CN1255669C - Scanning electronic microscope standard substance and its making method - Google Patents
Scanning electronic microscope standard substance and its making method Download PDFInfo
- Publication number
- CN1255669C CN1255669C CN 03116182 CN03116182A CN1255669C CN 1255669 C CN1255669 C CN 1255669C CN 03116182 CN03116182 CN 03116182 CN 03116182 A CN03116182 A CN 03116182A CN 1255669 C CN1255669 C CN 1255669C
- Authority
- CN
- China
- Prior art keywords
- substrate
- scanning electron
- polystyrene standard
- electron microscope
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000126 substance Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 14
- 239000002245 particle Substances 0.000 claims abstract description 91
- 239000004793 Polystyrene Substances 0.000 claims abstract description 40
- 229920002223 polystyrene Polymers 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000007864 aqueous solution Substances 0.000 claims abstract description 28
- 239000010931 gold Substances 0.000 claims abstract description 18
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052737 gold Inorganic materials 0.000 claims abstract description 16
- 238000004544 sputter deposition Methods 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 3
- 238000005202 decontamination Methods 0.000 claims 2
- 230000003588 decontaminative effect Effects 0.000 claims 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 18
- 239000012925 reference material Substances 0.000 description 9
- 239000010421 standard material Substances 0.000 description 9
- 229920001817 Agar Polymers 0.000 description 8
- 239000008272 agar Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004556 laser interferometry Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明涉及一种用于校准扫描电子显微镜放大倍率的标准物质及其制作方法。它的基板上镀有测量膜,测量膜上镀有导电层,测量膜为六角紧密排列的单分散相聚苯乙烯标准粒子列阵,样品架上置有基板。a.选取单分散相聚苯乙烯标准粒子水溶液、选取基板;b.清洗基板;c.将单分散相聚苯乙烯标准粒子水溶液滴洒在基板上;d.将基板与水平面呈0°~5°放入净化室中自然干燥;e.基板嵌入样品架;f.用离子溅射仪对吸附在基板上干燥后的单分散相聚苯乙烯标准粒子水溶液镀上导电层,所述的导电层为金层,金层的纯度至少为99%,金层的厚度为5nm~20nm。本发明扩大了扫描电子显微镜的校准范围,能在其校准范围内给出溯源值、并附有给定置信区间的不确定度。
The invention relates to a standard substance used for calibrating the magnification of a scanning electron microscope and a preparation method thereof. Its substrate is coated with a measuring film, and the measuring film is coated with a conductive layer. The measuring film is an array of monodisperse polystyrene standard particles closely arranged in hexagons, and a substrate is placed on the sample holder. a. Select the aqueous solution of monodisperse polystyrene standard particles and select the substrate; b. Clean the substrate; c. Sprinkle the aqueous solution of monodisperse polystyrene standard particles on the substrate; ° put into the clean room and dry naturally; e. the substrate is embedded in the sample holder; f. the aqueous solution of monodisperse polystyrene standard particles adsorbed on the substrate and dried is coated with a conductive layer with an ion sputtering instrument, and the conductive layer is It is a gold layer, the purity of the gold layer is at least 99%, and the thickness of the gold layer is 5nm-20nm. The invention expands the calibration range of the scanning electron microscope, and can provide the traceability value within the calibration range and the uncertainty of a given confidence interval.
Description
技术领域technical field
本发明涉及计量测试标准量值传递技术领域,尤其是涉及一种用于校准扫描电子显微镜放大倍率的标准物质(标准样品)及其制作方法。The invention relates to the technical field of measurement and test standard value transfer, in particular to a standard substance (standard sample) for calibrating the magnification of a scanning electron microscope and a manufacturing method thereof.
