ml L -1 ), and inoculate seed bacteria (1:10). During the fermentation process, the temperature is controlled at 30°C, the ventilation rate is maintained at 2vvm, and the rotation speed is controlled at 300-800rpm to maintain more than 20% of dissolved oxygen.

发酵分为三个阶段:生长期,从加入种子菌,培养约16~24h,直到将发酵罐中甘油耗尽,表现为溶氧突然上升;之后进入甘油促生长期,补加50%甘油(含有PTM1,12ml L-1),补料速度为18ml L-1h-1,持续4~6h;最后进入诱导期,用氨水调节pH至5.0,流加100%甲醇(含有PTM1,12ml L-1),流速从1ml L-1h-1经10h线性升至3ml L-1h-1,持续120h。发酵上清用SDS-PAGE检测蛋白表达,如图4。The fermentation is divided into three stages: the growth stage, from adding seed bacteria, culturing for about 16 to 24 hours, until the glycerol in the fermenter is exhausted, showing a sudden rise in dissolved oxygen; then entering the glycerol growth-promoting stage, adding 50% glycerol ( Contains PTM1, 12ml L -1 ), feeding rate is 18ml L -1 h -1 , lasts 4~6h; finally enters the induction period, adjusts the pH to 5.0 with ammonia water, feeds 100% methanol (contains PTM1, 12ml L -1 1 ), the flow rate increased linearly from 1ml L -1 h -1 to 3ml L -1 h -1 over 10h, and lasted for 120h. The protein expression of the fermentation supernatant was detected by SDS-PAGE, as shown in Figure 4.

实施例五、重组米曲霉单宁酶的纯化Embodiment five, the purification of recombinant Aspergillus oryzae tannase

发酵液于4℃8000rpm离心30min,上清经Sephendex G-25脱盐,更换为10mmol/L柠檬酸pH5.5缓冲液,再经DEAE Sepharose Fast Flow离子交换层析柱纯化,洗脱体系为10mmol/L柠檬酸pH5.5缓冲液,NaCl线性梯度(0~0.5mol/L),pH5.5。洗脱样品用SDS-PAGE进行分析鉴定(图5)。合并目的蛋白组分,双蒸水透析,透析后样品冷冻干燥,-20℃保存。The fermentation broth was centrifuged at 8000rpm at 4°C for 30min, the supernatant was desalted with Sephendex G-25, replaced with 10mmol/L citric acid pH5.5 buffer, and then purified by DEAE Sepharose Fast Flow ion exchange chromatography column, the elution system was 10mmol/L L citric acid pH5.5 buffer, NaCl linear gradient (0-0.5mol/L), pH5.5. The eluted samples were analyzed and identified by SDS-PAGE (Fig. 5). The target protein fractions were combined and dialyzed in double distilled water. After dialysis, the samples were freeze-dried and stored at -20°C.

实施例六、重组米曲霉单宁酶的活性鉴定Embodiment six, the activity identification of recombinant Aspergillus oryzae tannase

重组米曲霉单宁酶的活性鉴定参考Beverini(1990)的方法。1IU的酶活定义1分钟水解1μmol单宁酸所需的酶量。酶活检测我们制备的重组米曲霉单宁酶酶活达到50,000IU/g。The activity identification of recombinant Aspergillus oryzae tannase refers to the method of Beverini (1990). 1 IU of enzyme activity defines the amount of enzyme required to hydrolyze 1 μmol of tannic acid in 1 minute. Enzyme activity detection The enzyme activity of the recombinant Aspergillus oryzae tannase we prepared reached 50,000IU/g.

实施例七、重组米曲霉单宁酶最适反应温度及热稳定性测定Embodiment seven, recombinant Aspergillus oryzae tannase optimal reaction temperature and thermostability determination

在不同温度(10℃~70℃),测定酶活性。测定热稳定性时,则将酶液于不同温度下保温10分钟后,测定其残余的酶活性。测得重组单宁酶的最适反应温度为40℃,热稳定性范围为10~40℃(图6,图7)。Enzyme activity was measured at different temperatures (10°C-70°C). When measuring thermal stability, the enzyme solution was incubated at different temperatures for 10 minutes, and then its residual enzyme activity was measured. The optimum reaction temperature of the recombinant tannase was measured to be 40° C., and the thermal stability range was 10-40° C. ( FIG. 6 , FIG. 7 ).

实施例八、重组米曲霉单宁酶最适反应pH及酸碱稳定性测定Embodiment eight, recombinant Aspergillus oryzae tannase optimum reaction pH and acid-base stability determination

配制不同pH值的Na2HPO4-柠檬酸缓冲液(pH2.2~8.0),0.5个pH单位为梯度。测定最适反应pH值时,将单宁酶溶解于去离子水中,用不同pH值的Na2HPO4-柠檬酸缓冲液稀释5倍;然后测定酶活。测定酸碱稳定性时,则将单宁酶溶解于不同pH值的缓冲液中,在30℃保温一小时后加入20倍体积的pH5.5的50mM柠檬酸缓冲液,然后测定酶活。测定结果,重组单宁酶的最适反应pH值为pH6.0,酸碱稳定性范围为pH4~6(图8,图9)。Na 2 HPO 4 -citric acid buffer solutions (pH 2.2-8.0) with different pH values were prepared, with 0.5 pH units as a gradient. When determining the optimum reaction pH value, the tannase was dissolved in deionized water and diluted 5 times with Na 2 HPO 4 -citric acid buffer solution with different pH values; then the enzyme activity was measured. When measuring acid-base stability, tannase was dissolved in buffer solutions with different pH values, and after incubation at 30° C. for one hour, 20 times the volume of 50 mM citric acid buffer solution with pH 5.5 was added, and then the enzyme activity was measured. As a result of the measurement, the optimum reaction pH value of the recombinant tannase was pH6.0, and the acid-base stability range was pH4-6 (Fig. 8, Fig. 9).

