CN1213048A - Method for fabricating electromagnet control bearing and brushless DC motor using the same - Google Patents
Method for fabricating electromagnet control bearing and brushless DC motor using the same Download PDFInfo
- Publication number
- CN1213048A CN1213048A CN97121747A CN97121747A CN1213048A CN 1213048 A CN1213048 A CN 1213048A CN 97121747 A CN97121747 A CN 97121747A CN 97121747 A CN97121747 A CN 97121747A CN 1213048 A CN1213048 A CN 1213048A
- Authority
- CN
- China
- Prior art keywords
- bearing
- mentioned
- shaft
- electromagnetic force
- electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 7
- 239000011347 resin Substances 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims abstract description 22
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 230000006698 induction Effects 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 229920001187 thermosetting polymer Polymers 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 230000002787 reinforcement Effects 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
- F16C32/0461—Details of the magnetic circuit of stationary parts of the magnetic circuit
- F16C32/0465—Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C25/00—Bearings for exclusively rotary movement adjustable for wear or play
- F16C25/02—Sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0402—Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
- F16C32/0468—Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/80—Thermosetting resins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Sliding-Contact Bearings (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Brushless Motors (AREA)
Abstract
本发明设置电磁发生装置,可使轴和轴承间的间隙在一定的速度以上时向所需的方向偏心。其包括准备与轴承外经相同的内径的、至少一侧具有入口的型架的步骤、将型架的内部电磁力发生装置通过型架入口配置在轴上的步骤、通过型架入口将轴承部设置在各电磁力发生装置内部的步骤、通过型架的入口向型架和轴承间投入树脂的步骤、使型架和轴承间的树脂硬化,使得电磁力发生装置和轴承部相互固定的步骤、保持流体流动的空间的步骤、将电磁力发生装置和轴承部从型架上分离。
The invention is provided with an electromagnetic generating device, which can make the gap between the shaft and the bearing eccentric to the desired direction when the speed exceeds a certain level. It includes the steps of preparing a jig with the same inner diameter as the outer diameter of the bearing and having an inlet on at least one side, disposing the internal electromagnetic force generating device of the jig on the shaft through the jig inlet, and installing the bearing part through the jig inlet. The step of installing inside each electromagnetic force generating device, the step of injecting resin between the jig and the bearing through the inlet of the jig, the step of hardening the resin between the jig and the bearing, and the step of fixing the electromagnetic force generating device and the bearing to each other, In the step of maintaining a space for fluid flow, the electromagnetic force generating device and the bearing part are separated from the jig.
Description
本发明涉及电磁控制轴承的制造方法及使用它的无刷直流电机,更详细的说涉及在轴承的为圆周面上通过热硬化树脂进行固定电磁铁的电磁力的发生装置,由于轴和轴承间的间隔在一定的速度以上偏心到所需的方向,所以当轴高速旋转时可减少油的旋涡现象,而且可以提高低振动及低噪音的特性的电磁控制轴承的制造方法及使用它的无刷直流电机。The present invention relates to a manufacturing method of an electromagnetic control bearing and a brushless DC motor using it, and more specifically relates to an electromagnetic force generating device for fixing an electromagnet on the circumferential surface of the bearing through a thermosetting resin. The interval is eccentric to the required direction at a certain speed, so when the shaft rotates at high speed, the vortex phenomenon of the oil can be reduced, and the manufacturing method of the electromagnetic control bearing and the brushless using it can improve the characteristics of low vibration and low noise DC.