背景技术Background technique
在人类社会进入21世纪的今天,随着世界范围内的纳米科技的飞速发展,纳米科技已被广泛应用于实验室基础科学研究、产品研制开发的数据采集和生产过程中的质量控制。而现在诸多质量保证体系,如ISO9000系列等要求获得的数据应具有量值的可溯源性的值。同时,作为纳米结构观察重要手段的扫描电子显微镜的分辨率越来越高,这就需要在越来越高的放大倍率下的图像数据也要有可溯源的值。但目前从商业可获得的用于扫描电子显微镜的标准物质校准范围仅限于2万倍以下。例如美国国家标准技术研究院(NIST)的有证标准物质SRM484g(校准文件中规定使用范围为1000倍~20000倍);英国Agar科学公司的2160线/mm的方格光栅标准物质,该标准物质由英国国家物理研究所(NPL)溯源标定。对英国Agar科学公司的2160线/mm的方格光栅有证标准物质而言,英国国家物理研究所的标定值是每10格的不确定度是±0.05μm,即标准物质上4.6μm的间距的不确定度是±0.05μm。当放大倍数超过20000倍时,4.6μm的间距的最终成像的间距大于9cm,已经超过了一般扫描电子显微镜的最终成像照片的幅面(即扫描范围),无法校准该倍率的图像,因而无法适应目前扫描电子显微镜分辨率越来越高的要求。如一般的场发射枪电子显微镜的分辨率为1.0~1.5nm左右。为了适应当前科技领域的纳米科技的发展,有效地发挥高分辨率扫描电子显微镜的作用,使用10~20万倍的放大倍率来拍摄图像照片将成为越来越普通的实验室工作。(1nm在放大20万倍的照片上为0.2mm,而人眼的点分辨率为0.2mm)为了适应扫描电子显微镜高放大倍率校准的需要,本发明研制了可用于校准1000倍~200000倍的标准物质(标准样品)。Today, as human society enters the 21st century, with the rapid development of nanotechnology worldwide, nanotechnology has been widely used in laboratory basic scientific research, data collection for product development and quality control in the production process. Now many quality assurance systems, such as the ISO9000 series, require that the data obtained should have traceability values. At the same time, the resolution of the scanning electron microscope, which is an important means of observing nanostructures, is getting higher and higher, which requires that the image data at higher and higher magnifications also have traceable values. However, the current commercially available standard material calibration range for scanning electron microscopy is limited to less than 20,000 times. For example, the certified reference material SRM484g of the National Institute of Standards and Technology (NIST) of the United States (the range of use specified in the calibration document is 1000 times to 20000 times); It is traceable and calibrated by the National Institute of Physics (NPL). For the 2160 line/mm square grating certified standard material of the British Agar Scientific Company, the calibration value of the British National Institute of Physics is that the uncertainty of every 10 grids is ±0.05 μm, that is, the spacing of the standard material is 4.6 μm The uncertainty is ±0.05μm. When the magnification exceeds 20,000 times, the final imaging pitch of 4.6 μm pitch is greater than 9 cm, which has exceeded the format (ie scanning range) of the final imaging photo of a general scanning electron microscope, and the image of this magnification cannot be calibrated, so it cannot adapt to the current Scanning electron microscopes require increasingly higher resolutions. For example, the resolution of a general field emission gun electron microscope is about 1.0-1.5nm. In order to adapt to the development of nanotechnology in the current scientific and technological field and effectively play the role of high-resolution scanning electron microscopes, it will become more and more common laboratory work to use 100,000 to 200,000 times magnification to take images and photographs. (1nm is 0.2mm on a magnified photo of 200,000 times, while the point resolution of the human eye is 0.2mm) In order to meet the needs of scanning electron microscope high magnification calibration, the present invention has developed a 1000 times to 200000 times calibration Standard substance (standard sample).
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种用于校准放大倍率为1000倍~200000倍的,并能在其校准倍率范围内给出溯源值,并附有给定置信区间的不确定度,使得被校准的高倍图像数据具有可溯源值的扫描电子显微镜标准物质(标准样品)及其制作方法。本发明解决其技术问题采用的技术方案是:一种扫描电子显微镜标准物质,它的基板上镀有测量膜,测量膜上镀有导电层,测量膜为六角紧密排列的单分散相聚苯乙烯标准粒子列阵,该标准粒子列阵由干燥后的单分散相聚苯乙烯标准粒子水溶液形成,样品架上置有基板。一种扫描电子显微镜标准物质的制作方法,它包括如下步骤:a.选取单分散相聚苯乙烯标准粒子水溶液、选取基板;b.清洗基板;c.将单分散相聚苯乙烯标准粒子水溶液滴洒在基板上;d.将基板与水平面呈0°~5°放入净化室中自然干燥;e.基板嵌入样品架;f.用离子溅射仪对吸附在基板上干燥后的单分散相聚苯乙烯标准粒子水溶液镀上导电层,所述的导电层为金层,金层的纯度至少为99%,金层的厚度为5nm~20nm。。单分散相聚苯乙烯标准粒子水溶液选用美国Duke科学公司的产品。本发明所提出的任务还可进一步通过如下技术方案加以实现:样品架上置有基板;所述的基板选用表面粗糙度小于20nm、厚度为1mm~1.5mm、直径为5mm~10mm的玻璃板;所述的单分散相聚苯乙烯标准粒子水溶液的理化参数为固体含量(聚苯乙烯标准粒子在水溶液中的含量)0.2%~2%、密度1.05g/cm3、折射率1.59@589nm/23℃,单分散相聚苯乙烯标准粒子直径为0.2μm~10μm、单分散相聚苯乙烯标准粒子直径的相对标准偏差0.5%~2%,单分散相聚苯乙烯标准粒子水溶液的使用量V由如下公式确定:V=CSd/p,式中C为0.3~1.0、S为基板的表面积、d为单分散相聚苯乙烯标准粒子水溶液中标准粒子的直径、p为单分散相聚苯乙烯标准粒子水溶液的固体含量;所述的清洗是将基板浸没于100%的乙醇中,并用超声波清洗机清洗5~15分种;所述的净化室的室温为18℃~22℃;湿度为60%±5%;基板嵌入样品架;对吸附在基板上干燥后的单分散相聚苯乙烯标准粒子水溶液镀上导电层;所述的导电层为金层,金层的纯度至少为99%,金层的厚度为5nm~20nm,用离子溅射仪在干燥后的单分散相聚苯乙烯标准粒子水溶液上镀金。本发明由于采用上述技术方案,扩大了扫描电子显微镜的校准范围(1000倍~200000倍),并能在其校准范围内给出溯源值,并附有给定置信区间的不确定度,使得扫描电子显微镜在被校准范围内使用中符合ISO9000质量保证体系的要求。