实施例九、重组单宁酶毕赤酵母组成型表达载体pGAPZαA-TAN及pGAPZαA-ETAN的构建Example 9. Construction of recombinant tannase Pichia pastoris constitutive expression vectors pGAPZαA-TAN and pGAPZαA-ETAN

根据表达载体pGAPZαA(购自Invitrogen公司)的部分信号肽序列及单宁酶编码序列设计合成引物:Synthetic primers were designed according to the partial signal peptide sequence and tannase coding sequence of the expression vector pGAPZαA (purchased from Invitrogen):

上游引物:Upstream primers:

(1):5’CCG CTCGAGAAAAGA GCTTCTTTTACCGATGTGTGCAC3’(单下划线部分为载体信号肽序列中的XhoI酶切位点),(1): 5'CCG CTCGAG AAAAGA GCTTCTTTTTACCGATGTGTGCAC3' (the underlined part is the XhoI restriction site in the vector signal peptide sequence),

(2):

Figure C20041002749700081
(单下划线部分为载体信号肽序列中的XhoI酶切位点,双下划线部分为载体信号肽序列末端的Ste13蛋白酶切割序列);(2):
Figure C20041002749700081
(The single underlined part is the XhoI restriction site in the carrier signal peptide sequence, and the double underlined part is the Ste13 protease cleavage sequence at the end of the carrier signal peptide sequence);

下游引物:5’TCGCTGGACTGGCCATAAAAGC3’(下游引物为单宁酶编码序列中约480bp处的一段序列)。Downstream primer: 5'TCGCTGGACTGGCCATAAAAGC3' (the downstream primer is a sequence at about 480bp in the tannase coding sequence).

以pPIC9K-TAN为模板,分别用两组引物进行PCR扩增,扩增得到的片段大小约为500bp,用XhoI和SphI双酶切后切成两个片段,回收其中约100bp的片段;将质粒pPIC9K-TAN用SphI和NotI双酶切,回收大小为1.4kb的单宁酶基因片段;将这两个片段连接到表达载体pGAPZαA相应的XhoI/NotI酶切窗口中,构建成表达载体pGAPZαA-TAN及pGAPZαA-ETAN,构建过程见图14;表达载体中单宁酶基因的表达框架如图12,在pGAPZαA-TAN中单宁酶直接连接于载体信号肽末端,在pGAPZαA-ETAN中单宁酶基因连接于毕赤酵母蛋白Ste13蛋白酶切割位点末端,即在信号肽序列及单宁酶之间含有4个氨基酸残基EAEA;经酶切和DNA测序鉴定载体构建成功。Using pPIC9K-TAN as a template, PCR amplification was carried out with two sets of primers respectively, and the size of the amplified fragment was about 500bp, cut into two fragments after double enzyme digestion with XhoI and SphI, and the fragment of about 100bp was recovered; the plasmid pPIC9K-TAN was double-digested with SphI and NotI, and the tannase gene fragment with a size of 1.4kb was recovered; these two fragments were connected to the corresponding XhoI/NotI digestion window of the expression vector pGAPZαA, and the expression vector pGAPZαA-TAN was constructed and pGAPZαA-ETAN, the construction process is shown in Figure 14; the expression frame of the tannase gene in the expression vector is shown in Figure 12, the tannase in pGAPZαA-TAN is directly connected to the end of the carrier signal peptide, and the tannase gene in pGAPZαA-ETAN It is connected to the end of the protease cleavage site of Pichia pastoris protein Ste13, that is, there are 4 amino acid residues EAEA between the signal peptide sequence and tannase; the vector is successfully constructed after enzyme digestion and DNA sequencing.

实施例十、毕赤酵母菌株的转化和阳性克隆的筛选Embodiment 10. Transformation of Pichia pastoris strains and screening of positive clones

表达载体pGAPZαA-TAN及pGAPZαA-ETAN分别用AvrII进行线性化,采用电击法转化毕赤酵母KM71H,同时转化同样线性化的空载体pGAPZαA作为对照。转化后的细胞用zeocine抗性平板筛选出抗性克隆,再用含0.2%单宁酸的YNB+0.5%葡萄糖平板筛选出单宁酶活性菌株。其中具有单宁酶活性的重组菌株能够在菌落周围形成一个透明的单宁降解圈(图11)。The expression vectors pGAPZαA-TAN and pGAPZαA-ETAN were linearized with AvrII respectively, and Pichia pastoris KM71H was transformed by electroporation, while the same linearized empty vector pGAPZαA was used as a control. The transformed cells were screened with zeocine resistance plate to select resistant clones, and then screened with 0.2% tannic acid YNB + 0.5% glucose plate to screen out tannase active strains. Among them, the recombinant strain with tannase activity can form a transparent tannin degradation circle around the colony ( FIG. 11 ).

实施例十一、重组单宁酶通过表达载体pGAPZαA-TAN进行组成型表达Example 11. Constitutive expression of recombinant tannase through the expression vector pGAPZαA-TAN

从YPD平板上挑取单菌落,接种至50mlYPD培养基,30℃、240rpm培养,每隔24小时添加终浓度为0.5%的葡萄糖溶液,并取培养上清液进行SDS-PAGE分析,在分子量约100kDa处有一特征蛋白条带,即为重组单宁酶产物(图10)。Pick a single colony from the YPD plate, inoculate it into 50ml YPD medium, cultivate it at 30°C and 240rpm, add a glucose solution with a final concentration of 0.5% every 24 hours, and take the culture supernatant for SDS-PAGE analysis. There is a characteristic protein band at 100kDa, which is the recombinant tannase product (Figure 10).

