[go: up one dir, main page]

CN118922855A - Image optimization in mobile capture and editing applications - Google Patents

Image optimization in mobile capture and editing applications Download PDF

Info

Publication number
CN118922855A
CN118922855A CN202380028390.0A CN202380028390A CN118922855A CN 118922855 A CN118922855 A CN 118922855A CN 202380028390 A CN202380028390 A CN 202380028390A CN 118922855 A CN118922855 A CN 118922855A
Authority
CN
China
Prior art keywords
sdr
hdr
image
color space
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202380028390.0A
Other languages
Chinese (zh)
Inventor
苏冠铭
H·卡杜
黄琮玮
J·S·麦克尔韦恩
陈涛
S·N·胡利亚卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby Laboratories Licensing Corp
Original Assignee
Dolby Laboratories Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby Laboratories Licensing Corp filed Critical Dolby Laboratories Licensing Corp
Priority claimed from PCT/US2023/015510 external-priority patent/WO2023177873A2/en
Publication of CN118922855A publication Critical patent/CN118922855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)

Abstract

在通过参数来参数化的HDR颜色空间中对HDR色标进行采样。从采样HDR色标生成参考SDR色标、输入HDR色标和参考HDR色标。执行优化算法以生成优化的正向重塑映射和优化的反向重塑映射。使用所述优化的正向重塑映射来将输入HDR图像正向重塑为经正向重塑SDR图像,而使用所述优化的反向重塑映射来将所述经正向重塑SDR图像反向重塑为经反向重塑HDR图像。

An HDR color scale is sampled in an HDR color space parameterized by a parameter. A reference SDR color scale, an input HDR color scale, and a reference HDR color scale are generated from the sampled HDR color scale. An optimization algorithm is performed to generate an optimized forward reshaping map and an optimized reverse reshaping map. The input HDR image is forward reshaped into a forward reshaped SDR image using the optimized forward reshaping map, and the forward reshaped SDR image is reversely reshaped into a reverse reshaped HDR image using the optimized reverse reshaping map.

Description

移动捕获和编辑应用中的图像优化Image optimization in mobile capture and editing applications

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求于2022年3月18日提交的美国临时专利申请序列号63/321,363和于2022年3月18日提交的欧洲专利申请22162984.3的优先权权益,所述专利申请中的每一个都通过引用整体并入本文。This application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 63/321,363, filed on March 18, 2022, and European Patent Application 22162984.3, filed on March 18, 2022, each of which is incorporated herein by reference in its entirety.

技术领域Technical Field

本公开总体上涉及图像。更具体地,本公开的实施例涉及用于处理图像的视频编解码器。The present disclosure relates generally to images and more particularly to video codecs for processing images.

背景技术Background Art

如本文所使用的,术语“动态范围(DR)”可以涉及人类视觉系统(HVS)感知图像中的强度范围(例如,光亮度、亮度)的能力,例如,从最暗的黑色(深色)到最亮的白色(高光)。从这个意义上说,DR与“参考场景的(scene-referred)”强度有关。DR还可以涉及显示设备充分或近似渲染特定阔度(breadth)的强度范围的能力。从这个意义上说,DR与“参考显示的(display-referred)”强度有关。除非在本文的描述中的任何一点明确指定特定的意义具有特定的意思,否则应该推断为所述术语可以在任一意义上例如可互换地使用。As used herein, the term "dynamic range (DR)" may relate to the ability of the human visual system (HVS) to perceive a range of intensities (e.g., brightness, luminance) in an image, e.g., from the darkest black (dark colors) to the brightest white (highlights). In this sense, DR is related to "scene-referred" intensities. DR may also relate to the ability of a display device to adequately or approximately render a range of intensities of a particular breadth. In this sense, DR is related to "display-referred" intensities. Unless a particular sense is expressly specified at any point in the description herein to have a particular meaning, it should be inferred that the terms may be used in either sense, e.g., interchangeably.

如本文所使用的,术语“高动态范围(HDR)”涉及跨越人类视觉系统(HVS)的大约14至15个或更多数量级的DR阔度。实际上,相对于HDR,人类可以同时感知强度范围中的广泛阔度的DR可能会被稍微截短。如本文所使用的,术语“增强动态范围(EDR)或视觉动态范围(VDR)”可以单独地或可互换地与这种DR相关:所述DR可在场景或图像内由包括眼运动的人类视觉系统(HVS)感知,允许场景或图像上的一些光适应变化。如本文所使用的,EDR可以涉及跨越5个到6个数量级的DR。因此,虽然相对于真实场景参考的HDR可能稍微窄一些,但EDR可以表示宽DR阔度并且也可以被称为HDR。As used herein, the term "high dynamic range (HDR)" refers to a DR width that spans approximately 14 to 15 or more orders of magnitude across the human visual system (HVS). In practice, the DR, over a wide range of intensity ranges that humans can simultaneously perceive, may be slightly truncated relative to HDR. As used herein, the terms "enhanced dynamic range (EDR) or visual dynamic range (VDR)" may be individually or interchangeably related to such a DR that can be perceived within a scene or image by the human visual system (HVS) including eye movement, allowing for some light adaptation changes across the scene or image. As used herein, EDR may refer to a DR that spans 5 to 6 orders of magnitude. Therefore, while HDR may be slightly narrower relative to a real scene reference, EDR may represent a wide DR width and may also be referred to as HDR.

实际上,图像包括颜色空间的一个或多个颜色分量(例如,亮度Y以及色度Cb和Cr),其中每个颜色分量由每像素n位的精度表示(例如,n=8)。使用非线性光亮度编码(例如,伽马编码),其中n≤8的图像(例如,彩色24位JPEG图像)被视为标准动态范围的图像,而其中n>8的图像可以被视为增强动态范围的图像。In practice, an image includes one or more color components of a color space (e.g., luminance Y and chrominance Cb and Cr), where each color component is represented by n bits of precision per pixel (e.g., n=8). Using nonlinear light intensity coding (e.g., gamma coding), images where n≤8 (e.g., color 24-bit JPEG images) are considered as images of standard dynamic range, while images where n>8 can be considered as images of enhanced dynamic range.

给定显示器的参考电光传递函数(EOTF)表征输入视频信号的颜色值(例如,光亮度)与由显示器产生的输出屏幕颜色值(例如,屏幕光亮度)之间的关系。例如,ITURec.ITU-R BT.1886,“Reference electro-optical transfer function for flat paneldisplays used in HDTV studio production[HDTV工作室制作中使用的平板显示器的参考电光传递函数]”(2011年3月)限定了平板显示器的参考EOTF,所述文献通过引用整体并入本文。在给定了视频流的情况下,关于其EOTF的信息可以作为(图像)元数据嵌入比特流中。本文术语“元数据”涉及作为已编码比特流的一部分传输并且辅助解码器渲染经解码图像的任何辅助信息。这种元数据可以包括但不限于如本文描述的颜色空间或色域信息、参考显示器参数和辅助信号参数。The reference electro-optical transfer function (EOTF) for a given display characterizes the relationship between the color values (e.g., luminance) of an input video signal and the output screen color values (e.g., screen luminance) produced by the display. For example, ITU Rec. ITU-R BT.1886, "Reference electro-optical transfer function for flat panel displays used in HDTV studio production" (March 2011), defines a reference EOTF for flat panel displays, which is incorporated herein by reference in its entirety. Given a video stream, information about its EOTF may be embedded in the bitstream as (image) metadata. The term "metadata" herein refers to any auxiliary information that is transmitted as part of an encoded bitstream and that assists a decoder in rendering a decoded image. Such metadata may include, but is not limited to, color space or gamut information, reference display parameters, and auxiliary signal parameters as described herein.

如本文所使用的术语“PQ”是指感知光亮度幅度量化。人类视觉系统以极非线性方式响应于增加的光水平。人类观察刺激物的能力受到以下因素的影响:刺激物的光亮度、刺激物的大小、构成刺激物的空间频率以及在观看刺激物的特定时刻眼睛所适应的光亮度水平。在一些实施例中,感知量化器函数将线性输入灰度级映射到更好地匹配人类视觉系统中的对比度敏感度阈值的输出灰度级。在SMPTE ST 2084:2014“High Dynamic Range EOTFof Mastering Reference Displays[母版制作参考显示器的高动态范围EOTF]”(下文称为“SMPTE”)中描述了示例PQ映射函数,其通过引用整体并入本文,其中,在给定固定刺激物大小的情况下,对于每个光亮度水平(例如,刺激水平等),根据最敏感的适应水平和最敏感的空间频率(根据HVS模型)来选择所述光亮度水平处的最小可见对比度步长。As used herein, the term "PQ" refers to the quantization of the perceived brightness amplitude. The human visual system responds to the increased light level in a very nonlinear manner. The ability of humans to observe stimuli is affected by the following factors: the brightness of the stimuli, the size of the stimuli, the spatial frequency that constitutes the stimuli, and the brightness level that the eyes adapt to at the specific moment of viewing the stimuli. In some embodiments, the perception quantizer function maps the linear input grayscale to the output grayscale that better matches the contrast sensitivity threshold in the human visual system. In SMPTE ST 2084:2014 "High Dynamic Range EOTF of Mastering Reference Displays" (hereinafter referred to as "SMPTE"), an example PQ mapping function is described, which is incorporated herein by reference in its entirety, wherein, given a fixed stimulus size, for each brightness level (e.g., stimulus level, etc.), the minimum visible contrast step at the brightness level is selected according to the most sensitive adaptation level and the most sensitive spatial frequency (according to the HVS model).

支持200至1,000cd/m2或尼特的光亮度的显示器代表了与EDR(或HDR)相关的较低动态范围(LDR),也被称为标准动态范围(SDR)。EDR内容可以显示在支持较高动态范围(例如,从1,000尼特到5,000尼特或更高)的EDR显示器上。这种显示器可以使用支持高光亮度能力(例如,0到10,000或更高尼特)的替代EOTF来限定。在SMPTE 2084和Rec.ITU-RBT.2100,“Image parameter values for high Dynamic range television for use inproduction and international programme exchange[用于在制作和国际节目交换中使用的高动态范围电视的图像参数值]”(06/2017)中定义了这种EOTF的示例。如本发明人在此理解的,期望可以用于支持各种SDR和HDR显示设备的显示能力的用于合成视频内容数据的改进技术。Displays supporting luminances of 200 to 1,000 cd/ m2 or nits represent a lower dynamic range (LDR) associated with EDR (or HDR), also known as standard dynamic range (SDR). EDR content can be displayed on an EDR display that supports a higher dynamic range (e.g., from 1,000 nits to 5,000 nits or more). Such a display can be defined using an alternative EOTF that supports high luminance capabilities (e.g., 0 to 10,000 or more nits). Examples of such EOTFs are defined in SMPTE 2084 and Rec. ITU-R BT.2100, “Image parameter values for high Dynamic range television for use in production and international programme exchange” (06/2017). As the inventors understand herein, it is desirable to use improved techniques for synthesizing video content data that can be used to support the display capabilities of various SDR and HDR display devices.

在本节中描述的方法是可以采用的方法,但不一定是先前已经设想到或采用过的方法。因此,除非另有指示,否则不应该认为本节中描述的任何方法仅凭其纳入本节就可被视为现有技术。类似地,除非另有指示,否则关于一种或多种方法所认定的问题不应该基于本节而认为在任何现有技术中被认定。The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any approach described in this section qualifies as prior art simply by virtue of its inclusion in this section. Similarly, unless otherwise indicated, issues identified with respect to one or more approaches should not be assumed to qualify as prior art based on this section.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

在附图中以举例而非限制的方式来图示本发明的实施例,并且其中相似的附图标记指代类似的要素,并且在附图中:Embodiments of the invention are illustrated by way of example and not limitation in the accompanying drawings and in which like reference numerals refer to similar elements and in which:

图1A至图1E图示了用于应用优化的重塑(reshaping)操作的示例过程流程;1A-1E illustrate an example process flow for an application-optimized reshaping operation;

图2A图示了与如R.2020、P3和R.709颜色空间等HDR和SDR颜色空间有关的不规则形状的示例颜色分布;图2B至图2E和图2H至图2K图示了R.2020颜色空间中的示例参数化颜色空间;图2F和图2G图示了与不同参数化HDR颜色空间相对应的经正向重塑SDR颜色空间中的示例百分位Cb和Cr值;图2L图示了示例色表图像;图2M和图2N图示了示例棋盘图像;图2O图示了显示在参考图像显示器上的示例原始色表图像、来自色表图像的示例所捕获图像、以及从所捕获图像生成的纠正后所捕获图像;图2P图示了示例RGB值分布;图2Q至图2T图示了示例阿尔法形状;FIG. 2A illustrates example color distributions of irregular shapes associated with HDR and SDR color spaces such as R.2020, P3, and R.709 color spaces; FIGS. 2B-2E and 2H-2K illustrate example parameterized color spaces in the R.2020 color space; FIGS. 2F and 2G illustrate example percentile Cb and Cr values in a forward reshaped SDR color space corresponding to different parameterized HDR color spaces; FIG. 2L illustrates an example color table image; FIGS. 2M and 2N illustrate example checkerboard images; FIG. 2O illustrates an example original color table image displayed on a reference image display, an example captured image from the color table image, and a corrected captured image generated from the captured image; FIG. 2P illustrates an example RGB value distribution; FIGS. 2Q-2T illustrate example alpha shapes;

图3A和图3C图示了用于寻找优化的颜色空间来表示HDR颜色的示例过程流程;图3B图示了用于在ISP流水线中确定可编程参数的优化值的示例过程流程;图3D图示了用于生成优化的重塑操作参数的示例过程流程;图3E图示了用于生成多个不同色表的示例过程流程;图3F图示了用于在所捕获SDR和HDR图像的图像对之间匹配SDR和HDR颜色的示例过程流程;图3G和图3H图示了示例编码器侧和解码器侧图像/视频编辑操作;图3I至图3M图示了用于在图像/视频编辑应用中剪切超出范围的码字的示例解决方案;3A and 3C illustrate an example process flow for finding an optimized color space to represent HDR colors; FIG. 3B illustrates an example process flow for determining optimized values of programmable parameters in an ISP pipeline; FIG. 3D illustrates an example process flow for generating optimized reshaping operation parameters; FIG. 3E illustrates an example process flow for generating multiple different color tables; FIG. 3F illustrates an example process flow for matching SDR and HDR colors between image pairs of captured SDR and HDR images; FIG. 3G and 3H illustrate example encoder-side and decoder-side image/video editing operations; FIG. 3I to FIG. 3M illustrate example solutions for clipping out-of-range codewords in image/video editing applications;

图4A至图4E图示了示例过程流程;以及4A-4E illustrate example process flows; and

图5图示了示例硬件平台的简化框图,在该硬件平台上可以实施如本文所描述的计算机或计算设备。FIG5 illustrates a simplified block diagram of an example hardware platform upon which a computer or computing device as described herein may be implemented.

具体实施方式DETAILED DESCRIPTION

在以下描述中,出于说明的目的,阐述了许多具体细节以便提供对本公开的透彻理解。然而,明显的是,可以在没有这些具体细节的情况下实践本公开。在其他情形中,为了避免不必要地遮蔽、模糊或混淆本公开,没有详尽地描述众所周知的结构和设备。In the following description, for the purpose of illustration, many specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it is apparent that the present disclosure can be practiced without these specific details. In other cases, in order to avoid unnecessarily obscuring, obscuring or confusing the present disclosure, well-known structures and devices are not described in detail.

概述Overview

本文中针对包括但不限于移动(视频)捕获应用的视频捕获应用描述了图像优化,如与基于张量积B样条(TPB)的图像重塑解决方案有关的那些图像优化。基于TPB的解决方案可以使用用如向后兼容视频编解码器等视频编解码器实施的鲁棒预测器来提供或生成相对准确的经重建图像。这些预测器可以用静态映射进行操作,以从容地处理如丢帧等传输错误或从中恢复,最小化如电池功耗等功耗,减少数据开销和/或处理/传输时延等。在一些操作情景中,可以用要符合相对苛刻的电池或功率约束的移动应用来实施如本文所描述的一些或所有基于TPB的解决方案。Image optimizations are described herein for video capture applications including but not limited to mobile (video) capture applications, such as those related to image reconstruction solutions based on tensor product B-splines (TPB). Solutions based on TPB can use robust predictors implemented with video codecs such as backward compatible video codecs to provide or generate relatively accurate reconstructed images. These predictors can operate with static mappings to calmly handle or recover from transmission errors such as lost frames, minimize power consumption such as battery power consumption, reduce data overhead and/or processing/transmission delays, etc. In some operating scenarios, some or all of the solutions based on TPB as described herein can be implemented with mobile applications that are subject to relatively stringent battery or power constraints.

基于TPB的图像重塑解决方案可以适应于在不同用例中操作。一些用例允许自由地设计和/或应用HDR到SDR映射,以生成要编码在视频信号(的基础层)中的SDR图像,如本文所描述的。一些用例依赖于具有相对有限的可编程寄存器的移动图像信号处理器(ISP)来生成要编码在视频信号(的基础层)中的SDR图像。可以使用不同架构来实施如本文所描述的基于TPB的解决方案。另外地、可选地或替代性地,可以使用这些架构或基于TPB的解决方案来提供或支持向后兼容性。The TPB-based image reshaping solution can be adapted to operate in different use cases. Some use cases allow the freedom to design and/or apply HDR to SDR mapping to generate SDR images to be encoded in (the base layer of) the video signal, as described herein. Some use cases rely on a mobile image signal processor (ISP) with relatively limited programmable registers to generate SDR images to be encoded in (the base layer of) the video signal. Different architectures can be used to implement the TPB-based solution as described herein. Additionally, optionally or alternatively, these architectures or TPB-based solutions can be used to provide or support backward compatibility.

在给定了在SDR颜色空间或SDR域中的颜色空间中表示的参考SDR图像的情况下,基于TPB的解决方案可以使用TPB优化过程来实现或确定最大或最宽HDR颜色空间或HDR域中的颜色空间,以表示从SDR图像预测的对应经重建HDR图像。HDR颜色空间越宽,引入SDR颜色空间中的颜色偏差就越多。可以实施TPB优化过程以在一方面实现最大或最宽HDR颜色空间与另一方面引入SDR颜色偏差之间实现或确定优化的平衡点或权衡。另外地、可选地或替代性地,可以实施如本文所描述的TPB优化过程以结合中性颜色处理或执行约束优化,以帮助在从SDR图像预测的经重建HDR图像中保留在SDR图像中表示的灰度级。Given a reference SDR image represented in an SDR color space or a color space in an SDR domain, a TPB-based solution may use a TPB optimization process to achieve or determine the maximum or widest HDR color space or a color space in an HDR domain to represent a corresponding reconstructed HDR image predicted from the SDR image. The wider the HDR color space, the more color deviations are introduced into the SDR color space. The TPB optimization process may be implemented to achieve or determine an optimized balance point or trade-off between achieving the maximum or widest HDR color space on the one hand and introducing SDR color deviations on the other hand. Additionally, optionally or alternatively, a TPB optimization process as described herein may be implemented to combine neutral color processing or perform constrained optimization to help preserve the grayscale represented in the SDR image in the reconstructed HDR image predicted from the SDR image.

随着各种配备有相机的计算或移动设备在实践中捕获越来越多的视频,视频编辑也变得越来越受欢迎。操作这些设备的用户可以被允许手动地调整所捕获视频的外观或简单地将默认主题模板应用于所捕获视频。取决于可用的计算资源和/或视频编辑工具设计者/提供者的偏好,视频编辑可以在如源HDR域等源域(在该源域中表示源图像)或如生成的SDR域等非源域(预编辑图像可以从源域中的源图像转换到该非源域)中完成。As various camera-equipped computing or mobile devices capture more and more videos in practice, video editing has become more and more popular. Users operating these devices may be allowed to manually adjust the appearance of the captured video or simply apply a default theme template to the captured video. Depending on the available computing resources and/or the preferences of the video editing tool designer/provider, video editing can be done in a source domain such as the source HDR domain (in which the source image is represented) or a non-source domain such as the generated SDR domain (the pre-edited image can be converted from the source image in the source domain to the non-source domain).

在要将SDR图像编码在视频信号中的操作情景中,HDR域或源域中的视频编辑操作不会对视频信号的下游设备从在解码器侧从视频信号解码的SDR图像重建HDR图像产生不利影响。这是因为这些视频编辑操作不干扰在编码器侧从HDR图像或HDR域中的源图像生成SDR图像的HDR到SDR映射,并且也不干扰在解码器侧往回映射到HDR图像或重建HDR图像的近似的SDR到HDR映射。In an operational scenario where an SDR image is to be encoded in a video signal, video editing operations in the HDR domain or source domain do not adversely affect the reconstruction of an HDR image from an SDR image decoded from the video signal at the decoder side by a device downstream of the video signal. This is because these video editing operations do not interfere with the HDR to SDR mapping that generates an SDR image from an HDR image or source image in the HDR domain at the encoder side, and do not interfere with the approximate SDR to HDR mapping that maps back to an HDR image or reconstructs an HDR image at the decoder side.

然而,在这些操作情景中,SDR域中的视频编辑操作将可能不利地影响SDR域与HDR域之间的可逆性。例如,编辑后SDR图像可能不能够往回映射到原始或源HDR图像。此外,用于表示SDR图像的颜色空间可能是有限的,其像素值或码字不能超过如SMPTE范围等预定义范围。用于视频编辑操作的如YUV至RGB转换等颜色空间转换可能导致像素值或码字被剪切并且因此损害或伤害可逆性。如本文所描述的剪切技术可以用于减少或防止对视频编辑操作(包括但不限于用移动设备执行的那些操作)的不利编辑影响。可以在RGB域中实施两级TPB边界剪切以支持或保留SDR域中的最大编辑后颜色,这些最大编辑后颜色可以用于传播或往回映射到HDR域中的经重建图像。However, in these operating scenarios, video editing operations in the SDR domain will likely adversely affect the reversibility between the SDR domain and the HDR domain. For example, an edited SDR image may not be able to be mapped back to the original or source HDR image. In addition, the color space used to represent the SDR image may be limited, and its pixel values or codewords cannot exceed a predefined range such as the SMPTE range. Color space conversions such as YUV to RGB conversion for video editing operations may cause pixel values or codewords to be sheared and thus damage or harm reversibility. The shearing techniques described herein can be used to reduce or prevent adverse editing effects on video editing operations (including but not limited to those performed with mobile devices). Two-level TPB boundary shearing can be implemented in the RGB domain to support or retain the maximum edited colors in the SDR domain, which can be used to propagate or map back to the reconstructed images in the HDR domain.

本文描述的示例实施例涉及图像生成。构建分布在HDR颜色空间中的采样HDR颜色空间点。该HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化。该色原缩放参数用于计算勾画该HDR颜色空间的多个色原中的至少一个的颜色空间坐标。从该HDR颜色空间中的这些采样HDR颜色空间点生成在参考SDR颜色空间中表示的参考SDR颜色空间点、在输入HDR颜色空间中表示的输入HDR颜色空间点和在参考HDR颜色空间点中表示的参考HDR颜色空间点。执行重塑操作优化算法以生成优化的正向重塑映射和优化的反向重塑映射链。该重塑操作优化算法使用这些参考SDR颜色空间点、这些输入HDR颜色空间点和这些参考HDR颜色空间点作为输入。该优化的正向重塑映射用于将该输入HDR颜色空间中的输入HDR图像正向重塑为经正向重塑SDR颜色空间中的经正向重塑SDR图像,而该优化的反向重塑映射用于将该经正向重塑SDR颜色空间中的这些经正向重塑SDR图像反向重塑为经反向重塑HDR图像。The example embodiments described herein relate to image generation. Sampled HDR color space points distributed in an HDR color space are constructed. The HDR color space is parameterized by a color source scaling parameter having a candidate value selected from a plurality of candidate values. The color source scaling parameter is used to calculate the color space coordinates of at least one of a plurality of color sources outlining the HDR color space. Reference SDR color space points represented in a reference SDR color space, input HDR color space points represented in an input HDR color space, and reference HDR color space points represented in a reference HDR color space point are generated from the sampled HDR color space points in the HDR color space. A reshaping operation optimization algorithm is performed to generate an optimized forward reshaping mapping and an optimized reverse reshaping mapping chain. The reshaping operation optimization algorithm uses the reference SDR color space points, the input HDR color space points, and the reference HDR color space points as input. The optimized forward reshaping mapping is used to forward reshape the input HDR images in the input HDR color space into forward reshaped SDR images in the forward reshaped SDR color space, and the optimized reverse reshaping mapping is used to reverse reshape the forward reshaped SDR images in the forward reshaped SDR color space into reverse reshaped HDR images.

本文描述的示例实施例涉及图像生成。构建分布在HDR颜色空间中的采样HDR颜色空间点。该HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化。该色原缩放参数用于计算勾画该HDR颜色空间的多个色原中的至少一个的颜色空间坐标。从该HDR颜色空间中的这些采样HDR颜色空间点生成在输入SDR颜色空间中表示的输入SDR颜色空间点和在参考HDR颜色空间点中表示的参考HDR颜色空间点。执行重塑操作优化算法以生成优化的反向重塑映射。该重塑操作优化算法接收这些输入SDR颜色空间点和这些参考HDR颜色空间点作为输入。该反向重塑映射用于将该输入SDR颜色空间中的SDR图像反向重塑为经反向重塑HDR图像。The example embodiments described herein relate to image generation. Sampled HDR color space points distributed in an HDR color space are constructed. The HDR color space is parameterized by a color source scaling parameter having a candidate value selected from a plurality of candidate values. The color source scaling parameter is used to calculate the color space coordinates of at least one of a plurality of color sources outlining the HDR color space. Input SDR color space points represented in an input SDR color space and reference HDR color space points represented in reference HDR color space points are generated from the sampled HDR color space points in the HDR color space. A reshaping operation optimization algorithm is performed to generate an optimized reverse reshaping mapping. The reshaping operation optimization algorithm receives the input SDR color space points and the reference HDR color space points as input. The reverse reshaping mapping is used to reversely reshape the SDR image in the input SDR color space into a reversely reshaped HDR image.

本文描述的示例实施例涉及图像生成。从训练SDR图像中提取一组SDR图像特征点,而从训练HDR图像中提取一组HDR图像特征点。将该组SDR图像特征点中的一个或多个SDR图像特征点的子集与该组HDR图像特征点中的一个或多个HDR图像特征点的子集相匹配。使用该一个或多个SDR图像特征点的子集和该一个或多个HDR图像特征点的子集生成几何变换,以将该训练SDR图像中的一组SDR像素与该训练HDR图像中的一组HDR像素在空间上对齐。在已通过该几何变换将该训练SDR图像与该训练HDR图像在空间上对齐之后从该训练SDR图像中的该组SDR像素和该训练HDR图像中的该组HDR像素确定一组成对SDR色标与HDR色标。至少部分地基于从该训练SDR图像和该训练HDR图像得到的该组成对SDR色标与HDR色标生成优化的SDR到HDR映射。将该优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。The example embodiments described herein relate to image generation. A set of SDR image feature points are extracted from a training SDR image, and a set of HDR image feature points are extracted from a training HDR image. A subset of one or more SDR image feature points in the set of SDR image feature points is matched with a subset of one or more HDR image feature points in the set of HDR image feature points. A geometric transformation is generated using the subset of the one or more SDR image feature points and the subset of the one or more HDR image feature points to spatially align a set of SDR pixels in the training SDR image with a set of HDR pixels in the training HDR image. A set of paired SDR color scales and HDR color scales are determined from the set of SDR pixels in the training SDR image and the set of HDR pixels in the training HDR image after the training SDR image has been spatially aligned with the training HDR image by the geometric transformation. An optimized SDR to HDR mapping is generated based at least in part on the set of paired SDR color scales and HDR color scales obtained from the training SDR image and the training HDR image. The optimized SDR to HDR mapping is applied to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

本文描述的示例实施例涉及图像生成。对一对训练标准动态范围(SDR)图像与训练高动态范围(HDR)图像中的每个训练图像执行相应相机失真校正操作,以生成一对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像。使用从该对无失真训练SDR图像与无失真训练HDR图像中的每个无失真图像检测到的角图案标记生成一对SDR图像投影变换与HDR图像投影变换中的相应投影变换。将该对SDR图像投影变换与HDR图像投影变换中的每个投影变换应用于该对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像,以生成一对纠正后训练SDR图像与纠正后训练HDR图像中的相应纠正后图像。从该纠正后训练SDR图像中提取一组SDR色标,而从该纠正后训练HDR图像中提取一组HDR色标。至少部分地基于从该训练SDR图像和该训练HDR图像得到的该组SDR色标和该组HDR色标生成优化的SDR到HDR映射。将该优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。Example embodiments described herein relate to image generation. A corresponding camera distortion correction operation is performed on each training image in a pair of training standard dynamic range (SDR) images and training high dynamic range (HDR) images to generate a corresponding undistorted image in a pair of undistorted training SDR images and undistorted training HDR images. A corresponding projection transformation in a pair of SDR image projection transformations and HDR image projection transformations is generated using corner pattern markers detected from each undistorted image in the pair of undistorted training SDR images and undistorted training HDR images. Each projection transformation in the pair of SDR image projection transformations and HDR image projection transformations is applied to the corresponding undistorted image in the pair of undistorted training SDR images and undistorted training HDR images to generate a corresponding corrected image in a pair of corrected training SDR images and corrected training HDR images. A set of SDR color labels is extracted from the corrected training SDR images, and a set of HDR color labels is extracted from the corrected training HDR images. An optimized SDR to HDR mapping is generated based at least in part on the set of SDR color labels and the set of HDR color labels obtained from the training SDR images and the training HDR images. The optimized SDR-to-HDR mapping is applied to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

本文描述的示例实施例涉及对编辑后图像的剪切操作。构建分布在HDR颜色空间中用于表示经重建HDR图像的采样HDR颜色空间点。将这些采样HDR颜色空间点转换为第一SDR颜色空间中的SDR颜色空间点,要由编辑设备编辑的SDR图像在该第一SDR颜色空间中表示。基于该第一SDR颜色空间中的这些SDR颜色空间点的极端SDR码字值来确定定界SDR颜色空间矩形。从这些SDR颜色空间点的分布确定不规则三维(3D)形状。构建分布在该第一SDR颜色空间中的该定界SDR颜色空间矩形中的采样SDR颜色空间点。使用这些采样SDR颜色空间点和该不规则形状来生成边界剪切3D查找表(3D-LUT)。该边界剪切3D-LUT使用这些采样SDR颜色空间点作为查找键。至少部分地基于该边界剪切3D-LUT来对该第一SDR颜色空间中的编辑后SDR图像执行剪切操作,以生成该第一SDR颜色空间中的边界经剪切编辑后SDR图像。The example embodiments described herein relate to a shearing operation on an edited image. Sampled HDR color space points distributed in an HDR color space for representing a reconstructed HDR image are constructed. The sampled HDR color space points are converted to SDR color space points in a first SDR color space, in which an SDR image to be edited by an editing device is represented. A delimiting SDR color space rectangle is determined based on extreme SDR codeword values of the SDR color space points in the first SDR color space. An irregular three-dimensional (3D) shape is determined from the distribution of the SDR color space points. Sampled SDR color space points distributed in the delimiting SDR color space rectangle in the first SDR color space are constructed. A boundary shearing 3D lookup table (3D-LUT) is generated using the sampled SDR color space points and the irregular shape. The boundary shearing 3D-LUT uses the sampled SDR color space points as lookup keys. A shearing operation is performed on the edited SDR image in the first SDR color space based at least in part on the boundary shearing 3D-LUT to generate a boundary sheared edited SDR image in the first SDR color space.

图像/视频捕获应用中的重塑优化Reshaping optimization in image/video capture applications

可以在视频捕获应用中实施或并入如TPB和/或非TPB优化过程等重塑优化过程,这些视频捕获应用在各种操作情景中在如移动设备等计算设备上运行。具有重塑优化过程的视频捕获应用可以用于生成或输出视频信号,如编码在其中的基础层或SDR图像。重塑优化过程可以在不同操作情景中实施不同解决方案,以生成或优化如TPB和/或非TPB系数等重塑操作参数,以与基础层或SDR图像一起用于生成、建构或重建具有优化的图片质量的非基础层或HDR图像。Reshaping optimization processes such as TPB and/or non-TPB optimization processes may be implemented or incorporated into video capture applications that are run on computing devices such as mobile devices in various operating scenarios. Video capture applications with reshaping optimization processes may be used to generate or output video signals such as base layers or SDR images encoded therein. The reshaping optimization process may implement different solutions in different operating scenarios to generate or optimize reshaping operation parameters such as TPB and/or non-TPB coefficients for use with base layers or SDR images to generate, construct, or reconstruct non-base layers or HDR images with optimized picture quality.

为了说明的目的,重塑优化过程或在其中实施的解决方案可以基于视频捕获应用所采用的特定SDR生成过程或子过程以及基于进行重塑优化的特定重塑路径(正向(重塑)路径和/或反向(重塑)路径)来分类为不同的类型。For illustrative purposes, the reshaping optimization processes or solutions implemented therein can be classified into different types based on the specific SDR generation process or sub-process adopted by the video capture application and based on the specific reshaping path (forward (reshaping) path and/or reverse (reshaping) path) for performing the reshaping optimization.

图1A图示了用(单个)视频捕获设备实施白盒联合正向和反向TPB优化设计/解决方案(称为“WFB”)的第一示例重塑优化过程。白盒联合正向和反向TPB优化设计/解决方案可以被实施用于以下操作场景:SDR生成过程或子过程用白盒转换操作将参考HDR图像转换为参考SDR图像,并且正向和反向(重塑)路径都可以进行进行TPB优化。1A illustrates a first example reshaping optimization process implementing a white-box joint forward and reverse TPB optimization design/solution (referred to as "WFB") with a (single) video capture device. The white-box joint forward and reverse TPB optimization design/solution can be implemented for the following operation scenarios: the SDR generation process or sub-process converts a reference HDR image to a reference SDR image using a white-box conversion operation, and both the forward and reverse (reshaping) paths can be subjected to TPB optimization.

如本文所使用的,“白盒转换”是指利用定义明确的转换或映射函数/等式(如基于标准的或专有的视频编码规范中(例如,公开地等)指定或记录的那些)进行的HDR到SDR映射或转换。相比之下,“黑盒转换”是指利用不基于定义明确的转换或映射函数/等式的转换或映射操作进行的HDR到SDR映射或转换。例如,黑盒转换可以实施为图像信号处理器不依赖于或很少依赖于基于标准的或专有的视频编码规范中(例如,公开地等)指定或记录的任何定义明确的转换或映射函数或等式而执行的内部图像信号处理。As used herein, "white-box conversion" refers to an HDR to SDR mapping or conversion performed using well-defined conversion or mapping functions/equations, such as those specified or documented in a standard-based or proprietary video coding specification (e.g., publicly, etc.). In contrast, "black-box conversion" refers to an HDR to SDR mapping or conversion performed using a conversion or mapping operation that is not based on a well-defined conversion or mapping function/equation. For example, a black-box conversion may be implemented as internal image signal processing performed by an image signal processor that does not rely or relies little on any well-defined conversion or mapping function or equation specified or documented in a standard-based or proprietary video coding specification (e.g., publicly, etc.).

通过举例而非限制的方式,在图1A中,可以在如完全R.2020颜色空间等输入颜色空间中表示包括HDR图像的输入视频信号。可以在参考SDR颜色空间中表示包括参考SDR图像的所生成的SDR信号。参考SDR图像可以是用公知的HDR到SDR映射过程、函数和/或等式从HDR图像生成的图像。By way of example and not limitation, in FIG1A , an input video signal including an HDR image may be represented in an input color space, such as a full R.2020 color space. A generated SDR signal including a reference SDR image may be represented in a reference SDR color space. The reference SDR image may be an image generated from the HDR image using a known HDR to SDR mapping process, function, and/or equation.

如图1A中所示出的,在正向重塑路径中,可以至少部分地基于从联合正向和反向TPB优化解决方案生成的优化的正向重塑操作参数(表示为“正向TPB优化”)来将参考HDR图像正向重塑为与参考SDR图像近似的经(正向)重塑SDR图像。经重塑SDR图像可以在经重塑SDR颜色空间中表示并由上游设备生成为包括/编码在由该上游设备输出的视频信号或其基础层(BL)中。As shown in FIG1A , in the forward reshaping path, the reference HDR image may be forward reshaped into a (forward) reshaped SDR image that is approximate to the reference SDR image based at least in part on optimized forward reshaping operation parameters generated from the joint forward and backward TPB optimization solution (denoted as “forward TPB optimization”). The reshaped SDR image may be represented in a reshaped SDR color space and generated by an upstream device to be included/encoded in a video signal or its base layer (BL) output by the upstream device.

视频信号的下游接收设备或视频解码器可以从该视频信号解码经重塑SDR图像。在解码器侧的经解码经重塑SDR图像可以与在编码器侧的经重塑SDR图像相同,但在压缩/解压缩、编码操作和/或数据传输中会引入误差。A downstream receiving device or video decoder of the video signal may decode the reshaped SDR image from the video signal. The decoded reshaped SDR image at the decoder side may be identical to the reshaped SDR image at the encoder side, but errors may be introduced in compression/decompression, encoding operations, and/or data transmission.

在如由下游设备实施的反向重塑路径中,可以至少部分地基于从相同联合正向和反向TPB优化解决方案生成的优化的反向重塑操作参数(表示为“反向TPB优化”)来将经重塑SDR图像反向重塑为经(反向)重塑HDR图像。用输出HDR颜色空间中的优化的反向重塑操作参数生成的经重塑HDR图像表示参考HDR图像的近似或重建版本。In a reverse reshaping path as implemented by a downstream device, the reshaped SDR image may be reversely reshaped into a (reverse) reshaped HDR image based at least in part on optimized reverse reshaping operation parameters generated from the same joint forward and reverse TPB optimization solution (denoted as "Reverse TPB Optimization"). The reshaped HDR image generated with the optimized reverse reshaping operation parameters in the output HDR color space represents an approximate or reconstructed version of the reference HDR image.

联合正向和反向TPB优化解决方案可以生成优化的正向和反向重塑操作参数以覆盖尽可能宽的输出HDR颜色空间,在解码器侧生成的经重塑或经重建HDR图像在该输出HDR颜色空间中表示。The joint forward and backward TPB optimization solution can generate optimized forward and backward reshaping operation parameters to cover as wide as possible output HDR color space in which the reshaped or reconstructed HDR images generated at the decoder side are represented.

可以在三维查找表或3D-LUT中实施或表示如优化的正向和反向TPB系数等优化的正向和反向重塑操作参数之一或两者,以减少重塑操作中的处理时间。One or both of the optimized forward and reverse reshaping operation parameters, such as optimized forward and reverse TPB coefficients, may be implemented or represented in a three-dimensional lookup table or 3D-LUT to reduce processing time in the reshaping operation.

由于在联合正向和反向TPB优化过程中联合地或同时地设计或优化如正向和反向TPB系数等正向和反向重塑操作参数,因此可以在相同的过程中联合地或同时地设计或优化用于表示经重塑SDR和HDR图像的所支持的经重塑SDR和HDR颜色空间。Since the forward and reverse reshaping operation parameters such as forward and reverse TPB coefficients are jointly or simultaneously designed or optimized in the joint forward and backward TPB optimization process, the supported reshaping SDR and HDR color spaces for representing the reshaping SDR and HDR images can be jointly or simultaneously designed or optimized in the same process.

在一些操作情景中,可以在静态单层向后兼容(SLBC)框架中应用从联合正向和反向TPB优化过程生成的优化的正向和反向重塑操作参数。在该静态框架下,不需要(例如,动态地等)获得优化图像特定或图像相依优化的正向和反向操作参数,如图像特定或图像相依(或内容相依)正向和反向TPB系数,例如在处理图像时即时获得。In some operational scenarios, the optimized forward and reverse reshaping operation parameters generated from the joint forward and reverse TPB optimization process can be applied in a static single layer backward compatible (SLBC) framework. Under this static framework, it is not necessary to obtain (e.g., dynamically, etc.) optimized image-specific or image-dependent optimized forward and reverse operation parameters, such as image-specific or image-dependent (or content-dependent) forward and reverse TPB coefficients, such as obtained on the fly when processing the image.

而是,在静态SLBC框架下,可以一次性获得或生成如相同优化的正向和反向TPB系数等相同或静态优化的正向和反向操作参数(例如,离线或在对(输入)参考HDR图像或经重塑SDR图像中的任一个执行重塑操作之前),以用于正向重塑所有(输入)参考HDR图像并反向重塑经重塑SDR图像。在示例中,单组静态优化的正向和反向操作参数可以由如本文所描述的系统离线生成,并且配置/部署在如本文所描述的捕获设备中或由该捕获设备使用以执行图像重塑或重建操作。在另一示例中,多组静态优化的正向和反向操作参数可以由如本文所描述的系统离线生成,并且配置/部署在如本文所描述的捕获设备中或由该捕获设备使用以选择特定组静态优化的正向和反向操作参数以执行图像重塑或重建操作。Instead, under the static SLBC framework, the same or statically optimized forward and reverse operation parameters, such as the same optimized forward and reverse TPB coefficients, can be obtained or generated at one time (e.g., offline or before performing a reshaping operation on any of the (input) reference HDR images or the reshaped SDR images) for forward reshaping all (input) reference HDR images and reverse reshaping the reshaped SDR images. In an example, a single set of statically optimized forward and reverse operation parameters can be generated offline by a system as described herein, and configured/deployed in or used by a capture device as described herein to perform an image reshaping or reconstruction operation. In another example, multiple sets of statically optimized forward and reverse operation parameters can be generated offline by a system as described herein, and configured/deployed in or used by a capture device as described herein to select a specific set of statically optimized forward and reverse operation parameters to perform an image reshaping or reconstruction operation.

此后,上游设备可以应用优化的静态正向TPB系数以正向重塑一些或所有(输入)参考HDR图像(例如,连续或顺序(输入)参考HDR图像序列等)以生成要编码在(SLBC)视频信号中的经重塑SDR图像,而视频信号的下游接收设备可以将优化的静态反向TPB系数应用于从视频信号解码的一些或所有经重塑SDR图像(例如,连续或顺序经重塑SDR图像序列等)以生成或重建经重塑HDR图像。Thereafter, the upstream device may apply the optimized static forward TPB coefficients to forward reshape some or all (input) reference HDR images (e.g., a continuous or sequential (input) reference HDR image sequence, etc.) to generate a reshaped SDR image to be encoded in a (SLBC) video signal, while the downstream receiving device of the video signal may apply the optimized static reverse TPB coefficients to some or all reshaped SDR images decoded from the video signal (e.g., a continuous or sequential reshaped SDR image sequence, etc.) to generate or reconstruct a reshaped HDR image.

图1B图示了用(单个)视频捕获设备实施白盒仅反向TPB优化设计/解决方案(称为“WB”)的第二示例重塑优化过程。白盒仅反向TPB优化设计/解决方案可以被实施用于以下操作场景:SDR生成过程或子过程用白盒转换操作将参考HDR图像转换为参考SDR图像,并且仅反向(重塑)路径进行TPB优化。1B illustrates a second example reshaping optimization process implementing a white-box reverse-only TPB optimization design/solution (referred to as "WB") with a (single) video capture device. The white-box reverse-only TPB optimization design/solution can be implemented for the following operation scenarios: the SDR generation process or sub-process converts a reference HDR image to a reference SDR image using a white-box conversion operation, and only the reverse (reshaping) path is subjected to TPB optimization.

通过举例而非限制的方式,在图1B中,可以在如P3颜色空间等输入颜色空间中表示包括HDR图像的输入视频信号。可以在参考SDR颜色空间中表示包括参考SDR图像的所生成的SDR信号。参考SDR图像可以是用公知的HDR到SDR映射过程、函数和/或等式从HDR图像生成的图像。By way of example and not limitation, in FIG1B , an input video signal including an HDR image may be represented in an input color space such as a P3 color space. A generated SDR signal including a reference SDR image may be represented in a reference SDR color space. The reference SDR image may be an image generated from the HDR image using a known HDR to SDR mapping process, function, and/or equation.

如图1B中所示出的,可编程图像信号处理器或ISP可以至少部分地基于从ISP优化解决方案生成的优化的ISP操作参数(表示为“ISP参数优化”)来(例如,用给定的图像信号处理函数/等式/操作等)将参考HDR图像处理成与参考SDR图像近似的ISP SDR图像。ISPSDR图像可以在ISP SDR颜色空间中表示并由上游设备生成为包括/编码在由该上游设备输出的视频信号或其基础层(BL)中。As shown in FIG. 1B , a programmable image signal processor or ISP may process a reference HDR image into an ISP SDR image that approximates a reference SDR image (e.g., using a given image signal processing function/equation/operation, etc.) based at least in part on optimized ISP operating parameters generated from an ISP optimization solution (denoted as “ISP parameter optimization”). The ISP SDR image may be represented in an ISP SDR color space and generated by an upstream device to be included/encoded in a video signal or a base layer (BL) thereof output by the upstream device.

视频信号的下游接收设备或视频解码器可以从该视频信号解码ISP SDR图像。在解码器侧的经解码ISP SDR图像可以与在编码器侧的ISP SDR图像相同,但在压缩/解压缩、编码操作和/或数据传输中会引入误差。A downstream receiving device or video decoder of the video signal can decode the ISP SDR image from the video signal. The decoded ISP SDR image on the decoder side may be the same as the ISP SDR image on the encoder side, but errors may be introduced in compression/decompression, encoding operations and/or data transmission.

在如由下游设备实施的反向重塑路径中,可以至少部分地基于从仅反向TPB优化解决方案生成的优化的反向重塑操作参数(表示为“反向TPB优化”)来将ISP SDR图像反向重塑为经(反向)重塑HDR图像。用输出HDR颜色空间中的优化的反向重塑操作参数生成的经重塑HDR图像表示参考HDR图像的近似或重建版本。In a reverse reshaping path as implemented by a downstream device, the ISP SDR image may be reverse reshaped into a (reverse) reshaped HDR image based at least in part on optimized reverse reshaping operation parameters generated from a reverse-only TPB optimization solution (denoted as "Reverse TPB Optimization"). The reshaped HDR image generated with the optimized reverse reshaping operation parameters in the output HDR color space represents an approximate or reconstructed version of the reference HDR image.

仅反向TPB优化解决方案可以生成优化的反向重塑操作参数以覆盖尽可能宽的输出HDR颜色空间,在解码器侧生成的经重塑或经重建HDR图像在该输出HDR颜色空间中表示。Only the inverse TPB optimization solution can generate optimized inverse reshaping operation parameters to cover as wide as possible an output HDR color space in which the reshaped or reconstructed HDR images generated at the decoder side are represented.

可以在三维查找表或3D-LUT中实施或表示如优化的反向TPB系数等优化的反向重塑操作参数,以减少重塑操作中的处理时间。The optimized inverse reshaping operation parameters, such as optimized inverse TPB coefficients, may be implemented or represented in a three-dimensional lookup table or 3D-LUT to reduce processing time in the reshaping operation.

在一些操作情景中,可以在静态单层逆向显示映射(SLiDM)框架中应用从仅反向TPB优化过程生成的反向重塑操作参数。在该静态框架下,不需要(例如,动态地等)获得优化图像特定或图像相依优化的反向操作参数,如图像特定或图像相依(或内容相依)反向TPB系数。In some operational scenarios, the inverse reshaping operational parameters generated from the inverse TPB-only optimization process may be applied in a static single-layer inverse display mapping (SLiDM) framework. Under this static framework, there is no need to obtain (e.g., dynamically, etc.) inverse operational parameters that optimize image-specific or image-dependent optimizations, such as image-specific or image-dependent (or content-dependent) inverse TPB coefficients.