The technical problem to be solved by the present invention is to provide a calibration magnification of 1000 times to 200000 times, and can give the traceability value within the range of calibration magnification, and attach the uncertainty of a given confidence interval, so that The calibrated high-magnification image data has a scanning electron microscope standard substance (standard sample) with traceable value and its preparation method. The technical scheme adopted by the present invention to solve the technical problem is: a scanning electron microscope standard substance, its substrate is coated with a measuring film, the measuring film is coated with a conductive layer, and the measuring film is monodisperse polystyrene with hexagonal closely arranged A standard particle array, the standard particle array is formed by a dried monodisperse polystyrene standard particle aqueous solution, and a substrate is placed on the sample holder. A method for making a scanning electron microscope standard substance, comprising the following steps: a. selecting an aqueous solution of monodisperse-phase polystyrene standard particles, and selecting a substrate; b. cleaning the substrate; c. dropping the aqueous solution of monodisperse-phase polystyrene standard particles Sprinkle on the substrate; d. Put the substrate and the horizontal plane at 0°~5° into a clean room to dry naturally; e. Embed the substrate in the sample holder; f. Use an ion sputtering device to absorb and dry the monodisperse phase The polystyrene standard particle aqueous solution is plated with a conductive layer, the conductive layer is a gold layer, the purity of the gold layer is at least 99%, and the thickness of the gold layer is 5nm-20nm. . The aqueous solution of monodisperse polystyrene standard particles is selected from the products of Duke Science Company of the United States. The task proposed by the present invention can be further realized through the following technical solutions: a substrate is placed on the sample holder; the substrate is a glass plate with a surface roughness less than 20nm, a thickness of 1mm-1.5mm, and a diameter of 5mm-10mm; The physical and chemical parameters of the monodisperse phase polystyrene standard particle aqueous solution are solid content (content of polystyrene standard particle in aqueous solution) 0.2% to 2%, density 1.05g/cm 3 , refractive index 1.59@589nm/23 ℃, the diameter of the monodisperse polystyrene standard particle is 0.2 μm to 10 μm, the relative standard deviation of the monodisperse polystyrene standard particle diameter is 0.5% to 2%, and the usage amount V of the monodisperse polystyrene standard particle aqueous solution is given by Determined by the following formula: V=CSd/p, where C is 0.3 to 1.0, S is the surface area of the substrate, d is the diameter of the standard particle in the aqueous solution of monodisperse polystyrene standard particles, and p is the monodisperse polystyrene standard The solid content of the particle aqueous solution; the cleaning is to immerse the substrate in 100% ethanol and clean it with an ultrasonic cleaner for 5 to 15 minutes; the room temperature of the clean room is 18°C to 22°C; the humidity is 60% ±5%; the substrate is embedded in the sample holder; a conductive layer is plated on the aqueous solution of monodisperse polystyrene standard particles adsorbed on the substrate and dried; the conductive layer is a gold layer, and the purity of the gold layer is at least 99%. The thickness of the layer is 5nm-20nm, and the dried monodisperse polystyrene standard particle aqueous solution is plated with gold by using an ion sputtering device. Due to the adoption of the above technical scheme, the present invention expands the calibration range of the scanning electron microscope (1000 times to 200000 times), and can provide traceability values within the calibration range, and attach the uncertainty of a given confidence interval, so that scanning Electron microscopes meet the requirements of the ISO9000 quality assurance system when used within the calibrated range.
附图说明Description of drawings
下面结合附图和本发明的具体实施例对本发明作进一步详细描述:The present invention will be described in further detail below in conjunction with accompanying drawing and specific embodiment of the present invention:
图1为本发明结构示意图。Fig. 1 is a schematic diagram of the structure of the present invention.
图2为图1的A部放大图(干燥后的单分散相聚苯乙烯标准粒子的列阵图)。Fig. 2 is an enlarged view of part A of Fig. 1 (an array view of monodisperse polystyrene standard particles after drying).
图3为0.3μm标准粒子放大200,000倍的示图。Figure 3 is a 200,000-fold magnified view of a 0.3 μm standard particle.
图4为1.0μm标准粒子放大2,000倍的示图。FIG. 4 is a 2,000-fold magnified view of a 1.0 μm standard particle.
参照图1、图2。本发明包括基板2、测量膜4、测量膜4上镀有导电层1、样品架3上置有基板2。Refer to Figure 1 and Figure 2. The invention comprises a
具体实施方式Detailed ways
实施例1:参照图1、图2。在本发明的基板上镀覆测量膜(干燥后的单分散相聚苯乙烯标准粒子水溶液),然后再在测量膜上镀金,即可进行放大倍率校准。Embodiment 1: With reference to Fig. 1, Fig. 2. The measurement film (dried monodisperse polystyrene standard particle aqueous solution) is coated on the substrate of the present invention, and then gold is plated on the measurement film to perform magnification calibration.
实施例2:参照图1、图2。为方便校准,将镀覆测量膜及镀金的基板置入样品架上,亦可达到与实施例1相同的技术效果。Embodiment 2: With reference to Fig. 1, Fig. 2. For the convenience of calibration, the same technical effect as in Example 1 can also be achieved by placing the plated measurement film and the gold-plated substrate on the sample holder.