                                    序列表Sequence Listing

<110>中山大学<110> Sun Yat-Sen University

<120>重组米曲霉单宁酶及其表达和纯化方法<120> Recombinant Aspergillus oryzae tannase and its expression and purification method

<160>2<160>2

<210>1<210>1

<211>1710<211>1710

<212>DNA<212>DNA

<213>米曲霉(Aspergillus oryzae)<213> Aspergillus oryzae

<220><220>

<221>mat peptide<221>mat peptide

<222>(1)…(570)<222>(1)...(570)

<400>1<400>1

gct tct ttt acc gat gtg tgc acc gtg tct aac gtg aag gct gca ttg  48gct tct ttt acc gat gtg tgc acc gtg tct aac gtg aag gct gca ttg 48

Ala Ser Phe Thr Asp Val Cys Thr Val Ser Asn Val Lys Ala Ala LeuAla Ser Phe Thr Asp Val Cys Thr Val Ser Asn Val Lys Ala Ala Leu

1               5                   10                  151 5 10 15

cct gcc aac gga act ctg ctc gga atc agc atg ctt ccg tcc gcc gtc  96cct gcc aac gga act ctg ctc gga atc agc atg ctt ccg tcc gcc gtc 96

Pro Ala Asn Gly Thr Leu Leu Gly Ile Ser Met Leu Pro Ser Ala ValPro Ala Asn Gly Thr Leu Leu Gly Ile Ser Met Leu Pro Ser Ala Val

            20                  25                  3020 25 30

acg gcc aac cct ctc tac aac cag tcg gct ggc atg ggt agc acc act  114acg gcc aac cct ctc tac aac cag tcg gct ggc atg ggt agc acc act 114

Thr Ala Asn Pro Leu Tyr Asn Gln Ser Ala Gly Met Gly Ser Thr ThrThr Ala Asn Pro Leu Tyr Asn Gln Ser Ala Gly Met Gly Ser Thr Thr

        35                  40                  4535 40 45

acc tat gac tac tgc aat gtg act gtc gcc tac acg cat acc ggc aag  192acc tat gac tac tgc aat gtg act gtc gcc tac acg cat acc ggc aag 192

Thr Tyr Asp Tyr Cys Asn Val Thr Val Ala Tyr Thr His Thr Gly LysThr Tyr Asp Tyr Cys Asn Val Thr Val Ala Tyr Thr His Thr Gly Lys

    50                  55                  6050 55 60

ggt gat aaa gtg gtc atc aag tac gca ttc ccc aag ccc tcc gac tac  240ggt gat aaa gtg gtc atc aag tac gca ttc ccc aag ccc tcc gac tac 240

Gly Asp Lys Val Val Ile Lys Tyr Ala Phe Pro Lys Pro Ser Asp TyrGly Asp Lys Val Val Ile Lys Tyr Ala Phe Pro Lys Pro Ser Asp Tyr

65                  70                  75                  8065 70 75 80

gag aac cgt ttc tac gtt gct ggt ggt ggt ggc ttt tcc ctc tct agc  288gag aac cgt ttc tac gtt gct ggt ggt ggt ggc ttt tcc ctc tct agc 288

Glu Asn Arg Phe Tyr Val Ala Gly Gly Gly Gly Phe Ser Leu Ser SerGlu Asn Arg Phe Tyr Val Ala Gly Gly Gly Gly Gly Phe Ser Leu Ser Ser

                85                  90                  9585 90 95

gat gct acc gga ggt ctc gcc tat ggc gct gtg gga ggt gcc acc gat  336gat gct acc gga ggt ctc gcc tat ggc gct gtg gga ggt gcc acc gat 336

Asp Ala Thr Gly Gly Leu Ala Tyr Gly Ala Val Gly Gly Ala Thr AspAsp Ala Thr Gly Gly Leu Ala Tyr Gly Ala Val Gly Gly Ala Thr Asp

            100                 105                 110100 105 110

gct gga tac gac gca ttc gat aac agc tac gac gag gta gtc ctc tac  384gct gga tac gac gca ttc gat aac agc tac gac gag gta gtc ctc tac 384

Ala Gly Tyr Asp Ala Phe Asp Asn Ser Tyr Asp Glu Val Val Leu TyrAla Gly Tyr Asp Ala Phe Asp Asn Ser Tyr Asp Glu Val Val Leu Tyr

        115                 120                 125115 120 125

gga aac gga acc att aac tgg gac gcc aca tac atg ttc gca tac cag  432gga aac gga acc att aac tgg gac gcc aca tac atg ttc gca tac cag 432

Gly Asn Gly Thr Ile Asn Trp Asp Ala Thr Tyr Met Phe Ala Tyr GlnGly Asn Gly Thr Ile Asn Trp Asp Ala Thr Tyr Met Phe Ala Tyr Gln

    130                 135                 140130 135 140

gca ctg gga gag atg acc cgg atc gga aag tac atc acc aag ggc ttt  480gca ctg gga gag atg acc cgg atc gga aag tac atc acc aag ggc ttt 480

Ala Leu Gly Glu Met Thr Arg Ile Gly Lys Tyr Ile Thr Lys Gly PheAla Leu Gly Glu Met Thr Arg Ile Gly Lys Tyr Ile Thr Lys Gly Phe