一般,使用在主轴电机上的流体动压轴承是在轴和与其旋转地支持的轴承间充填着动压发生用的油。图1是过去主轴电机的断面图,在基座1的上部中央嵌合方式地安装着轴承1a,在轴承1a的内部备有可旋转的轴2。而且在基座1的上部外周边上具有构成定子的定子1b,在轴2的上端具有罩形态的转子3。在转子3的内周边具有环绕定子1b的磁铁3a,当定子1b上卷绕的线圈1c上施加电源时,由于磁铁3a产生磁力,使转子3以轴2为中心旋转。Generally, in a hydrodynamic bearing used in a spindle motor, oil for generating dynamic pressure is filled between the shaft and a bearing rotatably supported therewith. 1 is a sectional view of a conventional spindle motor. A bearing 1a is fitted in the upper center of a base 1, and a
这样结构的以往主轴电机,当轴2高速旋转时,则由于充填在轴承1a间的油而产生压力。因此,轴2在旋转半径方向被旋转支持、且轴2在旋转间,置于转子3上部的旋转盘一边旋转,一边再生出旋转盘的状况。In the conventional spindle motor having such a structure, when the
可是,在流体动压轴承的情况时,在低速会产生油旋涡(oilwhirl)和不稳定的现象。油旋涡现象,在轴承1a和轴2间的轴承偏心率在一定速度以上馒馒开始减少。这是由于随速度增加的佐默菲尔德常数(sommerfeidnumber)减少,偏心率馒幔减少的缘故。这样的现象使随着轴2的旋转在外周面旋转的油产生一定的速度分布,一般是发生在轴2的外周面没有动压发生沟的正园形的流体动压轴承上。因此,其缺点是高速下的低振动、低噪音的特性很低。However, in the case of a hydrodynamic bearing, oil whirls and instability occur at low speeds. The oil vortex phenomenon, the bearing eccentricity between the bearing 1a and the
本发明鉴于以往所存在的各种问题,通过在轴承的外圆周上设置使用电磁铁的电磁力发生装置,使得当轴和轴承间的间隔在一定速度以上时产生所需的偏心,增加油压的发生率,提高高速下的动态特性的电磁控制轴承的制造方法及使用它的无刷直流电机。In view of various problems existing in the past, the present invention installs an electromagnetic force generating device using an electromagnet on the outer circumference of the bearing, so that when the distance between the shaft and the bearing is above a certain speed, the required eccentricity is generated and the oil pressure is increased. The occurrence rate, the manufacturing method of the electromagnetically controlled bearing which improves the dynamic characteristics at high speed and the brushless DC motor using it.
为了达到上述目的本发明的电磁控制轴承的制造方法中,为了在轴和轴承的内径间的流体发生一定的动压,在轴上具有一个以上作用引力的电磁发生装置的电磁控制轴承的制造方法中,包括了以下的步骤:准备一个具有与目的轴承外经相同的内径的、至少一侧具有入口的型架的步骤和、将上述型架的内部电磁力发生装置通过上述型架的入口配置在该轴上的步骤和、通过上述型架的入口将上述各电磁力发生装置配置在该轴的步骤和、过上述型架的入口向上述型架和上述轴承间投入树脂的步骤和、使上述型架和上述轴承间的树脂硬化,使得电磁力发生装置和轴承部相互固定的步骤和、加工上述轴承部的内径,以便与上述轴间保持流体流动的空间的步骤和、将相互结合了的电磁力发生装置和轴承部从上述型架上分离,完成电磁控制轴承的步骤。In order to achieve the above object, in the manufacturing method of the electromagnetic control bearing of the present invention, in order to generate a certain dynamic pressure in the fluid between the shaft and the inner diameter of the bearing, there is an electromagnetic control bearing with more than one electromagnetic generating device acting on the shaft on the shaft. Among them, the following steps are included: the step of preparing a jig with the same inner diameter as the outer diameter of the target bearing and having an inlet on at least one side and disposing the internal electromagnetic force generating device of the jig through the inlet of the jig The steps of placing the above-mentioned electromagnetic force generators on the shaft through the inlet of the jig, and the step of injecting resin between the jig and the bearing through the inlet of the jig, and using The step of hardening the resin between the jig and the bearing so that the electromagnetic force generator and the bearing are fixed to each other and the step of processing the inner diameter of the bearing to maintain a space for fluid flow between the shaft and the step are combined with each other. The electromagnetic force generating device and the bearing part are separated from the above-mentioned frame, and the step of electromagnetically controlling the bearing is completed.