实施例3:参照图1、图2。首先选用美国Duke科学公司提供的理化参数为固体含量1%、密度1.05g/cm3、折射率1.59@589nm/23℃的粒径为0.3μm单分散相聚苯乙烯标准粒子水溶液(单分散相聚苯乙烯标准粒子直径的相对标准偏差1.4%),表面粗糙度(Ra)小于20nm、厚度为1mm、直径为10mm的玻璃板作为基板;然后将基板浸没于100%的乙醇中,再用超声波清洗机对基板清洗8分种;接着将单分散相聚苯乙烯标准粒子水溶液滴洒在基板上(单分散相聚苯乙烯标准粒子水溶液的使用量V应满足如下公式:V=0.6Sd/p),使其形成单层并六角紧密排列的标准粒子球形列阵。标准粒子球形列阵的排列原理是:随着水份的挥发,当水份越来越少时,逐渐增大的毛细作用力使得单分散相聚苯乙烯标准粒子水溶液的颗粒聚集在一起,原来成片的单层粒子最后形成一块块紧密排列的列陈。其中极少量的大粒子被挤出列陈,使得形成列陈的粒子的统计标准偏差将优于原来的溶液。随后将基板与水平呈0°~5°放入室温为18℃~22℃、湿度为60%±5%净化室中自然干燥,干燥后将基板嵌入样品架,(由于微米尺度粒子的整齐排列,这时单分散相聚苯乙烯标准粒子所形成的薄膜在日光下可用肉眼观察到类似衍射光栅一样的分光效应。)最后用离子溅射仪在干燥后的单分散相聚苯乙烯标准粒子上镀金层,金层的厚度为8nm。Embodiment 3: with reference to Fig. 1, Fig. 2. Firstly, the physical and chemical parameters provided by Duke Scientific Corporation of the United States are 1%, the density is 1.05g/cm 3 , and the particle size is 0.3μm monodisperse polystyrene standard particle aqueous solution (monodisperse phase) with a refractive index of 1.59@589nm/23℃. The relative standard deviation of the polystyrene standard particle diameter is 1.4%), the surface roughness (Ra) is less than 20nm, the thickness is 1mm, and the glass plate that the diameter is 10mm is used as the substrate; then the substrate is immersed in 100% ethanol, and the The washing machine cleans the substrate for 8 minutes; then the monodisperse polystyrene standard particle aqueous solution is dripped on the substrate (the usage amount V of the monodisperse polystyrene standard particle aqueous solution should satisfy the following formula: V=0.6Sd/p ), so that it forms a spherical array of standard particles in a single layer and hexagonal close arrangement. The arrangement principle of the standard particle spherical array is: with the volatilization of water, when the water becomes less and less, the gradually increasing capillary force makes the particles of the monodisperse polystyrene standard particle aqueous solution gather together. Sheets of monolayer particles finally form a densely packed array. A very small amount of large particles are extruded into the array, so that the statistical standard deviation of the arrayed particles will be better than the original solution. Then put the substrate and the horizontal at 0°~5° into a clean room with a room temperature of 18°C~22°C and a humidity of 60%±5% to dry naturally, and after drying, insert the substrate into the sample holder At this time, the thin film formed by the monodisperse phase polystyrene standard particles can be observed with the naked eye under sunlight, and the spectral effect similar to that of a diffraction grating can be observed.) Finally, ion sputtering is used on the dried monodisperse phase polystyrene standard particles. A gold-plated layer, the thickness of the gold layer is 8nm.
本发明采用美国Duke科学公司提供的有证标准球形粒子研制成包括0.2μm;0.3μm;0.5μm;1μm的排列球形粒子标准物质,用来校准扫描电子显微镜在1000倍~200000倍的放大倍率。单分散相聚苯乙烯标准粒子水溶液为含水悬浮液,其粒径尺寸的平均值可溯源到美国标准技术研究院的长度计量标准。它的密度为1.05g/cm3,折射率为1.59@589nm(23℃),它的其它技术参数如表1(附后)。The present invention adopts the certified standard spherical particles provided by Duke Science Corporation of the United States to develop standard materials including 0.2 μm; 0.3 μm; 0.5 μm; 1 μm arranged spherical particles, which are used to calibrate the magnification of the scanning electron microscope at 1000 times to 200000 times. The monodisperse polystyrene standard particle aqueous solution is an aqueous suspension whose average particle size is traceable to the length measurement standard of the American Institute of Standards and Technology. Its density is 1.05g/cm 3 , and its refractive index is 1.59@589nm (23°C). Its other technical parameters are shown in Table 1 (attached).
本发明将上述四种标准粒子做成了大面积的单层六角紧密排列的标准物质。由于分散颗粒的边界有一定的灰度,无法很好的确定,这将给测量带来较大的误差。此外,若分散颗粒被镀金层包裹后,其真实的边界更不易被确定。所以本发明采用标准粒子紧密排列,而不是将标准粒子分散均布的制作方法。照片1、照片2是本发明做成的300nm标准粒子放大200,000倍的示图和1.0μm标准粒子放大2,000倍的示图。从照片1中本发明能看到,当扫描电子显微镜的放大倍率达到200,000倍时,0.3μm标准粒子为6cm,仍能有效地校准该倍数。对于不同的放大倍率的校准,本发明建议采用不同粒径的标准粒子:0.2μm(20,000倍~300,000倍);0.3μm(10,000倍~200,000倍);0.5μm(5,000倍~50,000倍);1.0μm(1,000倍~10,000倍)。In the present invention, the above four kinds of standard particles are made into large-area single-layer hexagonal closely arranged standard substances. Since the boundary of dispersed particles has a certain gray level, it cannot be well determined, which will bring a large error to the measurement. In addition, if the dispersed particles are wrapped by the gold-plated layer, their real boundaries are more difficult to determine. Therefore, the present invention adopts the method of closely arranging the standard particles instead of dispersing the standard particles uniformly.
本发明在计量标准值传递前需对本发明进行校准,本发明的校准方法示例如下:本发明采用荷兰Philips公司的XL/ESEM30扫描电子显微镜对英国Agar科学公司的2160线/mm的有证标准物质(英国国家物理研究所的校准值为4.6μm±0.05μm/10格)与本发明紧排列粒子标准物质进行等条件对比测试。本发明选择的扫描电子显微镜工作条件是:15kV/加速电压;2.4/束斑大小;2万倍/放大倍率;二次电子/探测器;10.0/工作距离。在该工作条件下对英国Agar标样的5个不同部位拍摄了照片,并在水平方向对每张照片进行了上中下三次测量,读取的数据见表2(附后),又在同样的条件下对本发明的紧排列粒子样品拍摄照片,选取了9个不同的样品,每个样品均选择6个排列块,每个排列进行3次10颗一排的测量,读取数据见表3(附后)。The present invention needs to calibrate the present invention before the measurement standard value transmission, and the calibration method example of the present invention is as follows: The present invention adopts the XL/ESEM30 scanning electron microscope of Netherlands Philips company to the certified standard substance of 2160 line/mm of British Agar scientific company (The calibration value of the British National Institute of Physics is 4.6 μm ± 0.05 μm/10 divisions) and the standard material of the tight arrangement particles of the present invention are compared with other conditions. The working conditions of the scanning electron microscope selected in the present invention are: 15kV/accelerating voltage; 2.4/beam spot size; 20,000 times/magnification; secondary electrons/detector; 10.0/working distance. Under this working condition, photographs were taken at 5 different parts of the British Agar standard sample, and each photograph was measured up, middle and down three times in the horizontal direction. The data read are shown in Table 2 (attached). Photographs were taken of the closely arranged particle samples of the present invention under certain conditions, 9 different samples were selected, and 6 arrangement blocks were selected for each sample, and each arrangement was measured 3 times with 10 particles in a row. The read data is shown in Table 3 (Attached).
本发明数据处理和不确定度评估:Data processing and uncertainty evaluation of the present invention:
a)本发明用于相对标定的有证标准物质(SRM)是Agar科学公司的2160线/mm的标准物质,它由英国国家物理研究所用扫描电子显微镜加激光干涉仪进行校准,其校准值为:4.6μm±0.05μm/10格。它的相对不确定度Da=0.05/4.6=1.1%。a) The certified reference material (SRM) that the present invention is used for relative calibration is the standard material of 2160 lines/mm of Agar scientific company, and it is calibrated by the British National Institute of Physics with a scanning electron microscope plus a laser interferometer, and its calibration value is : 4.6μm±0.05μm/10 divisions. Its relative uncertainty Da=0.05/4.6=1.1%.
b)扫描电子显微镜由于工作距离的不同,它的同一放大倍率标称值与实际值将有微小的变化。Philips XL/ESEM30扫描电子显微镜工作距离的调节精度为0.1mm,在10mm时为9.950~10.049。放大倍率随工作距离变化的数据见表4(附后)。b) Due to the different working distances of scanning electron microscopes, the nominal value and actual value of the same magnification will have slight changes. The adjustment accuracy of the working distance of Philips XL/ESEM30 scanning electron microscope is 0.1mm, and it is 9.950~10.049 at 10mm. The data of the magnification change with the working distance is shown in Table 4 (attached).
将工作距离设为X,同一放大倍率的有证标准物质同间隔长度测量的平均值为Y,用表4的数据进行线性回归曲线的最小二乘法的似合。Set the working distance as X, the average value measured by the same interval length of the certified reference material with the same magnification as Y, and use the data in Table 4 to fit the linear regression curve with the least squares method.
Y=mX+b 式1
其中:m=0.0136;b=4.596Where: m=0.0136; b=4.596
式1变为:Y=0.0136X+4.596
ΔY=0.0136ΔX ΔY=0.0136ΔX
将0.1代ΔX得ΔY=0.00136The 0.1 generation ΔX gets ΔY=0.00136
ΔY/Y=0.00136/4.737≈0.0003=0.03% ΔY/Y=0.00136/4.737≈0.0003=0.03%
其中Y=4.737为工作距离10mm时的测量平均值。Among them, Y=4.737 is the measured average value when the working distance is 10mm.
所以最大工作距离在10mm时,0.1mm不确定度产生的放大倍率的不确定度Db大约为0.03%。Therefore, when the maximum working distance is 10mm, the uncertainty Db of the magnification caused by the uncertainty of 0.1mm is about 0.03%.
c)测量线不完全水平会由于扫描电子显微镜水平放大倍率与垂直放大倍率不完全一致而产生不确定度。校准用XL/ESEM30扫描电子显微镜水平放大倍率与垂直放大倍率在放大20,000倍时的误差的测定的方法如下:首先在Agar的标准物质放大20,000倍的同一视场里,在垂直和水平方向各取三次测量的平均值并求其比值。这里垂直放大倍率与水平放大倍率的比值P由式2计算。c) If the measurement line is not completely horizontal, there will be uncertainty due to the fact that the horizontal magnification of the scanning electron microscope is not completely consistent with the vertical magnification. The method of measuring the error between the horizontal magnification and vertical magnification of the XL/ESEM30 scanning electron microscope for calibration at 20,000 times magnification is as follows: First, in the same field of view where the Agar standard material is magnified 20,000 times, take The average of the three measurements was taken and the ratio was calculated. Here the ratio P of the vertical magnification to the horizontal magnification is calculated by
P=(3.81+3.82+3.82)/(3.81+3.79+3.80)=1.004 式2P=(3.81+3.82+3.82)/(3.81+3.79+3.80)=1.004
为了与比对有证标准物质的测量状态一致,本发明采用样品台旋转来使标准粒子测量保持水平。但从测量照片上来看,测量线不完全水平,它们的角度最大偏离小于2°,所以图像的水平倾角的不确定度为2°。图像测量线不完全水平产生的不确定度Dc由式3表达。In order to be consistent with the measurement state of comparing certified standard substances, the present invention adopts the rotation of the sample stage to keep the standard particle measurement level. However, judging from the measurement photos, the measurement lines are not completely horizontal, and the maximum deviation of their angles is less than 2°, so the uncertainty of the horizontal inclination of the image is 2°. The uncertainty Dc caused by the incomplete level of the image measurement line is expressed by
Dc=1-[P2×sin2α+cos2α]1/2 式3Dc=1-[P 2 ×sin 2 α+cos 2 α] 1/2
其中:P为垂直放大倍率与水平放大倍率的比值。Among them: P is the ratio of vertical magnification to horizontal magnification.
α为测量线与图像水平线的最大夹角。α is the maximum angle between the measurement line and the horizontal line of the image.
将P=1.004,α=2°代入式3Substitute P=1.004, α=2° into
Dc=|1-[1.0042×sin2(2°)+cos2(2°)]1/2|≈0.000014=0.0014%Dc=|1-[1.004 2 ×sin 2 (2°)+cos 2 (2°)] 1/2 |≈0.000014=0.0014%
因此由于扫描电子显微镜水平放大倍率与垂直放大倍率不完全一致,测量线不完全水平而产生的不确定度与其它原因产生的不确定度相比,可以忽略。Therefore, because the horizontal magnification of the scanning electron microscope is not completely consistent with the vertical magnification, the uncertainty caused by the incomplete horizontal measurement line can be ignored compared with the uncertainty caused by other reasons.
d)校准用XL/ESEM30扫描电子显微镜计算机图像软件的测量值在20,000倍时的不确定度为0.01μm,所以对于10颗一组的测量,每颗标准粒子的不确定度为Dd=1nm(0.33%)。d) The uncertainty of the measured value of XL/ESEM30 scanning electron microscope computer image software for calibration is 0.01 μm at 20,000 times, so for the measurement of a group of 10, the uncertainty of each standard particle is Dd = 1nm ( 0.33%).
最后的校准值为:The final calibration values are:
标准粒子的平均值:Mp=0.3015μm(见表3)Average value of standard particles: Mp=0.3015μm (see Table 3)
A类不确定度:ΔA=(10)1/2×S(总标准偏差)=(10)1/2×Type A uncertainty: ΔA = (10) 1/2 × S (total standard deviation) = (10) 1/2 ×
0.0016=0.0051μm(1.68%)0.0016 = 0.0051 μm (1.68%)
其中:S=[∑(ui-ū)2/(n-1)]1/2(ui:每一次测量值/10;n=161)Among them: S=[∑(u i -ū) 2 /(n-1)] 1/2 (u i : every measured value/10; n=161)
B类不确定度:ΔB=(Da2+Db2+Dd2)1/2≈1.14%(3.4nm)Type B uncertainty: ΔB=(Da 2 +Db 2 +Dd 2 ) 1/2 ≈1.14% (3.4nm)
其中:Da、Db、Dd线性无关。各只样品测量值的平均值的标准偏差S样=0.9nm(见表3)Among them: Da, Db, Dd are linearly independent. The standard deviation S sample =0.9nm of the average value of each sample measured value (seeing table 3)
从标准粒子样品的数据处理和不确定度评估的结果来看,标准粒子的平均值与原来Duke科学公司给出的数据比较,它是大了1.5nm(0.5%)。这主要来源于粒子在排列过程中,各个粒子间存在着不易察觉的缝隙,(在溅射上金(Au)层后,它将更不易察觉。)以及在粒子聚合过程中遗留下来的不纯物质的存在。B类不确定度的主要来源存在于作为校准用的Agar科学公司的有证标准物质所带的溯源不确定度和作为校准用的Philips XL/ESEM30的图像分辨率,测量用的计算机软件和显示屏的分辨率还不够高。A类不确定度也略大与Duke科学公司用TEM得出的标准偏差。本发明认为其中主要原因还在于测量值的误差较大,而排列粒子有去掉特别大的和特别小的粒子的功能,因为这些粒子不适宜于排列,其结果将优于原来粒子的单分散性。如果使用图像分辨率更高的场发射枪扫描电子显微镜和屏幕分辨率更高的计算机软件来校准,结果将会更令人满意。从样品的均匀性数据(各只样品测量值的平均值的标准偏差S样)来看,本发明认为各只样品之间的数据是相当一致的。此外,当使用该样品来校准扫描电子显微镜时,本发明建议尽可能选择成块的排列粒子来测量,以免引入额外的不确定度。上述校准程序仅是本发明获得溯源值的一个实例,如采用激光干涉仪加扫描电子显微镜来校准,将会获得更好的效果。From the results of data processing and uncertainty evaluation of standard particle samples, the average value of standard particles is 1.5nm (0.5%) larger than the original data given by Duke Science. This is mainly due to the fact that there are imperceptible gaps between each particle during the arrangement of the particles (after the gold (Au) layer is sputtered, it will be even more imperceptible.) and the impurity left over from the particle aggregation process. matter of existence. The main source of type B uncertainty exists in the traceability uncertainty brought by the certified reference material of Agar Science Company used for calibration, the image resolution of Philips XL/ESEM30 used for calibration, the computer software and display used for measurement The screen resolution is not high enough. The Type A uncertainty is also slightly larger than the standard deviation derived by Duke Scientific using TEM. The present invention thinks that the main reason is that the error of the measured value is large, and the arrangement of particles has the function of removing particularly large and particularly small particles, because these particles are not suitable for arrangement, and the result will be better than the monodispersity of the original particles . The results would be more satisfactory if calibrated using a field emission gun scanning electron microscope with a higher image resolution and computer software with a higher screen resolution. From the uniformity data of the samples (the standard deviation S sample of the mean value of the measured values of each sample), the present invention thinks that the data between the samples are quite consistent. Furthermore, when using this sample to calibrate the scanning electron microscope, the present invention proposes to choose as much as possible the aligned particles in bulk for measurement, so as not to introduce additional uncertainties. The above-mentioned calibration procedure is only an example of obtaining the traceability value in the present invention, if a laser interferometer plus a scanning electron microscope is used for calibration, better results will be obtained.
本发明与美国国家标准技术研究院(NIST)的扫描电子显微镜的有证标准物质SRM484g的技术参数的比较,见表5(附后)。该有证标准物质是用薄的金(Au)层镶嵌在0.5μm,1μm,3μm,5μm的金属镍(Ni)层的剖面抛光后制成的标准物质。从表格2的数据来看,它在使用“3→4”,“4→5”时,它的不确定度为1%~1.5%。当放大20,000倍,使用“0→1”,“1→2”,“2→3”时它的校准不确定度将会很快变大(7.8%~3.8%),所以它在校准文件中规定使用范围为1,000倍-20,000倍。它是采用激光干涉法加扫描电子显微镜的方法标定的,这是一种绝对测量方法。另外,英国Agar科学公司的有证标准物质为传统的2,160线/mm的方格标准物质。它由英国国家物理实验室(NPL)同样采用激光干涉法加扫描电子显微镜的方法标定的。它的不确定度是4.6μm+0.05μm/10格(1.1%),当其使用少于10格校准扫描电子显微镜时,将无溯源值,这样它也将限制了其在高倍率下使用。The comparison of the present invention with the technical parameters of the certified reference material SRM484g of the scanning electron microscope of the National Institute of Standards and Technology (NIST) is shown in Table 5 (attached). The certified standard material is a standard material made of a thin gold (Au) layer embedded in a 0.5μm, 1μm, 3μm, 5μm metal nickel (Ni) layer after section polishing. From the data in Table 2, when it uses "3→4" and "4→5", its uncertainty is 1% to 1.5%. When magnified 20,000 times, its calibration uncertainty will quickly become larger (7.8% ~ 3.8%) when using "0→1", "1→2", "2→3", so it is in the calibration file The specified range of use is 1,000 times - 20,000 times. It is calibrated using laser interferometry plus scanning electron microscopy, which is an absolute measurement method. In addition, the certified reference material of British Agar Scientific Company is the traditional 2,160 line/mm grid reference material. It was calibrated by the British National Physical Laboratory (NPL) using laser interferometry plus scanning electron microscopy. Its uncertainty is 4.6μm+0.05μm/10 divisions (1.1%). When it uses less than 10 divisions to calibrate the scanning electron microscope, there will be no traceable value, so it will also limit its use at high magnification.
本发明中的单分散相聚苯乙烯标准粒子水溶液原液来源于Duke科学公司的有证标准物质。综合其本身的定值不确定度,它的合成总不确定度比较大。对于3μm的粒子,大约为3.4nm(1.14%),标准偏差为5.1nm(1.68%),在测量时标准偏差可以由测量多个粒子(n个)的平均值而变小为ΔA/(n1/2)。本发明的优点在于可以在有溯源值的条件下,校准大的放大倍率(20,000倍~200,000倍)而不会使校准的不确定度变化很大,而且从标准物质的表面来看,粒子的顶点与交接处的高低差为粒子直径的1/2,(直径为0.3μm的粒子为0.15μm。)大于其它商业扫描电子显微镜标准物质,这给使用者在使用扫描电子显微镜观察时有更好的图像反差,从而带来很大的方便。
表1
表2
续后Continued
接前
表3
表4
表5 table 5
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03116182 CN1255669C (en) | 2003-04-04 | 2003-04-04 | Scanning electronic microscope standard substance and its making method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03116182 CN1255669C (en) | 2003-04-04 | 2003-04-04 | Scanning electronic microscope standard substance and its making method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1536345A CN1536345A (en) | 2004-10-13 |
CN1255669C true CN1255669C (en) | 2006-05-10 |
Family
ID=34320263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03116182 Expired - Fee Related CN1255669C (en) | 2003-04-04 | 2003-04-04 | Scanning electronic microscope standard substance and its making method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1255669C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102207470A (en) * | 2011-03-16 | 2011-10-05 | 上海市计量测试技术研究院 | Standard substance for calibrating magnification of industrial computed tomography (CT) system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108445027A (en) * | 2018-03-19 | 2018-08-24 | 广东省新材料研究所 | Fine EBSD characterizations sample of a kind of non-conductive painting/coating of nanometer and preparation method thereof |
TWI676794B (en) * | 2018-07-10 | 2019-11-11 | 精準基因生物科技股份有限公司 | Sensing device |
CN112858363A (en) * | 2021-03-05 | 2021-05-28 | 中国科学技术大学 | Sample for helium ion microscope imaging quality correction and manufacturing method thereof |
CN113720867B (en) * | 2021-10-11 | 2024-01-30 | 昆明理工大学 | Method for preparing antimony trioxide standard sample of scanning electron microscope |
-
2003
- 2003-04-04 CN CN 03116182 patent/CN1255669C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102207470A (en) * | 2011-03-16 | 2011-10-05 | 上海市计量测试技术研究院 | Standard substance for calibrating magnification of industrial computed tomography (CT) system |
CN102207470B (en) * | 2011-03-16 | 2013-05-29 | 上海市计量测试技术研究院 | A standard substance for calibrating the magnification of industrial computed tomography systems |
Also Published As
Publication number | Publication date |
---|---|
CN1536345A (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010027743A (en) | Glass substrate for imprint, resist pattern forming method, and method and apparatus for inspecting glass substrate for imprint | |
CN1487531A (en) | Manufacturing method of electroconductive paste and solar cell, and solar cell | |
JP7392184B2 (en) | Nanostructured films, pellicles, and methods of performing EUV lithography | |
Quispe et al. | An improved holey carbon film for cryo-electron microscopy | |
CN1255669C (en) | Scanning electronic microscope standard substance and its making method | |
CN105115864A (en) | Single nano particle diameter measuring method | |
Yuan et al. | On the quality of commercial chemical vapour deposited hexagonal boron nitride | |
CN108982559A (en) | The method for preparing micro- nanostructure sample using focused ion beam scanning electron microscope double-beam system | |
JP5771256B2 (en) | Imprint glass substrate, resist pattern forming method, imprint glass substrate inspection method and inspection apparatus | |
TW201817674A (en) | Method for distinguishing carbon nanotubes | |
TWI753739B (en) | Method of physical analysis, sample for physical analysis and preparing method thereof | |
Wu et al. | The analysis of morphological distortion during AFM study of cells | |
TW201818524A (en) | Method for making semiconducting layer | |
CN1245606C (en) | Process for measuring substance length by means of electron microscope | |
JP4455146B2 (en) | Method for quantifying trace coarse particles and method for producing fine particle product quality controlled using the method | |
Spallek | Electron microscopy studies on structure-property relationships of nanoparticulate transparent electrodes for printed electronics | |
CN105115865B (en) | The measuring system of single nanoparticle grain size | |
Barbet et al. | Scanning tunneling microscopy of colloidal gold beads | |
JP2007278795A (en) | Method of inspecting foreign matter in resin composition for forming black matrix | |
CN114002251B (en) | Characterization method of nanoscale double-layer material based on scanning electron microscope | |
KR100250212B1 (en) | Mean particle size decision method applying an atomic force microscope and fractal theory | |
CN116576767A (en) | A method for monitoring the thickness of ultra-thin oxide layer on metal surface | |
TW202338508A (en) | Zirconium-coated ultra-thin, ultra-low density films for euv lithography | |
Zhou et al. | Quantitative Analysis of Perovskite Morphologies Employing Deep Learning Framework Enables Accurate Solar Cell Performance Prediction | |
JP2025036263A (en) | Vapor deposition material and method for producing semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060510 Termination date: 20110404 |