145                 150                 155                 160145 150 155 160

tat ggc cag tcc agc gac agc aag gtc tac acc tac tac gag ggt tgc  528tat ggc cag tcc agc gac agc aag gtc tac acc tac tac gag ggt tgc 528

Tyr Gly Gln Ser Ser Asp Ser Lys Val Tyr Thr Tyr Tyr Glu Gly CysTyr Gly Gln Ser Ser Asp Ser Lys Val Tyr Thr Tyr Tyr Glu Gly Cys

                165                 170                 175165 170 175

tcc gat gga gga cgt gag ggt atg agt caa gtc cag cgc tgg ggt gag  576tcc gat gga gga cgt gag ggt atg agt caa gtc cag cgc tgg ggt gag 576

Ser Asp Gly Gly Arg Glu Gly Met Ser Gln Val Gln Arg Trp Gly GluSer Asp Gly Gly Arg Glu Gly Met Ser Gln Val Gln Arg Trp Gly Glu

            180                 185                 190180 185 190

gag tat gac ggt gcg att act ggt gcc ccg gct ttc cgt ttc gct cag  624gag tat gac ggt gcg att act ggt gcc ccg gct ttc cgt ttc gct cag 624

Glu Tyr Asp Gly Ala Ile Thr Gly Ala Pro Ala Phe Arg Phe Ala GlnGlu Tyr Asp Gly Ala Ile Thr Gly Ala Pro Ala Phe Arg Phe Ala Gln

        195                 200                 205195 200 205

caa cag gtt cac cat gtg ttc tcg tcc gaa gtg gag caa act ctg gac  672caa cag gtt cac cat gtg ttc tcg tcc gaa gtg gag caa act ctg gac 672

Gln Gln Val His His Val Phe Ser Ser Glu Val Glu Gln Thr Leu AspGln Gln Val His His Val Phe Ser Ser Glu Val Glu Gln Thr Leu Asp

    210                 215                 220210 215 220

tac tac ccg cct cca tgt gag tcg aag aag atc gtg aac gcc acc att  720tac tac ccg cct cca tgt gag tcg aag aag atc gtg aac gcc acc att 720

Tyr Tyr Pro Pro Pro Cys Glu Ser Lys Lys Ile Val Asn Ala Thr IleTyr Tyr Pro Pro Pro Cys Glu Ser Lys Lys Ile Val Asn Ala Thr Ile

225                 230                 235                 240225 230 235 240

gct gct tgc gac ccg ctt gat gga aga acc gac ggt gtt gtg tcc cgg  768gct gct tgc gac ccg ctt gat gga aga acc gac ggt gtt gtg tcc cgg 768

Ala Ala Cys Asp Pro Leu Asp Gly Arg Thr Asp Gly Val Val Ser ArgAla Ala Cys Asp Pro Leu Asp Gly Arg Thr Asp Gly Val Val Ser Arg

                245                 250                 255245 250 255

acg gat ctt tgc aag ctt aac ttc aat ttg acc tct atc atc ggt gag  816acg gat ctt tgc aag ctt aac ttc aat ttg acc tct atc atc ggt gag 816

Thr Asp Leu Cys Lys Leu Asn Phe Asn Leu Thr Ser Ile Ile Gly GluThr Asp Leu Cys Lys Leu Asn Phe Asn Leu Thr Ser Ile Ile Gly Glu

            260                 265                 270260 265 270

cct tac tac tgt gct gcg gga act agc act tcg ctt ggt ttc ggc ttc  864cct tac tac tgt gct gcg gga act agc act tcg ctt ggt ttc ggc ttc 864

Pro Tyr Tyr Cys Ala Ala Gly Thr Ser Thr Ser Leu Gly Phe Gly PhePro Tyr Tyr Cys Ala Ala Gly Thr Ser Thr Ser Leu Gly Phe Gly Phe

        275                 280                 285275 280 285

agc aat ggc aag cgc agc aat gtc aag cgt cag gcc gag ggc agc acc  912agc aat ggc aag cgc agc aat gtc aag cgt cag gcc gag ggc agc acc 912

Ser Asn Gly Lys Arg Ser Asn Val Lys Arg Gln Ala Glu Gly Ser ThrSer Asn Gly Lys Arg Ser Asn Val Lys Arg Gln Ala Glu Gly Ser Thr

    290                 295                 300290 295 300

acc agc tac cag ccc gcc cag aac ggc acg gtc acc gca cgt ggt gta  960acc agc tac cag ccc gcc cag aac ggc acg gtc acc gca cgt ggt gta 960

Thr Ser Tyr Gln Pro Ala Gln Asn Gly Thr Val Thr Ala Arg Gly ValThr Ser Tyr Gln Pro Ala Gln Asn Gly Thr Val Thr Ala Arg Gly Val

305                 310                 315                 320305 310 315 320

gct gtc gcc cag gcc atc tac gat ggt ctc cac aac agc aag ggc gag  1008gct gtc gcc cag gcc atc tac gat ggt ctc cac aac aag aag ggc gag 1008

Ala Val Ala Gln Ala Ile Tyr Asp Gly Leu His Asn Ser Arg Gly GluAla Val Ala Gln Ala Ile Tyr Asp Gly Leu His Asn Ser Arg Gly Glu

                325                 330                 335325 330 335

cgc gcg tac ctc tcc tgg cag att gcc tct gag ctg agc gat gct gag  1056cgc gcg tac ctc tcc tgg cag att gcc tct gag ctg agc gat gct gag 1056

Arg Ala Tyr Leu Ser Trp Gln Ile Ala Ser Glu Leu Ser Asp Ala GluArg Ala Tyr Leu Ser Trp Gln Ile Ala Ser Glu Leu Ser Asp Ala Glu