以下,根据附图详细地说明本发明的最佳实施例。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
图1表示以往电机的轴承的断面图。FIG. 1 shows a sectional view of a conventional motor bearing.
图2是本发明的电机的断面图。Fig. 2 is a sectional view of the motor of the present invention.
图3是本发明的电磁控制轴承的分离斜视图。Fig. 3 is an isolated oblique view of the electromagnetic control bearing of the present invention.
图4及图5表示本发明电磁控制轴承制造过程的断面图。4 and 5 show cross-sectional views of the manufacturing process of the electromagnetically controlled bearing of the present invention.
图6表示本发明的电磁控制轴承的制造过程的流程图。Fig. 6 shows a flowchart of the manufacturing process of the electromagnetically controlled bearing of the present invention.
图7表示本发明其他实施例的电磁控制轴承的断面图。Fig. 7 shows a sectional view of an electromagnetic control bearing according to another embodiment of the present invention.
符号说明Symbol Description
11电磁控制轴承11 electromagnetic control bearing
11a轴承部11a bearing part
12轴12 axis
13油13 oil
14定子14 stator
15线圈15 coils
16套筒16 sockets
17转子17 rotors
18磁铁18 magnets
19电磁发生装置19 electromagnetic generator
20电磁铁20 electromagnet
21电磁力发生部21 Electromagnetic Force Generation Department
22线圈22 coils
23感应线圈23 induction coil
24控制器24 controllers
25放大器25 amps
30型架30 frame
30a加强型架30a reinforced frame
31热硬化树脂31 thermosetting resin
电磁控制轴承11具有以下的构成。维持轴在内部可以旋转的流体空间,围绕上述轴12支持的内壁和围绕上述内壁可固定上述轴承11的外壁和、连接上述内壁和外壁的上下端壁和、位于内壁和外壁间,为在上述轴12和内壁间的流体产生一定的动压,在上述轴12的旋转半径方向内设置具有引力作用的一个以上的电磁力发生装置19和、充填在上述内壁和外壁间固定电磁力发生装置19的热硬化树脂31构成。因此内壁是内径与加工了的轴间,具有流体流动空间的轴承11a而构成,外壁使用了当热硬化树脂31硬化过程中而膨胀时可防止变形的加强型架30。另外作为热硬化树脂优选的是使用聚合涂层(ポリコ一ト)。The electromagnetic control bearing 11 has the following configuration. Maintain the fluid space where the shaft can rotate inside, the inner wall supported around the
电磁发生装置19是当轴12旋转一定速度以上时,可以抑制所产生的油涡现象的装置,所以可以将轴12吸引到所需的方向增加偏心率。电磁发生装置19在轴承部11a的外圆周面上放射状地备有多个电磁铁20。这些电磁铁是长方形的,而且各电磁铁20在对着轴12的前方的两侧具有一对电磁发生部21。而且,各电磁发生部21上卷绕着线圈22,这些线圈根据轴的旋转速度而加上电源。The
轴12在高速旋转的过程中,偏心量减少时,电源选择地加在各线圈22上,与此同时,由于电磁发生部21产生电磁力后将轴12吸引到电磁铁20侧。而且,每个电磁力发生部21都具有产生感应电流的感应线圈23。感应线圈23是根据轴12和电磁铁20间的距离差而产生感应电流,根据感应电流的变化量将电源加在线圈22上。这样的感应电流用放大器25放大后输入到控制器24内,控制器24根据该电磁铁20和轴12的距离差将电源加在电磁铁20上。更详细地说明的话,根据来自控制器24的控制信号将电源加在该电磁铁20的线圈22上,用电磁力发生装置21产生的电磁力将轴12吸引到所需的方向。例如,在轴12旋转过程中,可以吸引到任何的一个方向,在偏心的状态下进行旋转。而且,轴12可在各磁铁20上连续地处于偏心状态,也就是在轴承11内部作成涡旋空转的状态,这样可以增加油13的压缩性。During the high-speed rotation of the
本发明的具有电磁控制轴承的电机具有以下的构成。The motor with the electromagnetically controlled bearing of the present invention has the following configurations.