而是,在静态SLiDM框架下,可以一次性获得或生成如相同优化的反向TPB系数等相同或静态优化的反向操作参数(例如,离线或在对经重塑SDR图像中的任一个执行重塑操作之前),以用于反向重塑ISP SDR图像。在示例中,单组静态优化的反向操作参数可以由如本文所描述的系统离线生成,并且配置/部署在如本文所描述的捕获设备中或由该捕获设备使用以执行图像重塑或重建操作。在另一示例中,多组静态优化的反向操作参数可以由如本文所描述的系统离线生成,并且配置/部署在如本文所描述的捕获设备中或由该捕获设备使用以选择特定组静态优化的反向操作参数以执行图像重塑或重建操作。Instead, under the static SLiDM framework, the same or statically optimized reverse operation parameters, such as the same optimized reverse TPB coefficients, may be obtained or generated once (e.g., offline or before performing a reshaping operation on any of the reshaped SDR images) for reverse reshaping the ISP SDR image. In an example, a single set of statically optimized reverse operation parameters may be generated offline by a system as described herein, and configured/deployed in or used by a capture device as described herein to perform an image reshaping or reconstruction operation. In another example, multiple sets of statically optimized reverse operation parameters may be generated offline by a system as described herein, and configured/deployed in or used by a capture device as described herein to select a particular set of statically optimized reverse operation parameters to perform an image reshaping or reconstruction operation.

此后,视频信号的下游接收设备可以将优化的静态反向TPB系数应用于从视频信号解码的一些或所有ISP SDR图像(例如,连续或顺序ISP SDR图像序列等)以生成或重建经重塑HDR图像。Thereafter, a downstream receiving device of the video signal may apply the optimized static inverse TPB coefficients to some or all ISP SDR images decoded from the video signal (e.g., a continuous or sequential ISP SDR image sequence, etc.) to generate or reconstruct a reshaped HDR image.

编码在视频信号中的ISP SDR图像可以与或可以不与如由参考图像表示的期望SDR外观相同。可编程ISP中的操作参数或其设置可以被优化为近似参考图像。因此,在图1B的“WB”操作情景中,将用于反向重塑为经重塑HDR图像的SDR图像作为ISP SDR图像而给出或固定。通过比较,在图1A的WFB操作情景中,用于反向重塑为经重塑HDR图像的SDR图像是经正向重塑SDR图像,这些经正向重塑SDR图像可以通过应用在生成优化的正向和反向重塑参数两者的联合正向和反向TPB优化过程中生成的优化的正向重塑操作参数来优化。换句话说,不在正向路径中使用TPB优化来生成ISP SDR图像,以用于改进或增强编码在视频信号中的SDR图像的期望外观和经重塑HDR图像的期望外观两者。与期望外观相对较大的偏差可能出现在这些操作情景中。The ISP SDR image encoded in the video signal may or may not be the same as the desired SDR appearance as represented by the reference image. The operating parameters or settings in the programmable ISP can be optimized to approximate the reference image. Therefore, in the "WB" operating scenario of Figure 1B, the SDR image used for reverse reshaping to the reshaped HDR image is given or fixed as an ISP SDR image. By comparison, in the WFB operating scenario of Figure 1A, the SDR image used for reverse reshaping to the reshaped HDR image is a forward reshaped SDR image, which can be optimized by applying the optimized forward reshaping operating parameters generated in the joint forward and reverse TPB optimization process of generating optimized forward and reverse reshaping parameters. In other words, TPB optimization is not used in the forward path to generate ISP SDR images for improving or enhancing both the desired appearance of the SDR image encoded in the video signal and the desired appearance of the reshaped HDR image. Relatively large deviations from the expected appearance may occur in these operating scenarios.

图1C图示了用(单个)视频捕获设备实施黑盒仅反向TPB优化设计/解决方案(称为“BB1”)的第三示例重塑优化过程。黑盒仅反向TPB优化设计/解决方案可以被实施用于以下操作场景:不使用白盒转换操作从HDR图像生成SDR图像,并且仅反向(重塑)路径进行TPB优化。1C illustrates a third example reshaping optimization process implementing a black-box reverse-only TPB optimization design/solution (referred to as "BB1") with a (single) video capture device. The black-box reverse-only TPB optimization design/solution can be implemented for the following operation scenarios: generating SDR images from HDR images without using white-box conversion operations, and only the reverse (reshaping) path is subjected to TPB optimization.

可以用由如相同移动设备等相同视频捕获设备生成或获取的训练SDR图像和训练HDR图像生成这些操作情景中的重塑操作参数。这些训练SDR图像和训练HDR图像形成多个SDR和HDR图像对,这些图像对中的每一个包括训练SDR图像和与该训练SDR图像相对应的训练HDR图像。The reshaping operation parameters in these operation scenarios can be generated using training SDR images and training HDR images generated or acquired by the same video capture device, such as the same mobile device, etc. These training SDR images and training HDR images form a plurality of SDR and HDR image pairs, each of which includes a training SDR image and a training HDR image corresponding to the training SDR image.

可以使用利用相同ISP的相同捕获设备在不同时刻/时间点(例如,相隔几毫秒、相隔几小数秒、相隔几秒等)获取同一SDR和HDR图像对中的训练SDR图像和训练HDR图像。该训练SDR图像与该训练HDR图像可能不彼此精确地在空间上对齐或在时间上对齐,因为即使不是不可能的,也很难在不同的时刻/时间点保持相同的拍摄位置并且以相同的方式处理训练SDR图像和训练HDR图像。例如,训练SDR图像可以是局部色调映射的或局部增强的,而训练HDR图像可以从多次相机曝光生成或获得。因此,在“BB1”操作情景中,同一图像对中的训练SDR图像中的像素或码字值与训练HDR图像中的对应像素或码字值之间的关系可以被视为或假定为黑盒。The training SDR image and the training HDR image in the same SDR and HDR image pair may be acquired at different moments/time points (e.g., a few milliseconds apart, a few fractions of a second apart, a few seconds apart, etc.) using the same capture device using the same ISP. The training SDR image and the training HDR image may not be precisely spatially aligned or temporally aligned with each other because it is difficult, if not impossible, to maintain the same shooting position and process the training SDR image and the training HDR image in the same manner at different moments/time points. For example, the training SDR image may be locally tone mapped or locally enhanced, while the training HDR image may be generated or obtained from multiple camera exposures. Therefore, in the "BB1" operating scenario, the relationship between the pixel or codeword value in the training SDR image and the corresponding pixel or codeword value in the training HDR image in the same image pair may be considered or assumed to be a black box.

可以首先将图像对中的每一个中的训练SDR图像和训练HDR图像在空间上对齐。可以使用图像对中的在空间上对齐的训练SDR图像和训练HDR图像来确定或找出匹配颜色对。然后可以使用这些匹配颜色对来生成如优化的TPB和/或非TPB系数等优化的重塑操作参数,以用于将(例如,非训练、参考等)SDR图像重塑为或往回映射到与(例如,非训练、参考等)HDR图像近似的经反向重塑或经重建HDR图像。The training SDR image and the training HDR image in each of the image pairs may first be spatially aligned. The spatially aligned training SDR image and the training HDR image in the image pair may be used to determine or find matching color pairs. These matching color pairs may then be used to generate optimized reshaping operation parameters such as optimized TPB and/or non-TPB coefficients for reshaping or mapping back the (e.g., non-training, reference, etc.) SDR image to an inversely reshaped or reconstructed HDR image that approximates the (e.g., non-training, reference, etc.) HDR image.

如图1C中所示出的,如捕获设备等上游设备可以将如参考SDR图像等SDR图像生成为包括/编码在由该上游设备输出的视频信号或其基础层(BL)中。如本文所描述的示例参考SDR图像可以包括但不一定仅限于从上游设备或连同上游设备操作的捕获设备的可编程图像信号处理器生成的SDR图像。As shown in Figure 1C, an upstream device such as a capture device may generate an SDR image such as a reference SDR image to be included/encoded in a video signal or a base layer (BL) thereof output by the upstream device. The example reference SDR images as described herein may include, but are not necessarily limited to, SDR images generated by a programmable image signal processor of an upstream device or a capture device operating in conjunction with the upstream device.

视频信号的下游接收设备或视频解码器可以从该视频信号解码参考SDR图像。在解码器侧的经解码参考SDR图像可以与在编码器侧的参考SDR图像相同,但在压缩/解压缩、编码操作和/或数据传输中会引入误差。A downstream receiving device or video decoder of the video signal can decode the reference SDR image from the video signal. The decoded reference SDR image at the decoder side may be the same as the reference SDR image at the encoder side, but errors may be introduced in compression/decompression, encoding operations and/or data transmission.

在如由下游设备实施的反向重塑路径中,可以至少部分地基于从黑盒仅反向TPB优化解决方案生成的优化的反向重塑操作参数(表示为“反向TPB优化”)来将参考SDR图像反向重塑为经(反向)重塑HDR图像。用输出HDR颜色空间中的优化的反向重塑操作参数生成的经重塑HDR图像表示可以或可由相同捕获设备生成的参考HDR图像的近似或重建版本。In a reverse reshaping path as implemented by a downstream device, the reference SDR image may be reverse reshaped into a (reverse) reshaped HDR image based at least in part on optimized reverse reshaping operation parameters generated from a black-box-only reverse TPB optimization solution (denoted as "Reverse TPB Optimization"). The reshaped HDR image generated with the optimized reverse reshaping operation parameters in the output HDR color space represents an approximate or reconstructed version of the reference HDR image that may or may be generated by the same capture device.

黑盒仅反向TPB优化设计/解决方案可以生成优化的反向重塑操作参数以覆盖尽可能宽的输出HDR颜色空间,在解码器侧生成的经重塑或经重建HDR图像在该输出HDR颜色空间中表示。The black-box inverse-only TPB optimization design/solution can generate optimized inverse reshaping operation parameters to cover as wide as possible output HDR color space in which the reshaped or reconstructed HDR image generated at the decoder side is represented.

可以在三维查找表或3D-LUT中实施或表示如优化的反向TPB系数等优化的反向重塑操作参数,以减少重塑操作中的处理时间。The optimized inverse reshaping operation parameters, such as optimized inverse TPB coefficients, may be implemented or represented in a three-dimensional lookup table or 3D-LUT to reduce processing time in the reshaping operation.

在一些操作情景中,可以在SLiDM框架中应用从黑盒仅反向TPB优化设计/解决方案生成的反向重塑操作参数。在该静态框架下,不需要(例如,动态地等)获得优化图像特定或图像相依优化的反向操作参数,如图像特定或图像相依(或内容相依)反向TPB系数。In some operational scenarios, the inverse reshaping operational parameters generated from the black-box inverse-only TPB optimization design/solution can be applied in the SLiDM framework. Under this static framework, there is no need to obtain (e.g., dynamically, etc.) inverse operational parameters that optimize image-specific or image-dependent optimizations, such as image-specific or image-dependent (or content-dependent) inverse TPB coefficients.

而是,在静态SLiDM框架下,可以一次性获得或生成如相同优化的反向TPB系数等相同或静态优化的反向操作参数(例如,离线或在对经重塑SDR图像中的任一个执行重塑操作之前),以用于将由上游捕获设备生成的在空间上对齐的训练SDR图像反向重塑为与由相同捕获设备生成的在空间上对齐的训练HDR图像近似的经重塑或经重建HDR图像。Instead, under the static SLiDM framework, the same or statically optimized inverse operation parameters, such as the same optimized inverse TPB coefficients, can be obtained or generated once (e.g., offline or before performing a reshaping operation on any of the reshaped SDR images) for inversely reshaping spatially aligned training SDR images generated by an upstream capture device into reshaped or reconstructed HDR images that are approximately the same as the spatially aligned training HDR images generated by the same capture device.

此后,视频信号的下游接收设备可以将优化的静态反向TPB系数应用于从视频信号解码的一些或所有(例如,非训练等)参考SDR图像(例如,连续或顺序参考SDR图像序列等),以生成或重建与可以或可从生成或捕获参考SDR图像的相同上游捕获设备生成的参考HDR图像近似的经重塑HDR图像。Thereafter, a downstream receiving device of the video signal may apply the optimized static inverse TPB coefficients to some or all (e.g., non-training, etc.) reference SDR images decoded from the video signal (e.g., a continuous or sequential reference SDR image sequence, etc.) to generate or reconstruct a reshaped HDR image that is approximate to a reference HDR image that may or may be generated from the same upstream capture device that generated or captured the reference SDR images.

由于在反向路径中仅使用TPB优化,因此在“BB1”操作情景中,从对参考SDR图像进行反向重塑生成的经重塑HDR图像的所得外观可能与参考HDR图像的期望外观具有与相对较大的偏差。Since only TPB optimization is used in the reverse path, in the "BB1" operation scenario, the resulting appearance of the reshaped HDR image generated from the reverse reshaping of the reference SDR image may have a relatively large deviation from the desired appearance of the reference HDR image.

在一些“BB1”操作情景中,如图1D中所图示的,可以将从相机ISP生成的相机原始图像而不是从可编程图像信号处理器生成的参考SDR图像直接编码在由上游(捕获)设备输出的视频信号中。在训练阶段,可以是或可以不是SDR图像的训练相机原始图像可以与相机原始和HDR图像的相同图像对中的训练HDR图像在空间上和/或在时间上对齐。可以使用来自在空间上对齐的相机原始和HDR图像的图像对的匹配颜色对来优化反向重塑操作参数,如反向TPB系数。在非训练或部署阶段,编码有非训练相机原始图像的视频信号的下游设备可以使用优化的反向重塑操作参数,以将来自视频信号的经解码非训练相机原始图像反向重塑为与可以或可由相同上游(捕获)设备生成的参考HDR图像近似的经反向重塑或经重建(非训练)HDR图像。In some "BB1" operating scenarios, as illustrated in FIG. 1D , a camera raw image generated from a camera ISP may be encoded directly in a video signal output by an upstream (capture) device, rather than a reference SDR image generated from a programmable image signal processor. During a training phase, a training camera raw image, which may or may not be an SDR image, may be spatially and/or temporally aligned with a training HDR image in the same image pair of a camera raw and HDR image. Inverse reshaping operation parameters, such as inverse TPB coefficients, may be optimized using matching color pairs from the spatially aligned image pairs of camera raw and HDR images. During a non-training or deployment phase, a downstream device encoding a video signal with a non-training camera raw image may use the optimized inverse reshaping operation parameters to inversely reshape a decoded non-training camera raw image from a video signal into an inversely reshaped or reconstructed (non-training) HDR image that approximates a reference HDR image that may or may be generated by the same upstream (capture) device.

图1E图示了用不同的视频捕获设备实施黑盒仅反向重塑优化设计/解决方案(称为“BB2”)的第四示例重塑优化过程。“BB2”重塑优化设计/解决方案可以被实施用于以下操作场景:由第一捕获设备生成SDR图像,并且(例如,旨在等)由第二不同捕获设备生成要从SDR图像生成的HDR图像,并且仅反向(重塑)路径进行重塑优化。另外,“BB2”操作情景中的重塑优化可以是或可以不是TPB优化。FIG. 1E illustrates a fourth example reshaping optimization process implementing a black-box reverse-only reshaping optimization design/solution (referred to as "BB2") with a different video capture device. The "BB2" reshaping optimization design/solution may be implemented for an operating scenario in which an SDR image is generated by a first capture device, and an HDR image to be generated from the SDR image is generated by a second, different capture device (e.g., intended to be, etc.), and only the reverse (reshaping) path is performed for reshaping optimization. Additionally, the reshaping optimization in the "BB2" operating scenario may or may not be a TPB optimization.

可以用分别由两个视频捕获设备(如不同品牌和/或型号的两个移动设备)生成或获取的训练SDR图像和训练HDR图像生成“BB2”操作情景中的重塑操作参数。这些训练SDR图像和训练HDR图像形成多个SDR和HDR图像对,这些图像对中的每一个包括训练SDR图像和与该训练SDR图像相对应的训练HDR图像。The reshaping operation parameters in the "BB2" operation scenario can be generated using training SDR images and training HDR images generated or acquired by two video capture devices (such as two mobile devices of different brands and/or models). These training SDR images and training HDR images form a plurality of SDR and HDR image pairs, each of which includes a training SDR image and a training HDR image corresponding to the training SDR image.

可以使用在相同或类似图像显示器上渲染的如相同棋盘图像等相同图像获取同一SDR和HDR图像对中的训练SDR图像和训练HDR图像。在“BB1”操作情景中,同一图像对中的训练SDR图像中的像素或码字值与训练HDR图像中的对应像素或码字值之间的关系可以被视为或假定为黑盒。The training SDR images and training HDR images in the same SDR and HDR image pair may be acquired using the same image, such as the same checkerboard image, rendered on the same or similar image display. In the "BB1" operating scenario, the relationship between the pixel or codeword values in the training SDR image and the corresponding pixel or codeword values in the training HDR image in the same image pair may be considered or assumed to be a black box.

可以首先将图像对中的每一个中的训练SDR图像和训练HDR图像在空间上对齐。图像对中的在空间上对齐的训练SDR图像和训练HDR图像可以用于确定或找出与如棋盘图像等测试图像一起在同一图像显示器或同一图像显示器类型上渲染的匹配色标。然后可以使用这些匹配色标来建构三维查找表(3D-LUT)以将测试图像中的色标的SDR像素或码字值映射到相同色标的对应HDR像素或码字值。The training SDR image and the training HDR image in each of the image pairs may first be spatially aligned. The spatially aligned training SDR image and the training HDR image in the image pair may be used to determine or find matching color scales that are rendered on the same image display or the same image display type together with a test image such as a checkerboard image. These matching color scales may then be used to construct a three-dimensional lookup table (3D-LUT) to map the SDR pixel or codeword values of the color scale in the test image to the corresponding HDR pixel or codeword values of the same color scale.

可以使用部分地或全部地基于测试图像得到的3D-LUT来生成优化的静态或动态重塑操作参数,以用于将(例如,非训练、参考等)SDR图像重塑为或往回映射到与(例如,非训练、参考等)HDR图像近似的经反向重塑或经重建HDR图像。A 3D-LUT derived partially or entirely based on a test image may be used to generate optimized static or dynamic reshaping operation parameters for reshaping or mapping back a (e.g., non-training, reference, etc.) SDR image to an inversely reshaped or reconstructed HDR image that approximates a (e.g., non-training, reference, etc.) HDR image.

如图1E中所示出的,如第一捕获设备等上游设备可以将如参考SDR图像等SDR图像生成为包括/编码在由该上游设备输出的视频信号或其基础层(BL)中。如本文所描述的示例参考SDR图像可以包括但不一定仅限于从第一捕获设备或上游设备的可编程图像信号处理器生成的SDR图像。As shown in Figure 1E, an upstream device such as a first capture device may generate an SDR image such as a reference SDR image to be included/encoded in a video signal or a base layer (BL) thereof output by the upstream device. The example reference SDR image as described herein may include, but is not necessarily limited to, an SDR image generated from a programmable image signal processor of the first capture device or upstream device.

视频信号的下游接收设备或视频解码器可以从该视频信号解码用第一捕获设备获取的参考SDR图像。在解码器侧的经解码参考SDR图像可以与在编码器侧的参考SDR图像相同,但在压缩、解压缩、编码操作和/或数据传输中会引入误差。A downstream receiving device or video decoder of the video signal may decode the reference SDR image acquired with the first capture device from the video signal. The decoded reference SDR image at the decoder side may be identical to the reference SDR image at the encoder side, but errors may be introduced during compression, decompression, encoding operations and/or data transmission.

在如由下游设备实施的反向重塑路径中,可以至少部分地基于从“BB2”重塑优化设计/解决方案生成的优化的反向重塑操作参数(表示为“动态反向函数优化”)来将参考SDR图像反向重塑为经(反向)重塑HDR图像。用输出HDR颜色空间中的优化的反向重塑操作参数生成的经重塑HDR图像表示可以或可由第二不同捕获设备生成的参考HDR图像的近似或重建版本。In the reverse reshaping path as implemented by a downstream device, the reference SDR image may be reverse reshaped into a (reverse) reshaped HDR image based at least in part on optimized reverse reshaping operation parameters generated from the "BB2" reshaping optimization design/solution (denoted as "dynamic reverse function optimization"). The reshaped HDR image generated with the optimized reverse reshaping operation parameters in the output HDR color space represents an approximate or reconstructed version of the reference HDR image that may or may be generated by a second, different capture device.

“BB2”重塑优化设计/解决方案可以生成优化的反向重塑操作参数以覆盖尽可能宽的输出HDR颜色空间,在解码器侧生成的经重塑或经重建HDR图像在该输出HDR颜色空间中表示。The "BB2" reshaping optimization design/solution can generate optimized inverse reshaping operation parameters to cover as wide as possible output HDR color space, in which the reshaped or reconstructed HDR image generated at the decoder side is represented.

在一些操作情景中,可以在静态或动态SLiDM框架中应用从“BB2”重塑优化设计/解决方案生成的反向重塑操作参数。In some operational scenarios, the inverse remodeling operational parameters generated from the “BB2” remodeling optimization design/solution can be applied in a static or dynamic SLiDM framework.

由于在反向路径中仅使用“BB2”重塑优化,因此从对参考SDR图像进行反向重塑生成的经重塑HDR图像的所得外观可能与参考HDR图像的期望外观具有相对较大的偏差。第一捕获设备和第二捕获设备可以是可以在其相应视频捕获应用中以不同的方式(例如用不同的曝光次数、不同的视频处理操作、不同的映射函数/关系等)操作的移动设备。Since only the "BB2" reshaping optimization is used in the reverse path, the resulting appearance of the reshaped HDR image generated from the reverse reshaping of the reference SDR image may have a relatively large deviation from the desired appearance of the reference HDR image. The first capture device and the second capture device may be mobile devices that may operate in different ways (e.g., with different exposure times, different video processing operations, different mapping functions/relationships, etc.) in their respective video capture applications.

在动态SLiDM帧中,可以使用用图像相依或图像特定重塑操作参数进行的动态映射来将第一捕获设备的SDR图像反向重塑为可以或可由第二捕获设备生成的HDR图像,特别是在第一捕获设备和第二捕获设备在第一捕获设备和第二捕获设备上运行的相应视频/图像捕获应用之间和/或第一捕获设备和第二捕获设备中使用的相应ISP之间的差异相对较大的情况下操作的操作情景中。例如,在训练阶段,可以使用多组训练SDR图像和训练HDR图像或图像对来分别针对多组训练SDR图像和训练HDR图像或图像对得到多组优化的重塑操作参数。在部署或应用阶段,当处理特定图像时可以动态地评估特定图像特性,如特定图像的一些或所有区的整体亮度。基于与多组训练SDR图像和训练HDR图像或图像对的相应图像特性有关或相比较的特定图像的特定图像特性,可以从多组优化的重塑操作参数中自适应地和/或动态地为特定图像选择特定组优化的重塑操作参数。In a dynamic SLiDM frame, a dynamic mapping using image-dependent or image-specific reshaping operation parameters can be used to reversely reshape an SDR image of a first capture device into an HDR image that can or can be generated by a second capture device, particularly in an operating scenario where the first capture device and the second capture device operate with relatively large differences between the corresponding video/image capture applications running on the first capture device and the second capture device and/or between the corresponding ISPs used in the first capture device and the second capture device. For example, in a training phase, multiple sets of training SDR images and training HDR images or image pairs can be used to obtain multiple sets of optimized reshaping operation parameters for multiple sets of training SDR images and training HDR images or image pairs, respectively. In a deployment or application phase, specific image characteristics, such as the overall brightness of some or all regions of a specific image, can be dynamically evaluated when processing a specific image. Based on specific image characteristics of a specific image that are related to or compared to corresponding image characteristics of multiple sets of training SDR images and training HDR images or image pairs, a specific set of optimized reshaping operation parameters can be adaptively and/or dynamically selected for a specific image from multiple sets of optimized reshaping operation parameters.

白盒联合TPB正向和反向优化(WFB)White-box joint TPB forward and backward optimization (WFB)

可以考虑重塑优化的多个设计因素,以帮助增加要在其中表示经重塑图像的所支持的颜色空间的覆盖范围。首先,可以使用具有从重塑优化生成的优化的TPB系数的张量积双样条(TPB)预测器来获得或实现与包括但不限于MMR预测器的其他类型的预测器相比相对较高的预测准确性。张量积双样条预测器或预测函数的多结和连续性特性可以被利用或用于以相对较高的准确性覆盖相对较宽的颜色范围或颜色空间部分。示例TPB预测器可以在Guan-Ming Su,Harshad Kadu,Qing Song,Qing Song和Neeraj J.Gadgil于2019年10月1日提交的美国临时专利申请序列号62/908,770,“Tensor-product B-spline predictor[张量积B样条预测器]”中找到,所述美国临时专利申请的内容如本文充分阐述的那样通过引用整体并入本文。Multiple design factors of reshaping optimization can be considered to help increase the coverage of the supported color space in which the reshaped image is to be represented. First, a tensor product bi-spline (TPB) predictor with optimized TPB coefficients generated from the reshaping optimization can be used to obtain or achieve relatively high prediction accuracy compared to other types of predictors including but not limited to MMR predictors. The multi-knot and continuity characteristics of the tensor product bi-spline predictor or prediction function can be utilized or used to cover a relatively wide color range or color space portion with relatively high accuracy. An example TPB predictor can be found in U.S. Provisional Patent Application Serial No. 62/908,770, "Tensor-product B-spline predictor" filed by Guan-Ming Su, Harshad Kadu, Qing Song, Qing Song and Neeraj J. Gadgil on October 1, 2019, the contents of which are incorporated herein by reference as fully set forth herein.

相比之下,虽然多段MMR预测器或预测函数可能比单段MMR预测器或预测函数好,但多段MMR预测器或预测函数中将可能引入不同MMR段之间的不连续性,从而不利地影响并甚至禁止多段MMR预测器或预测函数在许多操作情景中的使用。示例基于MMR的操作在美国专利8,811,490中进行了描述,所述美国专利如本文充分阐述的那样通过引用整体并入本文。In contrast, although a multi-segment MMR predictor or prediction function may be better than a single-segment MMR predictor or prediction function, discontinuities between different MMR segments may be introduced into the multi-segment MMR predictor or prediction function, thereby adversely affecting and even prohibiting the use of the multi-segment MMR predictor or prediction function in many operating scenarios. Example MMR-based operations are described in U.S. Patent 8,811,490, which is incorporated herein by reference in its entirety as if fully set forth herein.

TPB预测器可以有利地在基于SLBC的视频编解码器中使用。更具体地,正向TPB预测器可以用于生成与参考SDR图像近似的经正向重塑SDR图像,而反向TPB预测器可以用于生成与参考HDR图像近似的经反向重塑或经重建HDR图像。TPB预测器与基于SLBC的视频编解码器的示例使用可以在H.Kadu等人于2021年10月13日提交的美国临时专利申请序列号63/255,057,“Tensor-product B-spline prediction for HDR video in mobileapplications[用于移动应用中的HDR视频的张量积B样条预测]”中找到,所述美国临时专利申请的内容如本文充分阐述的那样通过引用整体并入本文。另外,经过修改以支持中性颜色保留的BESA(反向误差减法用于信号调整)算法/方法可以在链式重塑函数流水线中用于一起优化正向和反向TPB预测器,以通过经反向重塑或经重建HDR图像实现参考HDR图像的相对较高的可逆性或相对准确的近似。示例BESA算法/方法可以在G-M.Su的于2020年4月21日提交的美国临时专利申请序列号63/013,063,“Reshaping functions for HDRimaging with continuity and reversibility constraints[用于在连续性和可逆性约束下进行HDR成像的整形函数]”、G-M.Su和H.Kadu于2020年4月22日提交的美国临时专利申请序列号63/013,807,“Iterative optimization of reshaping functions in single-layer HDR image codec[单层HDR图像编解码器中整形函数的迭代优化]”、以及2021年4月21日提交的PCT申请序列号PCT/US2021/028475中找到,所述美国临时专利申请的内容如本文充分阐述的那样通过引用整体并入本文。The TPB predictor can be advantageously used in a SLBC-based video codec. More specifically, the forward TPB predictor can be used to generate a forward reshaped SDR image that is approximate to a reference SDR image, while the reverse TPB predictor can be used to generate a reverse reshaped or reconstructed HDR image that is approximate to a reference HDR image. An example use of the TPB predictor with a SLBC-based video codec can be found in U.S. Provisional Patent Application Serial No. 63/255,057, "Tensor-product B-spline prediction for HDR video in mobile applications," filed by H. Kadu et al. on October 13, 2021, the contents of which are incorporated herein by reference in their entirety as fully set forth herein. In addition, a BESA (Backward Error Subtraction for Signal Adjustment) algorithm/method modified to support neutral color preservation can be used in a chained reshaping function pipeline to optimize the forward and reverse TPB predictors together to achieve relatively high reversibility or relatively accurate approximation of a reference HDR image through a reverse reshaped or reconstructed HDR image. Example BESA algorithms/methods can be found in U.S. Provisional Patent Application Serial No. 63/013,063, “Reshaping functions for HDR imaging with continuity and reversibility constraints,” filed by G-M. Su on April 21, 2020, U.S. Provisional Patent Application Serial No. 63/013,807, “Iterative optimization of reshaping functions in single-layer HDR image codec,” filed by G-M. Su and H. Kadu on April 22, 2020, and PCT Application Serial No. PCT/US2021/028475, filed on April 21, 2021, the contents of which are incorporated herein by reference in their entirety as if fully set forth herein.

虽然TPB预测器具有比其他类型的预测器更好的预测准确性,但在视频信号中传输TPB系数可能招致相对较大的信号或比特率开销。另外,建构在TPB预测器中使用的TPB等式或基函数可能招致相对较大的计算成本。Although the TPB predictor has better prediction accuracy than other types of predictors, transmitting TPB coefficients in a video signal may incur relatively large signal or bit rate overhead. In addition, constructing the TPB equations or basis functions used in the TPB predictor may incur relatively large computational costs.

在一些操作情景中,为了避免或减少信号或比特率开销和计算成本,可以使用内置或静态TPB预测器来重塑整个视频序列中的一些或所有图像,而无需在播放该视频序列期间改变在静态TPB预测器中使用的TPB系数。更具体地,一些或所有(内置或静态)TPB系数可以被缓存或存储在如视频捕获/编辑应用等视频应用中,而不需要明确地通过编码有要由内置或静态TPB预测器重塑的图像的视频信号或比特流或在该视频信号或比特流中传输这些TPB系数。在示例中,在下游接收设备接收并处理视频信号或比特流之前,可以在下游接收设备中预加载或预配置一些或所有TPB系数。另外地、可选地或替代性地,在下游接收设备接收并处理视频信号或比特流之前,可以在下游接收设备中预加载或预配置多组TPB系数。例如基于在视频信号或比特流中用信号发送或传输的简单指示符(例如,二进制指示符、多比特指示符等),视频应用可以从多组TPB系数中简单地挑选或选择特定组TPB系数来用于静态TPB预测器。示例静态TPB预测器或预测函数可以在前面提到的美国临时专利申请序列号63/255,057中找到。In some operating scenarios, in order to avoid or reduce signal or bit rate overhead and computational cost, some or all images in the whole video sequence can be reshaped using a built-in or static TPB predictor without changing the TPB coefficients used in the static TPB predictor during the playback of the video sequence. More specifically, some or all (built-in or static) TPB coefficients can be cached or stored in video applications such as video capture/editing applications, without the need to explicitly transmit these TPB coefficients by encoding a video signal or bit stream with an image to be reshaped by a built-in or static TPB predictor or in the video signal or bit stream. In an example, some or all TPB coefficients can be preloaded or preconfigured in a downstream receiving device before a downstream receiving device receives and processes a video signal or bit stream. Additionally, optionally or alternatively, multiple groups of TPB coefficients can be preloaded or preconfigured in a downstream receiving device before a downstream receiving device receives and processes a video signal or bit stream. For example, based on a simple indicator (e.g., a binary indicator, a multi-bit indicator, etc.) signaled or transmitted in a video signal or bitstream, a video application can simply pick or select a particular set of TPB coefficients from multiple sets of TPB coefficients to use for a static TPB predictor. An example static TPB predictor or prediction function can be found in the aforementioned U.S. Provisional Patent Application Serial No. 63/255,057.

在一些操作情景中,可以使用移动设备来托管或运行视频捕获和/或编辑应用。移动设备的用户可以在这些视频捕获和/或编辑应用中编辑所捕获图像。例如可能旨在在显示能力高于或大于移动设备的图像显示器的非移动设备的图像显示器上显示或查看的如编辑后HDR图像等编辑后图像可能具有比最初从移动设备的相机传感器捕获的如HDR图像等(原始)所捕获图像高、大、宽和/或广的光亮度范围和/或颜色范围或颜色分布。例如,所捕获HDR图像可能通常受移动设备的相机传感器和ISP输出限制以在如P3等相对较窄的颜色空间或色域中表示,而编辑后HDR图像可以在如整个R.2020颜色空间等相对较宽的颜色空间或色域中表示。In some operating scenarios, a mobile device can be used to host or run video capture and/or editing applications. Users of mobile devices can edit captured images in these video capture and/or editing applications. For example, edited images such as edited HDR images that may be intended to be displayed or viewed on an image display of a non-mobile device with a display capability higher than or larger than the image display of the mobile device may have a brightness range and/or color range or color distribution that is higher, larger, wider and/or wider than the (original) captured images such as HDR images originally captured from the camera sensor of the mobile device. For example, the captured HDR image may typically be limited by the camera sensor and ISP output of the mobile device to be represented in a relatively narrow color space or color gamut such as P3, while the edited HDR image can be represented in a relatively wide color space or color gamut such as the entire R.2020 color space.

为了设计用于重塑操作的静态映射,高度期望优化正向/反向TPB系数以覆盖尽可能高的动态范围和尽可能宽的颜色空间或色域,同时实现尽可能多的比特率和计算效率。In order to design a static mapping for a reshaping operation, it is highly desirable to optimize the forward/backward TPB coefficients to cover as high a dynamic range as possible and as wide a color space or gamut as possible while achieving as much bitrate and computational efficiency as possible.

经重建HDR图像与和该经重建HDR相同的参考HDR图像之间的完全HDR可逆性将需要区分原始或经重建HDR域(或颜色空间)中要在经重塑SDR域(或颜色空间)中区分或可区分的颜色,以便使得SDR域中的所区分的颜色能够往回映射到HDR域中的可区分颜色。因此,完全可逆性将可能需要从HDR到SDR以及从SDR回到HDR的一对一映射。支持的HDR域或颜色空间越宽,SDR域或颜色空间需要具有的码字就越多。给定SDR域中的可用SDR像素或码字值的总数(例如,对应于比HDR域低的比特深度等)通常小于HDR域中的所需HDR像素或码字值的总数,在一些操作情景中可能无法实现完全HDR可逆性。实际上,一些所捕获或编辑后图像可以含有形成如在图2A中被示出为不规则形状的颜色分布的漫射和/或镜面颜色组合,这些颜色分布超过了R.2020颜色空间(“BT.2020”)并且因此不可完全由该颜色空间表示,更不用说如R.709颜色空间(“BT.709”)或(DCI)P3颜色空间等更小的颜色空间或SDR颜色空间。Full HDR reversibility between a reconstructed HDR image and a reference HDR image that is the same as the reconstructed HDR will require distinguishing colors in the original or reconstructed HDR domain (or color space) that are to be distinguished or distinguishable in the reshaped SDR domain (or color space) so that the distinguished colors in the SDR domain can be mapped back to distinguishable colors in the HDR domain. Therefore, full reversibility will likely require a one-to-one mapping from HDR to SDR and back from SDR to HDR. The wider the supported HDR domain or color space, the more codewords the SDR domain or color space needs to have. Given that the total number of available SDR pixel or codeword values in the SDR domain (e.g., corresponding to a lower bit depth than the HDR domain, etc.) is typically less than the total number of required HDR pixel or codeword values in the HDR domain, full HDR reversibility may not be achieved in some operating scenarios. In practice, some captured or edited images may contain diffuse and/or specular color combinations that form irregularly shaped color distributions as shown in FIG. 2A , which exceed the R.2020 color space (“BT.2020”) and therefore cannot be fully represented by that color space, let alone smaller color spaces or SDR color spaces such as the R.709 color space (“BT.709”) or the (DCI) P3 color space.

在许多操作情景中,可以使用非线性重塑映射或函数来相对高效地分布可用的像素或码字值并且生成尽可能紧密地与参考SDR图像近似并帮助经重建HDR图像尽可能紧密地与参考HDR图像近似的经(正向)重塑SDR,尽管用非线性重塑映射或函数生成的经重塑SDR可能不同于参考SDR图像,而是可能含有与参考SDR图像的一些偏差。In many operating scenarios, a nonlinear reshaping mapping or function can be used to relatively efficiently distribute the available pixel or codeword values and generate a (forward) reshaped SDR that approximates the reference SDR image as closely as possible and helps the reconstructed HDR image approximate the reference HDR image as closely as possible, although the reshaped SDR generated by the nonlinear reshaping mapping or function may be different from the reference SDR image, but may contain some deviations from the reference SDR image.

另外地、可选地或替代性地,在一些操作情景中,为了在经重塑SDR和HDR图像中保持参考SDR和HDR图像的相同或类似外观,可以在中性颜色约束下执行如本文所描述的重塑优化,这些中性颜色约束在用重塑操作执行的颜色映射中保留中性颜色。Additionally, optionally, or alternatively, in some operating scenarios, in order to maintain the same or similar appearance of the reference SDR and HDR images in the reshaped SDR and HDR images, reshaping optimizations as described herein may be performed under neutral color constraints that preserve neutral colors in the color mapping performed with the reshaping operations.

给定TPB预测器或函数具有近似具有相对较高非线性的函数的能力,可以将TPB预测器或函数并入重塑操作中以支持或实现用于表示经反向重塑或经重建HDR图像的相对较宽的HDR颜色空间。Given that a TPB predictor or function has the ability to approximate functions with relatively high nonlinearity, the TPB predictor or function may be incorporated into the reshaping operation to support or enable a relatively wide HDR color space for representing the inversely reshaped or reconstructed HDR image.

潜在的缺点是,TPB预测器可能需要相对较大数量的TPB系数来表示或近似非线性SDR到HDR和/或HDR到SDR映射函数。为了防止在解决TPB系数的优化问题时可能出现的可能不明确条件、数值不稳定性、缓慢收敛问题等,可以用视频编解码器(如上游设备和/或下游设备所使用的那些)预先生成并部署静态TPB预测器,然后使用这些视频编解码器来处理如所捕获和/或编辑后视频序列等视频序列。A potential disadvantage is that the TPB predictor may require a relatively large number of TPB coefficients to represent or approximate the non-linear SDR to HDR and/or HDR to SDR mapping functions. To prevent possible ambiguous conditions, numerical instabilities, slow convergence issues, etc. that may arise when solving the optimization problem of the TPB coefficients, static TPB predictors may be pre-generated and deployed with video codecs (such as those used by upstream devices and/or downstream devices) and then used to process video sequences such as captured and/or edited video sequences.

仅为了说明的目的,在如图1A中示出的操作情景中,(经正向重塑)SDR域或颜色空间可以是R.709的域或颜色空间,而(原始或经反向重塑)HDR域或颜色空间可以是R.2020的域或颜色空间。如图2A中所图示的,R.2020颜色空间比R.709颜色空间大得多。因此,虽然可能难以将整个R.2020映射到R.709并且然后将R.709往回映射到R.2020,但可以使用如本文所描述的重塑优化技术来优化用于表示经反向重塑或经重建HDR图像的HDR颜色空间的覆盖范围,并且在经重塑SDR和HDR图像中保持参考SDR和HDR图像的相同或类似外观。可以使用这些技术来针对正向重塑操作和反向重塑操作两者同时优化如TPB系数等重塑操作参数。For illustrative purposes only, in an operational scenario as shown in FIG. 1A , the (forward reshaped) SDR domain or color space may be that of R.709, while the (original or reverse reshaped) HDR domain or color space may be that of R.2020. As illustrated in FIG. 2A , the R.2020 color space is much larger than the R.709 color space. Therefore, while it may be difficult to map the entire R.2020 to R.709 and then map R.709 back to R.2020, the reshaping optimization techniques as described herein may be used to optimize the coverage of the HDR color space used to represent the reverse reshaped or reconstructed HDR image, and maintain the same or similar appearance of the reference SDR and HDR images in the reshaped SDR and HDR images. These techniques may be used to simultaneously optimize reshaping operation parameters such as TPB coefficients for both forward reshaping operations and reverse reshaping operations.

虽然可能无法在所有情景中覆盖整个R.2020颜色空间,但可以通过重塑优化操作来选择或挑选R.2020颜色空间中的子集或子空间(例如,在颜色坐标系中被勾画为由色原形成的三角形的特定色域等)以保持经重塑HDR和SDR图像中的参考HDR图像的HDR可逆性和参考SDR图像的可接受SDR近似。While it may not be possible to cover the entire R.2020 color space in all scenarios, a subset or subspace in the R.2020 color space (e.g., a specific color gamut outlined as a triangle formed by color primaries in a color coordinate system, etc.) can be selected or picked through a reshaping optimization operation to maintain HDR reversibility of the reference HDR image and an acceptable SDR approximation of the reference SDR image in the reshaped HDR and SDR images.

通过图示而非限制的方式,R.2020颜色空间(或用于表示经重塑HDR图像的HDR颜色空间)中的子集或子空间可以由一个特定白点和三个特定色原(红色、绿色、蓝色)定义或表征。该特定白点可以被选择或固定为D65白点。可能存在很大的设计自由度来从许多可能的色原组合中为要通过重塑操作来支持的R.2020中的子集或子空间选择三个特定色原。如本文所描述的重塑优化技术可以用于将R.2020中的子集或子空间的特定色原确定或选择为优化的色原,以用于实现或达到最大感知质量和/或颜色编码效率和/或SDR图像与HDR图像之间的可逆性。By way of illustration and not limitation, a subset or subspace in an R.2020 color space (or an HDR color space used to represent a reshaped HDR image) may be defined or characterized by a specific white point and three specific chromatic algebras (red, green, blue). The specific white point may be selected or fixed to be a D65 white point. There may be a great deal of design freedom to select three specific chromatic algebras from many possible chromatic algebra combinations for a subset or subspace in R.2020 to be supported by the reshaping operation. The reshaping optimization techniques as described herein may be used to determine or select specific chromatic algebras for a subset or subspace in R.2020 as optimized chromatic algebras for achieving or attaining maximum perceived quality and/or color coding efficiency and/or reversibility between SDR images and HDR images.

麦克亚当椭圆表示只是明显的色差,因为HVS可能无法区分同一椭圆内的色差。指针的色域可以表示HVS可以感知到的所有漫射颜色。在麦克亚当椭圆和指针的色域中,绿色比红色和蓝色更不重要或更不易被HVS区分/感知到。因此,在一些操作情景中,可以将用于表示经重塑或经重建HDR图像的R.2020中的子集或子空间的特定优化的色原选择为覆盖红色和蓝色比绿色多,特别是当SDR到HDR和HDR到SDR映射在重塑操作中无法支持一对一映射关系时。The MacAdam ellipses represent only noticeable color differences, since the HVS may not be able to distinguish color differences within the same ellipse. The color gamut of the pointer may represent all diffuse colors that the HVS can perceive. In the MacAdam ellipses and the color gamut of the pointer, green is less important or less distinguishable/perceivable by the HVS than red and blue. Therefore, in some operating scenarios, a specific optimized color source for a subset or subspace in R.2020 used to represent the reshaped or reconstructed HDR image may be selected to cover more red and blue than green, especially when the SDR to HDR and HDR to SDR mappings cannot support a one-to-one mapping relationship in the reshaping operation.

如本文所使用的,色原还可以被称为原色并且可以用于定义表示特定颜色空间或色域(如标准指定的颜色空间、显示器支持的颜色空间、视频信号支持的颜色空间等)的如三角形等多边形的角。例如,具有标准指定的白点的标准颜色空间可以由三角形表示,该三角形的角在CIExy颜色空间坐标系或CIExy色度图中由三个标准指定的色原指定。在下面的表1中指定分别定义R.709、P3和R.2020颜色空间的色原(红色或R、绿色或G、蓝色或B)和白点的CIExy坐标。As used herein, a color source may also be referred to as a primary color and may be used to define the angles of a polygon such as a triangle that represents a specific color space or color gamut (such as a color space specified by a standard, a color space supported by a display, a color space supported by a video signal, etc.). For example, a standard color space with a standard specified white point may be represented by a triangle whose angles are specified by three standard specified color sources in a CIExy color space coordinate system or a CIExy chromaticity diagram. The CIExy coordinates of the color sources (red or R, green or G, blue or B) and white points that define R.709, P3, and R.2020 color spaces, respectively, are specified in Table 1 below.

表1Table 1

表1中的标准颜色空间中的每一个的色原和对应白点的CIExy坐标可以分别表示为其中,(c)是标准颜色空间。Each color source and the CIExy coordinates of the corresponding white point in the standard color space in Table 1 can be expressed as and Among them, (c) is the standard color space.

因此,P3颜色空间可以由P3色原和P3白点的如下CIExy坐标表征: 类似地,R.2020颜色空间可以由R.2020色原和R.2020白点的如下CIExy坐标表征: Therefore, the P3 color space can be characterized by the following CIExy coordinates of the P3 color primaries and the P3 white point: Similarly, the R.2020 color space can be characterized by the following CIExy coordinates of the R.2020 color primaries and the R.2020 white point:

将用于表示经反向重塑或经重建HDR图像的经反向重塑HDR颜色空间表示为(a)颜色空间。因此,定义(a)颜色空间的色原和白点的CIExy坐标可以分别表示为 The inversely reshaped HDR color space used to represent the inversely reshaped or reconstructed HDR image is denoted as the (a) color space. Therefore, the CIExy coordinates of the color primaries and white point defining the (a) color space can be expressed as and

如上所述,绿色比红色和蓝色更不重要或更不易被HVS区分/感知到。在一些操作情景中,(a)颜色空间的红色和蓝色色原可以被选择为与R.2020颜色空间的红色和蓝色色原相匹配,如下:As mentioned above, green is less important or less distinguishable/perceivable by the HVS than red and blue. In some operating scenarios, the red and blue chromatic algebra of the (a) color space may be selected to match the red and blue chromatic algebra of the R.2020 color space as follows:

另外,与被指定具有D65白点的所有R.709、P3和R.2020颜色空间一样,(a)颜色空间也可以被指定具有D65白点,如下:In addition, like all R.709, P3, and R.2020 color spaces that are specified with a D65 white point, the (a) color space can also be specified with a D65 white point, as follows:

(a)颜色空间的绿色色原可以是在CIExy坐标系或色度图中沿着P3颜色空间的绿色色原与R.2020颜色空间的绿色色原之间的线来选择的。沿着P3颜色空间和R.2020颜色空间的两个绿色色原之间的线的任何点可以表示为这两个绿色色原以权重因子a进行的线性组合,如下:(a) The green color source of the color space can be the green color source along the P3 color space in the CIExy coordinate system or the chromaticity diagram Green color source with R.2020 color space Any point along the line between the two green primaries in the P3 color space and the R.2020 color space can be represented as a linear combination of the two green primaries with a weight factor a, as follows:

因此,从(a)颜色空间中为R.2020颜色空间寻找最大支持的优化问题可以简化为选择权重因子a的问题。当a=0时,(a)颜色空间成为整个R.2020颜色空间。当a=1时,如图2B中所图示的(其中,(a)颜色空间表示为“TPB”或“当前TPB覆盖的颜色”),(a)颜色空间的红色和蓝色角或红色和蓝色色原与R.2020颜色空间的红色和蓝色角或红色和蓝色色原相同,而(a)颜色空间的绿色角或绿色色原与P3颜色空间中的绿色角或绿色色原相同。图2C至图2E分别图示了三个示例(a)颜色空间,其中,a=0.9、0.5和0.25。Therefore, the optimization problem of finding the maximum support for the R.2020 color space from the (a) color space can be simplified to the problem of selecting the weight factor a. When a=0, the (a) color space becomes the entire R.2020 color space. When a=1, as illustrated in Figure 2B (where the (a) color space is represented as "TPB" or "colors covered by the current TPB"), the red and blue corners or red and blue color primaries of the (a) color space are the same as the red and blue corners or red and blue color primaries of the R.2020 color space, and the green corner or green color primaries of the (a) color space are the same as the green corner or green color primaries in the P3 color space. Figures 2C to 2E illustrate three example (a) color spaces, where a=0.9, 0.5, and 0.25, respectively.