            340                 345                 350340 345 350

acc gag tac aac tct gac act ggc aag tgg gag ctc aac atc ccg tcg  1104acc gag tac aac tct gac act ggc aag tgg gag ctc aac atc ccg tcg 1104

Thr Glu Tyr Asn Ser Asp Thr Gly Lys Trp Glu Leu Asn Ile Pro SerThr Glu Tyr Asn Ser Asp Thr Gly Lys Trp Glu Leu Asn Ile Pro Ser

        355                 360                 365355 360 365

acc ggt ggt gag tac gtc acc aag ttc att cag ctc ctg aac ctc gac  1152acc ggt ggt gag tac gtc acc aag ttc att cag ctc ctg aac ctc gac 1152

Thr Gly Gly Glu Tyr Val Thr Lys Phe Ile Gln Leu Leu Asn Leu AspThr Gly Gly Glu Tyr Val Thr Lys Phe Ile Gln Leu Leu Asn Leu Asp

    370                 375                 380370 375 380

aac ctt tcg gat ctg aac aac gtg acc tac gac acc ctg gtc gac tgg  1200aac ctt tcg gat ctg aac aac gtg acc tac gac acc ctg gtc gac tgg 1200

Asn Leu Ser Asp Leu Asn Asn Val Thr Tyr Asp Thr Leu Val Asp TrpAsn Leu Ser Asp Leu Asn Asn Val Thr Tyr Asp Thr Leu Val Asp Trp

385                 390                 395                 400385 390 395 400

atg aac act ggt atg gtg cgc tac atg gac agc ctt cag acc acc ctt  1248atg aac act ggt atg gtg cgc tac atg gac agc ctt cag acc acc ctt 1248

Met Asn Thr Gly Met Val Arg Tyr Met Asp Ser Leu Gln Thr Thr LeuMet Asn Thr Gly Met Val Arg Tyr Met Asp Ser Leu Gln Thr Thr Leu

                405                 410                 415405 410 415

ccc gat ctg act ccc ttc caa tcg tcc ggc gga aag ctg ctg cac tac  1296ccc gat ctg act ccc ttc caa tcg tcc ggc gga aag ctg ctg cac tac 1296

Pro Asp Leu Thr Pro Phe Gln Ser Ser Gly Gly Lys Leu Leu His TyrPro Asp Leu Thr Pro Phe Gln Ser Ser Ser Gly Gly Lys Leu Leu His Tyr

            420                 425                 430420 425 430

cac ggt gaa tct gac ccc agt atc ccc gct gcc tcc tcg gtc cac tac  1344cac ggt gaa tct gac ccc agt atc ccc gct gcc tcc tcg gtc cac tac 1344

His Gly Glu Ser Asp Pro Ser Ile Pro Ala Ala Ser Ser Val His TyrHis Gly Glu Ser Asp Pro Ser Ile Pro Ala Ala Ser Ser Val His Tyr

        435                 440                 445435 440 445

tgg cag gcg gtt cgt tcc gtc atg tac ggc gac aag acg gaa gag gag  1392tgg cag gcg gtt cgt tcc gtc atg tac ggc gac aag acg gaa gag gag 1392

Trp Gln Ala Val Arg Ser Val Met Tyr Gly Asp Lys Thr Glu Glu GluTrp Gln Ala Val Arg Ser Val Met Tyr Gly Asp Lys Thr Glu Glu Glu

    450                 455                 460450 455 460

gcc ctg gag gct ctc gag gac tgg tac cag ttc tac cta atc ccc ggt  1440gcc ctg gag gct ctc gag gac tgg tac cag ttc tac cta atc ccc ggt 1440

Ala Leu Glu Ala Leu Glu Asp Trp Tyr Gln Phe Tyr Leu Ile Pro GlyAla Leu Glu Ala Leu Glu Asp Trp Tyr Gln Phe Tyr Leu Ile Pro Gly

465                 470                 475                 480465 470 475 480

gcc gcc cac tgc gga acc aac tct ctc cag ccc gga cct tac cct gag  1488gcc gcc cac tgc gga acc aac tct ctc cag ccc gga cct tac cct gag 1488

Ala Ala His Cys Gly Thr Asn Ser Leu Gln Pro Gly Pro Tyr Pro GluAla Ala His Cys Gly Thr Asn Ser Leu Gln Pro Gly Pro Tyr Pro Glu

                485                 490                 495485 490 495

aac aac atg gag att atg atc gac tgg gtc gag aac ggc aac aag ccg  1536aac aac atg gag att atg atc gac tgg gtc gag aac ggc aac aag ccg 1536

Asn Asn Met Glu Ile Met Ile Asp Trp Val Glu Asn Gly Asn Lys ProAsn Asn Met Glu Ile Met Ile Asp Trp Val Glu Asn Gly Asn Lys Pro

            500                 505                 510500 505 510

tcc cgt ctc aat gcc act gtt tct tcg ggt acc tac gcc ggc gag acc  1584tcc cgt ctc aat gcc act gtt tct tcg ggt acc tac gcc ggc gag acc 1584

Ser Arg Leu Asn Ala Thr Val Ser Ser Gly Thr Tyr Ala Gly Glu ThrSer Arg Leu Asn Ala Thr Val Ser Ser Ser Gly Thr Tyr Ala Gly Glu Thr

        515                 520                 525515 520 525

cag atg ctt tgc cag tgg ccc aag cgt cct ctc tgg cgc ggc aac tcc  1632cag atg ctt tgc cag tgg ccc aag cgt cct ctc tgg cgc ggc aac tcc 1632