构成轴承11的轴承部11a和内装电磁铁20的加强型架30插入到构成电机基座10中而组装的。将加强型架30组装到基座10的内部的方法有嵌合法和、将加强型架30插入到基座10的内部后,用螺钉同时紧固外周的组装方法。另外在基座10的外周上备有卷绕线圈15的定子14。而且,在轴承11的内部插入可旋转的轴12,在轴12和轴承11间充填可发生动压的油13。The
另外,在轴12的上端用嵌合的方式结合轴套16,在其外周备有可一起旋转的转子17。转子17与定子14位于同轴上,由围绕定子的缸体形态的壁和、附着在缸体形态壁的内部,与定子14间有间隙的磁铁18和、可旋转地将磁铁支持在轴12上的轴套16构成的。因此在线圈15上施加电压时,磁铁18产生磁力,则转子17与轴12一起高速旋转。In addition, a
这样构成的本发明,在轴承11的内部具有可将轴12向所需的方向强制偏心的电磁力发生装置。电磁力发生装置19,当轴12在高速旋转过程中,偏心量减少,使得油13的动压不减少,所以可抑制油旋涡现象。这样的电磁发生装置19是由在轴承11内部具有放射状的多个电磁铁20构成的。各电磁铁20上具有对着轴12的前方的一对电磁力发生部21。在这些卷绕在电磁力发生部21上的线圈22上加以电压时,就会产生电磁力。而且,在各电磁力发生部21上备有发生感应电流的感应线圈23,感应线圈23在轴12和各磁铁20产生距离差时,则产生感应电流,感应电流通过放大器25送到控制器24,根据感应电流量来调节电磁力。In the present invention thus constituted, the
以下说明轴12的控制过程。轴12高速旋转时会产生偏心量减少的现象。此时在电磁铁20上备有多个感应线圈23上,由于与轴23的距离差或者由于旋转速度而产生感应电流,这些通过放大器25放大后输出到控制器24。而后,控制器24将产生距离差的该线圈22上应施加的电源信号送到计算机中。因此,电源加在线圈22上,在该电磁力发生部21产生电磁力后,将轴12吸引到所需的方向。因此,轴12对轴承11强制偏心后,增加了油13的动压,减少了油的涡旋现象,这样可以提高高速旋转的动态特性。另外通过加在各电磁铁20上的电源可使轴12连续的偏心,旋转到涡旋的状态,增加油的压力。The control process of the
本发明的流体动压轴承装置的制造方法如下。The method of manufacturing the hydrodynamic bearing device of the present invention is as follows.