联合颜色空间和TPB优化Joint color space and TPB optimization

由于经反向重塑(a)颜色空间在R.2020颜色空间上的范围或覆盖范围可以由参数a控制,因此整体TPB(基于重塑的)优化问题成为如何在正向路径和反向路径两者中优化TPB系数,使得(i)用于表示经重塑SDR图像的经正向重塑SDR域(或颜色空间)接近用于表示参考SDR图像的参考SDR域(或颜色空间),特别是在比非中性颜色或颜色空间部分对HVS更敏感的中性颜色或颜色空间部分中,并且(ii)用于表示经反向重塑或经重建HDR图像的经反向重塑或经重建HDR域(或颜色空间)与用于表示参考HDR图像的参考HDR域(或颜色空间)尽可能紧密地相同。理想地,如果可以实现完美重建或完全可逆性,则经反向重塑或经重建HDR图像与参考HDR图像相同。Since the range or coverage of the inverse reshaped (a) color space on the R.2020 color space can be controlled by parameter a, the overall TPB (reshaping-based) optimization problem becomes how to optimize the TPB coefficients in both the forward path and the backward path so that (i) the forward reshaped SDR domain (or color space) used to represent the reshaped SDR image is close to the reference SDR domain (or color space) used to represent the reference SDR image, especially in the neutral colors or color space parts that are more sensitive to HVS than the non-neutral colors or color space parts, and (ii) the inverse reshaped or reconstructed HDR domain (or color space) used to represent the inverse reshaped or reconstructed HDR image is as closely identical as possible to the reference HDR domain (or color space) used to represent the reference HDR image. Ideally, the inverse reshaped or reconstructed HDR image is identical to the reference HDR image if perfect reconstruction or complete reversibility can be achieved.

如图2B至图2E中所图示的,为了使经反向重塑或经重建HDR域或颜色空间覆盖尽可能大的R.2020颜色空间,TPB优化问题归结为寻找或搜索参数a的最小可能值,使得满足以上SDR和HDR质量条件。As illustrated in Figures 2B to 2E, in order to make the inversely reshaped or reconstructed HDR domain or color space cover as large an R.2020 color space as possible, the TPB optimization problem boils down to finding or searching for the minimum possible value of parameter a so that the above SDR and HDR quality conditions are met.

图3A图示了用于寻找参数a的最小可能值以用于将经重塑SDR和HDR图像中的SDR和HDR质量最大化的示例过程流程。图3A的过程流程可以按可以是顺序次序或非顺序次序的迭代次序通过参数a的多个候选值进行迭代。Figure 3A illustrates an example process flow for finding the minimum possible value of parameter a for maximizing SDR and HDR quality in reshaped SDR and HDR images.The process flow of Figure 3A may iterate through multiple candidate values of parameter a in an iteration order that may be a sequential order or a non-sequential order.

框302包括选择参数a的当前(例如,要迭代的等)值到参数a的多个候选值中的下一候选值(例如,最初为第一候选值等)。在给定了具有参数a的当前值的候选经反向重塑HDR颜色空间的情况下,可以在图3A的一个或多个后续过程流程框中获得如优化的TPB系数等优化的重塑操作参数。Block 302 includes selecting a current (e.g., to be iterated, etc.) value of parameter a to a next candidate value (e.g., initially a first candidate value, etc.) among a plurality of candidate values for parameter a. Given a candidate inverse reshaped HDR color space having a current value of parameter a, optimized reshaping operation parameters, such as optimized TPB coefficients, may be obtained in one or more subsequent process flow blocks of FIG. 3A.

框304包括在候选经反向重塑HDR颜色空间中构建样本点或制备两个采样数据集。通过举例而非限制的方式,候选经反向重塑HDR颜色空间可以是混合对数伽马(HLG)RGB颜色空间(称为“(a)RGB颜色空间HLG”)。Block 304 includes constructing sample points or preparing two sample data sets in a candidate inversely reshaped HDR color space. By way of example and not limitation, the candidate inversely reshaped HDR color space may be a hybrid log-gamma (HLG) RGB color space (referred to as "(a) RGB color space HLG").

两个采样数据集中的第一个是均匀采样的色标数据集。均匀采样的色标数据集中的每个色标由从(a)RGB颜色空间HLG均匀采样的相应RGB颜色(表示为)表征或表示,该(a)RGB颜色空间HLG包括分别表示为R、G和B分量颜色的R轴、G轴、B轴的三个维度。(a)RGB颜色空间HLG的每个轴或维度被归一化到值范围[0,1]并且分别通过NR、NG和NB个单元或分部来采样。在此,NR、NG和NB中的每一个表示大于一(1)的正整数。因此,如下给出均匀采样的色标数据集中的色标或采样数据点的总数:The first of the two sampling datasets is a uniformly sampled color label dataset. Each color label in the uniformly sampled color label dataset consists of a corresponding RGB color uniformly sampled from (a) the RGB color space HLG (denoted as ) characterizes or represents, the (a) RGB color space HLG includes three dimensions of R axis, G axis, B axis represented as R, G and B component colors respectively. Each axis or dimension of the (a) RGB color space HLG is normalized to the value range [0,1] and is sampled by NR , NG and NB units or divisions respectively. Here, each of NR , NG and NB represents a positive integer greater than one (1). Therefore, the total number of color scales or sampled data points in the uniformly sampled color scale data set is given as follows:

Nu=NRNGNB (4) Nu NRNGNB ( 4 )

如下给出均匀采样的色标数据集中的每个均匀采样的数据点或RGB颜色 Each uniformly sampled data point or RGB color in the uniformly sampled color scale dataset is given as follows

其中,i∈[0,…,NR-1],j∈[0,…,NG-1],k∈[0,…,NB-1]where i∈[0,…, NR -1], j∈[0,…, NG -1], k∈[0,…, NB -1]

为简单起见,上述表达式(5)中的(i,j,k)可以向量化或简单地表示为p。相应地,均匀采样的数据点或RGB颜色可以简单地表示为所有Nu个节点(其中的每一个表示特定R轴单元/分区、特定B轴单元/分区、特定G轴单元/分区的唯一组合)可以如下分组或收集到向量/矩阵中:For simplicity, (i, j, k) in the above expression (5) can be vectorized or simply represented as p. Accordingly, the uniformly sampled data points or RGB colors It can be simply expressed as All Nu nodes (each of which represents a unique combination of a specific R-axis cell/partition, a specific B-axis cell/partition, a specific G-axis cell/partition) can be grouped or collected into a vector/matrix as follows:

在框304中制备或构建的两个采样数据集中的第二个是中性颜色数据集。该第二数据集包括多个中性颜色或中性色标(也称为灰色或灰色色标)。The second of the two sample data sets prepared or constructed in block 304 is a neutral color data set. The second data set includes a plurality of neutral colors or neutral color scales (also referred to as grays or gray scales).

第二数据集可以用于当在如本文所描述的重塑操作中将输入域中的输入灰色色标映射到或重塑为输出灰色色标时将输入域中的输入灰色色标作为输出域中的输出灰色色标进行保留。与其他色标相比较,在优化问题中可以将增加的加权给予在输入域(或输入颜色空间)中的输入灰色色标,以降低这些输入灰色色标通过重塑操作被映射到在输出域(或输出颜色空间)中的非灰色色标的可能性。The second data set can be used to preserve the input gray scales in the input domain as output gray scales in the output domain when the input gray scales in the input domain are mapped to or reshaped into output gray scales in a reshaping operation as described herein. Increased weighting can be given to the input gray scales in the input domain (or input color space) in the optimization problem compared to other scales to reduce the likelihood that these input gray scales are mapped to non-gray scales in the output domain (or output color space) by the reshaping operation.

可以通过沿着连接在RGB域(例如,(a)RGB颜色空间HLG等)中的第一灰色(0,0,0)与第二灰色(1,1,1)之间的线对R、G、B值进行均匀地采样从而产生Nn个节点或灰色色标来制备或构建第二数据集(灰色数据集或灰色的数据集),如下:The second data set (gray data set or gray data set) can be prepared or constructed by uniformly sampling R, G, B values along a line connecting a first gray (0, 0, 0) and a second gray (1, 1, 1) in an RGB domain (e.g., (a) RGB color space HLG, etc.) to generate N n nodes or gray color scales, as follows:

其中,i∈[0,…,Nn-1]where i∈[0,…,N n -1]

第二数据集中的所有Nn个节点可以如下分组或收集到中性颜色向量/矩阵中:All N n nodes in the second data set can be grouped or collected into a neutral color vector/matrix as follows:

上述表达式(8)中的中性颜色向量/矩阵可以重复Nt(不小于(1)的正整数)次以生成(现在重复的)第二数据集中的NnNt个中性色标,如下:The neutral color vector/matrix in expression (8) above may be repeated N t (a positive integer not less than (1)) times to generate N n N t neutral color labels in the (now repeated) second data set, as follows:

与其他颜色相比较,对重复的第二中性颜色数据集中的中性颜色进行重复会增加中性颜色或灰色的加权。因此,中性颜色与其他颜色相比可以在优化问题中得到更多的保留。Repeating the neutral colors in the repeated second neutral color data set increases the weight of the neutral colors or grays compared to other colors. Therefore, the neutral colors can be retained more in the optimization problem than other colors.

表达式(6)和(9)中的第一(所有采样)颜色数据集和第二中性颜色(重复)数据集可以一起收集或放置在单个组合向量/矩阵中,如下:The first (all sampled) color data set and the second neutral color (repeated) data set in expressions (6) and (9) can be collected or placed together in a single combined vector/matrix as follows:

组合向量/矩阵中的向量/矩阵元素(重复和非重复色标)的总数是N=NnNt+Nu。上述表达式(10)中的中的每个向量/矩阵元素或色标(行)可以如下表示:Combine vectors/matrices The total number of vector/matrix elements (repeating and non-repeating color scales) in is N=N n N t +N u . Each vector/matrix element or color scale (row) in can be represented as follows:

框306包括将在(a)RGB颜色空间(或(a)RGB颜色空间HLG)中的组合向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为基于标准的R.2020颜色空间或R.2020RGB颜色空间HLG中的对应颜色值。Block 306 includes converting the combined vector/matrix in (a) RGB color space (or (a) RGB color space HLG) The color values of the color scales (rows) represented in the vector/matrix elements are converted to the corresponding color values in the standard R.2020 color space or R.2020RGB color space HLG.

与在CIExy色度图中定义(a)RGB颜色空间HLG的三角形的三个角或点相对应的在(a)RGB颜色空间HLG中的红色、绿色和蓝色三个原色可以经由以下等式从CIE xy值转换为CIE XYZ值:The three primary colors of red, green and blue in the (a) RGB color space HLG corresponding to the three corners or points of the triangle defining the (a) RGB color space HLG in the CIExy chromaticity diagram can be converted from CIE xy values to CIE XYZ values via the following equations:

Y=1 (12-1)Y=1 (12-1)

在给定了作为(x,y)或CIE xy值的红色、绿色和蓝色原色的情况下,可以使用上述表达式(12)中的转换等式获得(X,Y,Z)或CIE XYZ值的相同红色、绿色和蓝色原色,分别表示为 类似地,在给定了作为(x,y)或CIE xy值的白点的情况下,可以使用上述方程式(12)中的相同转换等式获得(X,Y,Z)或CIE XYZ值的相同白点,表示为 In the given In the case of red, green, and blue primaries as (x, y) or CIE xy values, the same red, green, and blue primaries as (X, Y, Z) or CIE XYZ values can be obtained using the conversion equations in the above expression (12), which are respectively expressed as Similarly, given In the case of a white point as (x,y) or CIE xy values, the same conversion equation in equation (12) above can be used to obtain the same white point as (X,Y,Z) or CIE XYZ values, expressed as

表示为P(a)→XYZ的3×3转换矩阵可以被建构为将在组合向量/矩阵的(x,y)或CIE xy值的向量/矩阵元素中表示的色标(行)的颜色值转换为对应(X,Y,Z)或CIE XYZ值,如下The 3×3 transformation matrix denoted as P (a)→XYZ can be constructed by combining the vector/matrix The color values of the color scale (row) represented by the vector/matrix elements of the (x,y) or CIE xy values are converted to the corresponding (X,Y,Z) or CIE XYZ values as follows

其中,表示在表达式(13)中的右侧(RHS)的两个矩阵之间的元素点乘;并且在表达式(13)中的RHS的两个矩阵可以如下建构:in, represents the element-wise multiplication between the two matrices on the right side (RHS) in Expression (13); and the two matrices on the RHS in Expression (13) can be constructed as follows:

其中,in,

表示为P(a)→R2020的整体3×3转换矩阵可以被建构为将在aRGB颜色空间HLG中的组合向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为R.2020RGB颜色空间HLG中的对应颜色值,如下:The overall 3×3 transformation matrix, denoted as P (a)→R2020, can be constructed as the combined vector/matrix in the aRGB color space HLG The color values of the color scales (rows) represented in the vector/matrix elements are converted to the corresponding color values in the R.2020RGB color space HLG as follows:

P(a)→R2020=P(a)→XYZPXYZ→R2020 (17)P (a)→R2020 =P (a)→XYZ P XYZ→R2020 (17)

其中,PXYZ→R2020表示将XYZ颜色值转换为R.2020RGB颜色空间HLG中的对应值的3×3转换矩阵。Among them, P XYZ→R2020 represents a 3×3 conversion matrix that converts XYZ color values to corresponding values in the R.2020RGB color space HLG.

因此,在框306中,可以将在aRGB颜色空间(或(a)RGB颜色空间HLG)中的组合向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为基于标准的R.2020颜色空间或R.2020RGB颜色空间HLG中的对应颜色值,如下:Thus, in block 306, the combined vector/matrix in aRGB color space (or (a)RGB color space HLG) may be The color values of the color scales (rows) represented in the vector/matrix elements are converted to the corresponding color values in the standard R.2020 color space or R.2020RGB color space HLG as follows:

框308包括将在R.2020RGB颜色空间HLG中的向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为R.2020YCbCr颜色空间HLG中的对应颜色值(表示为),如下:Block 308 includes converting the vector/matrix into the R.2020RGB color space HLG The color value of the color scale (row) represented in the vector/matrix element of is converted to the corresponding color value in the R.2020YCbCr color space HLG (expressed as ),as follows:

其中,表示将R.2020RGB颜色空间HLG中的(R.2020RGB)颜色值转换为R.2020YCbCr颜色空间HLG中的对应(HDR R.2020YCbCr)颜色值的转换函数或矩阵。in, Represents a conversion function or matrix that converts a (R.2020RGB) color value in the R.2020RGB color space HLG to a corresponding (HDR R.2020YCbCr) color value in the R.2020YCbCr color space HLG.

中的每个色标(行)可以如下表示: Each color scale (row) in can be represented as follows:

框310包括将在R.2020RGB颜色空间HLG中的向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为或内容映射到R.709SDR YCbCr颜色空间中的对应颜色值(表示为),如下:Block 310 includes converting the vector/matrix into the R.2020RGB color space HLG The color value of the color scale (row) represented by the vector/matrix element is converted or mapped to the corresponding color value in the R.709SDR YCbCr color space (expressed as ),as follows:

其中,fHLG→W_SDR()表示将R.2020RGB颜色空间HLG中的HDR R.2020RGB颜色值转换为R.709SDR RGB颜色空间中的对应R.709SDR RGB颜色值(表示为)的白盒HDR到SDR映射函数;并且表示然后将R.709SDR RGB颜色空间中的R.709SDRRGB颜色值转换为R.709SDR YCbCr颜色空间中的对应颜色值的转换函数或矩阵。白盒HDR到SDR映射函数的非限制性示例在BT.2390-10,“High dynamic rangetelevision for production and international programme exchange[用于制作和国际节目交流的高动态范围电视]”(2021年11月)中进行了描述,所述文献通过引用整体并入本文。白盒HDR到SDR映射函数的其他示例可以包括但不一定仅限于以下项中的任一项:基于标准的HDR到SDR转换函数、专属的HDR到SDR转换函数、具有线性和/或非线性域的HDR到SDR转换函数、使用伽马函数的HDR到SDR映射函数、功率函数等。Among them, f HLG→W_SDR() means converting the HDR R.2020RGB color value in the R.2020RGB color space HLG Convert to the corresponding R.709SDR RGB color value in the R.709SDR RGB color space (expressed as )’s white-box HDR to SDR mapping function; and Represents then converting the R.709SDRRGB color value in the R.709SDR RGB color space Convert to the corresponding color value in R.709SDR YCbCr color space A conversion function or matrix. Non-limiting examples of white box HDR to SDR mapping functions are described in BT.2390-10, “High dynamic range television for production and international programme exchange” (November 2021), which is incorporated herein by reference in its entirety. Other examples of white box HDR to SDR mapping functions may include, but are not necessarily limited to, any of the following: a standard-based HDR to SDR conversion function, a proprietary HDR to SDR conversion function, an HDR to SDR conversion function with a linear and/or non-linear domain, an HDR to SDR mapping function using a gamma function, a power function, etc.

中的每个色标(行)可以如下表示: Each color scale (row) in can be represented as follows:

框312包括将在R.2020RGB颜色空间HLG中的向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为或内容映射到R.2020YCbCr颜色空间PQ中的对应颜色值(表示为),如下:Box 312 includes converting the vector/matrix in the R.2020RGB color space HLG The color value of the color scale (row) represented in the vector/matrix element is converted or mapped to the corresponding color value in the R.2020YCbCr color space PQ (expressed as ),as follows:

其中,fHLG→PQ()表示例如使用在前面提到的SMPTE 2084和Rec.ITU-R BT.2100中描述的传递函数将R.2020RGB颜色空间HLG中的HDR R.2020RGB HLG颜色值转换为R.2020HDR RGB颜色空间PQ中的对应HDR R.2020RGB PQ颜色值(表示为)的HLG到PQ转换函数;并且表示然后例如使用在前面提到的SMPTE 2084和Rec.ITU-RBT.2100中描述的传递函数将R.2020HDR RGB颜色空间PQ中的HDR R.2020RGB PQ颜色值转换为R.2020YCbCr颜色空间PQ中的对应颜色值的转换函数或矩阵。Wherein, f HLG→PQ() represents, for example, the transfer function described in the aforementioned SMPTE 2084 and Rec.ITU-R BT.2100 for converting HDR R.2020RGB HLG color values in the R.2020RGB color space HLG to Converted to the corresponding HDR R.2020RGB PQ color value in the R.2020HDR RGB color space PQ (expressed as )’s HLG to PQ conversion function; and The HDR R.2020 RGB PQ color values in the R.2020 HDR RGB color space PQ are then converted, for example, using the transfer functions described in the aforementioned SMPTE 2084 and Rec.ITU-R BT.2100 Convert to the corresponding color value in R.2020YCbCr color space PQ The transfer function or matrix of .

中的每个色标(行)可以如下表示: Each color scale (row) in can be represented as follows:

框314包括采用作为可以用中性颜色保留来增强或修改的(TPB)BESA算法的输入以获得或生成正向和反向重塑操作参数,如正向和反向TPB系数。Block 314 includes using and Forward and reverse reshaping operation parameters, such as forward and reverse TPB coefficients, may be obtained or generated as input to a (TPB) BESA algorithm that may be enhanced or modified with neutral color preservation.

BESA算法是迭代算法,其中,每个当前迭代可以根据在前一迭代中测量或确定的反向预测误差修改参考SDR信号。The BESA algorithm is an iterative algorithm, where each current iteration may modify the reference SDR signal based on the inverse prediction error measured or determined in the previous iteration.

如本文所描述的修改后的BESA算法可以实施中性颜色保留并且避免修改中性色标。为此,可以如下生成识别或对应于中性色标的一组中性色标索引:The modified BESA algorithm as described herein can implement neutral color preservation and avoid modifying the neutral color scale. To this end, a set of neutral color scale indices that identify or correspond to the neutral color scale can be generated as follows:

其中,δ表示以绝对值确定或指定最大颜色偏差范围的中性颜色值阈值,在该范围内颜色值符合中性颜色的条件。中性颜色值阈值δ的示例值可以包括但不一定仅限于以下项中的任一项:1/2048、1/1024等。Wherein, δ represents a neutral color value threshold value that determines or specifies a maximum color deviation range in absolute value, within which the color value meets the condition of neutral color. Example values of the neutral color value threshold value δ may include, but are not necessarily limited to, any of the following items: 1/2048, 1/1024, etc.

让ch表示经正向重塑SDR域或颜色空间(例如,的三个通道等)中的通道。让F表示正向重塑或正向路径。让B表示反向重塑或反向路径。Let ch denote the channel in the forward reshaped SDR domain or color space (e.g., three channels of , etc.). Let F denote the forward reshaping or forward path. Let B denote the reverse reshaping or reverse path.

表示为的每通道正向生成矩阵(也被称为设计矩阵)可以用于从如由用表达式(19)得到的对应输入HDR码字表征的输入HDR色标预测如由对应经正向重塑SDR码字表征的经正向重塑SDR色标。正向生成矩阵可以从跨通道正向TPB基函数生成或预计算,存储或缓存在计算机存储器中,并且在用于正向路径的所有迭代中固定,如下:Expressed as The per-channel forward generation matrix (also called the design matrix) can be used to generate an input HDR color scale represented by the corresponding input HDR codeword as obtained by expression (19) Predict the forward reshaped SDR color scale as represented by the corresponding forward reshaped SDR codeword. The forward generator matrix can be derived from the cross-channel forward TPB basis function to is generated or precomputed, stored or cached in computer memory, and fixed in all iterations for the forward path as follows:

其中,跨通道正向TPB基函数采用或接受如上述表达式(20)中示出的中的色标(或行)作为输入参数。Among them, the cross-channel forward TPB basis function to Adopting or accepting the above expression (20) The color scales (or rows) in are taken as input parameters.

可以通过将表达式(28)中的正向生成矩阵与正向TPB系数相乘来预测经正向重塑SDR色标。具有TPB系数的示例预测经重塑码字(其与本文的色标等效或类似)在前面提到的美国临时专利申请序列号62/908,770中进行描述。The forward reshaped SDR color scale can be predicted by multiplying the forward generation matrix in expression (28) with the forward TPB coefficients. Example predicted reshaped codewords with TPB coefficients (which are equivalent or similar to the color scales herein) are described in the aforementioned U.S. Provisional Patent Application Serial No. 62/908,770.

可以例如通过基于TPB的反向重塑操作将经正向重塑SDR色标或码字反向重塑为经反向重塑HDR色标或码字。The forward reshaped SDR color scale or codeword may be reversely reshaped into a reverse reshaped HDR color scale or codeword, for example, by a TPB-based reverse reshaping operation.

在反向路径中,在BESA算法中的每次迭代(例如,第k次迭代等)时,表示为的每通道反向生成矩阵可以用于从如由在正向路径中得到的对应经正向重塑SDR码字表征的经正向重塑SDR色标预测如由对应经反向重塑HDR码字表征的经反向重塑HDR色标。用于每次迭代的反向生成矩阵可以从跨通道正向TPB基函数生成,并且在用于反向路径的所有迭代中不固定,如下:In the reverse path, at each iteration (e.g., kth iteration, etc.) in the BESA algorithm, it is expressed as The per-channel reverse generation matrix of can be used to predict the reverse reshaped HDR color scale as represented by the corresponding reverse reshaped HDR codeword from the forward reshaped SDR color scale as represented by the corresponding forward reshaped SDR codeword obtained in the forward path. The reverse generation matrix for each iteration can be obtained from the cross-channel forward TPB basis function to is generated, and not fixed across all iterations for the reverse path, as follows:

其中,表示经正向重塑SDR色标或码字。in, to Indicates the forward reshaped SDR color code or codeword.

可以通过将表达式(29)中的反向生成矩阵与反向TPB系数相乘来预测经反向重塑HDR色标。The inverse reshaped HDR color scale can be predicted by multiplying the inverse generation matrix in expression (29) with the inverse TPB coefficients.

可以通过将收集在向量/矩阵中的经反向重塑HDR色标或码字与从表达式(25)得到的每通道反向观察向量/矩阵中的参考HDR色标或码字进行比较来确定BESA算法中的每次迭代的反向预测误差。每通道反向观察向量/矩阵可以从表达式(25)生成或预计算,存储或缓存在计算机存储器中,并且在所有迭代中固定,如下:The reverse prediction error for each iteration in the BESA algorithm can be determined by comparing the reverse reshaped HDR color scale or codeword collected in the vector/matrix with the reference HDR color scale or codeword in the per-channel reverse observation vector/matrix obtained from expression (25). The per-channel reverse observation vector/matrix can be generated or pre-computed from expression (25), stored or cached in computer memory, and fixed in all iterations as follows:

参考SDR信号或参考SDR色标或码字可以用作正向重塑操作的预测目标以将经正向重塑SDR色标或码字生成为近似参考SDR色标或码字。在BESA算法中,参考SDR色标或码字(其中,k表示从作为BESA算法中的第一次迭代的零(0)开始的迭代索引)可以针对第一次迭代(k=0)被初始化为用上述表达式(22)得到的SDR色标或码字,并且此后可以在每次迭代结束时部分地或全部地基于为该迭代确定的预测误差来修改。修改后的参考SDR色标或码字可以在BESA算法中的下一次迭代中用作正向重塑操作的预测目标以将经正向重塑SDR色标或码字生成为近似修改后的参考SDR色标或码字。The reference SDR signal or the reference SDR color scale or codeword can be used as a prediction target for the forward reshaping operation to generate the forward reshaped SDR color scale or codeword into an approximate reference SDR color scale or codeword. (where k represents an iteration index starting from zero (0) as the first iteration in the BESA algorithm) may be initialized to the SDR color scale or codeword obtained using the above expression (22) for the first iteration (k=0), and thereafter may be modified at the end of each iteration in part or in whole based on the prediction error determined for that iteration. The modified reference SDR color scale or codeword may be used as a prediction target for a forward reshaping operation in the next iteration in the BESA algorithm to generate the forward reshaped SDR color scale or codeword into an approximately modified reference SDR color scale or codeword.

每通道参考SDR色标或码字在第k次迭代时可以用于如下建构向量/矩阵 The per-channel reference SDR color scale or codeword can be used to construct the vector/matrix as follows at the kth iteration

在第一次迭代之前,将上述表达式(31)中的向量设置为由表达式(22)和(23)表示的原始参考SDR信号,如下:Before the first iteration, the vector in the above expression (31) is set to the original reference SDR signal represented by expressions (22) and (23), as follows:

在第k次迭代时,可以经由优化问题的最小平方解生成(例如,每通道等)正向TPB系数(表示为)的优化值,该最小平方解将经正向重塑SDR色标或码字与为该迭代确定的参考SDR色标或码字之间的差最小化,如下:At the kth iteration, the forward TPB coefficients (expressed as ) that minimizes the difference between the forward reshaped SDR color scale or codeword and the reference SDR color scale or codeword determined for that iteration, as follows:

可以从(例如,每通道等)正向TPB系数的优化值计算在第k次迭代时通道ch的所预测的SDR色标或码字,如下:The predicted SDR color scale or codeword for channel ch at the kth iteration may be calculated from the optimized values of the (e.g., per-channel, etc.) forward TPB coefficients as follows:

在第k次迭代时,可以经由优化问题的最小平方解生成(例如,每通道等)反向TPB系数(表示为)的优化值,该最小平方解将经反向重塑HDR色标或码字与参考HDR色标或码字(其对于BESA算法中的所有迭代是固定的)之间的差最小化,如下:At the kth iteration, the inverse TPB coefficients (expressed as) can be generated (eg, per channel, etc.) via the least squares solution of the optimization problem. ) that minimizes the difference between the inversely reshaped HDR color scale or codeword and the reference HDR color scale or codeword (which is fixed for all iterations in the BESA algorithm), as follows:

可以从(例如,每通道等)反向TPB系数的优化值计算在第k次迭代时通道ch的所预测的HDR色标或码字,如下:The predicted HDR color scale or codeword for channel ch at the kth iteration may be calculated from the optimized values of the (eg, per-channel, etc.) inverse TPB coefficients as follows:

计算反向预测误差并将误差往回传播到参考非中性SDR信号。The inverse prediction error is calculated and propagated back to the reference non-neutral SDR signal.

如上所述,可以通过将经反向重塑HDR色标或码字与从表达式(25)得到的参考HDR色标或码字(其对于BESA算法中的所有迭代是固定的)进行比较来确定BESA算法中的每次迭代的反向预测误差。As described above, the reverse prediction error for each iteration in the BESA algorithm can be determined by comparing the reverse reshaped HDR color scale or codeword with the reference HDR color scale or codeword obtained from expression (25) (which is fixed for all iterations in the BESA algorithm).

在这些反向预测误差当中,可以往回传播非中性颜色(或非灰色)的反向预测误差以更新或修改这些非中性颜色(或非灰色)的参考SDR色标或码字。非中性颜色(或非灰色)的修改后的SDR色标或码字可以与中性颜色(或灰色)的(未修改的)参考SDR色标或码字进行组合以在BESA算法中的下一次或即将到来的迭代中用作正向路径的预测目标。Among these backward prediction errors, the backward prediction errors of non-neutral colors (or non-gray colors) can be propagated back to update or modify the reference SDR color labels or codewords of these non-neutral colors (or non-gray colors). The modified SDR color labels or codewords of non-neutral colors (or non-gray colors) can be combined with the (unmodified) reference SDR color labels or codewords of neutral colors (or gray colors) to be used as the prediction target of the forward path in the next or upcoming iteration in the BESA algorithm.

在一些操作情景中,可以将反向预测误差计算为原始或参考HDR信号(或其中的参考HDR色标/码字)与在第k次迭代时所预测的HDR信号(或其中的经反向重塑HDR色标/码字)之间的差,如下:In some operational scenarios, the inverse prediction error may be calculated as the difference between the original or reference HDR signal (or a reference HDR color label/codeword therein) and the predicted HDR signal (or an inversely reshaped HDR color label/codeword therein) at the kth iteration as follows:

响应于确定色标i是在中性颜色集Φ中,可以针对即将到来的第(k+1)次迭代将参考SDR信号的Cb和Cr通道中的色标的参考SDR码字设置为灰色值,如0.5,如下:In response to determining that the color label i is in the neutral color set Φ, the reference SDR codewords of the color label in the Cb and Cr channels of the reference SDR signal may be set to a gray value, such as 0.5, for the upcoming (k+1)th iteration as follows:

否则,响应于确定色标i不在中性颜色集Φ中,可以针对即将到来的第(k+1)次迭代根据反向预测误差将参考SDR信号的Cb和Cr通道中的色标的参考SDR码字设置为更新或修改后的值,如下:Otherwise, in response to determining that the color label i is not in the neutral color set Φ, the reference SDR codewords of the color labels in the Cb and Cr channels of the reference SDR signal may be set to updated or modified values according to the reverse prediction error for the upcoming (k+1)th iteration as follows:

其中,ε表示反向预测误差阈值,高于该反向预测误差阈值就能够传播反向预测误差以更新非中性颜色的色标;αch表示用于对反向预测误差进行缩放的固定或可配置学习速率;λ表示修改非中性颜色的色标的参考码字的上限或最大允许值。ε的示例值可以是但不一定仅限于0.000005。αch的示例值可以是但不一定仅限于1。λ的示例值可以是但不一定仅限于2。(这意味着没有限制,因为本文的SDR和/或HDR码字可以被归一化到0至1的归一化域或范围)。Wherein, ε represents a reverse prediction error threshold, above which the reverse prediction error can be propagated to update the color scale of the non-neutral color; αch represents a fixed or configurable learning rate for scaling the reverse prediction error; λ represents an upper limit or maximum allowed value of the reference codeword for modifying the color scale of the non-neutral color. An example value of ε may be, but is not necessarily limited to, 0.000005. An example value of αch may be, but is not necessarily limited to, 1. An example value of λ may be, but is not necessarily limited to, 2. (This means that there is no limitation, as the SDR and/or HDR codewords herein may be normalized to a normalization domain or range of 0 to 1).

如用表达式(38)至(40)执行的中性颜色保留可以用于确保参考SDR信号中的中性颜色在BESA算法中的所有迭代中不会偏离为或偏离到非中性颜色。因此,改进经重塑图像中的灰度级相关的感知质量。Neutral color preservation as performed by expressions (38) to (40) can be used to ensure that neutral colors in the reference SDR signal do not deviate to or from non-neutral colors in all iterations of the BESA algorithm, thereby improving the perceived quality of grayscale related in the reshaped image.

可以使BESA算法迭代最高达迭代总次数。在一些操作情景中,BESA算法的迭代总次数可以被专门选择为平衡经重塑SDR和/或HDR图像中的颜色偏差。例如,BESA算法中的不同迭代总次数可以生成正向和反向TPB系数,这些正向和反向TPB系数产生不同SDR外观的经重塑SDR图像和不同HDR外观的经重塑HDR图像。可以为BESA算法选择生成相对高质量外观的经重塑SDR和HDR图像的迭代总次数,如十次、十五次等。The BESA algorithm may be iterated up to a total number of iterations. In some operating scenarios, the total number of iterations of the BESA algorithm may be specifically selected to balance color bias in the reshaped SDR and/or HDR images. For example, different total numbers of iterations in the BESA algorithm may generate forward and reverse TPB coefficients that produce reshaped SDR images of different SDR appearances and reshaped HDR images of different HDR appearances. A total number of iterations may be selected for the BESA algorithm to generate reshaped SDR and HDR images of relatively high quality appearance, such as ten times, fifteen times, etc.

可以针对参数a的每个候选值执行具有中性颜色保留的BESA算法。例如,在框314中,可以针对参数a的当前候选值执行具有中性颜色保留的BESA算法。The BESA algorithm with neutral color preservation may be performed for each candidate value of parameter a.For example, in block 314, the BESA algorithm with neutral color preservation may be performed for the current candidate value of parameter a.

框316包括确定参数a的当前候选值是否为参数a的多个候选值中的最后一候选值。如果是,则过程流程进行到框318。否则,过程流程返回到框302。Block 316 includes determining whether the current candidate value for parameter a is the last candidate value among the plurality of candidate values for parameter a. If so, process flow proceeds to block 318. Otherwise, process flow returns to block 302.

框318包括选择参数a的最优或优化值,以及为(a)RGB颜色空间计算(或简单地选择已经计算出的)与参数a的优化值相对应的优化的正向和反向TPB系数。Block 318 includes selecting an optimal or optimized value for parameter a, and calculating (or simply selecting already calculated) optimized forward and reverse TPB coefficients corresponding to the optimized value for parameter a for the (a) RGB color space.

选择参数a的优化值可以被表述为寻找(的特定值集)的优化问题,使得(1)(a)RGB颜色空间表示最大HDR颜色空间(例如,用于覆盖R.2020RGB颜色空间的最大部分等)以实现表示为的最小化HDR预测误差,并且(2)经正向重塑SDR色标或码字具有表示为的相对较小或可接受SDR颜色偏差,如下:Choosing the optimal value of parameter a can be formulated as finding The optimization problem of (a specific set of values of) is such that (1) (a) the RGB color space represents the maximum HDR color space (e.g., for covering the largest part of the R.2020RGB color space, etc.) to achieve The HDR prediction error is minimized, and (2) the SDR color scale or codeword is forward reshaped and represented as The relatively small or acceptable SDR color deviations are as follows:

其中,w是用于在HDR误差与SDR误差之间进行平衡的加权因子。Here, w is a weighting factor used to balance between HDR error and SDR error.

该优化问题可以通过使用每个aRGB颜色空间的对应的最优或优化TPB系数检查来自该颜色空间的结果来解决。在所有可能或候选a值当中,最小a值(对应于R.2020颜色空间中的最大颜色空间覆盖范围)可以实现最小化HDR误差和相对较小的SDR误差。HDR预测误差和SDR颜色偏差可以是主观(例如,具有人类观察者的输入等)或客观失真函数(例如,没有或有很少人类观察者的输入等),如用来自数据库的图像数据集测量的那些。示例失真函数可以包括但不一定仅限于以下项中的任一项:均方误差(或偏差)或MSE、均方根误差(或偏差)或RMSE、绝对差之和或SAD、峰值信噪比或PSNR、结构相似度指数(SSIM)等。This optimization problem can be solved by using the corresponding optimal or optimized TPB coefficients for each aRGB color space. and The results from this color space are checked to solve. Among all possible or candidate a values, the smallest a value (corresponding to the maximum color space coverage in the R.2020 color space) can achieve the minimum HDR error and a relatively small SDR error. HDR prediction error and SDR color deviation It can be a subjective (e.g., with input from a human observer, etc.) or an objective distortion function (e.g., with no or little input from a human observer, etc.), such as those measured with an image dataset from a database. Example distortion functions may include, but are not necessarily limited to, any of the following: mean square error (or deviation) or MSE, root mean square error (or deviation) or RMSE, sum of absolute differences or SAD, peak signal-to-noise ratio or PSNR, structural similarity index (SSIM), etc.

图2F和图2G图示了经正向重塑SDR域或颜色空间中针对参数a的不同值的示例百分位Cb和Cr值。参数a的不同值确定经反向重塑HDR域或颜色空间在R.2020域或颜色空间中的不同颜色空间覆盖范围,并且因此以不同方式影响R.2020域或颜色空间中的经反向重塑HDR图像的重建或生成,并且与要和经反向重塑HDR图像近似的参考HDR图像相比较导致经反向重塑HDR图像的不同失真(例如,如用失真度量表示或测量的)。2F and 2G illustrate example percentile Cb and Cr values in the forward reshaped SDR domain or color space for different values of parameter a. Different values of parameter a determine different color space coverage of the reverse reshaped HDR domain or color space in the R.2020 domain or color space, and thus affect the reconstruction or generation of the reverse reshaped HDR image in the R.2020 domain or color space in different ways, and result in different distortions of the reverse reshaped HDR image compared to a reference HDR image to which the reverse reshaped HDR image is to be approximated (e.g., as measured by a distortion metric expressed or measured).

图2F的竖轴针对如由图2F的横轴所表示的参数a值的不同值(例如,在十次迭代中用具有中性颜色保留的BESA算法获得的等)表示经正向重塑SDR域中的Cb和Cr通道中的3百分位值。参数a的值越低,a颜色空间在R.2020颜色空间中的覆盖范围就越大。3百分位值可以显式地或隐式地用于表示经正向重塑SDR(例如,YCbCr等)域或颜色空间的Cb和Cr通道中的最小值。3百分位值越小,最小值就越小,并且因此经正向重塑SDR(YCbCr)域或颜色空间中的码字值范围就延伸越大。如图2F中可以示出,参数a的值越低,经正向重塑SDR(例如,YCbCr等)域或颜色空间的Cb和Cr通道中的3百分位值就越低。The vertical axis of FIG. 2F represents the 3 percentile values in the Cb and Cr channels in the forward reshaped SDR domain for different values of the parameter a value as represented by the horizontal axis of FIG. 2F (e.g., obtained with the BESA algorithm with neutral color preservation in ten iterations, etc.). The lower the value of the parameter a, the greater the coverage of the a color space in the R.2020 color space. The 3 percentile value can be used explicitly or implicitly to represent the minimum value in the Cb and Cr channels of the forward reshaped SDR (e.g., YCbCr, etc.) domain or color space. The smaller the 3 percentile value, the smaller the minimum value, and therefore the larger the range of codeword values in the forward reshaped SDR (YCbCr) domain or color space extends. As can be shown in FIG. 2F, the lower the value of the parameter a, the lower the 3 percentile value in the Cb and Cr channels of the forward reshaped SDR (e.g., YCbCr, etc.) domain or color space.

图2G的竖轴针对如由图2G的横轴所表示的参数a值的不同值(例如,在十次迭代中用具有中性颜色保留的BESA算法获得的等)表示经正向重塑SDR域中的Cb和Cr通道中的97百分位值。97百分位值可以显式地或隐式地用于表示经正向重塑SDR(例如,YCbCr等)域或颜色空间的Cb和Cr通道中的最大值。97百分位值越大,最大值就越大,并且因此经正向重塑SDR(YCbCr)域或颜色空间中的码字值范围就延伸越大。如图2G中可以示出,经正向重塑SDR域或颜色空间的Cb和Cr通道两者中的97百分位值保持几乎恒定值。The vertical axis of FIG. 2G represents the 97th percentile values in the Cb and Cr channels in the forward reshaped SDR domain for different values of the parameter a value as represented by the horizontal axis of FIG. 2G (e.g., obtained with the BESA algorithm with neutral color preservation in ten iterations, etc.). The 97th percentile value can be used explicitly or implicitly to represent the maximum value in the Cb and Cr channels of the forward reshaped SDR (e.g., YCbCr, etc.) domain or color space. The larger the 97th percentile value, the larger the maximum value, and therefore the larger the range of codeword values in the forward reshaped SDR (YCbCr) domain or color space extends. As can be shown in FIG. 2G, the 97th percentile value in both the Cb and Cr channels of the forward reshaped SDR domain or color space remains at an almost constant value.

在一些操作情景中,在框318中,用于确定经重塑SDR和HDR图像中的失真并部分地或全部地基于这些失真来选择参数a的优化值的图像数据集可以包括用如移动电话等一个或多个特定视频捕获设备(例如,支持SMPTE ST 2094中的视频编码配置文件、支持杜比视觉配置文件8.4等)获取的视频比特流。参数a的优化值的非限制性示例可以是但不一定仅限于0.5,这确定经反向重塑HDR域或颜色空间在R.2020颜色空间中的最大颜色空间覆盖范围。随着使用或支持较宽的经反向重塑颜色空间(例如,对应于小于参数a的优化值的值等),经重塑SDR颜色和码字可能开始偏离参考SDR颜色和码字,具有相对较大的失真。这是因为增加经反向重塑HDR域或颜色空间意味着将所区分的经正向重塑SDR颜色(或码字)更紧密地挤压到经正向重塑SDR域或颜色空间中,导致经正向重塑SDR颜色从在参考SDR颜色(或码字)中表示的原始3D位置移动到通过经正向重塑SDR颜色来近似。In some operational scenarios, in block 318, the image data set used to determine distortions in the reshaped SDR and HDR images and select an optimized value for parameter a based in part or in whole on these distortions may include a video bitstream acquired with one or more specific video capture devices such as mobile phones (e.g., supporting a video coding profile in SMPTE ST 2094, supporting Dolby Vision Profile 8.4, etc.). A non-limiting example of an optimized value for parameter a may be, but is not necessarily limited to, 0.5, which determines the maximum color space coverage of the inverse reshaped HDR domain or color space in the R.2020 color space. As wider inverse reshaped color spaces are used or supported (e.g., corresponding to values less than the optimized value of parameter a, etc.), the reshaped SDR colors and codewords may begin to deviate from the reference SDR colors and codewords with relatively larger distortions. This is because increasing the reverse reshaped HDR domain or color space means squeezing the distinguished forward reshaped SDR colors (or codewords) more tightly into the forward reshaped SDR domain or color space, causing the forward reshaped SDR colors to move from the original 3D positions represented in the reference SDR colors (or codewords) to be approximated by the forward reshaped SDR colors.

如上所述,可以针对参数a的如优化值等给定值确定用于基于TPB的重塑操作的正向和反向TPB系数。可以使用输入码字作为输入参数来在数学方程式中将这些TPB系数与用TPB基函数建构的正向或反向生成矩阵相乘以生成正向或经重塑码字,这可能需要执行涉及计算图像的众多像素中的每个像素的TPB基函数值的众多计算。As described above, forward and reverse TPB coefficients for a TPB-based reshaping operation may be determined for a given value of parameter a, such as an optimized value. These TPB coefficients may be multiplied in a mathematical equation with a forward or reverse generation matrix constructed with TPB basis functions using an input codeword as an input parameter to generate a forward or reshaped codeword, which may require performing numerous calculations involving calculating TPB basis function values for each of numerous pixels of the image.

在一些操作情景中,为了加速或减少计算,可以从采样值的预计算的TPB基函数值以及为参数a的优化值生成的优化的正向和反向TPB系数建构正向和反向3D-LUT。正向和反向3D-LUT或其中的查找节点/条目可以在运行时部署以处理输入图像之前预构建,并且应用于正向和反向路径中相对简单的查找操作或者运行时在其中关于输入图像执行的对应正向和反向重塑操作。In some operational scenarios, in order to speed up or reduce computation, forward and reverse 3D-LUTs may be constructed from pre-computed TPB basis function values for sampled values and optimized forward and reverse TPB coefficients generated for optimized values of parameter a. The forward and reverse 3D-LUTs or the lookup nodes/entries therein may be pre-built before being deployed at runtime to process input images and applied to relatively simple lookup operations in the forward and reverse paths or corresponding forward and reverse reshaping operations performed therein on input images at runtime.

将参数a的优化值表示为aopt。将对应最优正向和反向TPB系数分别表示为 The optimized value of parameter a is represented as a opt . The corresponding optimal forward and reverse TPB coefficients are represented as and

正向3D-LUT可以用于将如R.2020域或颜色空间(其中含有a颜色空间)等输入HDR域或颜色空间中的输入HDR颜色(或码字)正向重塑为经正向重塑SDR域或颜色空间中的经正向重塑SDR颜色(或码字)。The forward 3D-LUT can be used to forward reshape the input HDR colors (or codewords) in an input HDR domain or color space, such as the R.2020 domain or color space (including the a color space), into forward reshaped SDR colors (or codewords) in a forward reshaped SDR domain or color space.

在如R 2020(容器)域或颜色空间等输入HDR域或颜色空间内部识别出的a颜色空间可以用于剪切出在a颜色空间外部表示的HDR颜色或码字。正向TPB系数可以应用于在如R2020(容器)域或颜色空间等输入HDR域或颜色空间内部识别出的a颜色空间中的输入HDR颜色或码字,以针对正向3D-LUT中的每个查找节点或条目生成所预测的或经正向重塑SDR颜色或码字。因此,正向3D-LUT包括多个查找节点或条目,该多个查找节点或条目中的每一个将相应输入(跨通道或三通道)HDR颜色或码字映射到或正向重塑为对应所预测的或经正向重塑(跨通道或三通道)SDR颜色或码字。The alpha color space identified inside an input HDR domain or color space, such as an R 2020 (container) domain or color space, can be used to cut out HDR colors or codewords represented outside the alpha color space. The forward TPB coefficients can be applied to the input HDR colors or codewords in the alpha color space identified inside the input HDR domain or color space, such as an R 2020 (container) domain or color space, to generate predicted or forward reshaped SDR colors or codewords for each lookup node or entry in the forward 3D-LUT. Therefore, the forward 3D-LUT includes a plurality of lookup nodes or entries, each of which maps or forward reshapes a corresponding input (cross-channel or three-channel) HDR color or codeword to a corresponding predicted or forward reshaped (cross-channel or three-channel) SDR color or codeword.

在一些操作情景中,正向3D-LUT建构过程包括第一步骤,其中,在如R 2020(容器)域或颜色空间等输入HDR域或颜色空间中制备3D均匀采样网格。In some operating scenarios, the forward 3D-LUT construction process includes a first step in which a 3D uniform sampling grid is prepared in an input HDR domain or color space, such as the R 2020 (container) domain or color space.

通过图示而非限制的方式,输入HDR域或颜色空间是包括三个维度或通道(即Y轴、Cb轴、Cr轴)的R.2020YCbCr颜色空间HLG。由在每个轴上在值范围[0,1]内的归一化值构成的输入HDR值(表示为)可以在每个维度或通道中均匀地采样,如下:By way of illustration and not limitation, the input HDR domain or color space is an R.2020YCbCr color space HLG including three dimensions or channels (i.e., Y axis, Cb axis, Cr axis). The input HDR values (denoted as ) can be sampled uniformly in each dimension or channel as follows:

其中,i∈[0,…,NY-1],j∈[0,…,NCb-1],k∈[0,…,NCr-1]where i∈[0,…,N Y -1], j∈[0,…,N Cb -1], k∈[0,…,N Cr -1]

其中,沿着YCbCr轴的每轴采样值的总数分别表示为NY、NCb和NCr。因此,在所有这些轴上的采样值的组合总数是Nu=NYNCbNCrThe total number of sample values along each axis of the YCbCr axis is denoted as NY , NCb, and NCr , respectively. Therefore, the combined total number of sample values on all these axes is Nu = NYNCbNCr .