Gln Met Leu Cys Gln Trp Pro Lys Arg Pro Leu Trp Arg Gly Asn SerGln Met Leu Cys Gln Trp Pro Lys Arg Pro Leu Trp Arg Gly Asn Ser

    530                 535                 540530 535 540

agc ttc gac tgt gtc aac gac gag aag tcg att gac agc tgg acc tac  1680agc ttc gac tgt gtc aac gac gag aag tcg att gac agc tgg acc tac 1680

Ser Phe Asp Cys Val Asn Asp Glu Lys Ser Ile Asp Ser Trp Thr TyrSer Phe Asp Cys Val Asn Asp Glu Lys Ser Ile Asp Ser Trp Thr Tyr

545                 550                 555                 560545 550 555 560

gag ttc cca gcc ttc aag gtc cct gta tac                          1710gag ttc cca gcc ttc aag gtc cct gta tac 1710

Glu Phe Pro Ala Phe Lys Val Pro Val TyrGlu Phe Pro Ala Phe Lys Val Pro Val Tyr

                565                 570565 570

<210>2<210>2

<211>570<211>570

<212>PRT<212>PRT

<213>米曲霉(Aspergillus oryzae)<213> Aspergillus oryzae

<220><220>

<221>mat peptide<221>mat peptide

<222>(1)…(570)<222>(1)...(570)

<400>2<400>2

Ala Ser Phe Thr Asp Val Cys Thr Val Ser Asn Val Lys Ala Ala LeuAla Ser Phe Thr Asp Val Cys Thr Val Ser Asn Val Lys Ala Ala Leu

1               5                   10                  151 5 10 15

Pro Ala Asn Gly Thr Leu Leu Gly Ile Ser Met Leu Pro Ser Ala ValPro Ala Asn Gly Thr Leu Leu Gly Ile Ser Met Leu Pro Ser Ala Val

            20                  25                  3020 25 30

Thr Ala Asn Pro Leu Tyr Asn Gln Ser Ala Gly Met Gly Ser Thr ThrThr Ala Asn Pro Leu Tyr Asn Gln Ser Ala Gly Met Gly Ser Thr Thr

        35                  40                  4535 40 45

Thr Tyr Asp Tyr Cys Asn Val Thr Val Ala Tyr Thr His Thr Gly LysThr Tyr Asp Tyr Cys Asn Val Thr Val Ala Tyr Thr His Thr Gly Lys

    50                  55                  6050 55 60

Gly Asp Lys Val Val Ile Lys Tyr Ala Phe Pro Lys Pro Ser Asp TyrGly Asp Lys Val Val Ile Lys Tyr Ala Phe Pro Lys Pro Ser Asp Tyr

65                  70                  75                  8065 70 75 80

Glu Asn Arg Phe Tyr Val Ala Gly Gly Gly Gly Phe Ser Leu Ser SerGlu Asn Arg Phe Tyr Val Ala Gly Gly Gly Gly Gly Phe Ser Leu Ser Ser

                85                  90                  9585 90 95

Asp Ala Thr Gly Gly Leu Ala Tyr Gly Ala Val Gly Gly Ala Thr AspAsp Ala Thr Gly Gly Leu Ala Tyr Gly Ala Val Gly Gly Ala Thr Asp

            100                 105                 110100 105 110

Ala Gly Tyr Asp Ala Phe Asp Asn Ser Tyr Asp Glu Val Val Leu TyrAla Gly Tyr Asp Ala Phe Asp Asn Ser Tyr Asp Glu Val Val Leu Tyr

        115                 120                 125115 120 125

Gly Asn Gly Thr Ile Asn Trp Asp Ala Thr Tyr Met Phe Ala Tyr GlnGly Asn Gly Thr Ile Asn Trp Asp Ala Thr Tyr Met Phe Ala Tyr Gln

    130                 135                 140130 135 140

Ala Leu Gly Glu Met Thr Arg Ile Gly Lys Tyr Ile Thr Lys Gly PheAla Leu Gly Glu Met Thr Arg Ile Gly Lys Tyr Ile Thr Lys Gly Phe

145                 150                 155                 160145 150 155 160

Tyr Gly Gln Ser Ser Asp Ser Lys Val Tyr Thr Tyr Tyr Glu Gly CysTyr Gly Gln Ser Ser Asp Ser Lys Val Tyr Thr Tyr Tyr Glu Gly Cys

                165                 170                 175165 170 175

Ser Asp Gly Gly Arg Glu Gly Met Ser Gln Val Gln Arg Trp Gly GluSer Asp Gly Gly Arg Glu Gly Met Ser Gln Val Gln Arg Trp Gly Glu

            180                 185                 190180 185 190

Glu Tyr Asp Gly Ala Ile Thr Gly Ala Pro Ala Phe Arg Phe Ala GlnGlu Tyr Asp Gly Ala Ile Thr Gly Ala Pro Ala Phe Arg Phe Ala Gln

        195                 200                 205195 200 205

Gln Gln Val His His Val Phe Ser Ser Glu Val Glu Gln Thr Leu AspGln Gln Val His His Val Phe Ser Ser Glu Val Glu Gln Thr Leu Asp

    210                 215                 220210 215 220

Tyr Tyr Pro Pro Pro Cys Glu Ser Lys Lys Ile Val Asn Ala Thr IleTyr Tyr Pro Pro Pro Cys Glu Ser Lys Lys Ile Val Asn Ala Thr Ile

225                 230                 235                 240225 230 235 240

Ala Ala Cys Asp Pro Leu Asp Gly Arg Thr Asp Gly Val Val Ser ArgAla Ala Cys Asp Pro Leu Asp Gly Arg Thr Asp Gly Val Val Ser Arg