图3是本发明的轴承的分离斜视图,图4及图5是表示本发明轴承的制造过程的断面图、图6是表示本发明轴承的制造过程流程图、准备一个具有与目的轴承11外经相同的内径的、至少一侧具有入口的型架30的步骤(S100)和、在上述型架30的内部的至少一侧有入口,将具有与轴承的外经相同的外径的至少一个轴承加强型架30a配置在型架30内的步骤(S110)和、通过上述型架30的入口在同轴承上将上述各电磁力发生装置19配置在加强型架30a的内部(S120)的步骤和、通过上述型架30的入口将轴承部11a设置在各电磁力发生装置19的内部的步骤(S130)。Fig. 3 is the separation oblique view of the bearing of the present invention, Fig. 4 and Fig. 5 are the cross-sectional views showing the manufacturing process of the bearing of the present invention, Fig. 6 is the manufacturing process flow chart showing the bearing of the present invention, prepare a bearing with purpose and 11 outside Through the step (S100) of the
这里,型架30是八角形的管状,在相互对应内侧的各边配置电磁力发生装置19。在过程中各电磁力发生装置19是相互对向的。而且,这些电磁力发生装置19的电磁力发生部21的顶端面是形成与轴承11a的外圆周面相接的圆弧形。Here, the
接着,通过型架30的入口在加强型架30a和上述轴承部11a间投入树脂步骤(S140)和使在加强型架30a和上述轴承部11a间的树脂硬化后,加强型架30a、电磁力发生装置19及轴承部11a相互固定的步骤(S150)和、加工上述轴承部11a的内径,以便与上述轴12间保持流体流动的空间的步骤(S160)和、将具有加强型架30a和电磁力发生装置19的轴承部11a从上述型架30上分离,完成电磁控制轴承的步骤(S170)。Next, after the step of injecting resin between the reinforced
图7是本发明其他实施例的轴承装置的断面图,型架32是圆筒形的结构。型架32是圆筒形的结构时,当与构成电机基座10的内圆周面结合时,由于电机基座10的是圆形的,所以可以提高组装性能。本发明其他实施例的轴承装置是在圆筒形的型架32的内圆周面上的四面形成多个导向槽33。这些导向槽33是与电磁铁20的一侧面形成对应的状态。因此,电磁铁20结合在这些导向槽上时,固定成不可以活动的状态,接着在各电磁铁20间插入轴承11a后,在轴承部11a和型架32间充填热硬化树脂31。充填热硬化树脂31后,在型架32的内部将轴承都11a和各电磁铁20固定成不可以活动的状态,接着精密加工轴承部11a的内圆周面,可旋转地插入轴12后则完成本发明其他实施例的轴承装置。FIG. 7 is a sectional view of a bearing device in another embodiment of the present invention, and the
如上所述,通过本发明,将结合基座上的型架的内部配置多个电磁铁和轴承部后,用热硬化树脂固定它们时,则完成了本发明的轴承。将这样的轴承固定设置在基座的内部后,则形成在轴承的内圆周面上支持轴的可旋转的结构,当轴旋转的过程中产生动压后,可以旋转地支持轴。而且,轴在旋转过程中偏心量减少时,在各电磁力发生装置的线圈上加以电源,可以将轴吸引到所需的方向,增加偏心量。因此增加动压后,可以提高高速旋转时的低噪音、低振动的特性,简单的轴承结构就可以得到好的效果。As described above, according to the present invention, when a plurality of electromagnets and bearing parts are arranged inside the jig on the joint base and fixed with thermosetting resin, the bearing of the present invention is completed. When such a bearing is fixed inside the base, a rotatable structure is formed to support the shaft on the inner peripheral surface of the bearing, and the shaft can be rotatably supported when dynamic pressure is generated during the rotation of the shaft. Moreover, when the amount of eccentricity decreases during the rotation of the shaft, power is applied to the coils of each electromagnetic force generating device to attract the shaft to a desired direction and increase the amount of eccentricity. Therefore, after increasing the dynamic pressure, the characteristics of low noise and low vibration during high-speed rotation can be improved, and a simple bearing structure can achieve good results.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970050508A KR19990027969A (en) | 1997-09-30 | 1997-09-30 | Hydrodynamic bearing device and its manufacturing method |
KR50508/97 | 1997-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1213048A true CN1213048A (en) | 1999-04-07 |
Family
ID=19522065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97121747A Pending CN1213048A (en) | 1997-09-30 | 1997-12-19 | Method for fabricating electromagnet control bearing and brushless DC motor using the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3215080B2 (en) |
KR (1) | KR19990027969A (en) |
CN (1) | CN1213048A (en) |
DE (1) | DE19757395C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397753C (en) * | 2003-01-29 | 2008-06-25 | 东京零件工业股份有限公司 | Small brushless motor |