虽然在整个R.2020YCbCr颜色空间中的有效值可能是有限的(不覆盖YCbCr值的整个3D立方体),但整个采样值网格可以用于覆盖YCbCr值的整个3D立方体以便降低由压缩操作导致的码字偏差的可能性。Although the valid values in the entire R.2020 YCbCr color space may be limited (not covering the entire 3D cube of YCbCr values), the entire sample value grid can be used to cover the entire 3D cube of YCbCr values to reduce the possibility of codeword bias caused by the compression operation.

为简单起见,(i,j,k)可以向量化或表示为p。因此,R.2020YCbCr中的采样值可以表示为向量/矩阵可以通过将所有Nu节点收集在一起来建构,如下:For simplicity, (i,j,k) can be vectorized or represented as p. Therefore, the sample value in R.2020YCbCr It can be expressed as The vector/matrix can be constructed by collecting all Nu nodes together, as follows:

正向3D-LUT建构过程包括第二步骤,其中,可以将R.2020YCbCr颜色空间HLG中的采样值转换为R.2020RGB颜色空间HLG中的对应值(或颜色),如下:The forward 3D-LUT construction process includes a second step, in which the sampled values in the R.2020YCbCr color space HLG can be converted to corresponding values (or colors) in the R.2020RGB color space HLG as follows:

正向3D-LUT建构过程包括第三步骤,其中,可以将R.2020RGB颜色空间HLG中的经转换值转换为aRGB颜色空间HLG中与参数a的优化值(表示为aopt)相对应的对应值(或颜色),如下:The forward 3D-LUT construction process includes a third step, in which the converted value in the R.2020RGB color space HLG can be converted to a corresponding value (or color) in the aRGB color space HLG corresponding to the optimized value of the parameter a (denoted as a opt ), as follows:

正向3D-LUT建构过程包括第四步骤,其中,可以如下剪切(a)RGB颜色空间HLG中的经转换值:The forward 3D-LUT construction process includes a fourth step, in which the converted values in (a) RGB color space HLG may be clipped as follows:

正向3D-LUT建构过程包括第五步骤,其中,可以将aRGB颜色空间HLG中的经剪切值转换为R.2020RGB颜色空间HLG中的对应值(或颜色),如下:The forward 3D-LUT construction process includes a fifth step, in which the clipped values in the aRGB color space HLG can be converted to corresponding values (or colors) in the R.2020RGB color space HLG as follows:

正向3D-LUT建构过程包括第六步骤,其中,可以将R.2020RGB颜色空间HLG中用上述表达式(47)得到的值转换为R.2020YCbCr颜色空间HLG中的对应值(或颜色),如下:The forward 3D-LUT construction process includes a sixth step, in which the value obtained by the above expression (47) in the R.2020RGB color space HLG can be converted to the corresponding value (or color) in the R.2020YCbCr color space HLG as follows:

正向3D-LUT建构过程包括第七步骤,其中,对于正向3D-LUT中的每个查找节点/条目,优化的正向TPB系数与用R.2020YCbCr颜色空间HLG中用上述表达式(48)得到的输入HDR颜色或码字(或码字值)作为正向TPB基函数的输入参数来构建的正向生成矩阵一起使用,以获得经映射或经正向重塑SDR颜色或码字(或码字值)如下:The forward 3D-LUT construction process includes a seventh step, in which, for each lookup node/entry in the forward 3D-LUT, the optimized forward TPB coefficients are combined with the input HDR color or codeword (or codeword value) obtained using the above expression (48) in the R.2020YCbCr color space HLG as the input parameter of the forward TPB basis function to construct a forward generation matrix Used together to obtain mapped or forward reshaped SDR colors or codewords (or codeword values) as follows:

在上述表达式(49)中,可以使用输入HDR颜色或码字(或码字值)作为正向TPB基函数的输入来构建或建构正向生成矩阵如下:In the above expression (49), the input HDR color or codeword (or codeword value) can be used As input to the forward TPB basis function to construct or construct the forward generator matrix as follows:

经映射或经正向重塑SDR颜色或码字(或码字值)可以用作正向3D-LUT的查找节点/条目的查找值,而用作正向TPB基函数的输入参数的输入HDR颜色或码字(或码字值)可以用作正向3D-LUT的查找节点/条目的查找键。在运行时,可以在正向3D-LUT中以查找键作为要被正向重塑为经映射或经正向重塑SDR颜色或码字的输入HDR颜色或码字简单地查找这些经映射或经正向重塑SDR颜色或码字。Mapped or forward reshaped SDR color or codeword (or codeword value) The input HDR colors or codewords (or codeword values) used as the input parameters of the forward TPB basis functions can be used as the lookup keys of the lookup nodes/entries of the forward 3D-LUT. At runtime, these mapped or forward reshaped SDR colors or codewords can be simply looked up in the forward 3D-LUT with the lookup keys as the input HDR colors or codewords to be forward reshaped into the mapped or forward reshaped SDR colors or codewords.

如前面提到的反向3D-LUT可以用于将经正向重塑SDR域或颜色空间中的经重塑SDR颜色(或码字)反向重塑为如R.2020域或颜色空间(其中含有a颜色空间)等经反向重塑HDR域或颜色空间中的经反向重塑HDR颜色(或码字)。As mentioned earlier, the reverse 3D-LUT can be used to reversely reshape the reshaped SDR colors (or codewords) in the forward reshaped SDR domain or color space into reverse reshaped HDR colors (or codewords) in a reverse reshaped HDR domain or color space such as the R.2020 domain or color space (including the a color space).

在一些操作情景中,可以实施或执行可以比如前面讨论的正向3D-LUT建构过程更简单的反向3D-LUT建构过程,以构建或建构反向3D-LUT。在一些操作情景中,为了加速或减少计算,可以从采样值的预计算的TPB基函数值以及为参数a的优化值生成的优化的反向TPB系数建构反向3D-LUT。反向3D-LUT或其中的查找节点/条目可以在运行时部署以处理如经正向重塑SDR图像等输入图像之前预构建,并且应用于反向路径中相对简单的查找操作或者运行时在其中关于输入图像执行的对应反向重塑操作。In some operating scenarios, a reverse 3D-LUT construction process that may be simpler than the forward 3D-LUT construction process discussed above may be implemented or executed to construct or construct a reverse 3D-LUT. In some operating scenarios, in order to speed up or reduce calculations, a reverse 3D-LUT may be constructed from pre-computed TPB basis function values of sample values and optimized reverse TPB coefficients generated for optimized values of parameter a. The reverse 3D-LUT or the lookup nodes/entries therein may be pre-built prior to being deployed at runtime to process input images such as forward reshaped SDR images, and applied to relatively simple lookup operations in the reverse path or corresponding reverse reshaping operations performed therein on the input images at runtime.

预构建的反向3D-LUT可以部署在解码器侧。在解码器侧的接收下游设备可以接收并解码编码有经正向重塑SDR域或颜色空间中的经正向重塑SDR图像的视频信号,并且使用3D-LUT将反向重塑应用于经正向重塑SDR图像以生成经反向重塑HDR域或颜色空间(如R.2020域或颜色空间中含有的a颜色空间)中的经反向重塑HDR图像。The pre-built reverse 3D-LUT can be deployed on the decoder side. A receiving downstream device on the decoder side can receive and decode a video signal encoded with a forward reshaped SDR image in a forward reshaped SDR domain or color space, and apply reverse reshaping to the forward reshaped SDR image using the 3D-LUT to generate a reverse reshaped HDR image in a reverse reshaped HDR domain or color space (such as a color space contained in the R.2020 domain or color space).

虽然通过利用基于TPB的正向重塑操作映射的经正向重塑SDR域或颜色空间的完全边界形成或勾画的形状可能不是简单的3D立方体,但经正向重塑SDR域或颜色空间中的经正向重塑SDR值可以被剪切为含有或支持在正向3D-LUT的所有查找节点/条目中表示的所有经正向重塑SDR值的最紧密或最小3D立方体(例如,3D矩形、从3D矩形重新缩放的3D立方体等),例如无需剪切在正向3D-LUT中表示的这些SDR值。Although the shape formed or outlined by the complete boundaries of the forward reshaped SDR domain or color space mapped by utilizing the TPB-based forward reshaping operation may not be a simple 3D cube, the forward reshaped SDR values in the forward reshaped SDR domain or color space can be clipped to the tightest or smallest 3D cube (e.g., a 3D rectangle, a 3D cube rescaled from a 3D rectangle, etc.) that contains or supports all the forward reshaped SDR values represented in all lookup nodes/entries of the forward 3D-LUT, for example without clipping these SDR values represented in the forward 3D-LUT.

在一些操作情景中,反向3D-LUT建构过程包括第一步骤,其中,可以在如整个R.709SDR YCbCr颜色空间等经正向重塑SDR域或颜色空间中制备完全采样值网格。In some operational scenarios, the inverse 3D-LUT construction process includes a first step in which a complete grid of sample values may be prepared in a forward reshaped SDR domain or color space, such as the full R.709 SDR YCbCr color space.

反向3D-LUT建构过程包括第二步骤,其中,经正向重塑SDR域或颜色空间中的每个维度或(颜色)通道的最小值和最大值可以在正向3D-LUT中的经正向重塑SDR值当中被确定,并且用于限制用作反向路径的输入的经正向重塑SDR(例如,YCbCr等)颜色或码字的(输入)数据范围。The reverse 3D-LUT construction process includes a second step, in which the minimum and maximum values of each dimension or (color) channel in the forward reshaped SDR domain or color space can be determined among the forward reshaped SDR values in the forward 3D-LUT and used to limit the (input) data range of the forward reshaped SDR (e.g., YCbCr, etc.) colors or codewords used as input to the reverse path.

反向3D-LUT建构过程包括第三步骤,其中,对于反向3D-LUT中的每个查找节点/条目,优化的反向TPB系数与用在反向3D-LUT建构过程的第二步骤中得到的在经剪切或有限(输入)数据范围中的经正向重塑SDR颜色或码字(或码字值)作为反向TPB基函数的输入参数来构建的反向生成矩阵(例如,如上述表达式(29)中所图示的等)一起使用,以获得经映射或经反向重塑HDR颜色或码字(或码字值)。The inverse 3D-LUT construction process includes a third step in which, for each lookup node/entry in the inverse 3D-LUT, the optimized inverse TPB coefficients are combined with an inverse generation matrix constructed using the forward reshaped SDR colors or codewords (or codeword values) in the clipped or limited (input) data range obtained in the second step of the inverse 3D-LUT construction process as input parameters of the inverse TPB basis function. (e.g., as illustrated in expression (29) above, etc.) to obtain a mapped or inversely reshaped HDR color or codeword (or codeword value).

经映射或经反向重塑HDR颜色或码字(或码字值)可以用作反向3D-LUT的查找节点/条目的查找值,而用作反向TPB基函数的输入参数的输入或经正向重塑SDR颜色或码字(或码字值)可以用作反向3D-LUT的查找节点/条目的查找键。在运行时,可以在反向3D-LUT中以查找键作为要被反向重塑为经映射或经反向重塑HDR颜色或码字的输入或经正向重塑SDR颜色或码字简单地查找这些经映射或经反向重塑HDR颜色或码字。The mapped or reverse reshaped HDR colors or codewords (or codeword values) can be used as lookup values for lookup nodes/entries of the reverse 3D-LUT, while the input or forward reshaped SDR colors or codewords (or codeword values) used as input parameters of the reverse TPB basis functions can be used as lookup keys for lookup nodes/entries of the reverse 3D-LUT. At runtime, these mapped or reverse reshaped HDR colors or codewords can be simply looked up in the reverse 3D-LUT with the lookup keys as inputs to be reverse reshaped into mapped or reverse reshaped HDR colors or codewords or forward reshaped SDR colors or codewords.

白盒反向优化(WB)White Box Backward Optimization (WB)

由于在视频捕获和/或编辑应用中实施或操作正向基于TPB的重塑或正向3D-LUT中所涉及的成本和/或计算开销,可能不会在所有视频捕获和/或编辑设备中使用正向基于TPB的重塑或对应正向3D-LUT。Due to the cost and/or computational overhead involved in implementing or operating forward TPB-based reshaping or forward 3D-LUT in video capture and/or editing applications, forward TPB-based reshaping or corresponding forward 3D-LUT may not be used in all video capture and/or editing devices.

在一些操作情景中,可以在视频捕获和/或编辑设备中使用如用可获得的ISP实施的基于硬件的解决方案来执行HDR到SDR转换,如HDR HLG到SDR图像生成。与该设备一起部署的现有ISP流水线可以利用一个或多个可编程参数进行操作以部分地或全部地基于由该设备捕获的对应HDR(例如,HLG等)图像来生成、转换和/或输出SDR图像。In some operational scenarios, HDR to SDR conversion, such as HDR HLG to SDR image generation, may be performed in a video capture and/or editing device using a hardware-based solution such as implemented with an available ISP. An existing ISP pipeline deployed with the device may operate with one or more programmable parameters to generate, convert, and/or output an SDR image based in part or in whole on a corresponding HDR (e.g., HLG, etc.) image captured by the device.

在正向路径中,用于ISP流水线的可编程参数可以被专门设置或配置为使ISP流水线输出与用白盒HDR到SDR转换函数生成的可能参考SDR图像尽可能接近地近似的SDR图像。In the forward path, programmable parameters for the ISP pipeline may be specifically set or configured to cause the ISP pipeline to output an SDR image that approximates as closely as possible a possible reference SDR image generated with a white-box HDR to SDR conversion function.

在反向路径中,反向基于TPB的重塑或对应反向3D-LUT可以用于从自ISP流水线输出的SDR图像生成经反向重塑HDR图像。在反向路径中使用的反向TPB系数可以被优化,以便例如尽可能多地覆盖如R.2020颜色空间等经反向重塑HDR域或颜色空间。In the reverse path, the reverse TPB-based reshaping or the corresponding reverse 3D-LUT can be used to generate a reverse reshaped HDR image from the SDR image output from the ISP pipeline. The reverse TPB coefficients used in the reverse path can be optimized to, for example, cover as much of the reverse reshaped HDR domain or color space as possible, such as the R.2020 color space.

图3B图示了用于在用于从HDR图像生成或输出(ISP)SDR图像的ISP流水线中确定或生成一个或多个可编程参数的优化值的示例过程流程。3B illustrates an example process flow for determining or generating optimized values for one or more programmable parameters in an ISP pipeline for generating or outputting (ISP) SDR images from HDR images.

在一些操作情景中,ISP流水线可以是相对有限的可编程模块,用ISP(硬件)实施该可编程模块以近似用于在框330中将HDR HLG图像转换为对应SDR图像的如白盒(例如,已知的、定义明确的等)转换函数等白盒HDR到SDR转换函数。In some operational scenarios, the ISP pipeline may be a relatively limited programmable module that is implemented with the ISP (hardware) to approximate a white-box HDR to SDR conversion function such as a white-box (e.g., known, well-defined, etc.) conversion function for converting an HDR HLG image to a corresponding SDR image in block 330.

ISP流水线可以包括或实施:(1)用于从HLG RGB转换为线性RGB的第一组三个一维查找表(1D-LUT),(2)然后是用于从如R.2020颜色空间等HDR域或颜色空间中的HDR图像转换为如R.709颜色空间等SDR域或颜色空间的3×3矩阵,及(3)然后是用(例如,基于标准的等)HLG光学到光学传递函数(OOTF)实施BT.1886线性到非线性(伽马)转换的第二组三个1D-LUT。The ISP pipeline may include or implement: (1) a first set of three one-dimensional lookup tables (1D-LUTs) for converting from HLG RGB to linear RGB, (2) followed by a 3×3 matrix for converting from an HDR image in an HDR domain or color space, such as the R.2020 color space, to an SDR domain or color space, such as the R.709 color space, and (3) followed by a second set of three 1D-LUTs implementing BT.1886 linear to non-linear (gamma) conversion using an (e.g., standards-based, etc.) HLG optical-to-optical transfer function (OOTF).

仅为了说明的目的,HDR图像可以是从如图3B中示出的图像数据集或数据库取得的HDR HLG图像。用于ISP流水线的一个或多个可编程参数可以是BT.1886标准中指定的设计参数(表示为γBT1886)。For illustration purposes only, the HDR image may be an HDR HLG image taken from an image dataset or database as shown in FIG3B .The one or more programmable parameters for the ISP pipeline may be design parameters (denoted as γ BT1886 ) specified in the BT.1886 standard.

图3B的过程流程可以用于搜索ISP SDR图像的设计参数γBT1886的优化值以最佳地近似在框330中生成的参考SDR图像。过程流程可以按可以是顺序次序或非顺序次序的迭代次序通过设计参数γBT1886的多个候选值进行迭代。3B may be used to search for an optimized value of the design parameter γ BT1886 for the ISP SDR image to best approximate the reference SDR image generated in block 330. The process flow may iterate through multiple candidate values of the design parameter γ BT1886 in an iteration order that may be a sequential order or a non-sequential order.

框322包括选择设计参数γBT1886的当前(例如,要迭代的等)值到设计参数γBT1886的多个候选值中的下一候选值(例如,最初为第一候选值等)。在给定了设计参数γBT1886的当前值的情况下,可以在图3B的一个或多个后续过程流程框中将ISP SDR图像与参考SDR图像进行比较。Block 322 includes selecting a current (e.g., to be iterated, etc.) value of the design parameter γ BT1886 to be a next candidate value (e.g., initially a first candidate value, etc.) among a plurality of candidate values of the design parameter γ BT1886 . Given the current value of the design parameter γ BT1886 , the ISP SDR image may be compared to a reference SDR image in one or more subsequent process flow blocks of FIG. 3B .

框324包括将第一组1D-LUT应用于从数据库取得的HDR HLG(RGB)图像以生成对应HDR线性RGB图像,如下:Block 324 includes applying a first set of 1D-LUTs to the HDR HLG (RGB) image retrieved from the database to generate a corresponding HDR linear RGB image, as follows:

其中,ch表示红色、绿色或蓝色通道;表示(输入)HDR HLG图像中的HDRHLG码字;表示从如在表达式(51)中表示的第一组1D-LUT生成的对应HDR线性图像中的HDR线性码字;参数(a,b,c)可以被设置为(0.17883277,0.28466892,0.55991073)。Among them, ch represents the red, green or blue channel; Represents the HDRHLG codeword in the (input) HDR HLG image; represents the HDR linear codeword in the corresponding HDR linear image generated from the first set of 1D-LUT as expressed in Expression (51); parameters (a, b, c) can be set to (0.17883277, 0.28466892, 0.55991073).

框326包括将3×3矩阵应用于对应HDR线性RGB图像以生成对应SDR线性RGB图像。可以如下给出3×3矩阵:Block 326 includes applying a 3×3 matrix to the corresponding HDR linear RGB image to generate a corresponding SDR linear RGB image. The 3×3 matrix may be given as follows:

PR2020→R709=PR2020→XYZPXYZ→R709 (52)P R2020→R709 =P R2020→XYZ P XYZ→R709 (52)

用上述表达式(52)中的3×3矩阵生成的对应SDR线性RGB图像中的SDR线性RGB码字可以表示为 The SDR linear RGB codeword in the corresponding SDR linear RGB image generated by the 3×3 matrix in the above expression (52) can be expressed as

框328包括将第二组1D-LUT应用于对应SDR线性RGB图像中的SDR线性RGB码字以生成对应ISP SDR图像中的对应ISP SDR码字(表示为)。Block 328 includes applying the second set of 1D-LUTs to the SDR linear RGB codewords in the corresponding SDR linear RGB image. To generate the corresponding ISP SDR codeword in the corresponding ISP SDR image (expressed as ).

在一些操作情景中,如上所述,第二组1D-LUT合并或组合线性到非线性SDR转换与如下给出的HLG OOTF:In some operating scenarios, as described above, the second set of 1D-LUTs merges or combines the linear to non-linear SDR conversion with the HLG OOTF given as follows:

其中,表示从对应SDR线性RGB图像中的SDR线性RGB码字生成的中间SDR码字;Lw=100;Lb=0;并且 in, Represents the SDR linear RGB codeword from the corresponding SDR linear RGB image Generated intermediate SDR codeword: Lw = 100; Lb = 0; and

用于从上述表达式(53)中的中间SDR码字生成ISP SDR码字的线性到非线性SDR转换可以是如BT.1886中定义的线性到伽马转换,如下:For the intermediate SDR codeword from the above expression (53) Generate ISP SDR codewords The linear to non-linear SDR conversion can be a linear to gamma conversion as defined in BT.1886, as follows:

其中,γBT1886表示前面提到的设计参数。Among them, γ BT1886 represents the design parameter mentioned above.

如用ISP流水线执行的图3B的框322至328(或在上述表达式(51)中表示的第一组1D-LUT、在上述表达式(52)中表示的3×3矩阵和在上述表达式(53)至(56)中表示的第二组1D-LUT的组合)用设计参数γBT1886的特定值(例如,当前候选值等)共同实施HDR HLG到SDR转换函数(表示为fHLG→ISPSDR)。Boxes 322 to 328 of FIG. 3B as performed with the ISP pipeline (or a combination of the first set of 1D-LUTs represented in the above expression (51), the 3×3 matrix represented in the above expression (52), and the second set of 1D-LUTs represented in the above expressions (53) to (56)) jointly implement an HDR HLG to SDR conversion function (expressed as f HLG→ISPSDR ) with specific values of the design parameter γ BT1886 (e.g., current candidate values, etc.).

框332包括确定在框322至328中从HDR HLG到SDR转换函数fHLG→ISPSDR生成的ISPSDR图像与在框330中从白盒HDR到SDR转换函数生成的参考SDR图像之间的(例如,质量等)差。如MSE、RMSE、SAD、PSNR、SSIM等质量评估函数可以用于计算这些差。Block 332 includes determining the difference (e.g., quality, etc.) between the ISPSDR image generated from the HDR HLG to SDR conversion function f HLG→ISPSDR in blocks 322 to 328 and the reference SDR image generated from the white-box HDR to SDR conversion function in block 330. Quality assessment functions such as MSE, RMSE, SAD, PSNR, SSIM, etc. may be used to calculate these differences.

框334包括确定设计参数γBT1886的当前候选值是否为设计参数γBT1886的多个候选值中的最后一候选值。如果是,则过程流程进行到框336。否则,过程流程返回到框322。Block 334 includes determining whether the current candidate value for the design parameter γ BT 1886 is the last candidate value among the plurality of candidate values for the design parameter γ BT 1886. If so, process flow proceeds to block 336. Otherwise, process flow returns to block 322.

框336包括选择设计参数γ8T1886的最优或优化值。选择设计参数γBT1886的优化值可以被表述为从多个候选值中寻找设计参数γBT1886的特定值(表示为γBT1886,opt)的优化问题,使得将如用相对较大的图像数据集或数据库计算的ISP SDR图像与参考SDR图像之间的差最小化,如下:Block 336 includes selecting an optimal or optimized value for the design parameter γ BT1886 . Selecting the optimized value for the design parameter γ BT1886 can be formulated as an optimization problem of finding a specific value of the design parameter γ BT1886 (denoted as γ BT1886,opt ) from a plurality of candidate values that minimizes the difference between the ISP SDR image and the reference SDR image as calculated using a relatively large image data set or database, as follows:

γBT1886,opt=argmin∑tD(fHLG→ISPSDR(VtBT1886)-fHLG→W_SDR(Vt))γ BT1886,opt =argmin∑ t D(f HLG→ISPSDR (V tBT1886 )-f HLG→W_SDR (V t ))

(ST)(ST)

其中,D()表示在框332中使用的质量评估函数。Wherein, D() represents the quality assessment function used in block 332 .

γBT1886,opt的示例值可以是但不一定仅限于2.115。An example value of γ BT1886,opt may be, but is not necessarily limited to, 2.115.

SDR到PQ TPB优化SDR to PQ TPB Optimization

如上所述,在“WFB”用例或操作情景中,可以在SLBC框架下使用BESA算法来生成优化的重塑操作参数,这些优化的重塑操作参数由正向和反向重塑操作用于生成经正向重塑SDR图像和经反向重塑HDR图像。相比之下,在“WB”用例或操作情景中,可以在SLiDM框架下对编码在所输出的视频信号中的非经正向重塑SDR图像(如借助用视频捕获和/或编辑设备实施的ISP流水线生成的ISP SDR图像)执行仅反向重塑,以生成对应经反向重塑或经重建HDR图像。As described above, in a "WFB" use case or operating scenario, the BESA algorithm may be used under the SLBC framework to generate optimized reshaping operation parameters that are used by forward and reverse reshaping operations to generate forward reshaped SDR images and reverse reshaped HDR images. In contrast, in a "WB" use case or operating scenario, only reverse reshaping may be performed under the SLiDM framework on non-forward reshaped SDR images encoded in the output video signal (e.g., ISP SDR images generated by an ISP pipeline implemented with a video capture and/or editing device) to generate corresponding reverse reshaped or reconstructed HDR images.

在“WB”用例或操作情景中,从如R.2020HDR颜色空间HLG等输入HDR域或颜色空间到如R.709SDR YCbCr颜色空间等经正向重塑SDR域或颜色空间的正向TPB重塑不能用来帮助利用R.709SDR YCbCr颜色空间所支持的完全码字范围。编码在所输出的视频信号中的ISP SDR图像中的ISP SDR码字通常在由视频捕获和/或编辑设备或在其中实施的ISP流水线生成或支持的R.709颜色空间部分中受时间硬限制。受硬限制的R.709颜色空间部分中的ISP SDR码字可能难以通过如反向基于TPB的重塑等反向重塑进一步扩展或往回映射到经反向重塑或经重建HDR域或颜色空间。In the "WB" use case or operating scenario, forward TPB reshaping from an input HDR domain or color space such as R.2020 HDR color space HLG to a forward reshaped SDR domain or color space such as R.709 SDR YCbCr color space cannot be used to help utilize the full codeword range supported by the R.709 SDR YCbCr color space. The ISP SDR codewords encoded in the ISP SDR images in the output video signal are typically hard-constrained in time in the R.709 color space portion generated or supported by the video capture and/or editing device or the ISP pipeline implemented therein. The ISP SDR codewords in the hard-constrained R.709 color space portion may be difficult to further extend or map back to the reverse reshaped or reconstructed HDR domain or color space by reverse reshaping such as reverse TPB-based reshaping.

然而,与在“WFB”用例或操作情景中一样,在“WB”用例或操作情景中,可以在重塑优化中生成如TPB系数等优化的重塑操作参数以帮助增加要在其中表示经反向重塑HDR图像的所支持的颜色空间的覆盖范围。在许多“WB”操作情景中,与在“WFB”用例或操作情景中可实现的最大(a)颜色空间相比较,用反向基于TPB的重塑实现的经反向重塑或经重建HDR域或颜色空间可能仅稍微大于R.709颜色空间。However, as in the "WFB" use case or operating scenario, in the "WB" use case or operating scenario, optimized reshaping operation parameters such as TPB coefficients may be generated in the reshaping optimization to help increase the coverage of supported color spaces in which the inverse reshaped HDR images are to be represented. In many "WB" operating scenarios, the inverse reshaped or reconstructed HDR domain or color space achieved with inverse TPB-based reshaping may be only slightly larger than the R.709 color space, compared to the maximum (a) color space achievable in the "WFB" use case or operating scenario.

仅为了说明的目的,在如图1B中示出的操作情景中,ISP SDR域或颜色空间可以是在ISP流水线中R.709的域或颜色空间或其硬限制部分,而(原始或经反向重塑)HDR域或颜色空间可以是R.2020的域或颜色空间。For illustrative purposes only, in an operating scenario as shown in FIG. 1B , the ISP SDR domain or color space may be the domain or color space of R.709 or a hard-limited portion thereof in the ISP pipeline, and the (original or reverse-reshaped) HDR domain or color space may be the domain or color space of R.2020.

通过图示而非限制的方式,R.2020颜色空间(或用于表示经重塑HDR图像的HDR颜色空间)中的子集或子空间可以由一个特定白点和三个特定色原(红色、绿色、蓝色)定义或表征。该特定白点可以被选择或固定为D65白点。By way of illustration and not limitation, a subset or subspace in the R.2020 color space (or HDR color space used to represent the reshaped HDR image) may be defined or characterized by a specific white point and three specific color primaries (red, green, blue). The specific white point may be selected or fixed to be the D65 white point.

将用于表示经反向重塑或经重建HDR图像的经反向重塑HDR颜色空间表示为(b)颜色空间。因此,定义(b)颜色空间的色原和白点的CIExy坐标可以分别表示为(b)颜色空间的白点可以被指定为D65白点。The inversely reshaped HDR color space used to represent the inversely reshaped or reconstructed HDR image is denoted as the (b) color space. Therefore, the CIExy coordinates of the color primaries and white point defining the (b) color space can be expressed as and (b) White point of color space Can be specified as D65 white point.

(b)颜色空间的色原中的每一个可以是在CIExy坐标系或色度图中沿着P3颜色空间的相应色原与R.2020颜色空间的相应色原之间的线来选择的。沿着P3颜色空间和R.2020颜色空间的两个相应色原之间的线的任何点可以表示为这两个相应色原以权重因子b进行的线性组合,如下:(b) Each of the color primaries of the color space may be a corresponding color primaries along the P3 color space in the CIExy coordinate system or chromaticity diagram Corresponding color primaries to the R.2020 color space Any point along the line between two corresponding chromatic algebras in the P3 color space and the R.2020 color space can be represented as a linear combination of the two corresponding chromatic algebras with a weight factor b, as follows:

因此,从(b)颜色空间中为R.2020颜色空间寻找最大支持的优化问题可以简化为选择权重因子b的问题。当b=0时,(b)颜色空间成为整个R.2020颜色空间。当b=1时,如图2K中所图示的(其中,(b)颜色空间表示为“TPB”或“TPB覆盖的颜色(b颜色空间)”),(b)颜色空间成为P3颜色空间。图2H至图2J分别图示了三个示例(b)颜色空间,其中,b=0.25、0.50和0.75。Therefore, the optimization problem of finding the maximum support for the R.2020 color space from the (b) color space can be simplified to the problem of selecting a weight factor b. When b = 0, the (b) color space becomes the entire R.2020 color space. When b = 1, as illustrated in Figure 2K (where the (b) color space is represented as "TPB" or "TPB-covered colors (b color space)"), the (b) color space becomes the P3 color space. Figures 2H to 2J illustrate three example (b) color spaces, respectively, where b = 0.25, 0.50, and 0.75.

如图2H至图2K中所图示的,为了使经反向重塑或经重建HDR域或颜色空间覆盖尽可能大的R.2020颜色空间,TPB优化问题归结为寻找或搜索参数b的最小可能值。As illustrated in FIGS. 2H to 2K , in order to make the inversely reshaped or reconstructed HDR domain or color space cover as large an R.2020 color space as possible, the TPB optimization problem boils down to finding or searching for the minimum possible value of the parameter b.

图3C图示了用于寻找参数b的最小可能值的示例过程流程。图3C的过程流程可以按可以是顺序次序或非顺序次序的迭代次序通过参数b的多个候选值进行迭代。Figure 3C illustrates an example process flow for finding the minimum possible value for parameter b. The process flow of Figure 3C may iterate through multiple candidate values for parameter b in an iteration order that may be a sequential order or a non-sequential order.

框342包括选择参数b的当前(例如,要迭代的等)值到参数b的多个候选值中的下一候选值(例如,最初为第一候选值等)。在给定了具有参数b的当前值的候选经反向重塑HDR颜色空间的情况下,可以在图3C的一个或多个后续过程流程框中获得如优化的TPB系数等优化的重塑操作参数。Block 342 includes selecting a current (e.g., to be iterated, etc.) value of parameter b to a next candidate value (e.g., initially a first candidate value, etc.) among a plurality of candidate values for parameter b. Given a candidate inversely reshaped HDR color space having a current value of parameter b, optimized reshaping operation parameters, such as optimized TPB coefficients, may be obtained in one or more subsequent process flow blocks of FIG. 3C .

框344包括在候选经反向重塑HDR颜色空间中构建样本点或制备两个采样数据集。通过举例而非限制的方式,候选经反向重塑HDR颜色空间可以是混合对数伽马(HLG)RGB颜色空间(称为“(b)RGB颜色空间HLG”)。Block 344 includes constructing sample points or preparing two sample data sets in a candidate inversely reshaped HDR color space. By way of example and not limitation, the candidate inversely reshaped HDR color space may be a hybrid log-gamma (HLG) RGB color space (referred to as "(b)RGB color space HLG").

与图3A的框304类似,两个采样数据集中的第一个是均匀采样的色标数据集。均匀采样的色标数据集中的每个色标由从(b)RGB颜色空间HLG均匀采样的相应RGB颜色(表示为)表征或表示,该(b)RGB颜色空间HLG包括分别表示为R、G和B分量颜色的R轴、G轴、B轴的三个维度。(b)RGB颜色空间HLG的每个轴或维度被归一化到值范围[0,1]并且分别通过NR、NG和NB个单元或分部来采样。在此,NR、NG和NB中的每一个表示大于一(1)的正整数。因此,将均匀采样的色标数据集中的色标或采样数据点的总数给出为Nu=NRNGNB。将均匀采样的色标数据集中的每个均匀采样的数据点或RGB颜色给出为其中i∈[0,…,NR-1],j∈[0,…,NG-1],k∈[0,…,NB-1]。Similar to block 304 of FIG. 3A , the first of the two sampled data sets is a uniformly sampled color label data set. Each color label in the uniformly sampled color label data set consists of a corresponding RGB color uniformly sampled from (b) the RGB color space HLG (denoted as ) characterizes or represents, the (b) RGB color space HLG includes three dimensions of R axis, G axis, B axis represented as R, G and B component colors, respectively. Each axis or dimension of the (b) RGB color space HLG is normalized to the value range [0,1] and is sampled by NR , NG and NB units or divisions, respectively. Here, each of NR , NG and NB represents a positive integer greater than one (1). Therefore, the total number of color scales or sampled data points in the uniformly sampled color scale data set is given as Nu = NR N G NB . Each uniformly sampled data point or RGB color in the uniformly sampled color scale data set is Given as where i∈[0,…, NR -1], j∈[0,…, NG -1], k∈[0,…, NB -1].

为简单起见,(i,j,k)可以向量化或简单地表示为p。相应地,均匀采样的数据点或RGB颜色可以简单地表示为所有Nu个节点(其中的每一个表示特定R轴单元/分区、特定B轴单元/分区、特定G轴单元/分区的唯一组合)可以如下分组或收集到向量/矩阵中:For simplicity, (i,j,k) can be vectorized or simply represented as p. Correspondingly, the uniformly sampled data points or RGB colors It can be simply expressed as All Nu nodes (each of which represents a unique combination of a specific R-axis cell/partition, a specific B-axis cell/partition, a specific G-axis cell/partition) can be grouped or collected into a vector/matrix as follows:

在框344中制备或构建的两个采样数据集中的第二个是中性颜色数据集。该第二数据集包括多个中性颜色或中性色标(也称为灰色或灰色色标)。The second of the two sample data sets prepared or constructed in block 344 is a neutral color data set. The second data set includes a plurality of neutral colors or neutral color scales (also referred to as grays or gray scales).

第二数据集可以用于当在如本文所描述的重塑操作中将输入域中的输入灰色色标映射到或重塑为输出灰色色标时将输入域中的输入灰色色标作为输出域中的输出灰色色标进行保留。与其他色标相比较,在优化问题中可以将增加的加权给予在输入域(或输入颜色空间)中的输入灰色色标,以降低这些输入灰色色标通过重塑操作被映射到在输出域(或输出颜色空间)中的非灰色色标的可能性。The second data set can be used to preserve the input gray scales in the input domain as output gray scales in the output domain when the input gray scales in the input domain are mapped to or reshaped into output gray scales in a reshaping operation as described herein. Increased weighting can be given to the input gray scales in the input domain (or input color space) in the optimization problem compared to other scales to reduce the likelihood that these input gray scales are mapped to non-gray scales in the output domain (or output color space) by the reshaping operation.

可以通过沿着连接在RGB域(例如,(b)RGB颜色空间HLG等)中的第一灰色(0,0,0)与第二灰色(1,1,1)之间的线对R、G、B值进行均匀地采样从而产生Nn个节点或灰色色标来制备或构建第二数据集(灰色数据集或灰色的数据集),如下:The second data set (gray data set or gray data set) can be prepared or constructed by uniformly sampling R, G, B values along a line connecting a first gray (0,0,0) and a second gray (1,1,1) in an RGB domain (e.g., (b) RGB color space HLG, etc.) to generate N n nodes or gray color scales, as follows:

其中,i∈[0,…,Nn-1]where i∈[0,…,N n -1]

第二数据集中的所有Nn个节点可以如下分组或收集到中性颜色向量/矩阵中:All N n nodes in the second data set can be grouped or collected into a neutral color vector/matrix as follows:

上述表达式(8)中的中性颜色向量/矩阵可以重复Nt(不小于(1)的正整数)次以生成(现在重复的)第二数据集中的NnNt个中性色标,如下:The neutral color vector/matrix in expression (8) above may be repeated N t (a positive integer not less than (1)) times to generate N n N t neutral color labels in the (now repeated) second data set, as follows:

与其他颜色相比较,对重复的第二中性颜色数据集中的中性颜色进行重复会增加中性颜色或灰色的加权。因此,中性颜色与其他颜色相比可以在优化问题中得到更多的保留。Repeating the neutral colors in the repeated second neutral color data set increases the weight of the neutral colors or grays compared to other colors. Therefore, the neutral colors can be retained more in the optimization problem than other colors.

表达式(61)和(64)中的第一(所有采样)颜色数据集和第二中性颜色(重复)数据集可以一起收集或放置在单个组合向量/矩阵中,如下:The first (all sampled) color data set and the second neutral color (repeated) data set in expressions (61) and (64) can be collected or placed together in a single combined vector/matrix as follows:

组合向量/矩阵中的向量/矩阵元素(重复和非重复色标)的总数是N=NnNt+Nu。上述表达式(10)中的中的每个向量/矩阵元素或色标(行)可以如下表示:Combine vectors/matrices The total number of vector/matrix elements (repeating and non-repeating color scales) in is N=N n N t +N u . Each vector/matrix element or color scale (row) in can be represented as follows:

框346包括将在(b)RGB颜色空间(或(b)RGB颜色空间HLG)中的组合向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为基于标准的R.2020颜色空间或R.2020RGB颜色空间HLG中的对应颜色值,如下:Block 346 includes converting the combined vector/matrix in (b) RGB color space (or (b) RGB color space HLG) The color values of the color scales (rows) represented in the vector/matrix elements are converted to the corresponding color values in the standard R.2020 color space or R.2020RGB color space HLG as follows:

其中,P(b)→R2020表示从(b)颜色空间到R.2020RGB颜色空间HLG的转换矩阵,该转换矩阵可以与在图3A的过程流程中建构P(a)→R2020的方式类似地建构,如下:Wherein, P (b) → R2020 represents the conversion matrix from the (b) color space to the R.2020RGB color space HLG, which can be constructed in a similar manner to the way P (a) → R2020 is constructed in the process flow of FIG. 3A , as follows:

p(b)→XYZ (68-1)p (b)→XYZ (68-1)

P(b)→R2020=P(b)-X Y ZPXYZ→R2020 (68-2)P (b)→R2020 =P (b)-X Y Z P XYZ→R2020 (68-2)

其中,P(b)→XYZ表示从(b)颜色空间到XYZ颜色空间的转换矩阵,该转换矩阵可以与在图3A的过程流程中建构P(a)→XYZ的方式类似地建构。Wherein, P (b)→XYZ represents the conversion matrix from the (b) color space to the XYZ color space, and the conversion matrix can be constructed in a similar manner to the way in which P (a)→XYZ is constructed in the process flow of FIG. 3A .

框348包括将在R.2020RGB颜色空间HLG中的向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为或内容映射到R.709SDR RGB颜色空间中的对应ISP SDR颜色值(表示为)并且然后进一步到R.709SDR YCbCr颜色空间中的对应颜色值(表示为),如下:Box 348 includes converting the vector/matrix in the R.2020RGB color space HLG The color values of the color scales (rows) represented in the vector/matrix elements are converted or mapped to the corresponding ISP SDR color values in the R.709SDR RGB color space (expressed as ) and then further to the corresponding color value in the R.709SDR YCbCr color space (expressed as ),as follows:

其中,fHLG→ISPSDR()表示ISP等式,如通过ISP流水线用从图3B的过程流程生成的设计参数γBT1886的优化值实施的HDR HLG到SDR转换函数。Wherein, f HLG→ISPSDR() represents the ISP equation, as implemented by the ISP pipeline with the optimized value of the design parameter γ BT1886 generated from the process flow of FIG. 3B .

中的每个色标(行)可以如下表示: Each color scale (row) in can be represented as follows:

框350包括将在R.2020RGB颜色空间HLG中的向量/矩阵的向量/矩阵元素中表示的色标(行)的颜色值转换为或内容映射到R.2020YCbCr颜色空间PQ中的对应颜色值(表示为),如下:Box 350 includes converting the vector/matrix in the R.2020RGB color space HLG The color value of the color scale (row) represented in the vector/matrix element is converted or mapped to the corresponding color value in the R.2020YCbCr color space PQ (expressed as ),as follows:

中的每个色标(行)可以如下表示: Each color scale (row) in can be represented as follows:

框352包括采用p作为反向TPB优化算法的输入以为(b)颜色空间生成与参数b的当前值相对应的用于基于TPB的重塑的优化的反向TPB系数。Block 352 includes using p As input to the inverse TPB optimization algorithm, inverse TPB coefficients corresponding to the current value of parameter b for the (b) color space are generated for TPB-based reshaping optimization.

为此,可以从在中表示的TPB基函数和SDR码字建构反向生成矩阵,如下:To this end, it is possible to The TPB basis functions and SDR codewords represented in the above construct the inverse generation matrix as follows:

可以通过将收集在向量/矩阵中的经反向重塑HDR色标或码字与在解决TPB优化问题时得到和最小化的每通道反向观察向量/矩阵中的参考HDR色标或码字进行比较来确定反向预测误差。每通道反向观察向量/矩阵可以从上述表达式(71)生成或预计算,存储或缓存在计算机存储器中,并且在所有迭代中固定,如下:The reverse prediction error can be determined by comparing the reverse reshaped HDR color scale or codeword collected in the vector/matrix with the reference HDR color scale or codeword in the per-channel reverse observation vector/matrix obtained and minimized when solving the TPB optimization problem. The per-channel reverse observation vector/matrix can be generated or pre-computed from the above expression (71), stored or cached in computer memory, and fixed in all iterations as follows:

可以经由优化问题的最小平方解生成(例如,每通道等)反向TPB系数(表示为)的优化值,该最小平方解将经反向重塑HDR色标或码字与参考HDR色标或码字之间的差最小化,如下:The inverse TPB coefficients (expressed as ) that minimizes the difference between the inversely reshaped HDR color scale or codeword and the reference HDR color scale or codeword, as follows:

可以如下计算每个通道ch的每通道所预测的(或经反向重塑或经重建)HDR码字:The per-channel predicted (or inversely reshaped or reconstructed) HDR codeword for each channel ch may be calculated as follows:

框354包括确定参数b的当前候选值是否为参数b的多个候选值中的最后一候选值。如果是,则过程流程进行到框356。否则,过程流程返回到框342。Block 354 includes determining whether the current candidate value for parameter b is the last candidate value among the plurality of candidate values for parameter b. If so, process flow proceeds to block 356. Otherwise, process flow returns to block 342.

框356包括选择参数b的最优或优化值,以及为(b)RGB颜色空间计算(或简单地选择已经计算出的)与参数b的优化值相对应的优化的正向和反向TPB系数。Block 356 includes selecting an optimal or optimized value for parameter b, and calculating (or simply selecting already calculated) optimized forward and reverse TPB coefficients corresponding to the optimized value for parameter b for the (b)RGB color space.

与“WFB”用例或操作情景类似,在“WB”用例或操作情景中,(b)颜色空间也是优化的一部分。可以联合地优化(b)颜色空间和反向TPB系数。因此,优化问题可以被表述为寻找(的特定值),使得生成(b)颜色空间以覆盖最大的HDR颜色空间或颜色空间部分同时实现表示为的最小化HDR预测误差,如下:Similar to the "WFB" use case or operation scenario, in the "WB" use case or operation scenario, (b) color space is also part of the optimization. The (b) color space and the inverse TPB coefficients can be optimized jointly. Therefore, the optimization problem can be formulated as finding (a specific value of ) such that (b) the color space is generated to cover the largest HDR color space or color space portion while achieving the expression The minimized HDR prediction error is as follows:

参数b的示例优化值可以是但不一定仅限于1,这对应于P3颜色空间。An example optimized value for parameter b may be, but is not necessarily limited to, 1, which corresponds to the P3 color space.

单个设备中的黑盒TPB反向优化(BB1)Black-box TPB reverse optimization in a single device (BB1)

一些(双模式)视频捕获设备或移动设备支持SDR和HDR捕获模式两者并且因此可以输出SDR或HDR图像。一些(单模式)视频捕获设备或移动设备仅支持SDR捕获模式。在如本文所描述的技术下,可以用双模式视频捕获设备对SDR到HDR映射进行建模或生成这些映射。然后可以例如在所下载和/或所安装的视频捕获应用中将一些或所有这些SDR到HDR映射应用于由双模式视频捕获设备或单模式视频捕获设备捕获的SDR图像,以将用SDR捕获模式获取的SDR图像“上转换”为对应HDR图像,而不管这些视频捕获设备是否支持HDR捕获模式。Some (dual mode) video capture devices or mobile devices support both SDR and HDR capture modes and can therefore output SDR or HDR images. Some (single mode) video capture devices or mobile devices only support SDR capture mode. Under the technology as described herein, SDR to HDR mappings can be modeled or generated with dual mode video capture devices. Some or all of these SDR to HDR mappings can then be applied to SDR images captured by dual mode video capture devices or single mode video capture devices, for example in a downloaded and/or installed video capture application, to "up-convert" SDR images acquired with the SDR capture mode to corresponding HDR images, regardless of whether these video capture devices support HDR capture mode.

在一些操作情景中,由于移动设备中的计算环境或移动设备的处理能力可能是有限的,因此至少部分地从TPB基函数得到的静态(反向)3D-LUT和优化的TPB系数可以用于表示静态SDR到HDR映射,该静态SDR到HDR映射对SDR视频序列中的如所有SDR图像等SDR图像进行映射或反向重塑以生成对应HDR视频序列中的如所有HDR图像等对应HDR图像。In some operating scenarios, since the computing environment in the mobile device or the processing power of the mobile device may be limited, a static (inverse) 3D-LUT and optimized TPB coefficients obtained at least in part from the TPB basis function can be used to represent a static SDR to HDR mapping, which maps or inversely reshapes SDR images such as all SDR images in an SDR video sequence to generate corresponding HDR images such as all HDR images in a corresponding HDR video sequence.

可以至少部分地基于用双模式视频捕获设备的特定相机获取的HDR和SDR图像的多个图像对来对静态SDR到HDR映射进行建模。HDR和SDR图像的图像对中的每个图像对包括SDR图像以及与该SDR图像相对应的HDR图像。SDR图像和HDR图像将真实世界中的相同视觉场景描绘为具有由空间移动导致的空间对齐误差,这些空间移动可能发生在SDR捕获模式下操作的特定相机捕获SDR图像的第一时间点与HDR捕获模式下操作的相同相机捕获HDR图像的第二时间点之间。例如,对于物理世界中的每个视觉场景,视频捕获设备可以以HDR模式操作以捕获图像对中的HDR图像并且使用SDR模式来捕获同一图像对中的SDR图像。可以重复这个操作以生成HDR和SDR图像的多个图像对,以生成用于生成静态SDR到HDR映射的相对大数量的不同色标(或相对大数量的不同颜色或不同码字)。Static SDR to HDR mapping can be modeled based at least in part on multiple image pairs of HDR and SDR images acquired with a specific camera of a dual-mode video capture device. Each image pair of the HDR and SDR images includes an SDR image and an HDR image corresponding to the SDR image. The SDR image and the HDR image depict the same visual scene in the real world as having spatial alignment errors caused by spatial movement, which may occur between a first time point when a specific camera operating in the SDR capture mode captures the SDR image and a second time point when the same camera operating in the HDR capture mode captures the HDR image. For example, for each visual scene in the physical world, the video capture device can operate in HDR mode to capture the HDR image in the image pair and use the SDR mode to capture the SDR image in the same image pair. This operation can be repeated to generate multiple image pairs of HDR and SDR images to generate a relatively large number of different color scales (or a relatively large number of different colors or different codewords) for generating a static SDR to HDR mapping.