                245                 250                 255245 250 255

Thr Asp Leu Cys Lys Leu Asn Phe Asn Leu Thr Ser Ile Ile Gly GluThr Asp Leu Cys Lys Leu Asn Phe Asn Leu Thr Ser Ile Ile Gly Glu

            260                 265                 270260 265 270

Pro Tyr Tyr Cys Ala Ala Gly Thr Ser Thr Ser Leu Gly Phe Gly PhePro Tyr Tyr Cys Ala Ala Gly Thr Ser Thr Ser Leu Gly Phe Gly Phe

        275                 280                 285275 280 285

Ser Asn Gly Lys Arg Ser Asn Val Lys Arg Gln Ala Glu Gly Ser ThrSer Asn Gly Lys Arg Ser Asn Val Lys Arg Gln Ala Glu Gly Ser Thr

    290                 295                 300290 295 300

Thr Ser Tyr Gln Pro Ala Gln Asn Gly Thr Val Thr Ala Arg Gly ValThr Ser Tyr Gln Pro Ala Gln Asn Gly Thr Val Thr Ala Arg Gly Val

305                 310                 315                 320305 310 315 320

Ala Val Ala Gln Ala Ile Tyr Asp Gly Leu His Asn Ser Arg Gly GluAla Val Ala Gln Ala Ile Tyr Asp Gly Leu His Asn Ser Arg Gly Glu

                325                 330                 335325 330 335

Arg Ala Tyr Leu Ser Trp Gln Ile Ala Ser Glu Leu Ser Asp Ala GluArg Ala Tyr Leu Ser Trp Gln Ile Ala Ser Glu Leu Ser Asp Ala Glu

            340                 345                 350340 345 350

Thr Glu Tyr Asn Ser Asp Thr Gly Lys Trp Glu Leu Asn Ile Pro SerThr Glu Tyr Asn Ser Asp Thr Gly Lys Trp Glu Leu Asn Ile Pro Ser

        355                 360                 365355 360 365

Thr Gly Gly Glu Tyr Val Thr Lys Phe Ile Gln Leu Leu Asn Leu AspThr Gly Gly Glu Tyr Val Thr Lys Phe Ile Gln Leu Leu Asn Leu Asp

    370                 375                 380370 375 380

Asn Leu Ser Asp Leu Asn Asn Val Thr Tyr Asp Thr Leu Val Asp TrpAsn Leu Ser Asp Leu Asn Asn Val Thr Tyr Asp Thr Leu Val Asp Trp

385                 390                 395                 400385 390 395 400

Met Asn Thr Gly Met Val Arg Tyr Met Asp Ser Leu Gln Thr Thr LeuMet Asn Thr Gly Met Val Arg Tyr Met Asp Ser Leu Gln Thr Thr Leu

                405                 410                 415405 410 415

Pro Asp Leu Thr Pro Phe Gln Ser Ser Gly Gly Lys Leu Leu His TyrPro Asp Leu Thr Pro Phe Gln Ser Ser Ser Gly Gly Lys Leu Leu His Tyr

            420                 425                 430420 425 430

His Gly Glu Ser Asp Pro Ser Ile Pro Ala Ala Ser Ser Val His TyrHis Gly Glu Ser Asp Pro Ser Ile Pro Ala Ala Ser Ser Val His Tyr

        435                 440                 445435 440 445

Trp Gln Ala Val Arg Ser Val Met Tyr Gly Asp Lys Thr Glu Glu GluTrp Gln Ala Val Arg Ser Val Met Tyr Gly Asp Lys Thr Glu Glu Glu

    450                 455                 460450 455 460

Ala Leu Glu Ala Leu Glu Asp Trp Tyr Gln Phe Tyr Leu Ile Pro GlyAla Leu Glu Ala Leu Glu Asp Trp Tyr Gln Phe Tyr Leu Ile Pro Gly

465                 470                 475                 480465 470 475 480

Ala Ala His Cys Gly Thr Asn Ser Leu Gln Pro Gly Pro Tyr Pro GluAla Ala His Cys Gly Thr Asn Ser Leu Gln Pro Gly Pro Tyr Pro Glu

                485                 490                 495485 490 495

Asn Asn Met Glu Ile Met Ile Asp Trp Val Glu Asn Gly Asn Lys ProAsn Asn Met Glu Ile Met Ile Asp Trp Val Glu Asn Gly Asn Lys Pro

            500                 505                 510500 505 510

Ser Arg Leu Asn Ala Thr Val Ser Ser Gly Thr Tyr Ala Gly Glu ThrSer Arg Leu Asn Ala Thr Val Ser Ser Ser Gly Thr Tyr Ala Gly Glu Thr

        515                 520                 525515 520 525

Gln Met Leu Cys Gln Trp Pro Lys Arg Pro Leu Trp Arg Gly Asn SerGln Met Leu Cys Gln Trp Pro Lys Arg Pro Leu Trp Arg Gly Asn Ser

    530                 535                 540530 535 540

Ser Phe Asp Cys Val Asn Asp Glu Lys Ser Ile Asp Ser Trp Thr TyrSer Phe Asp Cys Val Asn Asp Glu Lys Ser Ile Asp Ser Trp Thr Tyr

545                 550                 555                 560545 550 555 560

Glu Phe Pro Ala Phe Lys Val Pro Val TyrGlu Phe Pro Ala Phe Lys Val Pro Val Tyr

                565                 570565 570

Claims (3)

1. the recombination method of an aspergillus oryzae tannase gene is cut the site according to maturation protein two terminal sequences of tannase genes encoding and the multienzyme of yeast expression vector pPIC9K, synthetic a pair of primer, and sequence is as follows:
Upstream primer, 5 ' G GAATTCGCTTCTTTTACCGATGTGTGCAC3 ';
Downstream primer, 5 ' GCG GCGGCCGC GTATACAGGGACCTTGAAGGC3 '; Obtain aspergillus oryzae tannase gene shown in SEQ ID NO:1 through pcr amplification.
2. the aspergillus oryzae tannase expression of gene method of claim 1 gained, in Pichi strain KM71, adopt methyl alcohol to carry out abduction delivering by expression vector pPIC9K-TAN, perhaps in Pichi strain KM71H, carry out constitutive expression, need not induce by expression vector pGAPZ α A-TAN and pGAPZ α A-ETAN; The expression product of dual mode is all secreted outside born of the same parents, carries out purifying and obtains reorganization aspergillus oryzae tannase shown in SEQ ID NO:2 by obtaining culture supernatants.
3. aspergillus oryzae tannase expression of gene method as claimed in claim 2, the purifying that it is characterized in that described culture supernatants are with DEAE anion exchange chromatography single step purification.
CN 200410027497 2004-06-09 2004-06-09 Recombined aspergillus oryzae tannase and its expression and purification Expired - Fee Related CN1289665C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410027497 CN1289665C (en) 2004-06-09 2004-06-09 Recombined aspergillus oryzae tannase and its expression and purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410027497 CN1289665C (en) 2004-06-09 2004-06-09 Recombined aspergillus oryzae tannase and its expression and purification

Publications (2)

Publication Number Publication Date
CN1584023A CN1584023A (en) 2005-02-23
CN1289665C true CN1289665C (en) 2006-12-13

Family

ID=34601369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410027497 Expired - Fee Related CN1289665C (en) 2004-06-09 2004-06-09 Recombined aspergillus oryzae tannase and its expression and purification

Country Status (1)

Country Link
CN (1) CN1289665C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436505A (en) * 2013-08-13 2013-12-11 广西大学 Preparation method of tannase

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260656B (en) * 2011-05-31 2012-12-12 天津市畜牧兽医研究所 Recombinant aspergillus niger tannase and expression and purification method thereof
CN106490450B (en) * 2016-10-25 2019-06-28 中南林业科技大学 A kind of de- bitter acerbity removing method of cork oak kernel
CN110527690A (en) * 2019-08-05 2019-12-03 集美大学 A kind of heat resistant type tannase and its application
CN110564746A (en) * 2019-08-05 2019-12-13 集美大学 Acid-resistant tannase, and gene and application thereof
CN110527633B (en) * 2019-08-05 2022-03-22 集美大学 A kind of Aspergillus oryzae and its application in the preparation of tannase
CN110551702B (en) * 2019-08-05 2022-07-19 集美大学 Recombinant Aspergillus tabin tannase and its expression and application
CN113801863B (en) * 2021-09-18 2023-06-23 中国农业科学院麻类研究所 A kind of engineering strain of apocynum tannase whole cell catalyst and its preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436505A (en) * 2013-08-13 2013-12-11 广西大学 Preparation method of tannase
CN103436505B (en) * 2013-08-13 2014-09-17 广西大学 Preparation method of tannase

Also Published As

Publication number Publication date
CN1584023A (en) 2005-02-23

Similar Documents

Publication Publication Date Title
CN1230537C (en) Expression of processed recombinant lactoferrin and lactoferrin polypeptide fragments from fusion product in aspergillus
CN1029977C (en) Process for the preparation of insulin analogues
CN1053013C (en) Cloning and expression of microbial phytase
JP7448977B2 (en) Construction of genetically engineered bacteria for high expression of recombinant human serum albumin
CN1871351A (en) Novel fungal proteins and nucleic acids encoding same
CN1922326A (en) 2-micron family plasmid and use thereof
CN1628168A (en) Methods and materials for the production of organic products in cells of dollar i(candida) species
CN1611601A (en) Tripeptidyl aminopeptidase
CN1289665C (en) Recombined aspergillus oryzae tannase and its expression and purification
CN109371004B (en) Acid protease Bs2688 mutant K203E with improved thermal stability and its gene and application
CN1237208A (en) Method and material for candida utilis transformation
CN101050467A (en) Gene clone, expression, and application of lysozyme of chicken in high activity
CN1834237A (en) Beta-mannase, its expression and special engineering bacterium
CN1228447C (en) Recombinant expression vector expressing human pancreatic tissue kallikrein gene and prepn of human pancreatic tissue kallikrein
CN101080491A (en) Polypeptide having a phytase activity and nucleotide sequence coding therefor
CN1990871A (en) Preparation method of recombinant human plasminogen Kringle 5(hk5)
CN1594542A (en) Aspergillus niger inulin endopeptidase gene and recombinant Pichia strain for expressing same
CN1900288A (en) Rhizopus arrhizus glucose amylase gene and its artificial method of intron
CN1295248C (en) Small salt mustard sodium hydrogen pump protein gene TNHX1 and its anti salt application
CN1258317A (en) Process for expression of genes of dengue viruses
CN1246459C (en) Human composite alpha-interferon engineered gene, its expression and production thereof
CN1280417C (en) Human tyrosinase expression carrier and its use
CN101062942A (en) Aspergillus fumigatus original active oxygen lethality related protein and its coding gene
CN1260347C (en) Hydantoin enzyme series and encoded gene and production bacteria thereof
CN1766098A (en) A kind of mannase and encoding gene thereof and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20160609

CF01 Termination of patent right due to non-payment of annual fee