CN107655623A (en) * | 2017-08-15 | 2018-02-02 | 杭州电子科技大学 | Contactless Jing Dongtaibiaodingshiyantai |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548149B1 (en) | 1996-04-24 | 2003-04-15 | Oji Paper Co., Ltd. | Ink jet recording material and process for producing same |
EP1016546B1 (en) | 1998-12-28 | 2004-05-19 | Nippon Paper Industries Co., Ltd. | Ink-jet recording paper containing silica layers and method for its' manufacture |
GR1007565B (en) * | 2010-09-08 | 2012-03-26 | ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ (κατά ποσοστό 40%), | Hybrid sliding-contact bearing |
KR20230173377A (en) | 2022-06-17 | 2023-12-27 | 한국과학기술연구원 | Turbo machine having hybrid bearing structure composed of magnetic bearing, permanent magnet and sleeve journal bearing and control method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541460A (en) * | 1994-02-25 | 1996-07-30 | Seagate Technology, Inc. | Passive magnetic bearings for a spindle motor |
-
1997
- 1997-09-30 KR KR1019970050508A patent/KR19990027969A/en not_active Application Discontinuation
- 1997-12-17 JP JP34790397A patent/JP3215080B2/en not_active Expired - Fee Related
- 1997-12-19 CN CN97121747A patent/CN1213048A/en active Pending
- 1997-12-22 DE DE19757395A patent/DE19757395C2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397753C (en) * | 2003-01-29 | 2008-06-25 | 东京零件工业股份有限公司 | Small brushless motor |
CN107655623A (en) * | 2017-08-15 | 2018-02-02 | 杭州电子科技大学 | Contactless Jing Dongtaibiaodingshiyantai |
CN107655623B (en) * | 2017-08-15 | 2020-02-21 | 杭州电子科技大学 | Non-contact static and dynamic calibration test bench |
Also Published As
Publication number | Publication date |
---|---|
KR19990027969A (en) | 1999-04-15 |
JPH11108058A (en) | 1999-04-20 |
DE19757395C2 (en) | 1999-12-02 |
JP3215080B2 (en) | 2001-10-02 |
DE19757395A1 (en) | 1999-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1157838C (en) | scan motor | |
US7502648B2 (en) | Artificial cardiac pump | |
US6833643B2 (en) | Magnetic bearing with damping | |
CN1084444C (en) | Bearing system and brushless DC motor using such system | |
JP2000201447A (en) | Motor | |
CN101277052A (en) | Motor | |
CN109510369B (en) | Centrifugal pump assembly with axial flux motor and method of assembling the same | |
CN1084542C (en) | Rotor assembling method, and motor having such rotor | |
CN103821762A (en) | Impeller and electric blower having the same | |
WO2021199750A1 (en) | Centrifugal compressor | |
CN1213048A (en) | Method for fabricating electromagnet control bearing and brushless DC motor using the same | |
JPH07259850A (en) | Bearing | |
US9059612B2 (en) | Spindle motor | |
JP2013050180A (en) | Magnetic bearing mechanism | |
CN1188943C (en) | Dynamic-pressure bearing motor and producing method thereof | |
JP5683544B2 (en) | Vacuum pump | |
JP2019163764A (en) | Vacuum pump and method for operating vacuum pump | |
JP6370416B2 (en) | Vacuum pump, permanent magnet support, monolithic permanent magnet, and manufacturing method of monolithic permanent magnet | |
CN1819411A (en) | Spindle motor that suppresses half-frequency rotational vibration induced during operation | |
JP2003324891A (en) | Motor | |
JPH03213715A (en) | Thrust bearing | |
KR100287618B1 (en) | Spindle motor_ | |
JPH06189492A (en) | Spindle motor | |
JP2000081028A (en) | Dynamic pressure bearing device for fan motor | |
JP2549819Y2 (en) | pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |