CN1224730C - Evaporative pattern casting magnesium alloy and smelting method thereof - Google Patents
Evaporative pattern casting magnesium alloy and smelting method thereof Download PDFInfo
- Publication number
- CN1224730C CN1224730C CN 03150924 CN03150924A CN1224730C CN 1224730 C CN1224730 C CN 1224730C CN 03150924 CN03150924 CN 03150924 CN 03150924 A CN03150924 A CN 03150924A CN 1224730 C CN1224730 C CN 1224730C
- Authority
- CN
- China
- Prior art keywords
- alloy
- added
- magnesium alloy
- lost foam
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 49
- 238000003723 Smelting Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000010113 evaporative-pattern casting Methods 0.000 title 1
- 239000000956 alloy Substances 0.000 claims abstract description 49
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 47
- 238000010114 lost-foam casting Methods 0.000 claims abstract description 37
- 238000005266 casting Methods 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 7
- 239000011777 magnesium Substances 0.000 claims description 19
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 238000007670 refining Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910017150 AlTi Inorganic materials 0.000 claims description 2
- 230000000670 limiting effect Effects 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000002829 reductive effect Effects 0.000 abstract description 2
- 230000004907 flux Effects 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910001339 C alloy Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
一种消失模铸造专用镁合金及其熔炼方法,在镁合金的配方中降低了Zn的含量,并适量调整了Al、Mn元素的含量,加入了富Ce的混合稀土RE以及Ti和C元素,以细化消失模铸造镁合金的晶粒,减少其缩松缺陷,同时改善其铸造性能及力学性能。熔炼时各种成分以不同形式加入,熔炼后在气体保护或熔剂保护的条件下进行浇注或低压铸造。本发明在不明显提高合金成本的情况下,镁合金晶粒获得了较好的细化,具有优良的消失模铸造成型性能及较高的综合机械性能和价格低廉的特点,市场应用前景广阔。A special magnesium alloy for lost foam casting and its smelting method. In the formula of the magnesium alloy, the content of Zn is reduced, and the content of Al and Mn elements is adjusted appropriately, and Ce-rich mixed rare earth RE and Ti and C elements are added. To refine the grains of lost foam casting magnesium alloy, reduce its shrinkage and porosity defects, and improve its casting performance and mechanical properties at the same time. Various components are added in different forms during smelting, and pouring or low-pressure casting is performed under the condition of gas protection or flux protection after smelting. In the case of not obviously increasing the cost of the alloy, the magnesium alloy crystal grains are better refined, and the invention has the characteristics of excellent lost foam casting forming performance, high comprehensive mechanical performance and low price, and has broad market application prospects.
Description
技术领域:Technical field:
本发明涉及的是一种消失模铸造镁合金及其熔炼方法,属于金属材料及冶金类技术领域。The invention relates to a lost foam casting magnesium alloy and a melting method thereof, belonging to the technical field of metal materials and metallurgy.
背景技术:Background technique:
镁合金是实际应用中最轻的结构材料,它具有比重轻、比强度高、比刚度高、阻尼性能、切削性能好等优点。镁合金在汽车、航空航天、电讯等行业获得了日益广泛的应用。铸造是镁合金的主要成形方法。目前镁合金主要采用压铸及带有粘结剂的砂型进行铸造。消失模铸造(简称LFC或EPC)目前被认为是替代传统铸造工艺生产高质量精密成型铸件的一种经济有效的绿色铸造新工艺,是铸造工艺的一个重要发展方向,被誉为“21世纪的铸造技术”、“铸造中的绿色工程”。LFC的基本原理是采用与所需铸件形状、尺寸完全相同的泡沫塑料模代替铸模进行造型,模样不取出呈实体铸型,浇入金属液汽化并取代泡沫模样后形成理想的铸件。镁合金消失模铸造是先进材料与先进工艺结合的新技术,在复杂内腔、分型困难、薄壁、小直径孔的零件生产应用上将显示巨大的潜力。目前有关消失模铸造研究和应用主要集中在铸铁、铸钢和铸铝上,有关镁合金方面的报道极少。Magnesium alloy is the lightest structural material in practical application. It has the advantages of light specific gravity, high specific strength, high specific stiffness, good damping performance and good cutting performance. Magnesium alloys are increasingly used in industries such as automobiles, aerospace, and telecommunications. Casting is the main forming method for magnesium alloys. At present, magnesium alloys are mainly cast by die casting and sand mold with binder. Lost foam casting (LFC or EPC for short) is currently considered to be an economical and effective new green casting process that replaces traditional casting processes to produce high-quality precision molding castings. Foundry Technology", "Green Engineering in Foundry". The basic principle of LFC is to replace the casting mold with a foam plastic mold that is exactly the same shape and size as the required casting. Magnesium alloy lost foam casting is a new technology combining advanced materials and advanced technology. It will show great potential in the production and application of parts with complex inner cavity, difficult parting, thin wall and small diameter hole. At present, the research and application of lost foam casting mainly focus on cast iron, cast steel and cast aluminum, and there are very few reports on magnesium alloys.
尽管消失模铸造具有一系列独特的技术优势,但由于消失模铸造在金属充型和凝固期间同时进行着金属-铸型(包括涂料)界面间的泡沫塑料模样液态热解产物的排除过程。液态热解产物的存在不仅增加了金属-铸型间的传热热阻,而且液态产物排除后增大了因金属表面凝固收缩而形成的金属-铸型界面的间隙,从而大大降低了金属-铸型界面传热系数,以致铸件冷却速度较慢。又由于消失模铸造的浇注温度比传统空腔铸造浇注温度高得多,且由于消失模铸造采用的是无粘结剂的干砂造型,没有粘结剂填充在砂粒之间,浇注时传热只能通过砂粒之间极小的近于点接触的导热面传出,因干砂蓄热系数低,铸型冷却慢,因此消失模铸造的冷却速度明显低于普通粘土砂型铸造。反映在组织上,消失模铸造镁合金的晶粒粗大,易出现严重的缩松缺陷,β析出相呈粗大网状形态,铸件致密性差。粗大的组织降低了材料的机械性能,从而制约了镁合金消失模铸造技术在实际生产中应用。Although lost foam casting has a series of unique technical advantages, due to lost foam casting, the elimination process of liquid pyrolysis products in the form of foamed plastics between the metal-mold (including coating) interface is simultaneously carried out during metal filling and solidification. The existence of liquid pyrolysis products not only increases the heat transfer resistance between the metal and the mold, but also increases the gap between the metal-mold interface formed by the solidification and shrinkage of the metal surface after the liquid product is removed, thereby greatly reducing the metal-mold interface gap. The heat transfer coefficient of the mold interface, so that the cooling rate of the casting is slower. And because the pouring temperature of lost foam casting is much higher than that of traditional cavity casting, and because lost foam casting uses dry sand molding without binder, no binder is filled between the sand grains, heat transfer during pouring It can only be transmitted through the very small heat conduction surface close to point contact between the sand particles. Due to the low heat storage coefficient of dry sand, the mold cooling is slow, so the cooling rate of lost foam casting is significantly lower than that of ordinary clay sand casting. Reflected in the structure, the grains of the lost foam casting magnesium alloy are coarse, and severe shrinkage defects are prone to occur, the β precipitates are in the form of a coarse network, and the casting is poor in compactness. The coarse structure reduces the mechanical properties of the material, thus restricting the application of magnesium alloy lost foam casting technology in actual production.
总之,由于消失模铸造是一项全新的技术,有关消失模铸造镁合金的研究极少,晶粒粗大和缩松是制约消失模铸造镁合金应用的主要技术障碍。目前有关消失模铸造镁合金的研究集中在铸型充型方面[Zili Liu,Jingyu Hu,QudongWang,etc. Evaluation of Vacuum on Mold Filling in Magnesium EPC Process.Journal of Materials Processing Technology.2002,120/1-3:94-100],尚未见到有关消失模铸造镁合金材料的报道。因此,为了改善消失模铸造镁合金的组织性能,减少其缺陷,提高消失模镁铸件的成品率,很有必要对现有的镁合金的化学成分进行调整,开发出适合于消失模铸造的专用镁合金材料。In short, since lost foam casting is a brand-new technology, there are very few studies on lost foam casting magnesium alloys. Coarse grains and shrinkage porosity are the main technical obstacles restricting the application of lost foam casting magnesium alloys. At present, the research on lost foam casting magnesium alloys is concentrated on mold filling [Zili Liu, Jingyu Hu, Qudong Wang, etc. Evaluation of Vacuum on Mold Filling in Magnesium EPC Process. Journal of Materials Processing Technology. 2002, 120/1- 3:94-100], there is no report about lost foam casting magnesium alloy materials. Therefore, in order to improve the microstructure and properties of lost foam casting magnesium alloys, reduce its defects, and increase the yield of lost foam magnesium castings, it is necessary to adjust the chemical composition of existing magnesium alloys and develop special materials suitable for lost foam casting. Magnesium alloy material.
发明内容:Invention content:
本发明的目的在于克服现有技术的不足,提出一种适用于消失模铸造的专用消失模铸造镁合金及其熔炼方法,使得到的镁合金具有良好的消失模铸造成型性能、较高的综合机械性能和价格低廉的特点,具有良好的市场应用前景。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a special lost foam casting magnesium alloy suitable for lost foam casting and its melting method, so that the obtained magnesium alloy has good lost foam casting forming performance, high comprehensive The characteristics of mechanical performance and low price have good market application prospects.
为实现这样的目的,本发明针对消失模铸造的特点,从细化消失模铸造镁合金的晶粒、减少镁合金的缩松缺陷出发,在镁合金的配方中降低了Zn的含量,并适量调整了Al、Mn元素的含量,加入了富Ce的混合稀土RE以及Ti和C元素,以细化消失模铸造镁合金的晶粒,减少其缩松缺陷,同时改善其铸造性能及力学性能。In order to achieve such purpose, the present invention aims at the characteristics of lost foam casting, starting from refining the crystal grains of lost foam casting magnesium alloys and reducing the shrinkage and porosity defects of magnesium alloys, reducing the content of Zn in the formula of magnesium alloys, and adding an appropriate amount of The contents of Al and Mn elements were adjusted, and Ce-rich mixed rare earth RE and Ti and C elements were added to refine the grains of lost foam casting magnesium alloys, reduce shrinkage defects, and improve casting properties and mechanical properties.
本发明消失模铸造镁合金的成分配方(质量百分比)为:7.5-10%Al,0.2-0.45%Zn,0.1-0.5%Mn,0.6-1.0%RE(富Ce混合稀土),0.05-0.2%Ti,0.005-0.05%C,限制杂质元素 Si≤0.01%,Fe≤0.004%,Cu≤0.015%,Ni≤0.002%,其余为Mg。The composition formula (mass percentage) of the lost foam casting magnesium alloy of the present invention is: 7.5-10% Al, 0.2-0.45% Zn, 0.1-0.5% Mn, 0.6-1.0% RE (Ce-rich mixed rare earth), 0.05-0.2% Ti, 0.005-0.05% C, limiting impurity elements Si≤0.01%, Fe≤0.004%, Cu≤0.015%, Ni≤0.002%, and the rest is Mg.
本发明的消失模铸造镁合金的熔炼方法如下:在CO2+SF6气体保护下,在熔炼炉中加入干燥的工业纯镁,同时,在炉内撒入少量镁合金熔炼用覆盖剂,待镁全部化清后,加入合金元素Al、Zn、Mn、RE、Ti、C,其中Al、Zn分别以工业纯Al和工业纯Zn的形式加入,Mn以AlMn中间合金的形式加入,RE以纯RE或中间合金的形式加入,Ti以AlTi或AlTiC中间合金的形式加入,C以AlTiC中间合金的形式加入。当合金液升温到710-740℃,加入精炼剂精炼5-15分钟,静置10-20分钟后,撇去浮渣。铸造时,当合金液温度在710-750℃即可采用浇包浇注,或者在低压铸造炉内采用压缩气体进行低压铸造。The smelting method of the lost foam casting magnesium alloy of the present invention is as follows: under the protection of CO 2 +SF 6 gas, dry industrial pure magnesium is added in the smelting furnace, and at the same time, a small amount of covering agent for smelting magnesium alloy is sprinkled in the furnace, and wait for After all the magnesium is cleared, alloy elements Al, Zn, Mn, RE, Ti, C are added, among which Al and Zn are added in the form of industrial pure Al and industrial pure Zn respectively, Mn is added in the form of AlMn master alloy, and RE is added in the form of pure RE Or the form of master alloy is added, Ti is added in the form of AlTi or AlTiC master alloy, and C is added in the form of AlTiC master alloy. When the temperature of the alloy liquid rises to 710-740°C, add refining agent to refine for 5-15 minutes, and after standing for 10-20 minutes, skim off the scum. When casting, when the alloy liquid temperature is 710-750 ℃, it can be poured by ladle, or compressed gas can be used for low-pressure casting in a low-pressure casting furnace.
本发明的合金配方中,Zn可以提高熔体流动性,有明显的固溶强化效果,但Zn的加入会明显增大合金的热裂倾向性,恶化铸造成型性能。本发明中适当降低了Zn的含量。In the alloy formula of the present invention, Zn can improve melt fluidity and have obvious solid solution strengthening effect, but the addition of Zn will obviously increase the thermal cracking tendency of the alloy and deteriorate the casting performance. In the present invention, the content of Zn is appropriately reduced.
RE在我国储量丰富,成本低。RE能改善镁合金的铸造性能,减少晶界低熔点析出物,增加流动性,有效地减少镁合金的缩松缺陷,提高综合力学性能和良好的固溶强化效果。通过RE对晶界的强化,及其与Zn、Al对合金的力学性能的有益作用,通过各种元素的合理搭配,使得消失模铸造镁合金具有更高的抗拉强度和屈服强度。RE reserves are abundant in my country and the cost is low. RE can improve the casting properties of magnesium alloys, reduce low melting point precipitates at grain boundaries, increase fluidity, effectively reduce shrinkage and porosity defects of magnesium alloys, improve comprehensive mechanical properties and good solid solution strengthening effect. Through the strengthening of RE on the grain boundaries, the beneficial effect of RE on the mechanical properties of the alloy with Zn and Al, and the reasonable combination of various elements, the lost foam casting magnesium alloy has higher tensile strength and yield strength.
Ti属于过渡族金属,其晶格与镁合金相同,也为hcp结构,晶格常数为a=0.29512nm,c=0.46845nm。Ti是镁的包晶系元素,包晶温度下(651℃)Ti在Mg中的固溶度为0.2wt%。Ti作为铝合金细化剂的工业应用已经比较成熟,其中TiC粒子为主的Al-Ti-C中间合金,因其良好的形核能力、较小的尺寸和聚集倾向,成为目前研究和应用最为广泛的铝熔体形核剂。但有关Ti在镁合金中应用研究报道极少。Ti belongs to the transition group metal, and its crystal lattice is the same as that of magnesium alloy, which is also hcp structure, and the lattice constants are a=0.29512nm and c=0.46845nm. Ti is a peritectic element of magnesium, and the solid solubility of Ti in Mg at the peritectic temperature (651°C) is 0.2wt%. The industrial application of Ti as an aluminum alloy refiner has been relatively mature. Among them, the Al-Ti-C master alloy dominated by TiC particles has become the most researched and applied alloy due to its good nucleation ability, small size and aggregation tendency. Broad range of nucleating agents for aluminum melts. However, there are very few reports on the application of Ti in magnesium alloys.
Ti加入镁熔体内,在凝固过程中,Ti极低的溶解度使其在液固界面前沿扩散区内富集,这样不仅阻碍了界面前Al原子的扩散,从而抑制了枝晶的生长,而且在液固界面前产生较大的成分过冷,因而激活了成分过冷区内形核质点的形核。同时,Ti可能与镁熔体内的C形成TiC化合物,该化合物与镁的晶格常数错配度非常小,可作为异质形核的基底。当加入Al-Ti-C中间合金时,在熔体中将释放出TiC粒子,从而增加了镁合金凝固时异质核心的数量,使合金组织更加细化。Al-Ti-C对消失模铸造镁合金中的晶粒细化和β相形态的改善,消除了粗大的化合物相对基体的割裂及对晶界的弱化作用,提高了合金中的滑移和孪生等塑性变形方式开动的可能性,所以合金的塑性得到提高。同时,由于拉伸试验中合金变形强化能力的提高,合金的总体抗拉强度也有所提高。When Ti is added to the magnesium melt, during the solidification process, the extremely low solubility of Ti makes it enriched in the diffusion zone at the front of the liquid-solid interface, which not only hinders the diffusion of Al atoms in front of the interface, thereby inhibiting the growth of dendrites, but also Larger component undercooling occurs in front of the liquid-solid interface, thereby activating the nucleation of nucleation particles in the component undercooling region. At the same time, Ti may form TiC compound with C in Mg melt, which has a very small lattice constant mismatch with Mg and can be used as a substrate for heterogeneous nucleation. When the Al-Ti-C master alloy is added, TiC particles will be released in the melt, thereby increasing the number of heterogeneous cores when the magnesium alloy is solidified, and making the alloy structure more refined. Al-Ti-C improves the grain refinement and β-phase morphology in the lost foam casting magnesium alloy, eliminates the splitting of the coarse compound relative to the matrix and the weakening of the grain boundary, and improves the slip and twinning in the alloy The possibility of starting the plastic deformation mode, so the plasticity of the alloy is improved. At the same time, the overall tensile strength of the alloy is also improved due to the improved deformation strengthening ability of the alloy in the tensile test.
本发明具有实质性的进步和广阔的商业应用前景。在不明显提高合金成本的情况下,本发明提出的消失模铸造镁合金晶粒获得了较好的细化,具有优良的消失模铸造成型性能及较高的综合机械性能和价格低廉的特点,市场应用前景广阔。在消失模铸造条件下镁合金室温抗拉强度、屈服强度、伸长率分别大于150MPa、95MPa、2.5%。The invention has substantial progress and broad commercial application prospects. Without significantly increasing the cost of the alloy, the grains of the lost foam casting magnesium alloy proposed by the present invention are better refined, and have excellent lost foam casting forming performance, higher comprehensive mechanical properties and low price. The market application prospect is broad. Under the condition of lost foam casting, the tensile strength, yield strength and elongation of the magnesium alloy at room temperature are greater than 150MPa, 95MPa and 2.5%, respectively.
具体实施方式:Detailed ways:
以下通过具体的实施例对本发明的技术方案作进一步描述。The technical solution of the present invention will be further described below through specific examples.
实施例1:Example 1:
合金成分(重量百分比):7.5%Al,0.25%Zn,0.15%Mn,1.0%RE(富Ce混合稀土),0.05%Ti,0.01%C,限制杂质元素 Si≤0.01%,Fe≤0.004%,Cu≤0.015%,Ni≤0.002%,其余为Mg。Alloy composition (weight percent): 7.5% Al, 0.25% Zn, 0.15% Mn, 1.0% RE (Ce-rich mixed rare earth), 0.05% Ti, 0.01% C, limited impurity elements Si≤0.01%, Fe≤0.004%, Cu≤0.015%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在CO2+SF6气体保护下,在电阻坩埚炉中加入工业纯镁8204克,之后在炉内撒入少量镁合金熔炼用覆盖剂,合金完全熔化后,先后加入工业纯铝521克、工业纯锌25克、A1-10Mn合金150克、Mg-10RE合金1000克、A1-5Ti-C合金100克,溶解后充分搅拌合金液,持续升温到730℃时用精炼剂精炼10分钟,捞去表面浮渣,然后保温静止20分钟,当合金温度达740℃,即可用浇包浇注。本实例的镁合金常温抗拉强度、屈服强度和延伸率分别为155MPa,98MPa,2.5%。晶粒尺寸为100μm。Configure the alloy according to the above ingredients, under the protection of CO 2 +SF 6 gas, add 8204 grams of industrial pure magnesium into the resistance crucible furnace, and then sprinkle a small amount of covering agent for magnesium alloy melting in the furnace. After the alloy is completely melted, add industrial 521 grams of pure aluminum, 25 grams of industrial pure zinc, 150 grams of A1-10Mn alloy, 1000 grams of Mg-10RE alloy, 100 grams of A1-5Ti-C alloy, fully stir the alloy liquid after dissolution, and use refining agent when the temperature continues to rise to 730 °C Refining for 10 minutes, remove the scum on the surface, and keep it for 20 minutes. When the alloy temperature reaches 740℃, it can be poured with a ladle. The normal temperature tensile strength, yield strength and elongation of the magnesium alloy in this example are 155MPa, 98MPa and 2.5%, respectively. The grain size is 100 μm.
实施例2:Example 2:
合金成分(重量百分比):9%Al,0.35%Zn,0.45%Mn,0.8%RE(富Ce混合稀土),0.1%Ti,0.02%C,限制杂质元素Si≤0.01%,Fe≤0.004%,Cu≤0.015%,Ni≤0.002%,其余为Mg。Alloy composition (weight percent): 9% Al, 0.35% Zn, 0.45% Mn, 0.8% RE (Ce-rich mixed rare earth), 0.1% Ti, 0.02% C, limited impurity elements Si≤0.01%, Fe≤0.004%, Cu≤0.015%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在CO2+SF6气体保护下,在电阻坩埚炉中加入工业纯镁8928克,之后在炉内撒入少量镁合金熔炼用覆盖剂,合金完全熔化后,先后加入工业纯铝307克、工业纯锌35克、Al-10Mn合金450克、混合RE合金80克、Al-5Ti-C合金200克,溶解后充分搅拌合金液,持续升温到730℃时用精炼剂精炼10分钟,捞去表面浮渣,然后保温静止20分钟,当合金温度达730℃,即可用浇包浇注。本实例的镁合金常温抗拉强度、屈服强度和延伸率分别为162MPa,101MPa,2.6%。晶粒尺寸为90μm。Configure the alloy according to the above ingredients, under the protection of CO 2 +SF 6 gas, add 8928 grams of industrial pure magnesium into the resistance crucible furnace, and then sprinkle a small amount of covering agent for magnesium alloy melting in the furnace. After the alloy is completely melted, add industrial 307 grams of pure aluminum, 35 grams of industrial pure zinc, 450 grams of Al-10Mn alloy, 80 grams of mixed RE alloy, 200 grams of Al-5Ti-C alloy, fully stir the alloy liquid after dissolution, and refine with refining agent when the temperature continues to rise to 730 °C After 10 minutes, remove the scum on the surface, and then keep it warm for 20 minutes. When the temperature of the alloy reaches 730°C, it can be poured with a ladle. The normal temperature tensile strength, yield strength and elongation of the magnesium alloy of this example are 162MPa, 101MPa, 2.6%, respectively. The grain size is 90 μm.
实施例3:Example 3:
合金成分(重量百分比):10%Al,0.45%Zn,0.3%Mn,0.6%RE(富Ce混合稀土),0.2%Ti,0.03%C,限制杂质元素Si≤0.01%,Fe≤0.004%,Cu≤0.015%,Ni≤0.002%,其余为Mg。Alloy composition (weight percent): 10% Al, 0.45% Zn, 0.3% Mn, 0.6% RE (Ce-rich mixed rare earth), 0.2% Ti, 0.03% C, limited impurity elements Si≤0.01%, Fe≤0.004%, Cu≤0.015%, Ni≤0.002%, and the rest is Mg.
按照上述成分配置合金,在CO2+SF6气体保护下,在电阻坩埚炉中加入工业纯镁8302克,之后在炉内撒入少量镁合金熔炼用覆盖剂,合金完全熔化后,先后加入工业纯铝403克、工业纯锌45克、Al-10Mn合金300克、Mg-10RE合金600克、Al-5Ti-C合金300克、Al-10Ti合金50克,溶解后充分搅拌合金液,持续升温到740℃时用精炼剂精炼10分钟,捞去表面浮渣,然后保温静止20分钟,当合金温度达735℃,即可用浇包浇注。本实例的镁合金常温抗拉强度、屈服强度和延伸率分别为168MPa,109MPa,3.0%。晶粒尺寸为75μm。Configure the alloy according to the above ingredients, under the protection of CO 2 +SF 6 gas, add 8302 grams of industrial pure magnesium into the resistance crucible furnace, and then sprinkle a small amount of covering agent for magnesium alloy melting in the furnace. After the alloy is completely melted, add industrial 403 grams of pure aluminum, 45 grams of industrial pure zinc, 300 grams of Al-10Mn alloy, 600 grams of Mg-10RE alloy, 300 grams of Al-5Ti-C alloy, 50 grams of Al-10Ti alloy, fully stir the alloy liquid after dissolution, and continue to heat up Refining with refining agent for 10 minutes at 740°C, remove the scum on the surface, and keep it for 20 minutes. When the alloy temperature reaches 735°C, it can be poured with a ladle. The normal temperature tensile strength, yield strength and elongation of the magnesium alloy of this example are 168MPa, 109MPa, 3.0%, respectively. The grain size is 75 μm.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03150924 CN1224730C (en) | 2003-09-11 | 2003-09-11 | Evaporative pattern casting magnesium alloy and smelting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03150924 CN1224730C (en) | 2003-09-11 | 2003-09-11 | Evaporative pattern casting magnesium alloy and smelting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1523127A CN1523127A (en) | 2004-08-25 |
CN1224730C true CN1224730C (en) | 2005-10-26 |
Family
ID=34286818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03150924 Expired - Fee Related CN1224730C (en) | 2003-09-11 | 2003-09-11 | Evaporative pattern casting magnesium alloy and smelting method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1224730C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102366827B (en) * | 2011-10-10 | 2017-02-22 | 海安华达石油仪器有限公司 | Extrusion casting method of cylinder cover cap of magnesium alloy automobile engine |
CN103223465B (en) * | 2012-01-31 | 2016-01-27 | 宁波工程学院 | A kind of casting method of zinc alloy lost foam |
CN102534329A (en) * | 2012-03-29 | 2012-07-04 | 成都青元泛镁科技有限公司 | Preparation method for magnesium alloy with high strength and large plasticity |
CN102994846B (en) * | 2012-10-15 | 2014-12-31 | 深圳和泰源材料科技有限公司 | Anti-radiation antistatic magnesium alloy capable of strengthening screen magnetism and preparation method thereof |
CN102965556B (en) * | 2012-11-20 | 2014-12-31 | 南通大学 | Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof |
CN103540778B (en) * | 2013-10-25 | 2016-06-08 | 青海柴达木青元泛镁科技有限公司 | The chemical conversion film forming method of a kind of magnesium alloy fused mass |
CN107225220A (en) * | 2017-05-23 | 2017-10-03 | 吉林工程技术师范学院 | A kind of manufacture method of the magnesium alloy for cabinet of speed changer of superpower corrosion resistance |
CN107838402A (en) * | 2017-11-16 | 2018-03-27 | 中国科学院长春应用化学研究所 | A kind of manufacture method of complicated magnesium alloy structural part |
CN112981160A (en) * | 2021-02-05 | 2021-06-18 | 山东省科学院新材料研究所 | Composite flux suitable for magnesium-aluminum magnesium alloy and preparation method and application thereof |
-
2003
- 2003-09-11 CN CN 03150924 patent/CN1224730C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1523127A (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102899539B (en) | High-plasticity aluminum-silicon alloy for die casting and preparation method thereof | |
CN102618758B (en) | Cast magnesium alloy of low linear shrinkage | |
CN100423872C (en) | Squeeze casting preparation method of aluminum alloy automobile engine bracket | |
CN102994784B (en) | The method of phase constitution in high-intensity magnetic field compound modifier refinement transcocrystallized Al-Si alloy | |
CN111455228B (en) | High-strength and high-toughness aluminum-silicon alloy, and die-casting process preparation method and application | |
CN106148787A (en) | Magnesium lithium alloy being suitable to sand casting and preparation method thereof | |
CN108300884B (en) | A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy | |
CN109957687A (en) | A kind of die-casting aluminum-silicon alloy and preparation method thereof | |
CN1224730C (en) | Evaporative pattern casting magnesium alloy and smelting method thereof | |
CN107937764B (en) | Liquid die forging high-strength and high-toughness aluminum alloy and liquid die forging method thereof | |
CN107130137B (en) | A kind of low-pressure casting process of environmental protection silizin tap | |
CN113025858A (en) | Mg-Al-Zn magnesium alloy with refined matrix phase and eutectic phase as well as preparation method and application thereof | |
CN100389221C (en) | High fluidity lost foam casting magnesium alloy and its melting method | |
CN111647782A (en) | Regenerated aluminum alloy and preparation method thereof | |
CN112139466A (en) | Method for stepped intermittent pause type casting of 7000 series aluminum alloy direct-cooling semi-continuous ingot | |
CN101649408A (en) | Method for preparing Mg-Si high damping alloy | |
JP3696844B2 (en) | Aluminum alloy with excellent semi-melt formability | |
CN113151721B (en) | High-thermal-conductivity die-casting magnesium alloy and preparation method thereof | |
CN112442612B (en) | A method for improving the flow properties of cast aluminum-copper alloys | |
CN1216169C (en) | Composite Modification Treatment Method for Lost Foam Casting Magnesium-Al-Series Magnesium Alloy | |
CN109735751B (en) | High-strength high-toughness die-casting aluminum alloy for motorcycle and preparation method thereof | |
CN111961896A (en) | Preparation method of aluminum alloy casting | |
CN111945041B (en) | Ultrahigh-strength high-thermal-conductivity semisolid extrusion casting aluminum alloy suitable for new energy automobile and preparation method thereof | |
CN115874097B (en) | High-plasticity high-heat-conductivity cast magnesium alloy suitable for die casting and preparation method thereof | |
CN115710650B (en) | A kind of modification process of aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHANGHAI ALS LIGHT ALLOY CO., LTD. Free format text: FORMER OWNER: SHANGHAI JIAOTONG UNIV. Effective date: 20090605 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20090605 Address after: No. nine, Jing Jing Road, Songjiang hi tech park, Shanghai, 1501 Patentee after: Shanghai Aiersi Light Alloy Co., Ltd. Address before: No. 1954, Huashan Road, Shanghai Patentee before: Shanghai Jiao Tong University |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20051026 Termination date: 20140911 |
|
EXPY | Termination of patent right or utility model |