使用所捕获SDR和HDR图像对静态SDR到HDR映射进行建模存在若干挑战。首先,虽然SDR和HDR捕获模式两者可以在同一视频捕获设备内部使用相同ISP,但视频捕获设备可以针对同一场景应用不同图像捕获设置(例如,特定相机的曝光设置等)以在所捕获SDR和HDR图像中获得所设计的优化的图片质量。因此,静态SDR到HDR映射可能能够在某种程度上对实际上由视频捕获设备实施的HDR图像捕获设置进行建模或近似。其次,要用于得到SDR和HDR图像的图像对的所捕获SDR和HDR图像之间的空间对齐可能不精确。例如,可以经由触摸视频捕获设备的屏幕来执行在SDR捕获模式与HDR捕获模式之间选择特定捕获模式,这可能使视频捕获设备失去或移动远离其先前空间位置和/或取向。另外,可能容易地发生所捕获SDR视频/图像序列与所捕获HDR视频/图像序列之间的时间对齐,因为这些SDR和HDR序列是在不同时刻或持续时间捕获的。这些序列中的一些所描绘的视觉对象可以移入或移出相机视野。相机视野中的一些局部区可能不时出现遮挡或不遮挡。There are several challenges in modeling static SDR to HDR mapping using captured SDR and HDR images. First, although both SDR and HDR capture modes can use the same ISP inside the same video capture device, the video capture device can apply different image capture settings (e.g., exposure settings of a specific camera, etc.) for the same scene to obtain the designed optimized picture quality in the captured SDR and HDR images. Therefore, static SDR to HDR mapping may be able to model or approximate the HDR image capture settings actually implemented by the video capture device to some extent. Secondly, the spatial alignment between the captured SDR and HDR images of the image pair to be used to obtain the SDR and HDR images may not be accurate. For example, the selection of a specific capture mode between the SDR capture mode and the HDR capture mode can be performed via the screen of the touching video capture device, which may cause the video capture device to lose or move away from its previous spatial position and/or orientation. In addition, the temporal alignment between the captured SDR video/image sequence and the captured HDR video/image sequence may easily occur because these SDR and HDR sequences are captured at different times or durations. Some of the visual objects depicted in these sequences can move in or out of the camera field of view. Some local areas in the camera's field of view may be occluded or unoccluded from time to time.

在一些操作情景中,可以执行配准操作以解决所捕获SDR图像与对应所捕获HDR图像之间的空间和/或时间对齐问题,以生成对齐的SDR图像和对应对齐的HDR图像并且在SDR和HDR图像的图像对中包括该对齐的SDR图像和该对应对齐的HDR图像。然后可以使用该图像对来确定或建立对齐的SDR图像中的SDR色标或颜色和对应对齐的HDR图像中的对应HDR色标或颜色。这些SDR和HDR色标或颜色可以用于得到一组对应SDR和HDR色标或颜色中的至少一些色标,以用于得到或生成静态SDR到HDR映射。In some operational scenarios, a registration operation may be performed to resolve spatial and/or temporal alignment issues between a captured SDR image and a corresponding captured HDR image to generate an aligned SDR image and a corresponding aligned HDR image and include the aligned SDR image and the corresponding aligned HDR image in an image pair of SDR and HDR images. The image pair may then be used to determine or establish SDR color scales or colors in the aligned SDR image and corresponding HDR color scales or colors in the corresponding aligned HDR image. These SDR and HDR color scales or colors may be used to derive at least some of a set of corresponding SDR and HDR color scales or colors for deriving or generating a static SDR to HDR mapping.

可以执行SDR和HDR视频捕获过程以提供对室内场景和室外场景两者在一天中不同时间(如从清晨到深夜)的不同场景和/或曝光的全面覆盖。对于每种场景,可以以SDR模式和HDR模式两者使用同一视频捕获设备以捕获SDR和HDR视频序列。在一些操作情景中,可以选择或提取视频序列中的每一个的如第一帧/图像等特定帧/图像,以用于构建或得到要包括在训练图像数据集或数据库中的SDR和HDR图像的多个图像对。The SDR and HDR video capture processes may be performed to provide comprehensive coverage of different scenes and/or exposures at different times of day (e.g., from early morning to late evening) for both indoor and outdoor scenes. For each scene, the same video capture device may be used in both SDR mode and HDR mode to capture SDR and HDR video sequences. In some operational scenarios, specific frames/images, such as the first frame/image, of each of the video sequences may be selected or extracted for use in constructing or obtaining multiple image pairs of SDR and HDR images to be included in a training image dataset or database.

图3D图示了用于使用由分别在SDR和HDR捕获模式下操作的视频捕获设备捕获的所捕获SDR图像和所捕获HDR图像(对应于所捕获SDR图像)中的对应(或经匹配)SDR和HDR色标或颜色来生成如优化或最优TPB系数等优化重塑操作参数的示例过程流程。3D illustrates an example process flow for generating optimized reshaping operation parameters such as optimized or optimal TPB coefficients using corresponding (or matched) SDR and HDR color scales or colors in a captured SDR image and a captured HDR image (corresponding to the captured SDR image) captured by a video capture device operating in SDR and HDR capture modes, respectively.

框362包括接收所捕获SDR图像并且寻找或提取所捕获SDR图像中的一组SDR图像特征点。框364包括接收所捕获HDR图像并且寻找或提取所捕获HDR图像中的一组HDR图像特征点。该组SDR图像特征点和该组HDR图像特征点可以是同一组特征点类型。Block 362 includes receiving a captured SDR image and finding or extracting a set of SDR image feature points in the captured SDR image. Block 364 includes receiving a captured HDR image and finding or extracting a set of HDR image feature points in the captured HDR image. The set of SDR image feature points and the set of HDR image feature points may be the same set of feature point types.

该组特征点类型可以包括在各种不同特征点类型中的特征点类型,包括但不一定仅限于以下项中的任何、一些或所有:用二进制鲁棒不变可扩展关键点或BRISK算法检测到的BRISK特征;使用加速分段测试特征(Features-from-Accelerated-Segment-Test)或FAST算法检测到的角;从KAZE算法检测到的特征;使用最小特征值算法检测到的角;用最大稳定极值区或MSER算法生成的特征;用定向FAST和旋转或ORB算法检测到的关键点;从尺度不变特征变换或SIFT算法提取的特征;从加速鲁棒特征或SURF算法提取的特征;等等。The set of feature point types may include feature point types among various different feature point types, including but not necessarily limited to any, some or all of the following: BRISK features detected using Binary Robust Invariant Scalable Keypoints or BRISK algorithm; corners detected using Features-from-Accelerated-Segment-Test or FAST algorithm; features detected from KAZE algorithm; corners detected using minimum eigenvalue algorithm; features generated using Maximum Stable Extreme Region or MSER algorithm; key points detected using oriented FAST and rotation or ORB algorithm; features extracted from scale-invariant feature transform or SIFT algorithm; features extracted from accelerated robust features or SURF algorithm; and the like.

可以用如(例如,数值等)特征值阵列等特征向量或描述符表示该组SDR图像特征点和该组HDR图像特征点中的一些或所有特征点中的每一个。Each of some or all of the set of SDR image feature points and the set of HDR image feature points may be represented by a feature vector or descriptor such as an array of (eg, numerical values, etc.) feature values.

框366包括将该组SDR图像特征点中的一些或所有特征点与该组HDR图像特征点中的一些或所有特征点相匹配。对于SDR图像中的在该组SDR图像特征点中的特定类型的每个特征点,可以计算SDR图像中的特征点与HDR图像中的在该组HDR图像特征点中的同一类型的特征点中的每个特征点之间的匹配度量。在非限制性示例中,可以将匹配度量计算为表示SDR图像中的特征点的第一特征向量与表示HDR图像中的特征点的第二特征向量之间的绝对差之和或SAD(或用于测量两个特征点之间的差的另一度量函数)。具有最低SAD或匹配度量的特定特征点可以从HDR图像中同一类型的特征点选择作为SDR图像中的特征点的可能匹配。响应于确定最低SAD或匹配度量低于匹配差阈值,可以将HDR图像中的特定特征点识别或确定为SDR图像中的特征点的匹配;SDR图像中的特征点和HDR图像中的特定特征点形成一对经匹配SDR和HDR特征点。否则,不可以将该特定特征点识别为这样的匹配。可以针对该组SDR图像特征点中的所有特征点重复地执行该匹配操作,从而产生一组成对经匹配SDR和HDR特征点。Block 366 includes matching some or all of the feature points in the set of SDR image feature points with some or all of the feature points in the set of HDR image feature points. For each feature point of a particular type in the set of SDR image feature points in the SDR image, a matching metric between the feature point in the SDR image and each of the feature points of the same type in the set of HDR image feature points in the HDR image can be calculated. In a non-limiting example, the matching metric can be calculated as the sum of absolute differences or SAD (or another metric function for measuring the difference between two feature points) between a first feature vector representing a feature point in the SDR image and a second feature vector representing a feature point in the HDR image. The particular feature point with the lowest SAD or matching metric can be selected from the feature points of the same type in the HDR image as a possible match for the feature point in the SDR image. In response to determining that the lowest SAD or matching metric is below a matching difference threshold, the particular feature point in the HDR image can be identified or determined as a match for the feature point in the SDR image; the feature point in the SDR image and the particular feature point in the HDR image form a pair of matched SDR and HDR feature points. Otherwise, the particular feature point may not be identified as such a match. The matching operation may be repeatedly performed for all feature points in the set of SDR image feature points, thereby producing a set of paired matched SDR and HDR feature points.

框368包括部分地或全部地基于该组成对经匹配SDR和HDR特征点来计算SDR图像与HDR图像之间的几何变换,如3×3 2D仿射变换。可以使用SDR和HDR图像中来自该组成对经匹配SDR和HDR特征点的经匹配特征点的(例如,像素行和像素列等)坐标来计算或得到该几何变换。Block 368 includes computing a geometric transformation, such as a 3×3 2D affine transformation, between the SDR image and the HDR image based in part or in whole on the set of paired matched SDR and HDR feature points. The geometric transformation may be computed or derived using coordinates (e.g., pixel rows and pixel columns, etc.) of matched feature points from the set of paired matched SDR and HDR feature points in the SDR and HDR images.

对于每一(例如,第k个等)对经匹配SDR和HDR特征点,该对中的HDR特征点的2D坐标可以表示为(τixiy)并且包括在作为τi=[τix τiy 1]的第一向量中,而SDR特征点的2D坐标可以表示为(ηixiy)并且包括在第二向量ηi=[ηix ηiy 1]中。For each (e.g., kth, etc.) pair of matched SDR and HDR feature points, the 2D coordinates of the HDR feature point in the pair can be expressed as (τ ixiy ) and included in a first vector as τ i = [τ ix τ iy 1], while the 2D coordinates of the SDR feature point can be expressed as (η ixiy ) and included in a second vector η i = [η ix η iy 1].

将该组成对经匹配SDR和HDR特征点中的成对经匹配SDR和HDR特征点的总数表示为N。可以将从该组成对经匹配SDR和HDR特征点中的所有成对经匹配SDR和HDR特征点中的特征点的2D坐标生成的向量收集在一起,如下:The total number of paired matched SDR and HDR feature points in the set of paired matched SDR and HDR feature points is denoted as N. Vectors generated from the 2D coordinates of feature points in all paired matched SDR and HDR feature points in the set of paired matched SDR and HDR feature points may be collected together as follows:

如上所述,几何变换可以表示为3×3矩阵,如下:As mentioned above, the geometric transformation can be represented as a 3×3 matrix as follows:

在数学上,分别表示该组成对经匹配SDR和HDR特征点中的每一对经匹配SDR和HDR特征点中的SDR和HDR特征点的第一向量和第二向量可以通过表示几何变换的3×3矩阵彼此相关,如下:Mathematically, the first vector and the second vector respectively representing the SDR and HDR feature points in each pair of the set of matched SDR and HDR feature points may be related to each other by a 3×3 matrix representing a geometric transformation as follows:

或者,对于该组成对经匹配SDR和HDR特征点中的所有N对经匹配特征点,表示SDR和HDR特征点的向量可以通过表示几何变换的3×3矩阵来相关,如下:Alternatively, for all N pairs of matched feature points in the set of pairs of matched SDR and HDR feature points, the vectors representing the SDR and HDR feature points may be related by a 3×3 matrix representing the geometric transformation as follows:

可以生成或获得表示几何变换的3×3矩阵中的矩阵元素的值作为将变换或对齐误差最小化的优化问题的解(例如,最小平方解等)。更具体地,优化问题可以如下表述:The values of the matrix elements in the 3×3 matrix representing the geometric transformation can be generated or obtained as a solution (e.g., a least square solution, etc.) to an optimization problem that minimizes the transformation or alignment error. More specifically, the optimization problem can be expressed as follows:

可以经由上述表达式()中的优化问题的最小平方解获得表示几何变换的3×3矩阵的优化或最优值,如下:The optimized or optimal value of the 3×3 matrix representing the geometric transformation can be obtained via the least squares solution of the optimization problem in the above expression (), as follows:

Fopt=(TTT)-1(TTH) (84)F opt = (T T T) -1 (T T H) (84)

框370包括将几何变换应用于SDR和HDR图像之一。在目前示例中,例如对于在其中表示HDR图像的如Y、Cb和Cr等三个通道中的每一个,将变换应用于HDR图像,因此HDR图像中的HDR像素位置被移位以与SDR图像中的SDR像素位置一致。因此,HDR图像中的大多数HDR像素与SDR图像中的对应SDR像素在空间上对齐。其余HDR像素和其余SDR像素(没有HDR像素与其在空间上对齐)可以被排除(例如,被指派了超出范围的像素值等)用作用于生成静态SDR到HDR映射或TPB系数或静态反向3D-LUT的(有效)色标或颜色。Block 370 includes applying a geometric transformation to one of the SDR and HDR images. In the present example, for example, for each of the three channels such as Y, Cb and Cr in which the HDR image is represented, a transformation is applied to the HDR image so that the HDR pixel positions in the HDR image are shifted to coincide with the SDR pixel positions in the SDR image. Thus, most of the HDR pixels in the HDR image are spatially aligned with the corresponding SDR pixels in the SDR image. The remaining HDR pixels and the remaining SDR pixels (with which no HDR pixels are spatially aligned) can be excluded (e.g., assigned out-of-range pixel values, etc.) for use as (valid) color scales or colors for generating a static SDR to HDR mapping or TPB coefficients or a static inverse 3D-LUT.

框372包括在SDR和HDR图像中寻找对应有效色标或颜色。可以从SDR和HDR图像中的在空间上对齐的像素的码字值获得有效色标或颜色。如上所述,可以通过应用几何变换生成在空间上对齐的像素,该几何变换又是从经匹配SDR和HDR特征点生成的。Block 372 includes finding corresponding valid color labels or colors in the SDR and HDR images. The valid color labels or colors can be obtained from the codeword values of the spatially aligned pixels in the SDR and HDR images. As described above, the spatially aligned pixels can be generated by applying a geometric transformation, which in turn is generated from the matched SDR and HDR feature points.

在一些操作情景中,为了增强几何变换的空间对齐准确性或可靠性,在识别出具有低于最小匹配差阈值的匹配度量的(初始)经匹配SDR和HDR特征点之后,可以应用另一匹配阈值以从(初始)经匹配SDR和HDR特征点中选择或区分最终经匹配SDR和HDR特征点的子集。In some operational scenarios, in order to enhance the spatial alignment accuracy or reliability of the geometric transformation, after identifying the (initial) matched SDR and HDR feature points with a matching metric below a minimum matching difference threshold, another matching threshold can be applied to select or distinguish a subset of final matched SDR and HDR feature points from the (initial) matched SDR and HDR feature points.

对于SDR图像中的每个在空间上对齐的像素,可以为SDR图像中的在空间上对齐的像素确定如SDR Y/Cb/Cr值等SDR码字。对于用几何变换生成的在空间上变换的HDR图像中的共置或在空间上对齐的像素(对应于SDR图像中的在空间上对齐的像素),可以为HDR图像中的在空间上对齐的像素确定如对应HDR Y/Cb/Cr值等对应HDR码字。如果变换后的HDR像素是不可用的(例如,具有0的值等),则可以丢弃或阻止HDR像素被视为经匹配色标或码字的一部分。For each spatially aligned pixel in the SDR image, an SDR codeword, such as an SDR Y/Cb/Cr value, may be determined for the spatially aligned pixel in the SDR image. For co-located or spatially aligned pixels in a spatially transformed HDR image generated using a geometric transformation (corresponding to the spatially aligned pixels in the SDR image), a corresponding HDR codeword, such as a corresponding HDR Y/Cb/Cr value, may be determined for the spatially aligned pixel in the HDR image. If the transformed HDR pixel is unusable (e.g., has a value of 0, etc.), the HDR pixel may be discarded or prevented from being considered as part of a matched color scale or codeword.

在如从SDR和HDR图像中的一对在空间上对齐的SDR和HDR像素生成的每一对(例如,第i对等)经匹配SDR和HDR色标或颜色中,可以分别如下给出经匹配SDR和HDR色标或颜色(或码字值):In each pair (e.g., the i-th pair, etc.) of matched SDR and HDR color labels or colors as generated from a pair of spatially aligned SDR and HDR pixels in the SDR and HDR images, the matched SDR and HDR color labels or colors (or codeword values), respectively, may be given as follows:

可以从所有图像将如从SDR和HDR图像对的所有图像对中的SDR和HDR图像中所有成对在空间上对齐的SDR和HDR像素生成的所有成对经匹配SDR和HDR色标或颜色中的经匹配SDR和HDR色标或颜色(或码字值)收集在一起并且将它们合并到两个矩阵中,如下:All pairs of matched SDR and HDR color labels or colors (or codeword values) in all pairs of spatially aligned SDR and HDR pixels in the SDR and HDR images in all image pairs of SDR and HDR image pairs may be collected together from all images and merged into two matrices as follows:

来自SDR图像的 From SDR images

来自HDR图像的 From HDR images

框374包括使用上述表达式(88)和(89)中的矩阵作为输入来解或生成用于反向重塑或静态SDR到HDR映射的优化或最优TPB系数。Block 374 includes using the matrices in expressions (88) and (89) above and As input to solve or generate optimized or optimal TPB coefficients for inverse reshaping or static SDR to HDR mapping.

可以从矩阵中的反向TPP基函数和码字生成每通道反向生成矩阵,如下:From the matrix The inverse TPP basis functions and codewords in generate the inverse generation matrix for each channel as follows:

可以从矩阵建构用于SDR到HDR映射的每通道观察矩阵,如下:From the matrix Construct a per-channel observation matrix for SDR to HDR mapping as follows:

可以经由最小平方解对通道ch的优化或最优反向TPB系数求解,如下:The optimized or optimal inverse TPB coefficients for channel ch can be solved via a least squares solution as follows:

可以如下计算通道ch的所预测的或经反向重塑HDR值:The predicted or inversely reshaped HDR value for channel ch may be calculated as follows:

两个设备中的黑盒反向重塑优化(BB2)Black-box reverse reshaping optimization in two devices (BB2)

在“BB2”操作情景中,可以使用(反向)重塑映射来映射由在SDR捕获模式下的第一视频捕获设备捕获的(ISP所捕获)SDR图像,以生成模拟由在HDR捕获模式下操作的第二不同视频捕获设备捕获的(ISP所捕获)HDR图像的HDR外观的(ISP经映射)HDR图像。在一些操作情景中,第一视频捕获设备可以是可以仅捕获SDR图像或图片的相对低端的移动电话,而第二视频捕获设备可以是可以捕获HDR图像或图片的相对高端的电话。虽然第一和第二视频捕获设备可以以不同的硬件配置和能力进行操作,但重塑映射用于将第一设备所捕获的(ISP所捕获)SDR图像重塑为与第二设备所捕获的(ISP所捕获)HDR图像近似的(ISP经映射)HDR图像。In a "BB2" operating scenario, a (reverse) reshaping mapping may be used to map an (ISP captured) SDR image captured by a first video capture device in an SDR capture mode to generate an (ISP mapped) HDR image that simulates the HDR appearance of an (ISP captured) HDR image captured by a second, different video capture device operating in an HDR capture mode. In some operating scenarios, the first video capture device may be a relatively low-end mobile phone that may only capture SDR images or pictures, while the second video capture device may be a relatively high-end phone that may capture HDR images or pictures. Although the first and second video capture devices may operate with different hardware configurations and capabilities, the reshaping mapping is used to reshape the (ISP captured) SDR image captured by the first device into an (ISP mapped) HDR image that approximates the (ISP captured) HDR image captured by the second device.

可以至少部分地基于由第一设备所捕获的(训练)SDR图像和第二设备所捕获的(训练)HDR图像形成的多个图像对来对重塑(SDR到HDR)映射进行建模。HDR和SDR图像的图像对中的每个图像对包括SDR图像以及与该SDR图像相对应的HDR图像。The reshaping (SDR to HDR) mapping may be modeled based at least in part on a plurality of image pairs formed by (training) SDR images captured by a first device and (training) HDR images captured by a second device. Each of the image pairs of HDR and SDR images includes an SDR image and an HDR image corresponding to the SDR image.

在一些“BB2”操作情景中,多个图像对中的一些或所有图像对可以(例如,最初、在图像对齐操作之前等)包括所捕获的SDR和HDR图像,这些图像将真实世界中的如自然室内/室外场景等视觉场景描绘为具有与第一和第二视频捕获设备有关的空间和/或时间对齐误差。与在“BB1”用例或操作情景中一样,在这些“BB2”用例或操作情景中,可以例如使用用从SDR和HDR图像提取的选定特征点构建的几何变换来执行图像对中的对应SDR图像与HDR图像之间的图像对齐操作。随后,从图像对中的对齐的SDR和HDR图像确定的SDR和HDR色标或颜色可以用于生成如本文所描述的重塑(SDR到HDR)映射。In some "BB2" operational scenarios, some or all of the plurality of image pairs may include (e.g., initially, prior to an image alignment operation, etc.) captured SDR and HDR images that depict real-world visual scenes, such as natural indoor/outdoor scenes, as having spatial and/or temporal alignment errors associated with the first and second video capture devices. As in the "BB1" use cases or operational scenarios, in these "BB2" use cases or operational scenarios, image alignment operations between corresponding SDR and HDR images in the image pairs may be performed, for example, using geometric transformations constructed using selected feature points extracted from the SDR and HDR images. Subsequently, SDR and HDR color scales or colors determined from the aligned SDR and HDR images in the image pairs may be used to generate a reshape (SDR to HDR) mapping as described herein.

在一些“BB2”操作情景中,替代或除了采用来自自然场景的图像,多个图像对中的一些或所有图像对例如在实验室环境中可以(例如,最初、在图像对齐操作之前等)包括所捕获SDR和HDR图像,这些图像描绘显示在同一类型的一个或多个参考图像显示器上的色表。例如,色表可以生成为16比特全高清RGB(色表)TIFF图像。含有色表的这些TIFF图像可以显示为如PRM TV等参考图像显示器上的感知量化(PQ)视频信号。然后可以分别由第一和第二视频捕获设备捕获显示在参考图像显示器上的色表。In some "BB2" operating scenarios, instead of or in addition to using images from natural scenes, some or all of the plurality of image pairs may include captured SDR and HDR images (e.g., initially, before image alignment operations, etc.), for example, in a laboratory environment, that depict color tables displayed on one or more reference image displays of the same type. For example, the color tables may be generated as 16-bit full HD RGB (color table) TIFF images. These TIFF images containing the color tables may be displayed as perceptually quantized (PQ) video signals on a reference image display such as a PRM TV. The color tables displayed on the reference image display may then be captured by the first and second video capture devices, respectively.

图2N图示了包括色表的示例TIFF图像。如所示出的,色表可以是TIFF图像中的中央正方形,该中央正方形包括要捕获并且在第一设备与第二设备之间匹配的具有一组相异颜色的多个色块。该组相异颜色中的每个颜色可以不同于该组相异颜色中的所有其他颜色。该组相异颜色可以由参考图像显示器以一组相异像素/码字值来显示。因此,该组相异颜色中的每个颜色可以对应于该组相异像素/码字值中的相应像素或码字值。Fig. 2N illustrates an example TIFF image including a color table. As shown, the color table can be a central square in the TIFF image, and the central square includes a plurality of color blocks with a set of distinct colors to be captured and matched between the first device and the second device. Each color in the set of distinct colors can be different from all other colors in the set of distinct colors. The set of distinct colors can be displayed by a reference image display with a set of distinct pixels/codeword values. Therefore, each color in the set of distinct colors can correspond to a corresponding pixel or codeword value in the set of distinct pixels/codeword values.

不同TIFF图像可以包括具有不同复数个颜色或不同组相异颜色的不同色表。不同TIFF图像中的相应TIFF图像中的每个色表可以对应于不同复数或组相异颜色中的相应多组相异颜色。Different TIFF images may include different color tables with different pluralities of colors or different sets of distinct colors. Each color table in a corresponding one of the different TIFF images may correspond to a corresponding one of the different pluralities or sets of distinct colors.

图2N的TIFF图像中的四个角矩形中的每个角矩形包括棋盘图案。同一角矩形或相同棋盘图案可以包括在含有不同色表的不同TIFF图像中。在TIFF图像的四个角的棋盘图案可以用作用于估计投影变换的空间键或基准标记,如稍后将详细讨论的。另外地、可选地或替代性地,TIFF图像可以包括一个或多个数、二进制编码、QR码等,作为指派给或用于识别TIFF图像或其中的色表或者其中的一组或多个颜色等的唯一标识符(ID)。Each of the four corner rectangles in the TIFF image of Figure 2N includes a checkerboard pattern. The same corner rectangle or the same checkerboard pattern may be included in different TIFF images containing different color tables. The checkerboard pattern at the four corners of the TIFF image can be used as a spatial key or reference mark for estimating a projective transformation, as will be discussed in detail later. Additionally, optionally or alternatively, the TIFF image may include one or more numbers, binary codes, QR codes, etc., as a unique identifier (ID) assigned to or used to identify the TIFF image or the color table therein or a group or multiple colors therein, etc.

为了寻找尽可能多的颜色在第一视频捕获设备与第二视频捕获设备之间的对应性/映射关系,如本文所描述的TIFF图像中的色表可以包括尽可能多的不同(组或复数)颜色(对应于尽可能多的不同像素/码字值),这取决于参考图像显示器辨别不同颜色的显示能力。另外,色表可以以不同的整体强度或照度来显示,以用于使第一和第二视频捕获设备在不同的照明条件下进行不同的曝光设置。因此,显示在TIFF图像中的色表内的相同颜色可以在参考图像显示器上以不同强度或照度来显示。In order to find the correspondence/mapping relationship between as many colors as possible between the first video capture device and the second video capture device, the color table in the TIFF image as described herein can include as many different (groups or multiple) colors as possible (corresponding to as many different pixel/codeword values as possible), depending on the display capability of the reference image display to distinguish different colors. In addition, the color table can be displayed with different overall intensities or illuminations to enable the first and second video capture devices to perform different exposure settings under different lighting conditions. Therefore, the same color in the color table displayed in the TIFF image can be displayed with different intensities or illuminations on the reference image display.

图3E图示了用于生成要包括在多个不同TIFF图像中的多个不同色表的示例过程流程。为了生成每个色表,色表中的(例如,RGB等)颜色的均值和方差值可以被确定并用于使用统计分布(的类型)随机地生成颜色。在一些操作情景中,统计分布表示贝塔分布或分布类型。可以用统计分布或分布类型的均值和方差值的不同组合生成其中具有不同复数或组相异颜色的不同色表。FIG. 3E illustrates an example process flow for generating a plurality of different color tables to be included in a plurality of different TIFF images. To generate each color table, the mean and variance values of the colors in the color table (e.g., RGB, etc.) may be determined and used to randomly generate colors using a statistical distribution (type). In some operating scenarios, the statistical distribution represents a Beta distribution or a distribution type. Different combinations of mean and variance values of the statistical distribution or distribution type may be used to generate different color tables having different complex or groups of distinct colors.

框382包括定义或确定PQ域或颜色空间中的一组可能均值(表示为)。Block 382 includes defining or determining a set of possible means in the PQ domain or color space (denoted as ).

在用于显示含有色表的TIFF图像的参考图像显示器是PRM TV的操作情景中,参考图像显示器所支持的最大和最小光亮度值可以在1000尼特与0尼特之间的范围或甚至更大的动态范围和对比度内。通过举例而非限制的方式,在不进行剪切的情况下参考图像显示器可以显示的最小和最大PQ值可以给出为:分别P0=L2PQ(0)和P1=L2PQ(1000),其中,L2PQ(·)表示从PQ域或颜色空间中的(线性或非PQ)光亮度到(非线性或PQ)亮度码字的映射函数。In an operating scenario where the reference image display used to display the TIFF image containing the color table is a PRM TV, the maximum and minimum luminance values supported by the reference image display may be within a range between 1000 nits and 0 nits, or even greater dynamic range and contrast. By way of example and not limitation, the minimum and maximum PQ values that the reference image display can display without clipping may be given by: P 0 =L2PQ(0) and P 1 =L2PQ(1000), respectively, where L2PQ(·) represents a mapping function from (linear or non-PQ) luminance to (non-linear or PQ) luminance codewords in the PQ domain or color space.

在非限制性示例中,集合可以被定义为与在对数刻度上均匀地分布在从L下限到L上限的(线性)光亮度值范围中的(线性)光亮度值相对应的一组不同PQ亮度码字。下限L下限可以被设置为如10-4等值,而上限L上限可以被设置为如102.99等值(例如,为数值稳定性选择的分数指数值等),这部分地或全部地取决于第一设备和第二设备的图像捕获能力(例如,捕获最暗和最亮的光亮度等)。在所捕获SDR和HDR图像中用作亮度码字的对数尺度可以与在光亮度值范围中的光亮度对数近似线性。该组可能均值中的可能均值总数(或量值)可以但不一定仅限于如下集合: In a non-limiting example, the set A set of different PQ luminance codewords may be defined as corresponding to (linear) luminance values uniformly distributed in a range of (linear) luminance values from L lower limit to L upper limit on a logarithmic scale. The lower limit L lower limit may be set to a value such as 10 -4 , while the upper limit L upper limit may be set to a value such as 10 2.99 (e.g., a fractional exponent value selected for numerical stability, etc.), which depends in part or in whole on the image capture capabilities of the first device and the second device (e.g., capturing the dimmest and brightest luminances, etc.). The logarithmic scale used as luminance codewords in the captured SDR and HDR images may be approximately linear with the logarithm of the luminance in the range of luminance values. The total number of possible means (or magnitude) in the set of possible means ) can be, but is not necessarily limited to, the following sets:

框384包括定义或确定用于生成统计分布或分布类型(例如,贝塔分布等)的可能方差值的一组可能形状系数。Block 384 includes defining or determining a set of possible shape coefficients for generating possible variance values for a statistical distribution or type of distribution (eg, a Beta distribution, etc.).

在一些操作情景中,用于随机地选择颜色或码字值的贝塔分布在缩放或封闭值区间[0,1]内定义或具有支持。在给出了在PQ码字值范围[P0,P1]内的PQ值的情况下,可以如下计算缩放均值μ(其中,0<μ<1或在贝塔分布的封闭值区间内):In some operating scenarios, the Beta distribution used to randomly select a color or codeword value is defined or has support in a scaled or closed value interval [0, 1 ]. Given a PQ value in the PQ codeword value range [P 0 , P 1 ], the scaled mean μ (where 0<μ<1 or in a closed value interval of the Beta distribution) can be calculated as follows:

在缩放或封闭值区间[0,1]内的贝塔分布的缩放方差(表示为σ2)可以自适应地被设置为与μ(1-μ)成比例,以避免在由第一设备和第二设备捕获SDR和HDR图像期间由色块的大(例如,亮度等)差异导致的曝光过度/不足,如下:The scaled variance (denoted as σ 2 ) of the beta distribution within the scaled or closed value interval [0,1] may be adaptively set to be proportional to μ(1-μ) to avoid over/under exposure caused by large (e.g., brightness, etc.) differences in color patches during capture of SDR and HDR images by the first device and the second device, as follows:

σ2=μ(1-μ)/θ (95)σ 2 = μ(1-μ)/θ (95)

其中,θ表示影响或确定贝塔分布的(例如,更压缩、更扩展等)形状的形状系数。形状系数的值可以选自一组可能的形状系数Θ,以允许所生成的色表的从其产生的码字值和/或颜色具有相对较高的多样性。该组可能的形状系数的非限制性示例可以是:Θ={3,6,9,12}。Wherein θ represents a shape coefficient that affects or determines the shape of the Beta distribution (e.g., more compressed, more expanded, etc.). The value of the shape coefficient may be selected from a set of possible shape coefficients θ to allow the generated color table to have a relatively high diversity of codeword values and/or colors generated therefrom. A non-limiting example of the set of possible shape coefficients may be: θ={3, 6, 9, 12}.

框386包括针对统计(例如,贝塔等)分布的不同实例使用该组可能均值和该组形状系数来生成缩放均值和形状系数的多个所有唯一组合。在目前示例中,如下给出唯一组合的总数:其中,|Θ|表示集合Θ中的元素总数或量值。在一些操作情景中,可以为缩放均值和形状系数的多个所有唯一组合中的缩放均值和形状系数的每个唯一组合生成含有不同色表的不同TIFF图像,从而将不同色表或对应不同TIFF图像的总数给出为 Block 386 includes using the set of possible means and the set of shape coefficients to generate a plurality of all unique combinations of scaled means and shape coefficients for different instances of a statistical (e.g., Beta, etc.) distribution. In the present example, the total number of unique combinations is given as follows: Where |Θ| represents the total number or magnitude of elements in the set Θ. In some operational scenarios, a different TIFF image with a different color table may be generated for each unique combination of the scaling mean and the shape coefficient in a plurality of all unique combinations of the scaling mean and the shape coefficient, so that the total number of different color tables or corresponding different TIFF images is given as

框388包括从缩放均值和形状系数的多个所有唯一组合中选择缩放均值和形状系数的当前组合作为下一组合。可以从贝塔分布生成分别指定或定义与缩放均值和形状系数的当前组合相对应的当前色表的一组或多个不同颜色的一组或多个不同像素或码字值,这考虑到了该当前组合中的缩放均值μ和该当前组合中的当前缩放方差σ2Block 388 includes selecting the current combination of scaled means and shape coefficients as the next combination from the plurality of all unique combinations of scaled means and shape coefficients. A set or more different pixel or codeword values that respectively specify or define a set or more different colors of the current color table corresponding to the current combination of scaled means and shape coefficients may be generated from a Beta distribution, taking into account the scaled mean μ in the current combination and the current scaled variance σ 2 in the current combination.

框390包括计算或定义贝塔分布,如下:Block 390 includes calculating or defining a Beta distribution as follows:

f(x;α,β)=xα-1(1-x)β-1/B(α,β),其中,x∈[0,1] (96)f (x; α, β) = x α-1 (1-x) β-1 /B (α, β), where x∈[0,1] (96)

其中,α和β是贝塔分布参数;B(α,β)表示归一化常数。贝塔分布参数α和β进而可以从贝塔分布的均值和方差值得到,如下:Among them, α and β are the parameters of the Beta distribution; B(α,β) represents the normalization constant. The Beta distribution parameters α and β can be obtained from the mean and variance of the Beta distribution as follows:

α=μν并且β=(1-μ)ν,其中,ν=μ(1-μ)/σ2-1 (97)α=μν and β=(1-μ)ν, where ν=μ(1-μ)/σ 2 -1 (97)

框392包括基于从贝塔分布生成的一组(例如,144个等)随机数来生成当前色表或当前色表图像的一组不同(例如,144个等)颜色(或像素/码字值)。表示为x(其中,0≤x≤1)的每个随机数可以缩放回或转换为在PQ值范围[P0,P1]内的对应每通道像素或码字值(称为“PQ值”),如下:Block 392 includes generating a set of different (e.g., 144, etc.) colors (or pixel/codeword values) for a current color table or current color table image based on a set (e.g., 144, etc.) of random numbers generated from a Beta distribution. Each random number, denoted x (where 0≤x≤1), may be scaled back or converted to a corresponding per-channel pixel or codeword value (referred to as a “PQ value”) within a PQ value range [P 0 ,P 1 ] as follows:

xPQ=x(P1-P0)+P0 (98) xPQ =x( P1 - P0 )+ P0 (98)

从将该组随机数缩放回或转换到PQ值范围内生成的一组PQ值然后可以从该组随机数生成,并且用作当前色表中的该组颜色的一组每通道码字值或码字。在一些操作情景中,对于每个色表,使用例如具有三个不同组随机数的相同贝塔分布(具有相同均值和形状系数),以生成颜色空间的多个(例如,RGB等)通道中的每一个的每通道码字,显示图像在该颜色空间中要由参考图像显示器渲染。因此,从在色表中的所有色块中表示的平均化颜色生成的平均颜色接近中性颜色或灰色。A set of PQ values generated from scaling or converting the set of random numbers back into the PQ value range can then be generated from the set of random numbers and used as a set of per-channel codeword values or codewords for the set of colors in the current color table. In some operating scenarios, for each color table, the same Beta distribution (with the same mean and shape coefficient), for example, with three different sets of random numbers, is used to generate per-channel codewords for each of a plurality of (e.g., RGB, etc.) channels of a color space in which the display image is to be rendered by the reference image display. Thus, the average color generated from the averaged colors represented in all color patches in the color table is close to a neutral color or gray.

框394包括生成对应TIFF图像的当前色表或中央块。当前色表可以包括一组(例如,2D正方形等)色块,这些色块中的每一个是由具有三个每通道像素或码字值的特定(跨通道或复合)像素或码字值给出的单个颜色。从同一贝塔分布(但具有三个不同组随机数)生成的三组每通道码字可以由参考图像显示器用于分别驱动当前色表或当前TIFF图像中的该组色块中的红色、蓝色、绿色色块通道的渲染。Block 394 includes generating a current color table or central block of the corresponding TIFF image. The current color table may include a set (e.g., 2D squares, etc.) of color blocks, each of which is a single color given by a specific (cross-channel or composite) pixel or codeword value having three per-channel pixel or codeword values. Three sets of per-channel codewords generated from the same Beta distribution (but with three different sets of random numbers) may be used by the reference image display to drive rendering of the red, blue, and green color block channels in the set of color blocks in the current color table or current TIFF image, respectively.

另外地、可选地或替代性地,用于指定或生成色表图像的背景的背景颜色的RGB值可以被设置为PQ均值μPQ,从该PQ均值得到贝塔分布的缩放均值。Additionally, optionally or alternatively, the RGB values of the background color used to specify or generate the background of the color table image may be set to a PQ mean μ PQ from which the scaled mean of the Beta distribution is derived.

框396包括确定缩放均值和形状系数的当前组合是否为缩放均值和形状系数的多个所有唯一组合中的最后一组合。如果是,则过程流程结束以生成多个不同色表或不同色表图像。否则,过程流程返回到框388。Block 396 includes determining whether the current combination of the scaling mean and the shape coefficient is the last combination of all unique combinations of the scaling mean and the shape coefficient. If so, the process flow ends to generate a plurality of different color tables or different color table images. Otherwise, the process flow returns to block 388.

通过图示而非限制的方式,可以为每个色表生成不同颜色或色块的表示为nc的总数,如144。从多个不同色表和色表图像生成的颜色或色块的总数可以给出为: 个颜色或色块,这些颜色或色块可以用于确定用第一视频捕获设备在SDR捕获模式下捕获的SDR色标或码字与用第二视频捕获设备在HDR捕获模式下捕获的对应HDR色标或码字之间的对应性/匹配关系。By way of illustration and not limitation, a total number of different colors or color patches that can be generated for each color table, denoted as n c , may be 144. The total number of colors or color patches generated from a plurality of different color tables and color table images may be given as: Colors or color blocks, which can be used to determine the correspondence/matching relationship between SDR color labels or codewords captured by the first video capture device in the SDR capture mode and the corresponding HDR color labels or codewords captured by the second video capture device in the HDR capture mode.

在一些操作情景中,分别含有多个色表的多个TIFF图像可以以恒定播放帧速率在如PRM TV等参考图像显示器上迭代地显示或渲染并且可以分别由第一和第二视频捕获设备在SDR和HDR图像中捕获。由于参考图像显示器的照明可能会随观看角度变化,因此,SDR和HDR图像可以由相对于或参照参考图像显示器放置在同一位置和取向的第一和第二视频捕获设备(例如,两个电话等)单独地捕获。因此,含有如在参考图像显示器上渲染的色表或TIFF图像的所捕获SDR和HDR图像的SDR和HDR视频信号或比特流可以分别由第一和第二设备或相机生成。由于参考图像显示器的播放帧速率可以保持恒定,因此可以相对容易地确定色表的帧数量以确立图像对,在该图像对中,由第一视频捕获设备捕获的SDR图像和由第二视频捕获设备捕获的HDR图像描绘多个色表中的同一色表。可以在SDR和HDR YCbCr(或YUV)颜色空间中例如在YUV图像/视频文件中表示所捕获SDR和HDR图像。In some operational scenarios, multiple TIFF images each containing multiple color tables may be iteratively displayed or rendered on a reference image display such as a PRM TV at a constant playback frame rate and may be captured in SDR and HDR images, respectively, by a first and second video capture device. Since the illumination of the reference image display may vary with viewing angle, the SDR and HDR images may be captured separately by a first and second video capture device (e.g., two phones, etc.) placed at the same position and orientation relative to or with reference to the reference image display. Thus, SDR and HDR video signals or bitstreams containing the captured SDR and HDR images of the color tables or TIFF images as rendered on the reference image display may be generated by the first and second devices or cameras, respectively. Since the playback frame rate of the reference image display may remain constant, it may be relatively easy to determine the number of frames of the color table to establish an image pair in which the SDR image captured by the first video capture device and the HDR image captured by the second video capture device depict the same color table of the multiple color tables. The captured SDR and HDR images may be represented in SDR and HDR YCbCr (or YUV) color spaces, such as in YUV image/video files.

图3F图示了用于针对多个色表中的每个色表在所捕获SDR和HDR图像的图像对之间匹配SDR和HDR颜色的示例过程流程。为了从含有色表的色表图像的所捕获SDR和HDR图像提取单独色块的相应颜色,可以将所捕获SDR和HDR图像转换为与显示在参考图像显示器上的(原始)色表图像相同的布局。3F illustrates an example process flow for matching SDR and HDR colors between an image pair of captured SDR and HDR images for each color table in a plurality of color tables. To extract the corresponding colors of individual color blocks from captured SDR and HDR images of color table images containing color tables, the captured SDR and HDR images may be converted to the same layout as the (original) color table images displayed on a reference image display.

框3002包括接收所捕获(SDR或HDR)棋盘图像,这些所捕获棋盘图像可以由第一和第二视频捕获设备之一的相机从显示在参考图像显示器上的所显示棋盘图像获得。可以针对所捕获棋盘图像执行图3F的相同过程流程的框3002至3006,这些所捕获棋盘图案是由第一和第二视频捕获设备中的另一个的相机从显示在参考图像显示器上的相同所显示的棋盘图像获得的。Block 3002 includes receiving captured (SDR or HDR) checkerboard images that may be obtained by a camera of one of the first and second video capture devices from a displayed checkerboard image displayed on a reference image display. Blocks 3002 to 3006 of the same process flow of FIG. 3F may be performed for captured checkerboard images that are obtained by a camera of the other of the first and second video capture devices from the same displayed checkerboard image displayed on a reference image display.

框3004包括从由设备的相机捕获的棋盘图像检测棋盘角。Block 3004 includes detecting checkerboard corners from a checkerboard image captured by a camera of the device.

框3006包括使用从所捕获棋盘图像检测到的棋盘角来计算或校准相机的相机失真系数。可以首先在对于参考图像显示器固定的3D坐标系中确定显示在参考图像显示器上的棋盘图像的3D(参考)坐标。可以将由设备用于生成所捕获棋盘图像的如相机的失真系数和其他固有参数等相机参数计算为优化值,这些优化值生成所捕获棋盘图像中的棋盘角的3D参考坐标与棋盘角的2D(图像)坐标之间的最佳映射(例如,最小误差或最小不匹配等)。可以在YUV或RGB颜色空间中执行该校准过程,可以将所显示棋盘图像或所捕获棋盘图像转换到该颜色空间或在该颜色空间中表示。Box 3006 includes calculating or calibrating the camera distortion coefficients of the camera using the chessboard angles detected from the captured chessboard image. The 3D (reference) coordinates of the chessboard image displayed on the reference image display may first be determined in a 3D coordinate system fixed to the reference image display. Camera parameters such as the distortion coefficients and other intrinsic parameters of the camera used by the device to generate the captured chessboard image may be calculated as optimized values that generate the best mapping (e.g., minimum error or minimum mismatch, etc.) between the 3D reference coordinates of the chessboard angles in the captured chessboard image and the 2D (image) coordinates of the chessboard angles. The calibration process may be performed in a YUV or RGB color space, and the displayed chessboard image or the captured chessboard image may be converted to or represented in the color space.

图2M和图2N图示了从棋盘图像的所捕获(分别为HDR和SDR)图像检测到的两个示例棋盘图像。多个(例如,100个等)所捕获棋盘图像可以用于确定、计算或校准在第一和第二视频捕获设备中使用的相应相机的失真系数或其他内在参数,以在将参考图像显示器上的所显示图像的由相应相机所捕获的图像投影到参考图像显示器上的所显示图像上方面实现相对较高的准确性(例如,在用于相机重投影误差的半像素内等)。2M and 2N illustrate two example checkerboard images detected from captured (HDR and SDR, respectively) images of the checkerboard image. Multiple (e.g., 100, etc.) captured checkerboard images can be used to determine, calculate, or calibrate distortion coefficients or other intrinsic parameters of respective cameras used in the first and second video capture devices to achieve relatively high accuracy (e.g., within half a pixel for camera reprojection error, etc.) in projecting images captured by respective cameras of a displayed image on a reference image display onto a displayed image on the reference image display.

然后可以使用在处理框3002至3006中获得的第一和第二视频捕获设备的相机的(相机特定)失真系数和内在参数来从含有如下相应色表的TIFF图像分析所捕获SDR和HDR图像或使这些图像之间相关。The (camera-specific) distortion coefficients and intrinsic parameters of the cameras of the first and second video capture devices obtained in processing blocks 3002 to 3006 may then be used to analyze or correlate the captured SDR and HDR images from TIFF images containing corresponding color tables as follows.

框3008包括接收含有色表以及棋盘角(或角中的棋盘图案)的TIFF图像(显示在参考图像显示器上)的所捕获(SDR或HDR)图像。所捕获(SDR或HDR)图像可以由相机捕获,已在框3006中使用先前捕获的棋盘图像(其可能不含有色表)来预先获得这些图像的失真系数。Block 3008 includes receiving a captured (SDR or HDR) image containing a color table and a TIFF image of a checkerboard corner (or a checkerboard pattern in a corner) (displayed on a reference image display). The captured (SDR or HDR) image may be captured by a camera, having previously captured a checkerboard image (which may not contain a color table) in block 3006 to pre-obtain distortion coefficients for these images.

框3010包括例如使用在如框3006的相机校准过程中获得的失真系数来对所显示TIFF图像的所捕获图像进行校正或去失真,以校正相机的相机透镜失真。Block 3010 includes correcting or de-distorting the captured image of the displayed TIFF image, for example using distortion coefficients obtained during a camera calibration process such as block 3006, to correct for camera lens distortion of the camera.

框3012包括检测所捕获图像中的棋盘角。棋盘角是从可以是PPM TV的参考图像显示器上的所显示TIFF图像中的棋盘角(例如,其中的四个角等)捕获的。Block 3012 includes detecting checkerboard corners in the captured image. The checkerboard corners are captured from checkerboard corners (eg, four corners thereof, etc.) in a displayed TIFF image on a reference image display, which may be a PPM TV.

框3014包括估计所捕获图像的图像坐标与原始TIFF图像的图像坐标之间的投影变换,该原始TIFF图像显示在参考图像显示器上并在所接收到的所捕获图像中捕获。Block 3014 includes estimating a projective transformation between image coordinates of the captured image and image coordinates of an original TIFF image displayed on a reference image display and captured in the received captured image.

框3016包括使用估计的投影变换来将所捕获图像纠正为与原始TIFF图像相同的布局。在估计的投影变换的情况下,可以将所捕获图像纠正为与原始TIFF图像相同的空间布局。Block 3016 includes using the estimated projective transformation to correct the captured image to the same layout as the original TIFF image.With the estimated projective transformation, the captured image can be corrected to the same spatial layout as the original TIFF image.

图2O图示了(a)来自(所显示的)TIFF图像的所捕获图像,(b)通过用相机失真校正和投影变换纠正所捕获图像来生成的纠正后所捕获图像,以及(c)显示在参考图像显示器上的原始TIFF色表图像。由于从对图2O(a)的所捕获图像执行的去失真或纠正操作生成图2O(b)的纠正后所捕获图像,因此图2O(b)的纠正后图像中的一些像素可能是未定义的。FIG2O illustrates (a) a captured image from a (displayed) TIFF image, (b) a corrected captured image generated by correcting the captured image with camera distortion correction and a projective transformation, and (c) an original TIFF color table image displayed on a reference image display. Since the corrected captured image of FIG2O(b) is generated from a dedistortion or correction operation performed on the captured image of FIG2O(a), some pixels in the corrected image of FIG2O(b) may be undefined.

框3018包括定位并从纠正后所捕获图像中的色表中提取(一组)单独色块。如本文所使用的,指定具有单个对应(例如,RGB、YCbCr、复合等)像素或码字值的色块。可以基于纠正后所捕获图像中的这些单独色块中的像素的像素或码字值来确定分别指定所捕获图像中的单独色块的对应单独码字。另外,可以从原始TIFF图像的RGB或YUV文件确定分别指定原始TIFF图像中的单独原始色块(对应于纠正后所捕获图像的单独色块)的单独原始码字。Block 3018 includes locating and extracting (a set of) individual color blocks from the color table in the corrected captured image. As used herein, a color block having a single corresponding (e.g., RGB, YCbCr, composite, etc.) pixel or codeword value is specified. Corresponding individual codewords that respectively specify individual color blocks in the captured image can be determined based on the pixel or codeword values of the pixels in these individual color blocks in the corrected captured image. In addition, individual original codewords that respectively specify individual original color blocks in the original TIFF image (corresponding to individual color blocks of the corrected captured image) can be determined from the RGB or YUV file of the original TIFF image.

可以部分地或全部地基于原始TIFF图像(从中得到(纠正后)SDR和HDR图像两者)中的单独原始色块或码字来确立从原始色表图像的(纠正后)所捕获SDR图像提取的SDR色块或码字与从同一原始色表图像的(纠正后)所捕获HDR图像提取的HDR色块或码字之间的对应性/映射关系。The correspondence/mapping relationship between SDR color blocks or codewords extracted from the (corrected) captured SDR image of the original color table image and HDR color blocks or codewords extracted from the (corrected) captured HDR image of the same original color table image can be established partially or entirely based on separate original color blocks or codewords in the original TIFF image (from which both the (corrected) SDR and HDR images are obtained).

使用多个TIFF图像、由第一视频捕获设备在SDR捕获模式下从所显示TIFF图像捕获的多个SDR图像、以及由第二视频捕获设备在HDR捕获模式下从相同所显示TIFF图像捕获的多个HDR图像,可以确立一组SDR颜色与一组HDR图像之间的多个对应性或映射关系。Using multiple TIFF images, multiple SDR images captured from displayed TIFF images by a first video capture device in SDR capture mode, and multiple HDR images captured from the same displayed TIFF images by a second video capture device in HDR capture mode, multiple correspondences or mapping relationships between a set of SDR colors and a set of HDR images can be established.

可以使用若干种方法来将SDR图像映射到HDR图像。Several methods can be used to map an SDR image to an HDR image.

在第一方法中,与在一些“BB1”操作情景中一样,在一些“BB2”操作情景中,可以使用经映射SDR和HDR色标或颜色来生成如TPB系数等(例如,静态等)SDR到HDR重塑操作参数。可以使用SDR图像的SDR码字作为输入参数来将这些TPB系数与TPB基函数进行组合以预测经重建HDR图像的对应HDR码字。静态3D-LUT可以被预先构建并部署到视频捕获设备(例如,第一视频捕获设备等),以用于将由第一视频捕获设备捕获的SDR图像映射到模拟第二视频捕获设备的HDR外观的经重建HDR图像。由于从第二视频捕获设备的所捕获(训练)HDR图像提取用于生成重塑操作参数的HDR色块或码字,因此用重塑操作参数生成的所预测的HDR码字很可能在经重建HDR图像中提供与由第二视频捕获设备捕获的实际HDR图像的实际HDR外观类似的经映射HDR外观。In the first method, as in some "BB1" operating scenarios, in some "BB2" operating scenarios, mapped SDR and HDR color scales or colors can be used to generate (e.g., static, etc.) SDR to HDR reshaping operation parameters such as TPB coefficients. These TPB coefficients can be combined with TPB basis functions using the SDR codewords of the SDR image as input parameters to predict the corresponding HDR codewords of the reconstructed HDR image. The static 3D-LUT can be pre-built and deployed to a video capture device (e.g., a first video capture device, etc.) for mapping the SDR image captured by the first video capture device to a reconstructed HDR image that simulates the HDR appearance of the second video capture device. Since the HDR color blocks or codewords used to generate the reshaping operation parameters are extracted from the captured (training) HDR image of the second video capture device, the predicted HDR codewords generated with the reshaping operation parameters are likely to provide a mapped HDR appearance similar to the actual HDR appearance of the actual HDR image captured by the second video capture device in the reconstructed HDR image.

在第二方法中,在一些“BB2”操作情景中,可以使用非TPB优化来生成非TPB重塑操作参数,这些非TPB重塑操作参数要在非TPB重塑操作中用于将由第一视频捕获设备获得的所捕获SDR图像映射到模拟第二视频捕获设备的HDR外观的经重建HDR图像。可以直接构建用于非TPB重塑操作的3D-LUT,而无需由TPB重塑操作支持的相对较高的连续性和平滑性。该非TPB第二方法提供相对较高的设计自由度,并且可以是相对灵活的,即使在附近3D-LUT条目/节点中表示的不同颜色可能具有或可能不具有相对较高的连续性和平滑性。在一些操作情景中,在具有相对较高的设计自由度的情况下,非TPB第二方法可以比第一方法更适合双设备或“BB2”操作情景,在这些操作情景中,来自一个设备的SDR图像要映射到模拟另一设备的HDR外观的HDR图像。In a second method, in some "BB2" operating scenarios, non-TPB optimization can be used to generate non-TPB reshaping operation parameters, which are used in the non-TPB reshaping operation to map the captured SDR image obtained by the first video capture device to a reconstructed HDR image that simulates the HDR appearance of the second video capture device. The 3D-LUT for the non-TPB reshaping operation can be directly constructed without the relatively high continuity and smoothness supported by the TPB reshaping operation. The non-TPB second method provides a relatively high degree of design freedom and can be relatively flexible, even if different colors represented in nearby 3D-LUT entries/nodes may or may not have relatively high continuity and smoothness. In some operating scenarios, with relatively high degrees of design freedom, the non-TPB second method can be more suitable than the first method for dual-device or "BB2" operating scenarios, in which the SDR image from one device is to be mapped to an HDR image that simulates the HDR appearance of another device.

非TPB第二方法可以利用3D映射表(3DMT)来构建反向重塑映射或表示反向重塑映射的反向查找表(BLUT)。BLUT可以用于将SDR图像的SDR(例如,跨通道、三通道等)码字映射到经重建HDR图像的HDR(例如,色度通道、每色度通道等)码字。用于从3DMT构建如BLUT等反向重塑映射的示例操作可以在2019年5月9日提交的美国专利申请序列号17/054,495中找到,所述美国专利申请的内容如在此充分阐述的那样通过引用整体并入本文。A non-TPB second method may utilize a 3D mapping table (3DMT) to construct a reverse reshaping map or a reverse lookup table (BLUT) representing the reverse reshaping map. The BLUT may be used to map SDR (e.g., across channels, three channels, etc.) codewords of an SDR image to HDR (e.g., chroma channels, per chroma channels, etc.) codewords of a reconstructed HDR image. Example operations for constructing a reverse reshaping map such as a BLUT from a 3DMT may be found in U.S. Patent Application Serial No. 17/054,495 filed on May 9, 2019, the contents of which are incorporated herein by reference in their entirety as if fully set forth herein.

仅为了说明的目的,可以在SDR YCbCr颜色空间中的三个维度或通道Y、Cb、Cr中表示SDR码字。可以从具有多个3D直方图仓的3D直方图生成3D映射表。多个3D直方图仓可以对应于通过用三个正整数Qy、QCb、QCr中的相应正整数分割每个维度或通道生成的多个颜色空间分区,从而产生总共(Qy×QCb×QCr)个3D直方图仓。For illustration purposes only, SDR codewords may be represented in three dimensions or channels Y, Cb, Cr in an SDR YCbCr color space. A 3D mapping table may be generated from a 3D histogram having a plurality of 3D histogram bins. The plurality of 3D histogram bins may correspond to a plurality of color space partitions generated by splitting each dimension or channel by a corresponding positive integer among three positive integers Qy , Qcb , QCr , resulting in a total of ( Qy × Qcb × Qcr ) 3D histogram bins.

3D直方图的多个3D直方图仓(表示为ΩQ,s)中的每个3D直方图仓(表示为q)可以被指定具有相应仓索引或在SDR(YCbCr)颜色空间的维度或通道中的三个相应量化通道值q=(qy,qCb,qCr),并且存储由3D直方图仓表示的在SDR颜色空间分区内的所有SDR色标或码字的像素计数。多个3D直方图仓的所有仓索引(或量化通道值)可以被收集到表示为Q的一组仓索引值中,其中,Q=[Qy,QC0,QCr]。Each 3D histogram bin (denoted as q) of a plurality of 3D histogram bins (denoted as Ω Q,s ) of a 3D histogram may be assigned a corresponding bin index or three corresponding quantized channel values q=(q y ,q Cb ,q Cr ) in a dimension or channel of an SDR (YCbCr) color space, and stores pixel counts of all SDR color labels or codewords within the SDR color space partition represented by the 3D histogram bin. All bin indices (or quantized channel values) of the plurality of 3D histogram bins may be collected into a set of bin index values denoted as Q, where Q=[Q y ,Q C0 ,Q Cr ].

另外,可以针对3D直方图仓计算并存储映射到多个3D直方图中的每个3D直方图内的SDR码字的HDR码字之和。让表示HDR码字(也被称为“经映射HDR亮度和色度值”)之和。Additionally, the sum of the HDR codewords mapped to the SDR codewords in each of the plurality of 3D histograms may be calculated and stored for the 3D histogram bin. and Represents the sum of HDR codewords (also referred to as “mapped HDR luma and chroma values”).

在下面的表2中图示了用于生成直方图的3D直方图仓的SDR像素计数和经映射HDR亮度和色度值的示例程序。An example procedure for generating SDR pixel counts and mapped HDR luminance and chrominance values for 3D histogram bins of a histogram is illustrated in Table 2 below.

表2Table 2

表示第q个3D直方图仓的中心处的(代表性)SDR码字。所有3D直方图仓的代表性SDR码字可以对于所有SDR图像/帧是固定的并且用如在下面的表3中示出的示例程序来预计算。let represents the (representative) SDR codeword at the center of the qth 3D histogram bin. The representative SDR codewords for all 3D histogram bins may be fixed for all SDR images/frames and pre-computed with an example procedure as shown in Table 3 below.

表3Table 3

接下来,可以在多个3D直方图仓中识别并保持具有非零(SDR)像素计数的3D直方图仓,其中,丢弃或从多个3D直方图仓去除具有零(SDR)像素计数的所有其他3D直方图仓。Next, 3D histogram bins having non-zero (SDR) pixel counts may be identified and retained among the plurality of 3D histogram bins, wherein all other 3D histogram bins having zero (SDR) pixel counts are discarded or removed from the plurality of 3D histogram bins.

让q0,q1,…qk-1,表示所有k个3D直方图仓,每个3D直方图仓具有非零(SDR)像素计数或其中,k是正整数。例如使用在下面的表4中示出的程序,可以通过将SDR像素的SDR码字所映射的HDR亮度和色度值之和除以3D直方图仓中的SDR像素的数量和像素计数来针对具有非零(SDR)像素计数的k个3D直方图仓中的每个3D直方图仓计算经映射HDR亮度和色度值的平均值。Let q 0 ,q 1 ,…q k-1 , denote all k 3D histogram bins, each with a non-zero (SDR) pixel count or Where k is a positive integer. For example, using the procedure shown in Table 4 below, the mapped HDR luminance and chrominance values may be calculated for each of the k 3D histogram bins with non-zero (SDR) pixel counts by dividing the sum of the HDR luminance and chrominance values mapped by the SDR codeword for the SDR pixel by the number of SDR pixels in the 3D histogram bin and the pixel count. and The average value of .

表4Table 4

3D-LUT可以从由3D直方图表示的3DMT构建,该3D直方图存储3D直方图仓中的相应SDR像素计数和相应经映射HDR码字值。3D-LUT或3DMT中的每个节点/条目可以构建有由在k个3D直方图仓中的每个3D直方图仓中表示的特定SDR码字(qy,qCb,qCr)表示的映射键和由如在上述表4中针对3D直方图仓计算的 表示的经映射HDR码字。另外地、可选地或替代性地,对于具有零SDR像素计数的这些3D直方图仓,具有最接近的仓索引的最近或相邻3D仓可以用于例如通过三线性内插填入缺失的经映射HDR值。The 3D-LUT may be constructed from a 3DMT represented by a 3D histogram storing corresponding SDR pixel counts and corresponding mapped HDR codeword values in 3D histogram bins. Each node/entry in the 3D-LUT or 3DMT may be constructed with a mapping key represented by a specific SDR codeword ( qy , qCb, qCr) represented in each of the k 3D histogram bins and a mapping key represented by a specific SDR codeword (qy, qCb , qCr ) calculated for the 3D histogram bin as in Table 4 above. Additionally, optionally or alternatively, for those 3D histogram bins with zero SDR pixel counts, the nearest or neighboring 3D bin with the closest bin index may be used to fill in the missing mapped HDR values, for example by trilinear interpolation.

如上所述,在前面提到的美国专利申请序列号17/054,495中描述了从3DMT构建3D-LUT以用作非TPB反向重塑映射或BLUT(例如用于从跨通道SDR码字预测每色度通道的HDR色度码字)的示例操作。As described above, example operations for constructing a 3D-LUT from a 3DMT for use as a non-TPB inverse reshaping map or BLUT (e.g., for predicting HDR chroma codewords per chroma channel from cross-channel SDR codewords) are described in the aforementioned U.S. patent application serial number 17/054,495.

在一些“BB2”操作情景中,可以使用亮度反向重塑映射以使用基于GPR的模型来将SDR图像的SDR亮度码字反向重塑为对应HDR图像的所预测的或经反向重塑HDR亮度码字。使用基于GPR的模型进行亮度重塑映射的示例生成可以在Guan-Ming Su和Harshad Kadu于2019年8月15日提交的美国临时专利申请序列号62/887,123,“Efficient user-definedSDR-to-HDR conversion with model templates[具有模型模版的高效用户定义SDR到HDR转换]”以及2020年8月12日提交的PCT申请序列号PCT/US2020/046032中找到,这些申请的内容如在此充分阐述的那样通过引用整体并入本文。例如,可以从多个训练SDR-HDR图像对中的每个训练SDR-HDR图像对生成CDF匹配曲线。使用在SDR码字范围(例如,整个SDR码字范围等)内的一组(例如,15个等)均匀采样的SDR点,可以在CDF匹配曲线中的每一个中找到对应经映射HDR码字。对于该组均匀采样的SDR点中的每个样本SDR点,GPR模型可以基于具有多个(例如,128个等)亮度仓直方图的直方图来建构并且用于生成对应亮度重塑映射。In some "BB2" operating scenarios, a luma reverse reshaping map may be used to reverse reshape the SDR luma codewords of an SDR image into predicted or reverse reshaped HDR luma codewords of a corresponding HDR image using a GPR-based model. Example generation of luma reshaping maps using a GPR-based model may be found in U.S. Provisional Patent Application Serial No. 62/887,123, "Efficient user-defined SDR-to-HDR conversion with model templates," filed by Guan-Ming Su and Harshad Kadu on August 15, 2019, and PCT Application Serial No. PCT/US2020/046032, filed on August 12, 2020, the contents of which are incorporated herein by reference in their entirety as fully set forth herein. For example, a CDF matching curve may be generated from each of a plurality of training SDR-HDR image pairs. Using a set (e.g., 15, etc.) of uniformly sampled SDR points within an SDR codeword range (e.g., the entire SDR codeword range, etc.), a corresponding mapped HDR codeword can be found in each of the CDF matching curves. For each sample SDR point in the set of uniformly sampled SDR points, a GPR model can be constructed based on a histogram with multiple (e.g., 128, etc.) luma bin histograms and used to generate a corresponding luma reshaping map.

编辑中的TPB优化TPB optimization in editing

图像/视频编辑是如移动设备等视频捕获设备中的常见应用,以允许用户调整颜色、对比度、亮度或其他用户偏好。在将所捕获的图像压缩到(经压缩)视频信号或比特流中之前可以在编码器侧进行或执行图像/视频编辑。另外地、可选地或替代性地,在将视频信号比特流解码或解压缩之后可以在解码器侧进行或执行图像/视频编辑。Image/video editing is a common application in video capture devices such as mobile devices to allow users to adjust color, contrast, brightness or other user preferences. Image/video editing can be performed or executed on the encoder side before the captured images are compressed into a (compressed) video signal or bitstream. Additionally, optionally or alternatively, image/video editing can be performed or executed on the decoder side after the video signal bitstream is decoded or decompressed.

可以在HDR域和SDR域中的任一者或两者中执行如本文所描述的图像/视频编辑操作。可以相对容易地执行在HDR域中的图像/视频编辑操作。例如,在编辑HDR内容或图像之后,可以将编辑后HDR内容或图像作为输入或参考HDR图像传递到视频流水线,该视频流水线生成要编码在视频信号或比特流中的对应经重塑或ISP SDR内容或图像。相比之下,在SDR域中的图像/视频编辑操作可以是相对具有挑战性的。虽然HDR到SDR和/或SDR到HDR映射可以被设计或生成为确保或增强SDR域与HDR域之间的可逆性,用要编码到视频信号或比特流中的SDR图像执行的图像/视频编辑操作有可能会导致对编辑后SDR图像进行反转或反向重塑以生成与参考HDR图像近似的经重建HDR图像困难或具有挑战性。Image/video editing operations as described herein may be performed in either or both of the HDR domain and the SDR domain. Image/video editing operations in the HDR domain may be performed relatively easily. For example, after editing HDR content or images, the edited HDR content or images may be passed as input or reference HDR images to a video pipeline that generates corresponding reshaped or ISP SDR content or images to be encoded in a video signal or bitstream. In contrast, image/video editing operations in the SDR domain may be relatively challenging. Although HDR to SDR and/or SDR to HDR mappings may be designed or generated to ensure or enhance reversibility between the SDR domain and the HDR domain, image/video editing operations performed with SDR images to be encoded in a video signal or bitstream may result in difficulty or challenging in reversing or reverse reshaping the edited SDR images to generate a reconstructed HDR image that is similar to the reference HDR image.

图3G图示了在编码器侧用如视频捕获设备等上游设备或视频编码器执行的示例图像/视频编辑操作。如所示出的,可以在输入HDR域或颜色空间(表示为“HLG YCbCr”)中表示输入HDR图像。可以执行基于TPB的正向重塑操作(表示为“正向TPB”)以将输入HDR图像正向重塑为在经正向重塑SDR域或颜色空间(表示为“SDR YCbCr”)中表示的经正向重塑SDR图像。可以执行图像/视频编辑操作(表示为“RGB域编辑”)以编辑经正向重塑SDR图像以便生成在编辑后经正向重塑SDR域或颜色空间(表示为“编辑后SDR YCbCr”)中表示的编辑后SDR图像。可以用上游设备的一个或多个视频编解码器将在编辑后经正向重塑SDR域或颜色空间中表示的编辑后SDR图像压缩或编码到视频信号或比特流中。FIG3G illustrates an example image/video editing operation performed on the encoder side with an upstream device such as a video capture device or a video encoder. As shown, an input HDR image may be represented in an input HDR domain or color space (denoted as “HLG YCbCr”). A TPB-based forward reshaping operation (denoted as “forward TPB”) may be performed to forward reshape the input HDR image into a forward reshaped SDR image represented in a forward reshaped SDR domain or color space (denoted as “SDR YCbCr”). An image/video editing operation (denoted as “RGB domain editing”) may be performed to edit the forward reshaped SDR image so as to generate an edited SDR image represented in a forward reshaped SDR domain or color space (denoted as “edited SDR YCbCr”) after editing. The edited SDR image represented in the forward reshaped SDR domain or color space after editing may be compressed or encoded into a video signal or bitstream using one or more video codecs of an upstream device.

图3H图示了在解码器侧用下游接收设备或视频解码器执行的示例图像/视频编辑操作。如所示出的,视频信号或比特流由下游设备的一个或多个视频编解码器解码成在SDR域或颜色空间(表示为“SDR YCbCr”)中表示的SDR图像。可以执行图像/视频编辑操作(表示为“RGB域编辑”)以编辑SDR图像以便生成在编辑后经正向重塑SDR域或颜色空间(表示为“编辑后SDR YCbCr”)中表示的编辑后SDR图像。可以对在编辑后经正向重塑SDR域或颜色空间中表示的编辑后SDR图像执行基于TPB的反向重塑操作(表示为“反向TPB”)以生成经重建HDR域或颜色空间(“PQ YCbCr”)中的经反向重塑或经重建HDR图像。3H illustrates an example image/video editing operation performed on the decoder side with a downstream receiving device or video decoder. As shown, a video signal or bitstream is decoded by one or more video codecs of a downstream device into an SDR image represented in an SDR domain or color space (denoted as "SDR YCbCr"). An image/video editing operation (denoted as "RGB domain editing") may be performed to edit the SDR image so as to generate an edited SDR image represented in a forward reshaped SDR domain or color space (denoted as "edited SDR YCbCr") after editing. A TPB-based reverse reshaping operation (denoted as "reverse TPB") may be performed on the edited SDR image represented in the forward reshaped SDR domain or color space after editing to generate a reverse reshaped or reconstructed HDR image in a reconstructed HDR domain or color space ("PQ YCbCr").

如图3G和图3H中所示出的,在编码器侧编码到视频信号中的SDR图像或从视频信号解码的SDR图像可以在如SDR YCbCr域或颜色空间等(例如,经正向重塑等)SDR域或颜色空间中表示,用该SDR YCbCr域或颜色空间可以将视频编解码器编程或开发为相对高效地执行图像处理操作。通过举例而非限制的方式,图像/视频编辑操作可以发生在SDR RGB域或颜色空间中,如图3G和图3H中所图示的。可以通过如SMPTE范围转换等(例如,标准指定的等)转换执行RGB到YCbCr转换或YCbCr到RGB转换。As shown in Figures 3G and 3H, an SDR image encoded into a video signal at the encoder side or decoded from a video signal can be represented in an SDR domain or color space such as an SDR YCbCr domain or color space (e.g., after forward reshaping, etc.), with which the video codec can be programmed or developed to perform image processing operations relatively efficiently. By way of example and not limitation, image/video editing operations can occur in an SDR RGB domain or color space, as illustrated in Figures 3G and 3H. RGB to YCbCr conversion or YCbCr to RGB conversion can be performed by conversions such as SMPTE range conversions (e.g., specified by the standard, etc.).

随着将更多颜色挤压到SDR域或颜色空间中,如SDR YCbCr颜色空间等经正向重塑域或颜色空间中的码字通常可以超过SDR RGB颜色空间中的如SMPTE范围等码字值范围,在该颜色空间中执行图像/视频编辑操作。应用YCbCr到RGB转换(其将SDR YCbCr颜色空间的YCbCr码字值范围(在值范围[0,1]内归一化)中的YCbCr码字转换为SDR RGB颜色空间的RGB码字)可以使一些RGB码字超过或超出SDR RGB颜色空间的SMPTE范围(在值范围[0,1]内归一化)。虽然可以剪切这些超出范围的码字值,但剪切后的码字值可能不能够在(例如,基于TPB的等)反向重塑操作中恢复为非剪切的原始HDR码字。如本文所描述的附加操作可以用于增强可逆性并且减少或避免图像/视频编辑应用中的视觉伪影。As more colors are squeezed into the SDR domain or color space, codewords in a forward reshaped domain or color space, such as an SDR YCbCr color space, can often exceed a codeword value range, such as a SMPTE range, in an SDR RGB color space in which image/video editing operations are performed. Applying a YCbCr to RGB conversion, which converts YCbCr codewords in the YCbCr codeword value range (normalized within the value range [0,1]) of the SDR YCbCr color space to RGB codewords of the SDR RGB color space, can cause some RGB codewords to exceed or exceed the SMPTE range (normalized within the value range [0,1]) of the SDR RGB color space. Although these out-of-range codeword values can be clipped, the clipped codeword values may not be able to be restored to the non-clipped original HDR codeword in a reverse reshaping operation (e.g., based on TPB, etc.). Additional operations as described herein can be used to enhance reversibility and reduce or avoid visual artifacts in image/video editing applications.

图3I至图3M图示了用于在图像/视频编辑应用中剪切超出范围的码字的多个示例解决方案。3I-3M illustrate several example solutions for clipping out-of-range codewords in image/video editing applications.

在一些操作情景中,如图3I中所图示的,可以将从在编码器或解码器侧对SDRYCbCr图像执行的YCbCr到RGB转换(表示为“YCbCr到RGB剪切转换”)生成的超出范围的SDRRGB码字剪切(例如,大于一(1)的所有码字被硬剪切到1,小于零(0)的所有码字被硬剪切到0等)到如[0,1]等有效或指定码字值范围。然后可以用SDR RGB颜色空间中在有效或指定码字值范围中的SDR RGB码字执行图像/视频编辑操作(“在RGB域中的编辑”)。可以通过RGB到YCbCr转换(表示为“RGB到YCbCr剪切转换”)将SDR RGB颜色空间中的编辑后SDR RGB码字转换并剪切为经转换编辑后SDR YCbCr颜色空间(表示为“编辑后SDR YCbCr”)的在如[0,1]等有效或指定码字值范围中的经转换编辑后SDR YCbCr码字。In some operational scenarios, as illustrated in FIG3I , out-of-range SDRRGB codewords generated from a YCbCr to RGB conversion performed on an SDR YCbCr image at the encoder or decoder side (denoted as “YCbCr to RGB clipping conversion”) may be clipped (e.g., all codewords greater than one (1) are hard-clipped to 1, all codewords less than zero (0) are hard-clipped to 0, etc.) to a valid or specified codeword value range such as [0,1]. Image/video editing operations may then be performed with the SDR RGB codewords in the valid or specified codeword value range in the SDR RGB color space (“editing in the RGB domain”). The edited SDR RGB codewords in the SDR RGB color space may be converted and clipped into converted edited SDR YCbCr codewords in a valid or specified codeword value range such as [0,1] in a converted edited SDR YCbCr color space (denoted as "edited SDR YCbCr") through an RGB to YCbCr conversion (denoted as "RGB to YCbCr clipping conversion").

在一些操作情景中,如图3J中所图示的,不将从在编码器或解码器侧对SDR YCbCr图像执行的YCbCr到RGB转换(表示为“YCbCr到RGB解除剪切转换”)生成的超出范围的SDRRGB码字剪切到如[0,1]等有效或指定码字值范围。然后可以用SDR RGB颜色空间中在有效或指定码字值范围中未剪切的(输入)SDR RGB码字执行图像/视频编辑操作(“在RGB域中的编辑”),以生成编辑后SDR码字。用解除剪切操作进行的YCbCr到RGB转换允许(输入)SDRYCbCr码字中的原始信息保持在通过图像/视频编辑操作接收的(输入)SDR RGB码字中。图像/视频编辑操作接受在输入SDR RGB码字中的所有可能的真实码字值(包括小于0或大于1,例如在有限但比[0 1]宽的值范围中)。因此,输入SDR YCbCr码字中的一些信息可以保留在输入SDR RGB码字中以及编辑后SDR RGB码字中。可以执行SDR RGB边界操作(表示为“RGB边界[0 1]剪切”)(例如可选地基于操作视频编辑应用的用户的用户偏好)以将在有效或指定范围[0,1]外部的编辑后SDR RGB码字缩小或挤压回到在有效或指定范围[0,1]内部,从而生成在有效或指定范围[0,1]内的经缩放编辑后SDR RGB码字。可以通过RGB到YCbCr转换(表示为“RGB到YCbCr剪切转换”)将SDR RGB颜色空间中的经缩放编辑后SDR RGB码字转换并剪切为经转换经缩放编辑后SDR YCbCr颜色空间(表示为“编辑后SDR YCbCr”)的在如[0,1]等有效或指定码字值范围中的经转换经缩放编辑后SDR YCbCr码字。In some operational scenarios, as illustrated in FIG. 3J , out-of-range SDR RGB codewords generated from a YCbCr to RGB conversion performed on an SDR YCbCr image at the encoder or decoder side (denoted as “YCbCr to RGB unclipping conversion”) are not clipped to a valid or specified codeword value range such as [0, 1]. An image/video editing operation (“editing in the RGB domain”) may then be performed with the unclipped (input) SDR RGB codewords in the valid or specified codeword value range in the SDR RGB color space to generate edited SDR codewords. The YCbCr to RGB conversion performed with the unclipping operation allows the original information in the (input) SDR RGB codewords to be preserved in the (input) SDR RGB codewords received by the image/video editing operation. The image/video editing operation accepts all possible true codeword values in the input SDR RGB codewords (including less than 0 or greater than 1, e.g., in a limited but wider range of values than [0 1]). Therefore, some information in the input SDR YCbCr codeword can be retained in the input SDR RGB codeword and the edited SDR RGB codeword. An SDR RGB boundary operation (denoted as "RGB boundary [0 1] shearing") can be performed (e.g., optionally based on a user preference of a user operating a video editing application) to shrink or squeeze the edited SDR RGB codeword outside the valid or specified range [0,1] back to the inside of the valid or specified range [0,1], thereby generating a scaled edited SDR RGB codeword within the valid or specified range [0,1]. The scaled edited SDR RGB codeword in the SDR RGB color space can be converted and sheared into a converted scaled edited SDR YCbCr color space (denoted as "edited SDR YCbCr") in a valid or specified codeword value range such as [0,1] by an RGB to YCbCr conversion (denoted as "RGB to YCbCr shear conversion").

在一些操作情景中,如图3K中所图示的,不将从在编码器或解码器侧对SDR YCbCr图像执行的YCbCr到RGB转换(表示为“YCbCr到RGB解除剪切转换”)生成的超出范围的SDRRGB码字剪切到如[0,1]等有效或指定码字值范围。然后可以用SDR RGB颜色空间中在有效或指定码字值范围中未剪切的(输入)SDR RGB码字执行图像/视频编辑操作(“在RGB域中的编辑”),以生成编辑后SDR码字。用解除剪切操作进行的YCbCr到RGB转换允许(输入)SDRYCbCr码字中的原始信息保持在通过图像/视频编辑操作接收的(输入)SDR RGB码字中。图像/视频编辑操作接受在输入SDR RGB码字中的所有可能的真实码字值(包括小于0或大于1,例如在有限但比[0 1]宽的值范围中)。因此,输入SDR YCbCr码字中的一些信息可以保留在输入SDR RGB码字中以及编辑后SDR RGB码字中。与图3J中所图示的那些不同,在图3K中所图示的操作情景中,可以不执行SDR RGB边界操作。可以通过RGB到YCbCr转换(表示为“RGB到YCbCr剪切转换”)将SDR RGB颜色空间中的编辑后SDR RGB码字转换并剪切为经转换编辑后SDR YCbCr颜色空间(表示为“编辑后SDR YCbCr”)的在如[0,1]等有效或指定码字值范围中的经转换编辑后SDR YCbCr码字。In some operational scenarios, as illustrated in FIG. 3K , out-of-range SDR RGB codewords generated from a YCbCr to RGB conversion performed on an SDR YCbCr image at the encoder or decoder side (denoted as “YCbCr to RGB unclipping conversion”) are not clipped to a valid or specified codeword value range such as [0, 1]. An image/video editing operation (“editing in the RGB domain”) may then be performed with the unclipped (input) SDR RGB codewords in the valid or specified codeword value range in the SDR RGB color space to generate edited SDR codewords. The YCbCr to RGB conversion performed with the unclipping operation allows the original information in the (input) SDR RGB codewords to be preserved in the (input) SDR RGB codewords received by the image/video editing operation. The image/video editing operation accepts all possible true codeword values in the input SDR RGB codewords (including less than 0 or greater than 1, e.g., in a limited but wider range of values than [0 1]). Therefore, some information in the input SDR YCbCr codeword can be retained in the input SDR RGB codeword and the edited SDR RGB codeword. Unlike those illustrated in Figure 3J, in the operating scenario illustrated in Figure 3K, SDR RGB boundary operations may not be performed. The edited SDR RGB codewords in the SDR RGB color space can be converted and sheared into converted edited SDR YCbCr color space (denoted as "Edited SDR YCbCr") in a valid or specified codeword value range such as [0,1] by RGB to YCbCr conversion (denoted as "RGB to YCbCr shear conversion").

在一些操作情景中,如图3L中所图示的,不将从在编码器或解码器侧对SDR YCbCr图像执行的YCbCr到RGB转换(表示为“YCbCr到RGB解除剪切转换”)生成的超出范围的SDRRGB码字剪切到如[0,1]等有效或指定码字值范围。然后可以用SDR RGB颜色空间中在有效或指定码字值范围中未剪切的(输入)SDR RGB码字执行图像/视频编辑操作(“在RGB域中的编辑”),以生成编辑后SDR码字。用解除剪切操作进行的YCbCr到RGB转换允许(输入)SDRYCbCr码字中的原始信息保持在通过图像/视频编辑操作接收的(输入)SDR RGB码字中。图像/视频编辑操作接受在输入SDR RGB码字中的所有可能的真实码字值(包括小于0或大于1,例如在有限但比[0 1]宽的值范围中)。因此,输入SDR YCbCr码字中的一些信息可以保留在输入SDR RGB码字中以及编辑后SDR RGB码字中。可以例如可选地基于操作视频编辑应用的用户的用户偏好来执行SDR RGB边界操作(表示为“RGB边界剪切3D-LUT”)以将在由基于TPB的重塑操作支持的(3D)边界外部的编辑后SDR RGB码字缩小或挤压回到在该边界内部,从而生成在由基于TPB的重塑操作支持或在这些重塑操作中定义明确的该边界内的经缩放编辑后SDR RGB码字。由基于TPB的重塑操作支持的边界可能不是用固定值范围[0,1]简单地定义的规则形状或立方体。可以通过RGB到YCbCr转换(表示为“RGB到YCbCr剪切转换”)将SDR RGB颜色空间中的经缩放编辑后SDR RGB码字转换并剪切为经转换经缩放编辑后SDRYCbCr颜色空间(表示为“编辑后SDR YCbCr”)的在如[0,1]等有效或指定码字值范围中的经转换经缩放编辑后SDR YCbCr码字。In some operational scenarios, as illustrated in FIG. 3L , out-of-range SDR RGB codewords generated from a YCbCr to RGB conversion performed on an SDR YCbCr image at the encoder or decoder side (denoted as “YCbCr to RGB unclipping conversion”) are not clipped to a valid or specified codeword value range such as [0, 1]. An image/video editing operation (“editing in the RGB domain”) may then be performed with the unclipped (input) SDR RGB codewords in the valid or specified codeword value range in the SDR RGB color space to generate edited SDR codewords. The YCbCr to RGB conversion performed with the unclipping operation allows the original information in the (input) SDR RGB codewords to be preserved in the (input) SDR RGB codewords received by the image/video editing operation. The image/video editing operation accepts all possible true codeword values in the input SDR RGB codewords (including less than 0 or greater than 1, e.g., in a limited but wider range of values than [0 1]). Thus, some information in the input SDR YCbCr codewords may be retained in the input SDR RGB codewords as well as in the edited SDR RGB codewords. An SDR RGB boundary operation (denoted as "RGB Boundary Clipping 3D-LUT") may be performed, for example, optionally based on user preferences of a user operating a video editing application to shrink or squeeze edited SDR RGB codewords outside the (3D) boundary supported by the TPB-based reshaping operations back inside the boundary, thereby generating scaled edited SDR RGB codewords within the boundary supported by the TPB-based reshaping operations or well-defined in these reshaping operations. The boundaries supported by the TPB-based reshaping operations may not be regular shapes or cubes that are simply defined with a fixed value range [0,1]. The scaled edited SDR RGB codewords in the SDR RGB color space can be converted and sheared into converted scaled edited SDR YCbCr codewords in a valid or specified codeword value range such as [0,1] in the SDR RGB color space (denoted as "Edited SDR YCbCr") through an RGB to YCbCr conversion (denoted as "RGB to YCbCr shear conversion").

可以通过用已知(例如,白盒、ISP等)HDR到SDR正向变换或映射进行正向重塑或ISP处理从原始HDR图像获得(输入)SDR YCbCr图像,可以部分地或全部地基于HDR到SDR正向或映射和/或任何可适用颜色空间转换矩阵来确定边界并将该边界表示为(TPB边界剪切)3D-LUT。例如,使用覆盖在其中表示原始HDR图像的整个HDR域或颜色空间的全网格采样数据,可以确定经正向重塑或ISP SDR颜色空间中的边界像素或码字值。The (input) SDR YCbCr image may be obtained from the original HDR image by forward reshaping or ISP processing with a known (e.g., white box, ISP, etc.) HDR to SDR forward transform or mapping, and the boundaries may be determined and represented as a (TPB boundary clipping) 3D-LUT based in part or in whole on the HDR to SDR forward or mapping and/or any applicable color space conversion matrix. For example, using full grid sampling data covering the entire HDR domain or color space in which the original HDR image is represented, the boundary pixel or codeword values in the forward reshaping or ISP SDR color space may be determined.

在图像/视频编辑操作(“在RGB域中的编辑”)之后,可以将编辑后SDR RGB码字缩放或挤压(或不规则地剪切)成通过边界勾画或封围的3D形状。在一些操作情景中,由于经转换经缩放编辑后SDR YCbCr码字已经放置在SDR YCbCr颜色空间中由基于TPB的反向重塑操作支持的对应边界内,因此可以通过RGB到YCbCr转换(“RGB到YCbCr剪切转换”)将SDRRGB颜色空间中的经缩放编辑后SDR RGB码字转换为经转换经缩放编辑后SDR YCbCr码字而无需通过RGB到YCbCr转换(“RGB到YCbCr剪切转换”)进行进一步剪切。在如图3J中所图示的这些操作情景中,最大化数量的颜色可以保留在经转换经缩放编辑后SDR YCbCr码字中以及通过基于TPB的反向重塑操作从经转换经缩放编辑后SDR YCbCr码字生成的经反向重塑HDR码字中同时避免生成颜色伪影。After the image/video editing operation ("editing in the RGB domain"), the edited SDR RGB codewords may be scaled or squeezed (or irregularly sheared) into a 3D shape outlined or enclosed by a boundary. In some operating scenarios, since the converted scaled edited SDR YCbCr codewords are already placed within corresponding boundaries in the SDR YCbCr color space supported by the TPB-based inverse reshaping operation, the scaled edited SDR RGB codewords in the SDRRGB color space may be converted to converted scaled edited SDR YCbCr codewords by RGB to YCbCr conversion ("RGB to YCbCr shearing conversion") without further shearing by RGB to YCbCr conversion ("RGB to YCbCr shearing conversion"). In these operating scenarios as illustrated in FIG. 3J, a maximized number of colors may be retained in the converted scaled edited SDR YCbCr codewords and in the inverse reshaped HDR codewords generated from the converted scaled edited SDR YCbCr codewords by the TPB-based inverse reshaping operation while avoiding the generation of color artifacts.

在一些操作情景中,如图3M中所图示的,不将从在编码器或解码器侧对SDR YCbCr图像执行的YCbCr到RGB转换(表示为“YCbCr到RGB解除剪切转换”)生成的超出范围的SDRRGB码字剪切到如[0,1]等有效或指定码字值范围。然后可以用SDR RGB颜色空间中在有效或指定码字值范围中未剪切的(输入)SDR RGB码字执行图像/视频编辑操作(“在RGB域中的编辑”),以生成编辑后SDR码字。用解除剪切操作进行的YCbCr到RGB转换允许(输入)SDRYCbCr码字中的原始信息保持在通过图像/视频编辑操作接收的(输入)SDR RGB码字中。图像/视频编辑操作接受在输入SDR RGB码字中的所有可能的真实码字值(包括小于0或大于1,例如在有限但比[0 1]宽的值范围中)。因此,输入SDR YCbCr码字中的一些信息可以保留在输入SDR RGB码字中以及编辑后SDR RGB码字中。可以通过RGB到YCbCr转换(表示为“RGB到YCbCr剪切转换”)将SDR RGB颜色空间中的编辑后SDR RGB码字转换并剪切为经转换编辑后SDR YCbCr颜色空间(表示为“编辑后SDR YCbCr”)的在如[0,1]等有效或指定码字值范围中的经转换编辑后SDR YCbCr码字。可以例如可选地基于操作视频编辑应用的用户的用户偏好通过SDR YCbCr边界操作(表示为“YCbCr边界剪切3D-LUT”)来剪切经转换编辑后SDRYCbCr颜色空间(“编辑后SDR YCbCr”)中的经转换编辑后SDR YCbCr码字,可以执行这些SDRYCbCr边界操作以在由基于TPB的重塑操作支持的(3D)边界外部的经转换编辑后SDR YCbCr码字缩小或挤压回到在该边界内,从而生成在由基于TPB的重塑操作支持或在这些重塑操作中定义明确的边界内的经缩放经转换编辑后SDR YCbCr颜色空间(表示为“编辑后SDRYCbCr”)中的经缩放经转换编辑后SDR YCbCr码字。由基于TPB的重塑操作支持的边界可能不是其边被简单地定义为有效或指定(归一化)范围[0,1]的规则形状,如立方体。In some operational scenarios, as illustrated in FIG. 3M , out-of-range SDR RGB codewords generated from a YCbCr to RGB conversion performed on an SDR YCbCr image at the encoder or decoder side (denoted as “YCbCr to RGB unclipping conversion”) are not clipped to a valid or specified codeword value range such as [0, 1]. An image/video editing operation (“editing in the RGB domain”) may then be performed with the unclipped (input) SDR RGB codewords in the valid or specified codeword value range in the SDR RGB color space to generate edited SDR codewords. The YCbCr to RGB conversion performed with the unclipping operation allows the original information in the (input) SDR RGB codewords to be preserved in the (input) SDR RGB codewords received by the image/video editing operation. The image/video editing operation accepts all possible true codeword values in the input SDR RGB codewords (including less than 0 or greater than 1, e.g., in a limited but wider range of values than [0 1]). Therefore, some information in the input SDR YCbCr codeword can be retained in the input SDR RGB codeword and the edited SDR RGB codeword. The edited SDR RGB codeword in the SDR RGB color space can be converted and sheared into a converted edited SDR YCbCr codeword in a valid or specified codeword value range such as [0,1] in a converted edited SDR YCbCr color space (denoted as "Edited SDR YCbCr") by an RGB to YCbCr conversion (denoted as "RGB to YCbCr shear conversion"). The converted edited SDR YCbCr codewords in the converted edited SDRYCbCr color space ("edited SDR YCbCr") may be cropped, for example, optionally based on user preferences of a user operating a video editing application by SDR YCbCr boundary operations (denoted as "YCbCr Boundary Cropping 3D-LUT"), which may be performed to shrink or squeeze the converted edited SDR YCbCr codewords outside the (3D) boundary supported by the TPB-based reshaping operations back into the boundary, thereby generating scaled converted edited SDR YCbCr codewords in the scaled converted edited SDR YCbCr color space (denoted as "edited SDRYCbCr") within the boundary supported by the TPB-based reshaping operations or well-defined in these reshaping operations. The boundaries supported by the TPB-based reshaping operations may not be regular shapes, such as cubes, whose sides are simply defined as a valid or specified (normalized) range [0,1].

可以通过用已知(例如,白盒、ISP等)HDR到SDR正向变换或映射进行正向重塑或ISP处理从原始HDR图像获得(输入)SDR YCbCr图像,可以基于HDR到SDR正向或映射和/或任何可适用颜色空间转换矩阵来确定边界并用(TPB边界剪切)3D-LUT表示该边界。例如,使用覆盖在其中表示原始HDR图像的整个HDR域或颜色空间的全网格采样数据,可以确定经正向重塑或ISP SDR颜色空间中的边界像素或码字值。The (input) SDR YCbCr image may be obtained from the original HDR image by forward reshaping or ISP processing with a known (e.g., white box, ISP, etc.) HDR to SDR forward transform or mapping, and the boundaries may be determined based on the HDR to SDR forward or mapping and/or any applicable color space conversion matrix and represented with a (TPB boundary clipping) 3D-LUT. For example, using full grid sampling data covering the entire HDR domain or color space in which the original HDR image is represented, the boundary pixel or codeword values in the forward reshaping or ISP SDR color space may be determined.

边界剪切3D-LUT的建构和剪切Boundary Clipping 3D-LUT Construction and Clipping

如基于TPB的正向重塑等HDR到SDR正向重塑或映射可以是非线性函数。虽然在输入HDR域或颜色空间中的输入HDR码字可以很好地组织在简单3D立方体中,但与3D立方体不同,从应用(非线性或TPB)HDR到SDR映射生成的经映射SDR码字的边界可能是相对不规则的。HDR to SDR forward reshaping or mapping such as TPB-based forward reshaping may be a non-linear function. Although the input HDR codewords in the input HDR domain or color space may be well organized in a simple 3D cube, unlike a 3D cube, the boundaries of the mapped SDR codewords generated from applying a (non-linear or TPB) HDR to SDR mapping may be relatively irregular.

为了针对相对不规则的边界执行(TPB)边界剪切,可以建构(TPB)边界剪切3D-LUT。可以以SDR码字作为输入(或查找键)来查找3D-LUT并且响应于确定SDR码字在边界内而将SDR码字作为值返回。否则,响应于确定SDR码字在边界外部,3D-LUT可以返回不同于原始SDR码字的经剪切SDR码字,该经剪切SDR码字在该边界内。In order to perform (TPB) boundary clipping for relatively irregular boundaries, a (TPB) boundary clipping 3D-LUT may be constructed. The 3D-LUT may be searched with an SDR codeword as input (or a lookup key) and the SDR codeword may be returned as a value in response to determining that the SDR codeword is within the boundary. Otherwise, in response to determining that the SDR codeword is outside the boundary, the 3D-LUT may return a clipped SDR codeword different from the original SDR codeword, the clipped SDR codeword being within the boundary.

在一些操作情景中,可以在两个级别中实施边界剪切。在第一级别中,以由定义(3D)码字范围的最小值和最大值(或下限和上限)定义的范围执行规则剪切。在第二级别中,用(TPB)边界剪切3D-LUT执行不规则剪切。In some operating scenarios, boundary clipping can be implemented in two levels. In the first level, regular clipping is performed with a range defined by the minimum and maximum values (or lower and upper limits) that define the (3D) codeword range. In the second level, irregular clipping is performed with a (TPB) boundary clipping 3D-LUT.

图3N图示了用于建构(例如,TPB等)边界剪切3D-LUT的示例过程流程。可以实施或执行如图3N中示出的过程流程的左侧以使用alphaShape技术建构3D边界。可以实施或执行如图3N中示出的过程流程的右侧以使用所建构的3D边界来生成用于不规则剪切的3D-LUT。FIG3N illustrates an example process flow for constructing a (e.g., TPB, etc.) boundary clipping 3D-LUT. The left side of the process flow as shown in FIG3N may be implemented or executed to construct a 3D boundary using the alphaShape technique. The right side of the process flow as shown in FIG3N may be implemented or executed to generate a 3D-LUT for irregular clipping using the constructed 3D boundary.

框3022包括在如R.2020(容器)域或颜色空间等输入HDR域或颜色空间中制备采样值的3D均匀采样网格或集合(例如,在上述方程式(42)和(43)中给出的等)。通过图示而非限制的方式,HDR域或颜色空间表示HDR YCbCr颜色空间HLG。Block 3022 includes preparing a 3D uniform sampling grid or set of sample values in an input HDR domain or color space, such as an R.2020 (container) domain or color space. (eg, as given in equations (42) and (43) above, etc.) By way of illustration and not limitation, the HDR domain or color space represents the HDR YCbCr color space HLG.

可以将R.2020YCbCr颜色空间HLG中的采样值转换为R.2020RGB颜色空间HLG中的对应值,如在上述表达式(44)中所指示的。可以将R.2020RGB颜色空间HLG中的经转换值进一步转换为aRGB颜色空间HLG中与参数a的优化值(aopt)相对应的对应值,如在上述表达式(45)中所指示的。可以剪切(a)RGB颜色空间HLG中的经转换值,如在上述表达式(46)中所指示的,并且将这些经转换值转换为R.2020RGB颜色空间HLG中的对应经剪切值,如在上述表达式(47)中所指示的。可以将用上述表达式(47)得到的R.2020RGB颜色空间HLG中的经剪切值转换为R.2020YCbCr颜色空间HLG中的对应经剪切值如在上述表达式(48)中所指示的。The sampling values in the R.2020YCbCr color space HLG can be converted to corresponding values in the R.2020RGB color space HLG, as indicated in the above expression (44). The converted values in the R.2020RGB color space HLG can be further converted to corresponding values corresponding to the optimized value (a opt ) of the parameter a in the aRGB color space HLG, as indicated in the above expression (45). The converted values in the (a)RGB color space HLG can be clipped, as indicated in the above expression (46), and these converted values can be converted to corresponding clipped values in the R.2020RGB color space HLG, as indicated in the above expression (47). The clipped values in the R.2020RGB color space HLG obtained using the above expression (47) can be converted to corresponding clipped values in the R.2020YCbCr color space HLG. As indicated in the above expression (48).

框3024包括以经剪切或约束(HDR YCbC HLG)值(指代为图3N中的“受约束输入”)应用基于TPB的正向重塑(指代为图3N中的“正向TPB”)。更具体地,用于基于TPB的正向重塑的优化的正向TPB系数与正向生成矩阵(在上述表达式(50)中)一起使用或相乘,该正向生成矩阵以R.2020YCbCr颜色空间HLG中的经剪切HDR值作为正向TPB基函数的输入参数来构建,以获得表示为的经映射或经正向重塑剪切后SDR或R.709YCbCr值,如下:Box 3024 includes the clipped or constrained (HDR YCbC HLG) values (Referred to as “Constrained Input” in FIG. 3N ) Apply TPB-based forward reshaping (Referred to as “Forward TPB” in FIG. 3N ). More specifically, the optimized forward TPB coefficients for TPB-based forward reshaping are related to the forward generation matrix (in the above expression (50)) together or multiplied, the forward generation matrix is the clipped HDR value in the R.2020YCbCr color space HLG is constructed as the input parameter of the forward TPB basis function to obtain The SDR or R.709YCbCr values after mapping or forward reshaping are as follows:

框3046包括转换表示为的R.709YCbCr值以生成未经剪切RGB域或颜色空间中的SDR或R.709RGB值,如下:Block 3046 includes converting the representation to The R.709YCbCr values to generate SDR or R.709RGB values in the unclipped RGB domain or color space are as follows:

如从R.709YCbCr值转换的R.709RGB值可以包括在如值范围[0,1]等有效或指定范围外部的值。R.709RGB values, such as converted from R.709YCbCr values, may include values outside a valid or specified range, such as the value range [0, 1].

对于每个通道,可以测量或确定在表达式(100)中给出的R.709RGB值中的最小值和最大值,如下:For each channel, the minimum and maximum values among the R.709RGB values given in expression (100) may be measured or determined as follows:

这些极值可以用作框3030中的下限和上限以建构或制备未经剪切RGB域或颜色空间中的均匀采样3D网格或一组采样值。These extreme values may be used as lower and upper bounds in block 3030 to construct or prepare a uniformly sampled 3D grid or set of sample values in the unclipped RGB domain or color space.

图2P图示了如从R.709YCbCr值转换的R.709RGB值(在SDR RGB图像中)的示例分布。如所示出的,SDR RGB图像中的R.709RGB值分布具有不规则形状而不是3D立方体。具有3D边界的不规则形状表示可以往回映射到或被反向重塑为经重建HDR域或颜色空间中的经重建HDR颜色而不丢失信息的最大支持SDR RGB颜色空间。在该不规则形状或范围外部的任何SDR RGB颜色将在反向重塑操作中遭受信息丢失。FIG. 2P illustrates an example distribution of R.709RGB values (in an SDR RGB image) as converted from R.709YCbCr values. As shown, the distribution of R.709RGB values in the SDR RGB image has an irregular shape rather than a 3D cube. The irregular shape with a 3D boundary represents the maximum supported SDR RGB color space that can be mapped back to or inversely reshaped into a reconstructed HDR color in a reconstructed HDR domain or color space without losing information. Any SDR RGB color outside of this irregular shape or range will suffer information loss in the inverse reshaping operation.

在对SDR RGB图像执行图像/视频编辑操作之后,编辑后码字或颜色的所得(3D)码字范围或分布可以比SDR RGB颜色空间中的不规则形状宽(例如,宽得多等),从而产生反向重塑操作未定义或不支持的许多SDR RGB码字。After performing an image/video editing operation on an SDR RGB image, the resulting (3D) codeword range or distribution of the edited codewords or colors may be wider (e.g., much wider, etc.) than the irregular shape in the SDR RGB color space, resulting in many SDR RGB codewords that are not defined or supported by the inverse reshaping operation.

另外,使用分析方程或多个2D平面可能很难表征、表示或近似不规则形状的实际3D边界,这些2D平面用于将RGB颜色空间中的3D立方体切割成不规则形状。Additionally, it may be difficult to characterize, represent, or approximate the actual 3D boundaries of irregular shapes using analytical equations or multiple 2D planes used to cut a 3D cube in RGB color space into the irregular shapes.

如上所述,双级剪切解决方案可以用于将编辑后码字往回剪切到如在不规则形状中表示的最大支持RGB颜色空间中。更具体地,在第一级别,通过在的固定3D范围内剪切编辑后码字来应用规则剪切。规则剪切可以利用基于if-else或min()/max()运算的相对简单的剪切函数,以用于将(输入)编辑后码字范围减小到由限定或界定的3D立方体(包括矩形)。在第二级别,通过将仍位于不规则形状外部的这些码字(在简单经剪切编辑后码字当中)剪切成由不规则形状勾画或指定的最大支持SDR RGB颜色空间来应用不规则剪切。由于最大支持SDR RGB颜色空间的相对不规则剪切边界不适合于用分析方程、简单代码或操作进行相对简单的剪切操作,因此边界剪切3D-LUT可以用于在双级剪切解决方案的第二级别执行不规则剪切。As described above, a two-level clipping solution can be used to clip the edited codeword back into the maximum supported RGB color space as represented in the irregular shape. More specifically, at the first level, by Regular clipping can be applied by clipping the edited codeword within a fixed 3D range. Regular clipping can utilize a relatively simple clipping function based on if-else or min()/max() operations to reduce the (input) edited codeword range to a range consisting of A 3D cube (including a rectangle) defined or bounded. At the second level, irregular shearing is applied by shearing those codewords (among the codewords after simple shearing edit) that are still outside the irregular shape into the maximum supported SDR RGB color space outlined or specified by the irregular shape. Since the relatively irregular shearing boundaries of the maximum supported SDR RGB color space are not suitable for relatively simple shearing operations with analytical equations, simple codes or operations, the boundary shearing 3D-LUT can be used to perform irregular shearing at the second level of the two-level shearing solution.

图3N的框3028包括:在给出了一组SDR RGB码字的情况下,用如alphaShape()MATLAB函数等可用alphaShape建构工具构建alphaShape。如本文所使用的,alphaShape是指包围一组2-D或3-D点(如目前示例中的该组SDR RGB码字)的定界区域或体积。Block 3028 of FIG. 3N includes: given a set of SDR RGB codewords In the case of , an alphaShape can be constructed using an available alphaShape construction tool such as the alphaShape() MATLAB function. As used herein, an alphaShape is a shape that encompasses a set of 2-D or 3-D points (such as the set of SDR RGB codewords in the current example). ) is a delimited area or volume.

可以操纵为了表示alphaShape而创建的alphaShape对象以概括含有该组SDR RGB码字的定界多边形,收紧或放松SDR RGB码字}周围的alphaShape例如与非凸形区的拟合。可以添加或去除附加的点,以便例如抑制孔洞或区或简单地抑制alphaShape。The alphaShape object created to represent the alphaShape can be manipulated to summarize the set of SDR RGB codewords The bounding polygon of the SDR RGB codeword is tightened or relaxed } The alphaShape around the point, e.g. to fit a non-convex area. Additional points may be added or removed, e.g. to suppress holes or areas or simply suppress the alphaShape.

将用于建构alphaShape的函数表示为fαS(Φ,rα),其中,rα表示半径参数。The function used to construct alphaShape is denoted as f αS (Φ, r α ), where r α represents the radius parameter.

通过将该组SDR RGB码字作为第一输入参数传递到该函数,可以通过如下的alphaShape建构函数来建构表示为αS(R709)的定界多面体:By using this set of SDR RGB codewords Passed as the first input parameter to the function, the bounding polyhedron denoted αS (R709) can be constructed by the alphaShape constructor as follows:

图2Q至图2T图示了具有不同rα的该组SDR RGB点或码字的示例alphaShape。如所示出的,半径参数rα的较大值产生或建构较大多面体,如果搜索在SDRRGB点或码字外部的最近邻并且使用这些最近邻来填入这些外部SDR RGB点的经剪切值,则这会导致更粗糙的量化。另一方面,较小rα产生或建构较小多面体,这导致形成孔洞的可能性更高并且具有不太有效的边界。可以针对不同视频编辑应用将半径参数rα调整为不同值(例如,0.1、0.5等)以将所支持的SDR颜色的有效性或覆盖范围最大化并且避免引入视觉伪影。2Q to 2T illustrate the set of SDR RGB points or codewords with different r α . As shown, larger values of the radius parameter r α produce or construct larger polyhedra, which can result in coarser quantization if nearest neighbors outside the SDR RGB points or codewords are searched and used to fill in the clipped values of these outer SDR RGB points. On the other hand, smaller r α produces or constructs smaller polyhedra, which results in a higher probability of forming holes and has less effective boundaries. The radius parameter r α can be adjusted to different values (e.g., 0.1, 0.5, etc.) for different video editing applications to maximize the effectiveness or coverage of the supported SDR colors and avoid introducing visual artifacts.

alphaShape提供边界多边形作为不规则形状的剪切边界并且允许确定由SDR RGB码字表示的3D点在不规则形状内部还是在不规则形状外部。alphaShape provides a bounding polygon as a clipping boundary for the irregular shape and allows determining whether a 3D point represented by an SDR RGB codeword is inside or outside the irregular shape.

让IαS(αS,x)表示用于确定3D点或SDR RGB码字(表示为x)是否在不规则形状内部的二进制函数。假定“1”的返回二进制值指示在不规则形状内部并且“0”的返回二进制值在外部。Let IαS (αS,x) denote a binary function for determining whether a 3D point or SDR RGB codeword (denoted as x) is inside an irregular shape. Assume that a returned binary value of "1" indicates inside the irregular shape and a returned binary value of "0" indicates outside.

让NNαS(αS,x)表示索引函数,该索引函数接收如x等给定查询3D点或SDR RGB码字作为第二输入参数并且返回αS中查询3D点或SDR RGB码字x的最近邻点。Let NN αS (αS, x) denote an indexing function that receives a given query 3D point or SDR RGB codeword such as x as a second input parameter and returns the nearest neighbors of the query 3D point or SDR RGB codeword x in αS.

如上所述,边界剪切3D-LUT可以在SDR RGB域或颜色空间中被建构为通过(基于TPB的正向和反向)重塑操作剪切在表示最大支持颜色空间的不规则形状外部的任何SDRRGB码字。As described above, a boundary clipping 3D-LUT can be constructed in the SDR RGB domain or color space to clip any SDR RGB codewords outside the irregular shape representing the maximum supported color space through (TPB-based forward and reverse) reshaping operations.

框3030包括构建边界剪切3D-LUT作为具有多个节点/条目的全网格3D-LUT。3D-LUT中的这些节点/条目包括查询SDR码字作为查找键并且包括用于查询SDR码字的返回SDR码字作为值。Block 3030 includes constructing a boundary clipping 3D-LUT as a full-grid 3D-LUT having a plurality of nodes/entries. These nodes/entries in the 3D-LUT include a query SDR codeword as a lookup key and include a return SDR codeword for the query SDR codeword as a value.

为每个颜色通道确定(在图3N的框3026中)的极值可以用作3D立方体(或矩形)的下限或上限。在3D-LUT中表示或包括的查询SDR码字可以形成全网格,该全网格包括在由极值或下限/上限限定的3D码字范围内均匀地采样的3D点。例如,对于由R轴、G轴、B轴中的对应轴表示的每个维度或颜色通道,该维度或颜色通道中的之间的码字值范围可以被均匀地采样到与三个维度或颜色通道相对应的三个总数个分区NR、NG和NB当中的相应总数个分区中,如下:For each color channel and The extreme values determined (in block 3026 of FIG. 3N ) may be used as lower or upper bounds of a 3D cube (or rectangle). The query SDR codewords represented or included in the 3D-LUT may form a full grid comprising 3D points sampled uniformly within the range of the 3D codeword defined by the extreme values or lower/upper bounds. For example, for each dimension or color channel represented by a corresponding axis among the R axis, G axis, and B axis, the query SDR codewords in that dimension or color channel may be uniformly sampled. The codeword value range between can be uniformly sampled into corresponding total number of partitions among three total number of partitions NR , NG and NB corresponding to three dimensions or color channels, as follows:

其中,i∈[0,…,NR-1],j∈[0,…,NG-1],k∈[0,…,NB-1]where i∈[0,…, NR -1], j∈[0,…, NG -1], k∈[0,…, NB -1]

因此,3D-LUT中的所表示的查询SDR码字的总数可以给出为Nu=NRNGNBTherefore, the total number of represented query SDR codewords in the 3D- LUT can be given as Nu = NRNGNB .

框3032包括开始通过在3D-LUT中的多个节点/条目当中选择当前节点/条目(例如,按顺序或非顺序循环/迭代次序等)来针对3D-LUT中的每个节点/条目执行节点处理回圈。Block 3032 includes beginning to execute a node processing loop for each node/entry in the 3D-LUT by selecting a current node/entry among multiple nodes/entries in the 3D-LUT (eg, in a sequential or non-sequential loop/iteration order, etc.).

为简单起见,上述表达式(103)中的(i,j,k)可以向量化为p。当前节点/条目可以是3D-LUT中的多个节点/条目中的第p个节点/条目。第p个节点/条目的查找键可以由在上述表达式(103)的LHS上表示为up的第p个所表示的查询SDR RGB码字表示。在给定了第p个所表示的查询SDR RGB码字作为查找键的情况下,让表示由3D-LUT的第p个节点/条目返回的当前输出经剪切SDR RGB码字或值。For simplicity, (i, j, k) in the above expression (103) can be vectorized to p. The current node/entry can be the p-th node/entry among the multiple nodes/entries in the 3D-LUT. The search key of the p-th node/entry can be represented by the p- th represented query SDR RGB codeword represented as up on the LHS of the above expression (103). Given the p-th represented query SDR RGB codeword as the search key, let Represents the current output clipped SDR RGB codeword or value returned by the pth node/entry of the 3D-LUT.

框3034包括检查或确定当前节点/条目的当前或第p个所表示的查询SDR RGB码字up是否在框3028中生成的alphaShapeαS(R709)(或用如上述表达式(102)中示出的阿尔法形状建构函数建构的形状)内。响应于确定当前节点/条目的当前或第p个所表示的查询SDRRGB码字up在alphaShapeαS(R709)内部,过程流程进行到框3036。否则,过程流程进行到框3040。Block 3034 includes checking or determining whether the current or pth represented query SDR RGB codeword up of the current node/entry is within the alphaShapeαS (R709) generated in block 3028 (or the shape constructed using the alpha shape constructor as shown in expression (102) above). In response to determining that the current or pth represented query SDR RGB codeword up of the current node/entry is within the alphaShapeαS (R709) , process flow proceeds to block 3036. Otherwise, process flow proceeds to block 3040.

3D-LUT中的多个节点/条目包括节点或条目子集,这些节点或条目中的每一个具有由位于alphaShapeαS(R709)内的所表示的查询SDR RGB码字指定的相应查找键。因此,节点或条目子集包括被认为在alphaShapeαS(R709)内的节点或条目。The plurality of nodes/entries in the 3D-LUT comprises a subset of nodes or entries, each of which has a corresponding lookup key specified by a represented query SDR RGB codeword located within alphaShapeαS (R709) . Thus, the subset of nodes or entries comprises nodes or entries that are considered to be within alphaShapeαS (R709) .

框3040包括在alphaShapeαS(R709)内的节点/条目子集当中为当前节点/条目寻找最近的节点/条目。最近的节点/条目具有最近的所表示的查询SDR RGB码字作为查找键,使得与在alphaShapeαS(R708)内的节点或条目子集中的所有其他节点/条目的所有其他所表示的查询SDR RGB码字相比较,最近的所表示的查询SDR RGB码字具有到当前或第p个所表示的查询SDR RGB码字up的最小距离,如在SDR RGB颜色空间中用欧几里得或非欧几里得距离测量的。Block 3040 includes finding the closest node/entry for the current node/entry among the subset of nodes/entries within alphaShapeαS (R709) . The closest node/entry has the closest query SDR RGB codeword represented as a lookup key such that the most recent represented query SDR RGB codeword is compared to all other represented query SDR RGB codewords of all other nodes/entries in the node or entry subset within alphaShapeαS (R708). has the minimum distance to the current or pth represented query SDR RGB codeword up, as measured by Euclidean or non-Euclidean distance in the SDR RGB color space.

在一些操作情景中,可以用前面提到的索引函数NNαS(αS,x)给出当前或第p个所表示的查询SDR RGB码字up的最近的所表示的查询SDR RGB码字如下:In some operating scenarios, the index function NN αS (αS, x) mentioned above can be used to give the nearest represented query SDR RGB codeword of the current or pth represented query SDR RGB codeword up as follows:

最近的所表示的查询SDR RGB码字表示当前或第p个所表示的查询SDR RGB码字up的边界经剪切值。该边界经剪切值被设置为3D-LUT中的当前或第p个节点条目的返回值,而当前或第p个所表示的查询SDR RGB码字up被设置为3D-LUT中的当前或第p个节点条目的查找键。The nearest query SDR RGB codeword represented represents the boundary clipped value of the current or pth query SDR RGB codeword up . is set to the return value of the current or p-th node entry in the 3D-LUT, and the current or p-th represented query SDR RGB codeword up is set to the lookup key of the current or p-th node entry in the 3D-LUT.

框3036包括将当前或第p个所表示的查询SDR RGB码字up设置为3D-LUT中的当前或第p个节点条目(除了是查找键之外)的返回值并且确定当前或第p个节点/条目是否为3D-LUT中的多个节点/条目中的最后一节点或条目。响应于确定当前或第p个节点/条目是3D-LUT中的多个节点/条目中的最后一节点或条目,过程流程进行到框3038。否则,过程流程返回到框3032。Block 3036 includes setting the current or pth represented query SDR RGB codeword up as the return value of the current or pth node entry in the 3D-LUT (in addition to being the lookup key) and determining whether the current or pth node/entry is the last node or entry of the plurality of nodes/entries in the 3D-LUT. In response to determining that the current or pth node/entry is the last node or entry of the plurality of nodes/entries in the 3D-LUT, process flow proceeds to block 3038. Otherwise, process flow returns to block 3032.

框3038包括输出3D-LUT作为SDR RGB颜色空间中的最终边界剪切3D-LUT(表示为)。Block 3038 includes outputting the 3D-LUT as a final boundary clipping 3D-LUT in the SDR RGB color space (denoted as ).

在下面的表5中图示了用于生成最终边界剪切的示例程序。The following table 5 illustrates the methods used to generate the final boundary cut The sample program.

表5Table 5

在给出了(最终)边界剪切3D-LUT的情况下,可以使用前面提到的两级解决方案对(例如,编辑后等)SDR图像相对高效地执行边界剪切。如上所述,可以执行规则剪切以确保SDR图像中的所有(例如,编辑后等)SDR RGB码字在SDR RGB颜色空间中的SDR RGB码字的极值或上限/下限内,在该颜色空间中已对SDR图像执行图像/视频编辑操作。进行规则剪切,然后通过将(如果适用则为规则剪切的)SDR码字作为查找键传递到(最终)边界剪切3D-LUT来进行不规则剪切,进行边界剪切,并且使用来自(最终)边界剪切3D-LUT的返回值作为输出(例如,经剪切编辑后等)SDR图像中的输出(如果适用则为其他不规则剪切的)SDR码字。Given the (final) boundary clipping 3D-LUT In the case of , the aforementioned two-stage solution can be used to relatively efficiently perform boundary clipping on the (e.g., edited, etc.) SDR image. As described above, regular clipping can be performed to ensure that all (e.g., edited, etc.) SDR RGB codewords in the SDR image are within the extreme values or upper/lower limits of the SDR RGB codewords in the SDR RGB color space in which the image/video editing operation has been performed on the SDR image. Regular clipping is performed and then the (if applicable, regularly clipped) SDR codeword is passed as a lookup key to the (final) boundary clipped 3D-LUT to do irregular clipping, do boundary clipping, and use the clipping 3D-LUT from the (final) boundary clipping 3D-LUT The return value is used as the output (or other irregularly cropped, if applicable) SDR codeword in the output (e.g., after cropping and editing, etc.) SDR image.

在各种操作情景(包括但不限于图3I至图3M中所图示的那些)中,可以将如本文所描述的规则和/或不规则剪切操作应用于视频捕获和/或编辑应用以用于确保对从SDR图像重建HDR图像并且防止/减少经重建HDR图像中的视觉伪影的最大化支持。In various operational scenarios, including but not limited to those illustrated in Figures 3I to 3M, regular and/or irregular cropping operations as described herein may be applied to video capture and/or editing applications to ensure maximum support for reconstructing HDR images from SDR images and preventing/reducing visual artifacts in the reconstructed HDR images.

示例过程流程Example process flow

图4A图示了根据本发明的实施例的示例过程流程。在一些实施例中,一个或多个计算设备或部件(例如,编码设备/模块、转码设备/模块、解码设备/模块、逆色调映射设备/模块、色调映射设备/模块、媒体设备/模块、反向映射生成和应用系统等)可以执行此过程流程。在框402中,如本文所描述的系统构建分布在高动态范围(HDR)颜色空间中的采样HDR颜色空间点。该HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化。该色原缩放参数用于计算勾画该HDR颜色空间的多个色原中的至少一个的颜色空间坐标。FIG. 4A illustrates an example process flow according to an embodiment of the present invention. In some embodiments, one or more computing devices or components (e.g., encoding devices/modules, transcoding devices/modules, decoding devices/modules, inverse tone mapping devices/modules, tone mapping devices/modules, media devices/modules, reverse mapping generation and application systems, etc.) may perform this process flow. In block 402, a system as described herein constructs sampled HDR color space points distributed in a high dynamic range (HDR) color space. The HDR color space is parameterized by a color source scaling parameter having a candidate value selected from a plurality of candidate values. The color source scaling parameter is used to calculate the color space coordinates of at least one of a plurality of color sources that delineate the HDR color space.

在框404中,该系统从该HDR颜色空间中的这些采样HDR颜色空间点生成:(a)在参考SDR颜色空间中表示的参考标准动态范围(SDR)颜色空间点,(b)在输入HDR颜色空间中表示的输入HDR颜色空间点,以及(c)在参考HDR颜色空间点中表示的参考HDR颜色空间点。In box 404, the system generates from these sampled HDR color space points in the HDR color space: (a) a reference standard dynamic range (SDR) color space point represented in a reference SDR color space, (b) an input HDR color space point represented in an input HDR color space, and (c) a reference HDR color space point represented in a reference HDR color space point.

在框406中,该系统执行重塑操作优化算法以生成优化的正向重塑映射和优化的反向重塑映射链。该重塑操作优化算法使用这些参考SDR颜色空间点、这些输入HDR颜色空间点和这些参考HDR颜色空间点作为输入。In block 406, the system executes a reshaping operation optimization algorithm to generate an optimized forward reshaping mapping and an optimized reverse reshaping mapping chain. The reshaping operation optimization algorithm uses the reference SDR color space points, the input HDR color space points, and the reference HDR color space points as inputs.

在实施例中,该优化的正向重塑映射用于将该输入HDR颜色空间中的输入HDR图像正向重塑为经正向重塑SDR颜色空间中的经正向重塑SDR图像;该优化的反向重塑映射用于将该经正向重塑SDR颜色空间中的这些经正向重塑SDR图像反向重塑为经反向重塑HDR图像。In an embodiment, the optimized forward reshaping mapping is used to forward reshape the input HDR image in the input HDR color space into a forward reshaped SDR image in the forward reshaped SDR color space; and the optimized reverse reshaping mapping is used to reverse reshape these forward reshaped SDR images in the forward reshaped SDR color space into a reverse reshaped HDR image.

在实施例中,在该HDR颜色空间中构建这些采样HDR颜色空间点而不使用任何图像。In an embodiment, the sampled HDR color space points are constructed in the HDR color space without using any image.

在实施例中,通过该重塑操作优化算法针对该色原缩放参数的多个候选值生成多条优化的正向重塑映射和优化的反向重塑映射链;该多条优化的正向重塑映射和优化的反向重塑映射链中的每条链包括相应优化的正向重塑映射和相应优化的反向重塑映射。In an embodiment, a plurality of chains of optimized forward reshaping mappings and optimized reverse reshaping mappings are generated for a plurality of candidate values of the chromatic aboriginal scaling parameter by the reshaping operation optimization algorithm; each of the plurality of chains of optimized forward reshaping mappings and optimized reverse reshaping mappings includes a corresponding optimized forward reshaping mapping and a corresponding optimized reverse reshaping mapping.

在实施例中,至少部分地基于预定义HDR到SDR映射来将这些采样HDR颜色空间点映射到这些参考SDR颜色空间点。In an embodiment, the sampled HDR color space points are mapped to the reference SDR color space points based at least in part on a predefined HDR to SDR mapping.

在实施例中,针对该多条优化的正向重塑映射和优化的反向重塑映射链计算多组预测误差;针对该多条优化的正向重塑映射和优化的反向重塑映射链中的相应链计算该多组预测误差中的每一组预测误差;该多组预测误差用于从该色原缩放参数的多个候选值中选择特定候选值。In an embodiment, multiple sets of prediction errors are calculated for the multiple chains of optimized forward reshaping mappings and optimized reverse reshaping mappings; each set of prediction errors in the multiple sets of prediction errors is calculated for corresponding chains in the multiple chains of optimized forward reshaping mappings and optimized reverse reshaping mappings; and the multiple sets of prediction errors are used to select specific candidate values from multiple candidate values of the chromatic aboriginal scaling parameter.

在实施例中,使用该色原缩放参数的特定候选值来生成特定优化的正向重塑映射和特定优化的反向重塑映射的特定链。In an embodiment, a particular candidate value of the chroma scaling parameter is used to generate a particular chain of a particular optimized forward reshaping map and a particular optimized reverse reshaping map.

在实施例中,在正向重塑三维查找表中表示该特定优化的正向重塑映射。In an embodiment, the specifically optimized forward reshaping map is represented in a forward reshaping three-dimensional lookup table.

在实施例中,在反向重塑三维查找表中表示该特定优化的反向重塑映射。In an embodiment, the specifically optimized inverse reshaping mapping is represented in an inverse reshaping three-dimensional lookup table.

在实施例中,视频编码器将该优化的正向重塑映射应用于输入HDR图像序列以生成经正向重塑SDR图像序列并且将该经正向重塑SDR图像序列编码到视频信号中。In an embodiment, a video encoder applies the optimized forward reshaping mapping to an input HDR image sequence to generate a forward reshaping SDR image sequence and encodes the forward reshaping SDR image sequence into a video signal.

在实施例中,视频解码器从视频信号中解码经正向重塑SDR图像序列并且将该优化的反向重塑映射应用于该经正向重塑SDR图像序列以生成经反向重塑HDR图像序列。In an embodiment, a video decoder decodes a forward reshaped SDR image sequence from a video signal and applies the optimized inverse reshaping mapping to the forward reshaped SDR image sequence to generate a inverse reshaped HDR image sequence.

在实施例中,在与该视频解码器一起操作的图像显示器上渲染从该经反向重塑HDR图像序列得到的显示图像序列。In an embodiment, a display image sequence derived from the inverse reshaped HDR image sequence is rendered on an image display operative with the video decoder.

在实施例中,该HDR颜色空间和该输入HDR颜色空间共用公共白点。In an embodiment, the HDR color space and the input HDR color space share a common white point.

在实施例中,该重塑操作优化算法表示反向误差减法用于信号调整(BESA)算法。In an embodiment, the reshaping operation optimization algorithm represents a Backward Error Subtraction for Signal Adjustment (BESA) algorithm.

图4B图示了根据本发明的实施例的示例过程流程。在一些实施例中,一个或多个计算设备或部件(例如,编码设备/模块、转码设备/模块、解码设备/模块、逆色调映射设备/模块、色调映射设备/模块、媒体设备/模块、反向映射生成和应用系统等)可以执行此过程流程。在框422中,如本文所描述的系统构建分布在HDR颜色空间中的采样HDR颜色空间点。该HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化。该色原缩放参数用于计算勾画该HDR颜色空间的多个色原中的至少一个的颜色空间坐标。FIG4B illustrates an example process flow according to an embodiment of the present invention. In some embodiments, one or more computing devices or components (e.g., encoding device/module, transcoding device/module, decoding device/module, inverse tone mapping device/module, tone mapping device/module, media device/module, reverse mapping generation and application system, etc.) may perform this process flow. In block 422, a system as described herein constructs sampled HDR color space points distributed in an HDR color space. The HDR color space is parameterized by a color source scaling parameter having a candidate value selected from a plurality of candidate values. The color source scaling parameter is used to calculate the color space coordinates of at least one of a plurality of color sources that delineate the HDR color space.

在框424中,该系统从该HDR颜色空间中的这些采样HDR颜色空间点生成:(a)在输入SDR颜色空间中表示的输入SDR颜色空间点和(b)在参考HDR颜色空间点中表示的参考HDR颜色空间点。In block 424, the system generates from the sampled HDR color space points in the HDR color space: (a) input SDR color space points represented in the input SDR color space and (b) reference HDR color space points represented in the reference HDR color space point.

在框426中,该系统执行重塑操作优化算法以生成优化的反向重塑映射。重塑操作优化算法接收这些输入SDR颜色空间点和这些参考HDR颜色空间点作为输入。In block 426, the system executes a reshaping operation optimization algorithm to generate an optimized inverse reshaping map. The reshaping operation optimization algorithm receives as input the input SDR color space points and the reference HDR color space points.

在实施例中,该反向重塑映射用于将该输入SDR颜色空间中的SDR图像反向重塑为经反向重塑HDR图像。In an embodiment, the inverse reshaping mapping is used to inversely reshape the SDR image in the input SDR color space into a inversely reshaped HDR image.

在实施例中,在该HDR颜色空间中构建这些采样HDR颜色空间点而不使用任何图像。In an embodiment, the sampled HDR color space points are constructed in the HDR color space without using any image.

在实施例中,通过该重塑操作优化算法针对该色原缩放参数的多个候选值生成多个优化的反向重塑映射;该多个优化的反向重塑映射中的每个优化的反向重塑映射包括相应优化的反向重塑映射。In an embodiment, a plurality of optimized inverse reshaping mappings are generated for a plurality of candidate values of the chroma scaling parameter by the reshaping operation optimization algorithm; each optimized inverse reshaping mapping of the plurality of optimized inverse reshaping mappings comprises a corresponding optimized inverse reshaping mapping.

在实施例中,针对该多个优化的反向重塑映射计算多组预测误差;针对该多个优化的反向重塑映射中的相应优化的反向重塑映射计算该多组预测误差中的每一组预测误差;该多组预测误差用于从该色原缩放参数的多个候选值中选择特定候选值。In an embodiment, multiple sets of prediction errors are calculated for the multiple optimized inverse reshaping mappings; each set of prediction errors in the multiple sets of prediction errors is calculated for a corresponding optimized inverse reshaping mapping in the multiple optimized inverse reshaping mappings; and the multiple sets of prediction errors are used to select a specific candidate value from a plurality of candidate values of the chromatic aboriginal scaling parameter.

在实施例中,可编程ISP流水线至少部分地基于该可编程ISP流水线的可编程配置参数的优化值来将这些采样HDR颜色空间点处理为这些输入SDR颜色空间点。In an embodiment, the programmable ISP pipeline processes the sampled HDR color space points into the input SDR color space points based at least in part on optimized values of programmable configuration parameters of the programmable ISP pipeline.

在实施例中,通过将通过该可编程ISP流水线从HDR图像生成的ISP SDR图像与通过将预定义HDR到SDR映射应用于这些相同HDR图像而生成的参考SDR图像之间的近似误差最小化来确定该可编程ISP流水线的可编程配置参数的优化值。In an embodiment, optimized values of programmable configuration parameters of the programmable ISP pipeline are determined by minimizing an approximation error between ISP SDR images generated from HDR images by the programmable ISP pipeline and reference SDR images generated by applying a predefined HDR to SDR mapping to these same HDR images.

图4C图示了根据本发明的实施例的示例过程流程。在一些实施例中,一个或多个计算设备或部件(例如,编码设备/模块、转码设备/模块、解码设备/模块、逆色调映射设备/模块、色调映射设备/模块、媒体设备/模块、反向映射生成和应用系统等)可以执行此过程流程。在框442中,如本文所描述的系统从训练SDR图像中提取一组SDR图像特征点并从训练HDR图像中提取一组HDR图像特征点。FIG4C illustrates an example process flow according to an embodiment of the present invention. In some embodiments, one or more computing devices or components (e.g., encoding device/module, transcoding device/module, decoding device/module, inverse tone mapping device/module, tone mapping device/module, media device/module, reverse mapping generation and application system, etc.) may perform this process flow. In block 442, a system as described herein extracts a set of SDR image feature points from a training SDR image and extracts a set of HDR image feature points from a training HDR image.

在框444中,该系统将该组SDR图像特征点中的一个或多个SDR图像特征点的子集与该组HDR图像特征点中的一个或多个HDR图像特征点的子集相匹配。In block 444, the system matches a subset of one or more SDR image feature points in the set of SDR image feature points with a subset of one or more HDR image feature points in the set of HDR image feature points.

在框446中,该系统使用该一个或多个SDR图像特征点的子集和该一个或多个HDR图像特征点的子集生成几何变换,以将该训练SDR图像中的一组SDR像素与该训练HDR图像中的一组HDR像素在空间上对齐。In block 446, the system generates a geometric transformation using the subset of the one or more SDR image feature points and the subset of the one or more HDR image feature points to spatially align a set of SDR pixels in the training SDR image with a set of HDR pixels in the training HDR image.

在框448中,该系统在已通过该几何变换将该训练SDR图像与该训练HDR图像在空间上对齐之后从该训练SDR图像中的该组SDR像素和该训练HDR图像中的该组HDR像素确定一组成对SDR色标与HDR色标。In box 448, the system determines a set of pairs of SDR color labels and HDR color labels from the set of SDR pixels in the training SDR image and the set of HDR pixels in the training HDR image after the training SDR image and the training HDR image have been spatially aligned by the geometric transformation.

在框450中,该系统至少部分地基于从该训练SDR图像和该训练HDR图像得到的该组成对SDR色标与HDR色标生成优化的SDR到HDR映射。In block 450, the system generates an optimized SDR-to-HDR mapping based at least in part on the set of pairs of SDR color scales and HDR color scales derived from the training SDR image and the training HDR image.

在框452中,该系统将该优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。In block 452, the system applies the optimized SDR-to-HDR mapping to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

在实施例中,分别由在SDR和HDR捕获模式下操作的捕获设备从三维(3D)视觉场景捕获该训练SDR图像和该训练HDR图像。In an embodiment, the training SDR image and the training HDR image are captured from a three-dimensional (3D) visual scene by capture devices operating in SDR and HDR capture modes, respectively.

在实施例中,该训练SDR图像和该训练HDR图像形成多对训练SDR图像与训练HDR图像中的一对训练SDR图像与训练HDR图像;至少部分地基于从该多对训练SDR图像与训练HDR图像得到的多组成对SDR色标与HDR色标生成该优化的SDR到HDR映射。In an embodiment, the training SDR image and the training HDR image form a pair of training SDR images and training HDR images among multiple pairs of training SDR images and training HDR images; and the optimized SDR to HDR mapping is generated at least in part based on multiple groups of paired SDR color labels and HDR color labels obtained from the multiple pairs of training SDR images and training HDR images.

在实施例中,将该一个或多个SDR图像特征点的子集中的每个SDR图像特征点与该一个或多个HDR图像特征点的子集中的相应HDR图像特征点相匹配;使用常见特征点提取算法分别从该训练SDR图像和该HDR图像提取该SDR图像特征点和该HDR图像特征点。In an embodiment, each SDR image feature point in the subset of the one or more SDR image feature points is matched with a corresponding HDR image feature point in the subset of the one or more HDR image feature points; and the SDR image feature points and the HDR image feature points are extracted from the training SDR image and the HDR image, respectively, using a common feature point extraction algorithm.

在实施例中,该常见特征点提取算法表示以下项之一:二进制鲁棒不变可扩展关键点算法;加速分段测试特征算法;KAZE算法;最小特征值算法;最大稳定极值区算法;定向FAST和旋转算法;尺度不变特征变换算法;加速鲁棒特征算法;等等。In an embodiment, the common feature point extraction algorithm represents one of the following: binary robust invariant scalable key point algorithm; accelerated segmented test feature algorithm; KAZE algorithm; minimum eigenvalue algorithm; maximum stable extreme area algorithm; directional FAST and rotation algorithm; scale-invariant feature transformation algorithm; accelerated robust feature algorithm; and the like.

图4D图示了根据本发明的实施例的示例过程流程。在一些实施例中,一个或多个计算设备或部件(例如,编码设备/模块、转码设备/模块、解码设备/模块、逆色调映射设备/模块、色调映射设备/模块、媒体设备/模块、反向映射生成和应用系统等)可以执行此过程流程。在框462中,如本文所描述的系统对一对训练SDR图像与训练HDR图像中的每个训练图像执行相应相机失真校正操作,以生成一对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像。FIG4D illustrates an example process flow according to an embodiment of the present invention. In some embodiments, one or more computing devices or components (e.g., encoding device/module, transcoding device/module, decoding device/module, inverse tone mapping device/module, tone mapping device/module, media device/module, reverse mapping generation and application system, etc.) may perform this process flow. In block 462, a system as described herein performs a corresponding camera distortion correction operation on each training image in a pair of training SDR images and training HDR images to generate a corresponding undistorted image in a pair of undistorted training SDR images and undistorted training HDR images.

在框464中,该系统使用从该对无失真训练SDR图像与无失真训练HDR图像中的每个无失真图像检测到的角图案标记生成一对SDR图像投影变换与HDR图像投影变换中的相应投影变换。In block 464, the system generates a corresponding projective transform in a pair of SDR image projective transforms and HDR image projective transforms using the corner pattern signatures detected from each undistorted image in the pair of undistorted training SDR images and undistorted training HDR images.

在框466中,该系统将该对SDR图像投影变换与HDR图像投影变换中的每个投影变换应用于该对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像,以生成一对纠正后训练SDR图像与纠正后训练HDR图像中的相应纠正后图像。In box 466, the system applies each of the projective transforms in the pair of SDR image projective transforms and HDR image projective transforms to a corresponding undistorted image in the pair of undistorted training SDR images and undistorted training HDR images to generate a corresponding rectified image in a pair of rectified training SDR images and rectified training HDR images.

在框468中,该系统从该纠正后训练SDR图像中提取一组SDR色标并从该纠正后训练HDR图像中提取一组HDR色标。In block 468, the system extracts a set of SDR color labels from the corrected training SDR image and a set of HDR color labels from the corrected training HDR image.

在框470中,该系统至少部分地基于从该训练SDR图像和该训练HDR图像得到的该组SDR色标和该组HDR色标生成优化的SDR到HDR映射。In block 470, the system generates an optimized SDR-to-HDR mapping based at least in part on the set of SDR color labels and the set of HDR color labels derived from the training SDR image and the training HDR image.

在框472中,该系统将该优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。In block 472, the system applies the optimized SDR-to-HDR mapping to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

在实施例中,分别由在SDR捕获模式下操作的第一捕获设备和在HDR捕获模式下操作的第二捕获设备从常见色表图像捕获该训练SDR图像和该训练HDR图像。In an embodiment, the training SDR image and the training HDR image are captured from a common color table image by a first capture device operating in an SDR capture mode and a second capture device operating in an HDR capture mode, respectively.

在实施例中,该常见色表图像选自多个色表图像,该多个色表图像中的每一个包括布置成二维色表的不同色标分布。In an embodiment, the common color table image is selected from a plurality of color table images, each of the plurality of color table images comprising a different color scale distribution arranged into a two-dimensional color table.

在实施例中,用随机地选自具有特定统计均值与方差值组合的常见统计分布的随机颜色生成该不同色标分布。In an embodiment, the different color scale distributions are generated with random colors randomly selected from a common statistical distribution having a specific statistical mean and variance value combination.

在实施例中,该常见色表图像在常见参考图像显示器的屏幕上渲染并由该第一捕获设备和该第二捕获设备从该屏幕捕获。In an embodiment, the common color table image is rendered on a screen of a common reference image display and is captured from the screen by the first capture device and the second capture device.

在实施例中,这些相应相机失真校正操作至少部分地基于从利用用于获取该训练图像的相机执行的相机校准过程生成的相机特定失真系数。In an embodiment, the respective camera distortion correction operations are based at least in part on camera specific distortion coefficients generated from a camera calibration process performed with the camera used to acquire the training images.

在实施例中,使用该组SDR色标和该组HDR色标来得到三维映射表(3DMT);至少部分地基于该3DMT来生成该优化的SDR到HDR映射。In an embodiment, a three-dimensional mapping table (3DMT) is obtained using the set of SDR color labels and the set of HDR color labels; and the optimized SDR to HDR mapping is generated based at least in part on the 3DMT.

在实施例中,该优化的SDR到HDR映射表示以下项之一:基于TPB的映射或非基于TPB的映射。In an embodiment, the optimized SDR to HDR mapping represents one of the following: a TPB-based mapping or a non-TPB-based mapping.

在实施例中,该优化的SDR到HDR映射是以下项之一:应用于在视频信号中表示的所有非训练SDR图像的静态映射,或至少部分地基于在该视频信号中表示的非训练SDR图像中的一个非训练SDR图像的特定SDR码字值分布来生成的动态映射。In an embodiment, the optimized SDR to HDR mapping is one of: a static mapping applied to all non-training SDR images represented in the video signal, or a dynamic mapping generated based at least in part on a particular SDR codeword value distribution for one of the non-training SDR images represented in the video signal.

图4E图示了根据本发明的实施例的示例过程流程。在一些实施例中,一个或多个计算设备或部件(例如,编码设备/模块、转码设备/模块、解码设备/模块、逆色调映射设备/模块、色调映射设备/模块、媒体设备/模块、反向映射生成和应用系统等)可以执行此过程流程。在框482中,如本文所描述的系统构建分布在HDR颜色空间中用于表示经重建HDR图像的采样HDR颜色空间点。FIG4E illustrates an example process flow according to an embodiment of the present invention. In some embodiments, one or more computing devices or components (e.g., encoding device/module, transcoding device/module, decoding device/module, inverse tone mapping device/module, tone mapping device/module, media device/module, reverse mapping generation and application system, etc.) may perform this process flow. In block 482, a system as described herein constructs sampled HDR color space points distributed in an HDR color space for representing a reconstructed HDR image.

在框484中,该系统将这些采样HDR颜色空间点转换为第一SDR颜色空间中的SDR颜色空间点,要由编辑设备编辑的SDR图像在该第一SDR颜色空间中表示。In box 484, the system converts the sampled HDR color space points to SDR color space points in a first SDR color space in which the SDR image to be edited by the editing device is represented.

在框486中,该系统基于该第一SDR颜色空间中的这些SDR颜色空间点的极端SDR码字值来确定定界SDR颜色空间矩形并从这些SDR颜色空间点的分布确定不规则3D形状。In block 486, the system determines a bounding SDR color space rectangle based on extreme SDR codeword values of the SDR color space points in the first SDR color space and determines an irregular 3D shape from the distribution of the SDR color space points.

在框488中,该系统构建分布在该第一SDR颜色空间中的该定界SDR颜色空间矩形中的采样SDR颜色空间点。In block 488, the system constructs sampled SDR color space points distributed in the bounding SDR color space rectangle in the first SDR color space.

在框490中,该系统使用这些采样SDR颜色空间点和该不规则形状来生成边界剪切3D-LUT。该边界剪切3D-LUT使用这些采样SDR颜色空间点作为查找键。The system generates a boundary clipping 3D-LUT using the sampled SDR color space points and the irregular shape in block 490. The boundary clipping 3D-LUT uses the sampled SDR color space points as lookup keys.

在框492中,该系统至少部分地基于该边界剪切3D-LUT来对该第一SDR颜色空间中的编辑后SDR图像执行剪切操作,以生成该第一SDR颜色空间中的边界经剪切编辑后SDR图像。In block 492, the system performs a shearing operation on the edited SDR image in the first SDR color space based at least in part on the boundary-cropped 3D-LUT to generate a boundary-cropped edited SDR image in the first SDR color space.

在实施例中,这些剪切操作包括首先使用该定界SDR颜色空间矩形来对该编辑后SDR图像执行规则剪切以生成规则剪切的编辑后SDR图像,并且随后使用该3D-LUT来对该规则剪切的编辑后SDR图像执行不规则剪切以生成该边界经剪切编辑后SDR图像。In an embodiment, these cropping operations include first performing regular cropping on the edited SDR image using the delimiting SDR color space rectangle to generate a regularly cropped edited SDR image, and then performing irregular cropping on the regularly cropped edited SDR image using the 3D-LUT to generate the boundary cropped edited SDR image.

在实施例中,将该要编辑的SDR图像中的一组一个或多个SDR像素从一个或多个第一光亮度值编辑为该编辑后图像中的一个或多个第二光亮度值;该一个或多个第二光亮度值不同于该一个或多个第一光亮度值。In an embodiment, a group of one or more SDR pixels in the SDR image to be edited is edited from one or more first brightness values to one or more second brightness values in the edited image; the one or more second brightness values are different from the one or more first brightness values.

在实施例中,将该要编辑的SDR图像中的一组一个或多个SDR像素从一个或多个第一色度值编辑为该编辑后图像中的一个或多个第二色度值;该一个或多个第二色度值不同于该一个或多个第一色度值。In an embodiment, a group of one or more SDR pixels in the SDR image to be edited is edited from one or more first chromaticity values to one or more second chromaticity values in the edited image; the one or more second chromaticity values are different from the one or more first chromaticity values.

在实施例中,在该编辑后SDR图像中去除在该要编辑的SDR图像中描绘的图像细节。In an embodiment, image details depicted in the SDR image to be edited are removed in the edited SDR image.

在实施例中,在该编辑后SDR图像中添加在该要编辑的SDR图像中未描绘的图像细节。In an embodiment, image details not depicted in the SDR image to be edited are added to the edited SDR image.

在实施例中,该3D-LUT包括一个或多个节点,这些节点中的每一个包括查找键和查找值;该查找键等于该查找值;该查找键在该不规则形状内。In an embodiment, the 3D-LUT comprises one or more nodes, each of the nodes comprising a lookup key and a lookup value; the lookup key is equal to the lookup value; the lookup key is within the irregular shape.

在实施例中,该3D-LUT包括一个或多个节点,这些节点中的每一个包括查找键和查找值;该查找键在该不规则形状外,而该查找值在该不规则形状内。In an embodiment, the 3D-LUT comprises one or more nodes, each of the nodes comprising a lookup key and a lookup value; the lookup key is outside the irregular shape, and the lookup value is inside the irregular shape.

在实施例中,基于索引函数来确定该查找值,该索引函数采用该不规则形状和该查找键作为输入并且返回该查找键的最近邻作为输出。In an embodiment, the lookup value is determined based on an index function that takes the irregular shape and the lookup key as input and returns the nearest neighbor of the lookup key as output.

在实施例中,如显示设备、移动设备、机顶盒、多媒体设备等计算设备被配置用于执行前述方法中的任一种方法。在实施例中,一种装置包括处理器,并且被配置用于执行前述方法中的任一种方法。在实施例中,一种非暂态计算机可读存储介质存储有软件指令,这些软件指令当由一个或多个处理器执行时使得执行前述方法中的任一种方法。In an embodiment, a computing device such as a display device, a mobile device, a set-top box, a multimedia device, etc. is configured to perform any of the aforementioned methods. In an embodiment, an apparatus includes a processor and is configured to perform any of the aforementioned methods. In an embodiment, a non-transitory computer-readable storage medium stores software instructions that, when executed by one or more processors, cause any of the aforementioned methods to be performed.

在实施例中,一种计算设备包括一个或多个处理器以及一个或多个存储介质,该一个或多个存储介质存储指令集,该指令集当由一个或多个处理器执行时使得执行前述方法中的任一种方法。In an embodiment, a computing device includes one or more processors and one or more storage media storing a set of instructions that, when executed by the one or more processors, causes performance of any of the foregoing methods.

注意,尽管本文讨论了单独的实施例,但是本文讨论的实施例和/或部分实施例的任何组合都可以组合以形成进一步实施例。Note that although separate embodiments are discussed herein, any combination of embodiments and/or portions of embodiments discussed herein may be combined to form further embodiments.

示例计算机系统实施方式Example Computer System Implementation

本发明的实施例可以利用计算机系统、以电子电路和部件来配置的系统、集成电路(IC)设备(如微控制器、现场可编程门阵列(FPGA)或另一个可配置或可编程逻辑器件(PLD)、离散时间或数字信号处理器(DSP)、专用IC(ASIC))和/或包括这种系统、设备或部件中的一个或多个的装置来实施。计算机和/或IC可以执行、控制或实施与对具有增强动态范围的图像的自适应感知量化有关的指令,如本文所描述的那些。计算机和/或IC可以计算与本文所描述的自适应感知量化过程有关的各种参数或值中的任何参数或值。图像和视频实施例可以以硬件、软件、固件及其各种组合来实施。Embodiments of the present invention may be implemented using a computer system, a system configured with electronic circuits and components, an integrated circuit (IC) device such as a microcontroller, a field programmable gate array (FPGA) or another configurable or programmable logic device (PLD), a discrete time or digital signal processor (DSP), an application specific IC (ASIC), and/or an apparatus including one or more of such systems, devices, or components. The computer and/or IC may execute, control, or implement instructions related to adaptive perceptual quantization of images with enhanced dynamic range, such as those described herein. The computer and/or IC may calculate any of the various parameters or values related to the adaptive perceptual quantization process described herein. The image and video embodiments may be implemented in hardware, software, firmware, and various combinations thereof.

本发明的某些实施方式包括执行软件指令的计算机处理器,这些软件指令使处理器执行本公开的方法。例如,显示器、编码器、机顶盒、转码器等中的一个或多个处理器可以通过执行所述处理器可访问的程序存储器中的软件指令来实施与如上所述的对HDR图像的自适应感知量化有关的方法。还可以以程序产品的形式提供本发明的实施例。程序产品可以包括携带一组计算机可读信号的任何非暂态介质,该组计算机可读信号包括指令,这些指令当由数据处理器执行时使数据处理器执行本发明的实施例的方法。根据本发明的实施例的程序产品可以采用各种形式中的任何一种。程序产品可以包括例如物理介质,如包括软盘、硬盘驱动器的磁性数据存储介质、包括CD ROM、DVD的光学数据存储介质、包括ROM、闪速RAM的电子数据存储介质等。程序产品上的计算机可读信号可以可选地被压缩或加密。Certain embodiments of the present invention include a computer processor that executes software instructions that cause the processor to perform the method of the present disclosure. For example, one or more processors in a display, an encoder, a set-top box, a transcoder, etc. can implement methods related to adaptive perceptual quantization of HDR images as described above by executing software instructions in a program memory accessible to the processor. Embodiments of the present invention can also be provided in the form of a program product. The program product may include any non-transient medium carrying a set of computer-readable signals, the set of computer-readable signals including instructions that, when executed by a data processor, cause the data processor to perform the method of an embodiment of the present invention. The program product according to an embodiment of the present invention may take any of a variety of forms. The program product may include, for example, a physical medium, such as a magnetic data storage medium including a floppy disk, a hard disk drive, an optical data storage medium including a CD ROM, a DVD, an electronic data storage medium including a ROM, a flash RAM, etc. The computer-readable signal on the program product may be optionally compressed or encrypted.

在上面提到部件(例如,软件模块、处理器、组件、设备、电路等)的情况下,除非另有指明,否则对所述部件的引用(包括对“装置”的引用)都应该被解释为包括执行所描述部件的功能的任何部件为所述部件的等同物(例如,功能上等同的),包括在结构上不等同于执行在本发明的所图示示例实施例中的功能的所公开结构的部件。Where components (e.g., software modules, processors, components, devices, circuits, etc.) are mentioned above, unless otherwise indicated, references to the components (including references to "means") should be interpreted to include any components that perform the functions of the described components as equivalents (e.g., functionally equivalent) to the components, including components that are not structurally equivalent to the disclosed structures that perform the functions in the illustrated example embodiments of the invention.

根据一个实施例,本文所描述的技术由一个或多个专用计算设备实施。专用计算设备可以是硬接线的,以用于执行这些技术,或者可以包括被持久地编程以执行这些技术的数字电子设备,如一个或多个专用集成电路(ASIC)或现场可编程门阵列(FPGA),或者可以包括被编程为根据固件、存储器、其他存储装置或组合中的程序指令执行这些技术的一个或多个通用硬件处理器。这种专用计算设备也可以将定制的硬接线逻辑、ASIC或FPGA与定制编程相组合来实现这些技术。专用计算设备可以是台式计算机系统、便携式计算机系统、手持式设备、联网设备、或并入硬接线和/或程序逻辑以实施技术的任何其他设备。According to one embodiment, the technology described herein is implemented by one or more special computing devices. Special computing devices can be hard-wired, for performing these technologies, or can include digital electronic devices that are permanently programmed to perform these technologies, such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs), or can include one or more general-purpose hardware processors that are programmed to perform these technologies according to program instructions in firmware, memory, other storage devices, or combinations. This special computing device can also combine customized hard-wired logic, ASIC or FPGA with custom programming to realize these technologies. Special computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other equipment that incorporates hard wiring and/or program logic to implement technology.

例如,图5是图示了可以在其上实施本发明的实施例的计算机系统500的框图。计算机系统500包括总线502或用于传送信息的其他通信机制、以及与总线502耦接以处理信息的硬件处理器504。硬件处理器504可以是例如通用微处理器。For example, Figure 5 is a block diagram illustrating a computer system 500 on which an embodiment of the present invention may be implemented. Computer system 500 includes a bus 502 or other communication mechanism for transmitting information, and a hardware processor 504 coupled to bus 502 for processing information. Hardware processor 504 may be, for example, a general-purpose microprocessor.

计算机系统500还包括耦接到总线502以用于存储要由处理器504执行的信息和指令的主存储器506,如随机存取存储器(RAM)或其他动态存储设备。主存储器506还可以用于存储在执行要由处理器504执行的指令期间的临时变量或其他中间信息。在被存储于处理器504可访问的非暂态存储介质中时,这种指令使得计算机系统500变成被自定义为执行在指令中指定的操作的专用机器。Computer system 500 also includes a main memory 506, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 502 for storing information and instructions to be executed by processor 504. Main memory 506 may also be used to store temporary variables or other intermediate information during execution of instructions to be executed by processor 504. Such instructions, when stored in a non-transitory storage medium accessible to processor 504, cause computer system 500 to become a special-purpose machine customized to perform the operations specified in the instructions.

计算机系统500进一步包括只读存储器(ROM)508或耦接到总线502以用于存储处理器504的静态信息和指令的其他静态存储设备。提供存储设备510(如磁盘或光盘),并将其耦接到总线502以用于存储信息和指令。Computer system 500 further includes a read only memory (ROM) 508 or other static storage device coupled to bus 502 for storing static information and instructions for processor 504. A storage device 510, such as a magnetic disk or optical disk, is provided and coupled to bus 502 for storing information and instructions.

计算机系统500可以经由总线502耦接到如液晶显示器等显示器512上,以用于向计算机用户显示信息。包括字母数字键和其他键的输入设备514耦接到总线502,以用于将信息和命令选择传送到处理器504。另一种类型的用户输入设备是如鼠标、轨迹球或光标方向键等光标控件516,以用于将方向信息和命令选择传送到处理器504并用于控制在显示器512上的光标移动。典型地,此输入设备具有在两条轴线(第一轴线(例如,x轴)和第二轴线(例如,y轴))上的两个自由度,允许设备在平面中指定位置。The computer system 500 may be coupled to a display 512, such as a liquid crystal display, via the bus 502 for displaying information to a computer user. An input device 514, including alphanumeric and other keys, is coupled to the bus 502 for communicating information and command selections to the processor 504. Another type of user input device is a cursor control 516, such as a mouse, trackball, or cursor direction keys, for communicating direction information and command selections to the processor 504 and for controlling cursor movement on the display 512. Typically, this input device has two degrees of freedom in two axes, a first axis (e.g., an x-axis) and a second axis (e.g., a y-axis), allowing the device to specify a position in a plane.

计算机系统500可以使用自定义硬接线逻辑、一个或多个ASIC或FPGA、固件和/或程序逻辑来实施本文所描述的技术,这些自定义硬接线逻辑、一个或多个ASIC或FPGA、固件和/或程序逻辑与计算机系统相组合使计算机系统500成为或编程为专用机器。根据一个实施例,响应于处理器504执行包含在主存储器506中的一个或多个指令的一个或多个序列,计算机系统500执行如本文所描述的技术。可以将这种指令从另一个存储介质(如存储设备510)读取到主存储器506中。包含在主存储器506中的指令序列的执行使处理器504执行本文所描述的过程步骤。在替代性实施例中,可以使用硬接线电路来代替软件指令或者与软件指令相结合。The computer system 500 may implement the techniques described herein using custom hardwired logic, one or more ASICs or FPGAs, firmware, and/or program logic that, in combination with the computer system, enables the computer system 500 to become or be programmed as a special purpose machine. According to one embodiment, the computer system 500 performs the techniques described herein in response to the processor 504 executing one or more sequences of one or more instructions contained in the main memory 506. Such instructions may be read into the main memory 506 from another storage medium, such as the storage device 510. Execution of the sequences of instructions contained in the main memory 506 causes the processor 504 to perform the process steps described herein. In alternative embodiments, hardwired circuits may be used in place of or in combination with software instructions.

如本文所使用的术语“存储介质”是指存储使机器以特定方式操作的数据和/或指令的任何非暂态介质。这种存储介质可以包括非易失性介质和/或易失性介质。非易失性介质包括例如光盘或磁盘,如存储设备510。易失性介质包括动态存储器,如主存储器506。常见形式的存储介质包括例如软盘、软磁盘、硬盘、固态驱动器、磁带或任何其他磁性数据存储介质、CD-ROM、任何其他光学数据存储介质、具有孔图案的任何物理介质、RAM、PROM和EPROM、闪速EPROM、NVRAM、任何其他存储器芯片或存储盒。The term "storage medium" as used herein refers to any non-transitory medium that stores data and/or instructions that cause a machine to operate in a particular manner. Such storage media may include non-volatile media and/or volatile media. Non-volatile media include, for example, optical or magnetic disks, such as storage device 510. Volatile media include dynamic memory, such as main memory 506. Common forms of storage media include, for example, floppy disks, diskettes, hard disks, solid-state drives, magnetic tapes or any other magnetic data storage medium, CD-ROMs, any other optical data storage medium, any physical medium with a pattern of holes, RAM, PROMs and EPROMs, flash EPROMs, NVRAMs, any other memory chips or storage boxes.

存储介质不同于传输介质但可以与传输介质结合使用。传输介质参与存储介质之间的信息传递。例如,传输介质包括同轴电缆、铜线和光纤,包括包含总线502的导线。传输介质还可以采用声波或光波的形式,如在无线电波和红外数据通信期间生成的那些声波或光波。Storage media are distinct from but can be used in conjunction with transmission media. Transmission media participate in the transfer of information between storage media. For example, transmission media include coaxial cables, copper wire, and optical fiber, including the wires that comprise bus 502. Transmission media can also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.

各种形式的介质可以涉及将一个或多个指令的一个或多个序列载送到处理器504以供执行。例如,最初可以在远程计算机的磁盘或固态驱动器上载送指令。远程计算机可以将指令加载到其动态存储器中,并使用调制解调器通过电话线发送指令。计算机系统500本地的调制解调器可以接收电话线上的数据并使用红外发射器将数据转换成红外信号。红外检测器可以接收红外信号中载送的数据,并且适当的电路可以将数据放在总线502上。总线502将数据载送到主存储器506,处理器504从主存储器取得并执行指令。主存储器506接收的指令可以可选地在由处理器504执行之前或之后存储在存储设备510上。Various forms of media may be involved in carrying one or more sequences of one or more instructions to the processor 504 for execution. For example, the instructions may be initially carried on a disk or solid-state drive of a remote computer. The remote computer may load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to the computer system 500 may receive the data on the telephone line and convert the data into an infrared signal using an infrared transmitter. An infrared detector may receive the data carried in the infrared signal, and appropriate circuitry may place the data on the bus 502. The bus 502 carries the data to the main memory 506, from which the processor 504 retrieves and executes the instructions. The instructions received by the main memory 506 may optionally be stored on the storage device 510 before or after execution by the processor 504.

计算机系统500还包括耦接到总线502的通信接口518。通信接口518提供耦接到网络链路520的双向数据通信,该网络链路连接到本地网络522。例如,通信接口518可以是综合业务数字网(ISDN)卡、电缆调制解调器、卫星调制解调器、或用于向对应类型的电话线提供数据通信连接的调制解调器。作为另一示例,通信接口518可以是局域网(LAN)卡,用于提供与兼容LAN的数据通信连接。还可以实施无线链路。在任何这种实施方式中,通信接口518发送并接收携带表示各种类型信息的数字数据流的电信号、电磁信号或光学信号。Computer system 500 also includes a communication interface 518 coupled to bus 502. Communication interface 518 provides bidirectional data communication coupled to network link 520, which is connected to local network 522. For example, communication interface 518 can be an integrated services digital network (ISDN) card, a cable modem, a satellite modem, or a modem for providing a data communication connection to a telephone line of a corresponding type. As another example, communication interface 518 can be a local area network (LAN) card for providing a data communication connection with a compatible LAN. A wireless link can also be implemented. In any such implementation, communication interface 518 sends and receives electrical signals, electromagnetic signals, or optical signals carrying digital data streams representing various types of information.

网络链路520通常通过一个或多个网络向其他数据设备提供数据通信。例如,网络链路520可以提供通过本地网络522到主计算机524或到由因特网服务提供商(ISP)526操作的数据设备的连接。ISP 526进而通过现在通常称为“因特网”528的全球分组数据通信网络来提供数据通信服务。本地网络522和因特网528都使用载送数字数据流的电信号、电磁信号或光信号。通过各种网络的信号以及网络链路520上和通过通信接口518的信号(其将数字数据载送到计算机系统500和从计算机系统载送数字数据)是传输介质的示例形式。The network link 520 typically provides data communication to other data devices through one or more networks. For example, the network link 520 can provide a connection through a local network 522 to a host computer 524 or to data equipment operated by an Internet Service Provider (ISP) 526. The ISP 526 in turn provides data communication services through the global packet data communication network now commonly referred to as the "Internet" 528. Both the local network 522 and the Internet 528 use electrical, electromagnetic, or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link 520 and through the communication interface 518 (which carry the digital data to and from the computer system 500) are example forms of transmission media.

计算机系统500可以通过网络、网络链路520和通信接口518发送消息和接收数据,包括程序代码。在因特网示例中,服务器530可以通过因特网528、ISP 526、本地网络522和通信接口518传输应用程序的请求代码。Computer system 500 can send messages and receive data, including program code, through the network, network link 520 and communication interface 518. In the Internet example, server 530 can transmit the requested code for an application program through Internet 528, ISP 526, local network 522 and communication interface 518.

所接收的代码可以在被接收到时由处理器504执行,和/或存储在存储设备510或其他非易失性存储中以供稍后执行。The received code may be executed by processor 504 as it is received, and/or stored in storage device 510 or other non-volatile storage for later execution.

等同物、扩展、替代方案和杂项Equivalents, extensions, alternatives and miscellaneous

在前述说明书中,已经参考许多具体细节描述了本发明的实施例,这些细节可以根据实施方式而变化。因此,指明本发明的要求保护的实施例以及申请人认为的本发明的要求保护的实施例的唯一且排他性指示是根据本申请以具体形式发布的权利要求组,其中,这种权利要求发布包括任何后续校正。本文中针对这种权利要求中包含的术语明确阐述的任何定义应该支配如在权利要求中使用的这种术语的含义。因此,权利要求中未明确引用的限制、要素、性质、特征、优点或属性不应该以任何方式限制这种权利要求的范围。因此,应当从说明性而非限制性意义上看待本说明书和附图。In the foregoing description, embodiments of the present invention have been described with reference to many specific details, which may vary depending on the implementation. Therefore, the only and exclusive indication of the claimed embodiments of the present invention and the claimed embodiments of the present invention considered by the applicant is the set of claims issued in a specific form according to the present application, wherein such claim issuance includes any subsequent corrections. Any definition explicitly set forth herein for the terms contained in such claims should govern the meaning of such terms as used in the claims. Therefore, limitations, elements, properties, features, advantages or attributes not explicitly cited in the claims should not limit the scope of such claims in any way. Therefore, this specification and the drawings should be viewed in an illustrative rather than a restrictive sense.

枚举的示例性实施例Example embodiments of the enumeration

本发明可以以本文描述的任何形式实施,包括但不限于以下描述了本发明的实施例的一些部分的结构、特征和功能的枚举的示例实施例(EEE)。The present invention may be embodied in any form described herein, including but not limited to the following enumerated example embodiments (EEE) which describe the structure, features, and functionality of some portions of embodiments of the present invention.

EEE1.一种方法,包括:EEE1. A method comprising:

构建分布在高动态范围(HDR)颜色空间中的采样HDR颜色空间点,其中,所述HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化,其中,所述色原缩放参数用于计算勾画所述HDR颜色空间的多个色原中的至少一个的颜色空间坐标;constructing sampled high dynamic range (HDR) color space points distributed in a HDR color space, wherein the HDR color space is parameterized by a chromatic ablation parameter having a candidate value selected from a plurality of candidate values, wherein the chromatic ablation parameter is used to calculate color space coordinates of at least one of a plurality of chromatic ablation delineating the HDR color space;

从所述HDR颜色空间中的所述采样HDR颜色空间点生成:(a)在参考SDR颜色空间中表示的参考标准动态范围(SDR)颜色空间点,(b)在输入HDR颜色空间中表示的输入HDR颜色空间点,以及(c)在参考HDR颜色空间点中表示的参考HDR颜色空间点;generating from the sampled HDR color space points in the HDR color space: (a) a reference standard dynamic range (SDR) color space point expressed in a reference SDR color space, (b) an input HDR color space point expressed in an input HDR color space, and (c) a reference HDR color space point expressed in a reference HDR color space point;

执行重塑操作优化算法以生成优化的正向重塑映射和优化的反向重塑映射链,其中,所述重塑操作优化算法使用所述参考SDR颜色空间点、所述输入HDR颜色空间点和所述参考HDR颜色空间点作为输入;executing a reshaping operation optimization algorithm to generate an optimized forward reshaping mapping and an optimized chain of reverse reshaping mappings, wherein the reshaping operation optimization algorithm uses as input the reference SDR color space point, the input HDR color space point, and the reference HDR color space point;

其中,所述优化的正向重塑映射用于将所述输入HDR颜色空间中的输入HDR图像正向重塑为经正向重塑SDR颜色空间中的经正向重塑SDR图像;其中,所述优化的反向重塑映射用于将所述经正向重塑SDR颜色空间中的所述经正向重塑SDR图像反向重塑为经反向重塑HDR图像。wherein the optimized forward reshaping mapping is used to forward reshape the input HDR image in the input HDR color space into a forward reshaped SDR image in the forward reshaped SDR color space; wherein the optimized reverse reshaping mapping is used to reverse reshape the forward reshaped SDR image in the forward reshaped SDR color space into a reverse reshaped HDR image.

EEE2.如EEE1所述的方法,其中,在所述HDR颜色空间中构建所述采样HDR颜色空间点而不使用任何图像。EEE2. A method as described in EEE1, wherein the sampled HDR color space points are constructed in the HDR color space without using any image.

EEE3.如EEE1或EEE2所述的方法,其中,通过所述重塑操作优化算法针对所述色原缩放参数的多个候选值生成多条优化的正向重塑映射和优化的反向重塑映射链;其中,所述多条优化的正向重塑映射和优化的反向重塑映射链中的每条链包括相应优化的正向重塑映射和相应优化的反向重塑映射。EEE3. A method as described in EEE1 or EEE2, wherein a plurality of optimized forward reshaping mappings and optimized reverse reshaping mapping chains are generated for a plurality of candidate values of the color source scaling parameter through the reshaping operation optimization algorithm; wherein each of the plurality of optimized forward reshaping mappings and optimized reverse reshaping mapping chains includes a corresponding optimized forward reshaping mapping and a corresponding optimized reverse reshaping mapping.

EEE4.如EEE1至EEE3中任一项所述的方法,其中,至少部分地基于预定义HDR到SDR映射来将所述采样HDR颜色空间点映射到所述参考SDR颜色空间点。EEE4. A method as described in any one of EEE1 to EEE3, wherein the sampled HDR color space points are mapped to the reference SDR color space points based at least in part on a predefined HDR to SDR mapping.

EEE5.如EEE1至EEE4中任一项所述的方法,其中,针对所述多条优化的正向重塑映射和优化的反向重塑映射链计算多组预测误差;其中,针对所述多条优化的正向重塑映射和优化的反向重塑映射链中的相应链计算所述多组预测误差中的每一组预测误差;其中,所述多组预测误差用于从所述色原缩放参数的多个候选值中选择特定候选值。EEE5. A method as described in any one of EEE1 to EEE4, wherein multiple groups of prediction errors are calculated for the multiple chains of optimized forward reshaping mappings and optimized reverse reshaping mappings; wherein each group of prediction errors in the multiple groups of prediction errors is calculated for a corresponding chain in the multiple chains of optimized forward reshaping mappings and optimized reverse reshaping mappings; wherein the multiple groups of prediction errors are used to select a specific candidate value from multiple candidate values of the chromatic algebra scaling parameter.

EEE6.如EEE5所述的方法,其中,使用所述色原缩放参数的特定候选值来生成特定优化的正向重塑映射和特定优化的反向重塑映射的特定链。EEE6. A method as described in EEE5, wherein a specific candidate value of the color source scaling parameter is used to generate a specific chain of a specific optimized forward reshaping mapping and a specific optimized reverse reshaping mapping.

EEE7.如EEE6所述的方法,其中,在正向重塑三维查找表中表示所述特定优化的正向重塑映射。EEE7. A method as described in EEE6, wherein the specifically optimized forward reshaping mapping is represented in a forward reshaping three-dimensional lookup table.

EEE8.如EEE6或EEE7所述的方法,其中,在反向重塑三维查找表中表示所述特定优化的反向重塑映射。EEE8. A method as described in EEE6 or EEE7, wherein the specifically optimized inverse reshaping mapping is represented in an inverse reshaping three-dimensional lookup table.

EEE9.如EEE6至EEE8中任一项所述的方法,其中,视频编码器将所述优化的正向重塑映射应用于输入HDR图像序列以生成经正向重塑SDR图像序列并且将所述经正向重塑SDR图像序列编码到视频信号中。EEE9. A method as described in any one of EEE6 to EEE8, wherein the video encoder applies the optimized forward reshaping mapping to an input HDR image sequence to generate a forward reshaped SDR image sequence and encodes the forward reshaped SDR image sequence into a video signal.

EEE10.如EEE6至EEE9中任一项所述的方法,其中,视频解码器从视频信号中解码经正向重塑SDR图像序列并且将所述优化的反向重塑映射应用于所述经正向重塑SDR图像序列以生成经反向重塑HDR图像序列。EEE10. A method as described in any one of EEE6 to EEE9, wherein the video decoder decodes a forward reshaped SDR image sequence from a video signal and applies the optimized reverse reshaping mapping to the forward reshaped SDR image sequence to generate a reverse reshaped HDR image sequence.

EEE11.如EEE10所述的方法,其中,在与所述视频解码器一起操作的图像显示器上渲染从所述经反向重塑HDR图像序列得到的显示图像序列。EEE11. A method as described in EEE10, wherein a display image sequence obtained from the inversely reshaped HDR image sequence is rendered on an image display operating with the video decoder.

EEE12.如EEE1至EEE10中任一项所述的方法,其中,所述HDR颜色空间和所述输入HDR颜色空间共用公共白点。EEE12. A method as described in any one of EEE1 to EEE10, wherein the HDR color space and the input HDR color space share a common white point.

EEE13.如EEE1至EEE10中任一项所述的方法,其中,所述重塑操作优化算法表示具有中性颜色保留的反向误差减法用于信号调整(BESA)算法。EEE13. A method as described in any one of EEE1 to EEE10, wherein the reshaping operation optimization algorithm represents a Backward Error Subtraction with Neutral Color Preservation for Signal Adjustment (BESA) algorithm.

EEE14.一种方法,包括:EEE14. A method comprising:

构建分布在高动态范围(HDR)颜色空间中的采样HDR颜色空间点,其中,所述HDR颜色空间通过具有从多个候选值中选择的候选值的色原缩放参数来参数化,其中,所述色原缩放参数用于计算勾画所述HDR颜色空间的多个色原中的至少一个的颜色空间坐标;constructing sampled high dynamic range (HDR) color space points distributed in a HDR color space, wherein the HDR color space is parameterized by a chromatic ablation parameter having a candidate value selected from a plurality of candidate values, wherein the chromatic ablation parameter is used to calculate color space coordinates of at least one of a plurality of chromatic ablation delineating the HDR color space;

从所述HDR颜色空间中的所述采样HDR颜色空间点生成:(a)在输入SDR颜色空间中表示的输入标准动态范围(SDR)颜色空间点和(b)在参考HDR颜色空间点中表示的参考HDR颜色空间点;generating from the sampled HDR color space points in the HDR color space: (a) an input standard dynamic range (SDR) color space point represented in an input SDR color space and (b) a reference HDR color space point represented in a reference HDR color space point;

执行重塑操作优化算法以生成优化的反向重塑映射,其中,所述重塑操作优化算法接收所述输入SDR颜色空间点和所述参考HDR颜色空间点作为输入;executing a reshaping operation optimization algorithm to generate an optimized inverse reshaping mapping, wherein the reshaping operation optimization algorithm receives as input the input SDR color space point and the reference HDR color space point;

其中,所述反向重塑映射用于将所述输入SDR颜色空间中的SDR图像反向重塑为经反向重塑HDR图像。The inverse reshaping mapping is used to inversely reshape the SDR image in the input SDR color space into a inversely reshaped HDR image.

EEE15.如EEE14所述的方法,其中,在所述HDR颜色空间中构建所述采样HDR颜色空间点而不使用任何图像。EEE15. A method as described in EEE14, wherein the sampled HDR color space points are constructed in the HDR color space without using any image.

EEE16.如EEE14或EEE15所述的方法,其中,通过所述重塑操作优化算法针对所述色原缩放参数的多个候选值生成多个优化的反向重塑映射;其中,所述多个优化的反向重塑映射中的每个优化的反向重塑映射包括相应优化的反向重塑映射。EEE16. A method as described in EEE14 or EEE15, wherein multiple optimized inverse reshaping mappings are generated for multiple candidate values of the color source scaling parameter through the reshaping operation optimization algorithm; wherein each of the multiple optimized inverse reshaping mappings includes a corresponding optimized inverse reshaping mapping.

EEE17.如EEE14至EEE16中任一项所述的方法,其中,针对所述多个优化的反向重塑映射计算多组预测误差;其中,针对所述多个优化的反向重塑映射中的相应优化的反向重塑映射计算所述多组预测误差中的每一组预测误差;其中,所述多组预测误差用于从所述色原缩放参数的多个候选值中选择特定候选值。EEE17. A method as described in any one of EEE14 to EEE16, wherein multiple groups of prediction errors are calculated for the multiple optimized inverse reshaping mappings; wherein each group of prediction errors in the multiple groups of prediction errors is calculated for a corresponding optimized inverse reshaping mapping in the multiple optimized inverse reshaping mappings; wherein the multiple groups of prediction errors are used to select a specific candidate value from multiple candidate values of the color source scaling parameter.

EEE18.如EEE14至EEE17中任一项所述的方法,其中,可编程图像信号处理器(ISP)流水线至少部分地基于所述可编程ISP流水线的可编程配置参数的优化值来将所述采样HDR颜色空间点处理为所述输入SDR颜色空间点。EEE18. A method as described in any one of EEE14 to EEE17, wherein a programmable image signal processor (ISP) pipeline processes the sampled HDR color space points into the input SDR color space points at least in part based on optimized values of programmable configuration parameters of the programmable ISP pipeline.

EEE19.如EEE14至EEE18中任一项所述的方法,其中,通过将通过所述可编程ISP流水线从HDR图像生成的ISP SDR图像与通过将预定义HDR到SDR映射应用于所述相同HDR图像而生成的参考SDR图像之间的近似误差最小化来确定所述可编程ISP流水线的可编程配置参数的优化值。EEE19. A method as described in any one of EEE14 to EEE18, wherein the optimized values of the programmable configuration parameters of the programmable ISP pipeline are determined by minimizing the approximate error between an ISP SDR image generated from an HDR image by the programmable ISP pipeline and a reference SDR image generated by applying a predefined HDR to SDR mapping to the same HDR image.

EEE20.一种方法,包括:EEE20. A method comprising:

从训练标准动态范围(SDR)图像中提取一组SDR图像特征点并从训练高动态范围(HDR)图像中提取一组HDR图像特征点;Extracting a set of SDR image feature points from the training standard dynamic range (SDR) images and extracting a set of HDR image feature points from the training high dynamic range (HDR) images;

将所述一组SDR图像特征点中的一个或多个SDR图像特征点的子集与所述一组HDR图像特征点中的一个或多个HDR图像特征点的子集相匹配;matching a subset of one or more SDR image feature points in the set of SDR image feature points with a subset of one or more HDR image feature points in the set of HDR image feature points;

使用所述一个或多个SDR图像特征点的子集和所述一个或多个HDR图像特征点的子集生成几何变换,以将所述训练SDR图像中的一组SDR像素与所述训练HDR图像中的一组HDR像素在空间上对齐;generating a geometric transformation using the subset of the one or more SDR image feature points and the subset of the one or more HDR image feature points to spatially align a set of SDR pixels in the training SDR image with a set of HDR pixels in the training HDR image;

在已通过所述几何变换将所述训练SDR图像与所述训练HDR图像在空间上对齐之后从所述训练SDR图像中的所述一组SDR像素和所述训练HDR图像中的所述一组HDR像素确定一组成对SDR色标与HDR色标;determining a set of pairs of SDR color labels and HDR color labels from the set of SDR pixels in the training SDR image and the set of HDR pixels in the training HDR image after the training SDR image and the training HDR image have been spatially aligned by the geometric transformation;

至少部分地基于从所述训练SDR图像和所述训练HDR图像得到的所述一组成对SDR色标与HDR色标生成优化的SDR到HDR映射;generating an optimized SDR to HDR mapping based at least in part on the set of pairs of SDR color scales and HDR color scales derived from the training SDR image and the training HDR image;

将所述优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。The optimized SDR-to-HDR mapping is applied to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

EEE21.如EEE20所述的方法,其中,所述训练SDR图像和所述训练HDR图像分别由在SDR和HDR捕获模式下操作的捕获设备从三维(3D)视觉场景捕获。EEE21. A method as described in EEE20, wherein the training SDR image and the training HDR image are captured from a three-dimensional (3D) visual scene by a capture device operating in SDR and HDR capture modes, respectively.

EEE22.如EEE20或EEE21所述的方法,其中,所述训练SDR图像和所述训练HDR图像形成多对训练SDR图像与训练HDR图像中的一对训练SDR图像与训练HDR图像;其中,至少部分地基于从所述多对训练SDR图像与训练HDR图像得到的多组成对SDR色标与HDR色标生成所述优化的SDR到HDR映射。EEE22. A method as described in EEE20 or EEE21, wherein the training SDR image and the training HDR image form a pair of training SDR images and training HDR images among multiple pairs of training SDR images and training HDR images; wherein the optimized SDR to HDR mapping is generated at least in part based on multiple groups of paired SDR color labels and HDR color labels obtained from the multiple pairs of training SDR images and training HDR images.

EEE23.如EEE20至EEE22中任一项所述的方法,其中,将所述一个或多个SDR图像特征点的子集中的每个SDR图像特征点与所述一个或多个HDR图像特征点的子集中的相应HDR图像特征点相匹配;其中,使用常见特征点提取算法分别从所述训练SDR图像和所述HDR图像提取所述SDR图像特征点和所述HDR图像特征点。EEE23. A method as described in any one of EEE20 to EEE22, wherein each SDR image feature point in the subset of the one or more SDR image feature points is matched with a corresponding HDR image feature point in the subset of the one or more HDR image feature points; wherein the SDR image feature points and the HDR image feature points are extracted from the training SDR image and the HDR image, respectively, using a common feature point extraction algorithm.

EEE24.如EEE23所述的方法,其中,所述常见特征点提取算法表示以下项之一:二进制鲁棒不变可扩展关键点算法;加速分段测试特征算法;KAZE算法;最小特征值算法;最大稳定极值区算法;定向FAST和旋转算法;尺度不变特征变换算法;或加速鲁棒特征算法。EEE24. A method as described in EEE23, wherein the common feature point extraction algorithm represents one of the following items: binary robust invariant scalable key point algorithm; accelerated segmented test feature algorithm; KAZE algorithm; minimum eigenvalue algorithm; maximum stable extreme area algorithm; directional FAST and rotation algorithm; scale-invariant feature transformation algorithm; or accelerated robust feature algorithm.

EEE25.一种方法,包括:EEE25. A method comprising:

对一对训练标准动态范围(SDR)图像与训练高动态范围(HDR)图像中的每个训练图像执行相应相机失真校正操作,以生成一对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像;performing a corresponding camera distortion correction operation on each training image in a pair of training standard dynamic range (SDR) images and training high dynamic range (HDR) images to generate a corresponding undistorted image in a pair of undistorted training SDR images and undistorted training HDR images;

使用从所述一对无失真训练SDR图像与无失真训练HDR图像中的每个无失真图像检测到的角图案标记生成一对SDR图像投影变换与HDR图像投影变换中的相应投影变换;generating a corresponding projection transform in a pair of SDR image projection transforms and HDR image projection transforms using corner pattern markers detected from each undistorted image in the pair of undistorted training SDR images and undistorted training HDR images;

将所述一对SDR图像投影变换与HDR图像投影变换中的每个投影变换应用于所述一对无失真训练SDR图像与无失真训练HDR图像中的相应无失真图像,以生成一对纠正后训练SDR图像与纠正后训练HDR图像中的相应纠正后图像;Applying each of the pair of SDR image projective transforms and HDR image projective transforms to a corresponding undistorted image in the pair of undistorted training SDR images and undistorted training HDR images to generate a corresponding rectified image in a pair of rectified training SDR images and rectified training HDR images;

从所述纠正后训练SDR图像提取一组SDR色标并从所述纠正后训练HDR图像提取一组HDR色标;Extracting a set of SDR color labels from the corrected training SDR image and a set of HDR color labels from the corrected training HDR image;

至少部分地基于从所述训练SDR图像和所述训练HDR图像得到的所述一组SDR色标和所述一组HDR色标生成优化的SDR到HDR映射;generating an optimized SDR to HDR mapping based at least in part on the set of SDR color scales and the set of HDR color scales derived from the training SDR image and the training HDR image;

将所述优化的SDR到HDR映射应用于一个或多个非训练SDR图像,以生成一个或多个对应的非训练HDR图像。The optimized SDR-to-HDR mapping is applied to one or more non-training SDR images to generate one or more corresponding non-training HDR images.

EEE26.如EEE25所述的方法,其中,分别由在SDR捕获模式下操作的第一捕获设备和在HDR捕获模式下操作的第二捕获设备从常见色表图像捕获所述训练SDR图像和所述训练HDR图像。EEE26. The method of EEE25, wherein the training SDR image and the training HDR image are captured from a common color table image by a first capture device operating in an SDR capture mode and a second capture device operating in an HDR capture mode, respectively.

EEE27.如EEE26所述的方法,其中,所述常见色表图像选自多个色表图像,所述多个色表图像中的每一个包括布置成二维色表的不同色标分布。EEE27. A method as described in EEE26, wherein the common color table image is selected from a plurality of color table images, each of the plurality of color table images comprising a different color scale distribution arranged into a two-dimensional color table.

EEE28.如EEE27所述的方法,其中,用随机地选自具有特定统计均值与方差值组合的常见统计分布的随机颜色生成所述不同色标分布。EEE28. A method as described in EEE27, wherein the different color scale distributions are generated using random colors randomly selected from a common statistical distribution having a specific statistical mean and variance value combination.

EEE29.如EEE25至EEE28中任一项所述的方法,其中,所述常见色表图像在常见参考图像显示器的屏幕上渲染并由所述第一捕获设备和所述第二捕获设备从所述屏幕捕获。EEE29. The method as described in any one of EEE25 to EEE28, wherein the common color table image is rendered on a screen of a common reference image display and is captured from the screen by the first capture device and the second capture device.

EEE30.如EEE25至EEE29中任一项所述的方法,其中,所述相应相机失真校正操作至少部分地基于从利用用于获取所述训练图像的相机执行的相机校准过程生成的相机特定失真系数。EEE30. A method as described in any one of EEE25 to EEE29, wherein the corresponding camera distortion correction operation is at least partially based on camera-specific distortion coefficients generated from a camera calibration process performed using a camera used to acquire the training image.

EEE31.如EEE25至EEE30中任一项所述的方法,其中,使用所述一组SDR色标和所述一组HDR色标来得到三维映射表(3DMT);其中,至少部分地基于所述3DMT来生成所述优化的SDR到HDR映射。EEE31. A method as described in any one of EEE25 to EEE30, wherein the set of SDR color standards and the set of HDR color standards are used to obtain a three-dimensional mapping table (3DMT); wherein the optimized SDR to HDR mapping is generated at least in part based on the 3DMT.

EEE32.如EEE25至EEE31中任一项所述的方法,其中,所述优化的SDR到HDR映射表示以下项之一:基于张量积B样条(TPB)的映射或非基于TPB的映射。EEE32. A method as described in any one of EEE25 to EEE31, wherein the optimized SDR to HDR mapping represents one of the following items: a tensor product B-spline (TPB) based mapping or a non-TPB based mapping.

EEE33.如EEE25至EEE32中任一项所述的方法,其中,所述优化的SDR到HDR映射是以下项之一:应用于在视频信号中表示的所有非训练SDR图像的静态映射,或至少部分地基于在所述视频信号中表示的非训练SDR图像中的一个非训练SDR图像的特定SDR码字值分布来生成的动态映射。EEE33. A method as described in any one of EEE25 to EEE32, wherein the optimized SDR to HDR mapping is one of: a static mapping applied to all non-training SDR images represented in the video signal, or a dynamic mapping generated at least in part based on a particular SDR codeword value distribution of one of the non-training SDR images represented in the video signal.

EEE34.一种方法,包括:EEE34. A method comprising:

构建分布在高动态范围(HDR)颜色空间中用于表示经重建HDR图像的采样HDR颜色空间点;Constructing sampled high dynamic range (HDR) color space points distributed in a high dynamic range (HDR) color space for representing a reconstructed HDR image;

将所述采样HDR颜色空间点转换为第一标准动态范围(SDR)颜色空间中的SDR颜色空间点,要由编辑设备编辑的SDR图像在所述第一SDR颜色空间中表示;converting the sampled HDR color space points into SDR color space points in a first standard dynamic range (SDR) color space, the SDR image to be edited by the editing device being represented in the first SDR color space;

基于所述第一SDR颜色空间中的所述SDR颜色空间点的极端SDR码字值来确定定界SDR颜色空间矩形并从所述SDR颜色空间点的分布确定不规则三维(3D)形状;determining a bounding SDR color space rectangle based on extreme SDR codeword values of the SDR color space points in the first SDR color space and determining an irregular three-dimensional (3D) shape from a distribution of the SDR color space points;

构建分布在所述第一SDR颜色空间中的所述定界SDR颜色空间矩形中的采样SDR颜色空间点;constructing sampled SDR color space points distributed in the delimited SDR color space rectangle in the first SDR color space;

使用所述采样SDR颜色空间点和所述不规则形状来生成边界剪切3D查找表(3D-LUT),其中,所述边界剪切3D-LUT使用所述采样SDR颜色空间点作为查找键;generating a boundary clipping 3D lookup table (3D-LUT) using the sampled SDR color space point and the irregular shape, wherein the boundary clipping 3D-LUT uses the sampled SDR color space point as a lookup key;

至少部分地基于所述边界剪切3D-LUT来对所述第一SDR颜色空间中的编辑后SDR图像执行剪切操作,以生成所述第一SDR颜色空间中的边界经剪切编辑后SDR图像。A shearing operation is performed on the edited SDR image in the first SDR color space based at least in part on the boundary-cropped 3D-LUT to generate a boundary-cropped edited SDR image in the first SDR color space.

EEE35.如EEE34所述的方法,所述剪切操作包括首先使用所述定界SDR颜色空间矩形来对所述编辑后SDR图像执行规则剪切以生成规则剪切的编辑后SDR图像,并且随后使用所述3D-LUT来对所述规则剪切的编辑后SDR图像执行不规则剪切以生成所述边界经剪切编辑后SDR图像。EEE35. As described in the method of EEE34, the cropping operation includes first using the delimiting SDR color space rectangle to perform regular cropping on the edited SDR image to generate a regularly cropped edited SDR image, and then using the 3D-LUT to perform irregular cropping on the regularly cropped edited SDR image to generate the boundary cropped edited SDR image.

EEE36.如EEE34或EEE35所述的方法,其中,将所述要编辑的SDR图像中的一组一个或多个SDR像素从一个或多个第一光亮度值编辑为所述编辑后图像中的一个或多个第二光亮度值;其中,所述一个或多个第二光亮度值不同于所述一个或多个第一光亮度值。EEE36. A method as described in EEE34 or EEE35, wherein a group of one or more SDR pixels in the SDR image to be edited are edited from one or more first brightness values to one or more second brightness values in the edited image; wherein the one or more second brightness values are different from the one or more first brightness values.

EEE37.如EEE34至EEE36中任一项所述的方法,其中,将所述要编辑的SDR图像中的一组一个或多个SDR像素从一个或多个第一色度值编辑为所述编辑后图像中的一个或多个第二色度值;其中,所述一个或多个第二色度值不同于所述一个或多个第一色度值。EEE37. A method as described in any one of EEE34 to EEE36, wherein a group of one or more SDR pixels in the SDR image to be edited are edited from one or more first chromaticity values to one or more second chromaticity values in the edited image; wherein the one or more second chromaticity values are different from the one or more first chromaticity values.

EEE38.如EEE34至EEE37中任一项所述的方法,其中,在所述编辑后SDR图像中去除在所述要编辑的SDR图像中描绘的图像细节。EEE38. A method as described in any one of EEE34 to EEE37, wherein image details depicted in the SDR image to be edited are removed from the edited SDR image.

EEE39.如EEE34至EEE38中任一项所述的方法,其中,在所述编辑后SDR图像中添加在所述要编辑的SDR图像中未描绘的图像细节。EEE39. A method as described in any one of EEE34 to EEE38, wherein image details not depicted in the SDR image to be edited are added to the edited SDR image.

EEE40.如EEE34至EEE40中任一项所述的方法,其中,所述3D-LUT包括一个或多个节点,所述节点中的每一个包括查找键和查找值;其中,所述查找键等于所述查找值;其中,所述查找键在所述不规则形状内。EEE40. A method as described in any one of EEE34 to EEE40, wherein the 3D-LUT comprises one or more nodes, each of the nodes comprising a lookup key and a lookup value; wherein the lookup key is equal to the lookup value; wherein the lookup key is within the irregular shape.

EEE41.如EEE34至EEE40中任一项所述的方法,其中,所述3D-LUT包括一个或多个节点,所述节点中的每一个包括查找键和查找值;其中,所述查找键在所述不规则形状外,而所述查找值在所述不规则形状内。EEE41. A method as described in any one of EEE34 to EEE40, wherein the 3D-LUT comprises one or more nodes, each of the nodes comprising a lookup key and a lookup value; wherein the lookup key is outside the irregular shape and the lookup value is inside the irregular shape.

EEE42.如EEE41所述的方法,其中,基于索引函数来确定所述查找值,所述索引函数采用所述不规则形状和所述查找键作为输入并且返回所述查找键的最近邻作为输出。EEE42. A method as described in EEE41, wherein the lookup value is determined based on an index function, which takes the irregular shape and the lookup key as input and returns the nearest neighbor of the lookup key as output.

EEE43.一种装置,包括处理器并且被配置用于执行如EEE 1至42中所述的方法中的任一种方法。EEE43. An apparatus comprising a processor and configured to perform any of the methods described in EEE 1 to 42.

EEE44.一种非暂态计算机可读存储介质,具有存储于其上的用于根据EEE 1至42中所述的方法中的任一种方法、利用一个或多个处理器来执行方法的计算机可执行指令。EEE44. A non-transitory computer-readable storage medium having computer-executable instructions stored thereon for performing a method using one or more processors according to any of the methods described in EEE 1 to 42. EEE45.

EEE45.一种计算机系统,被配置用于执行如EEE 1至42中所述的方法中的任一种方法。EEE45. A computer system configured to perform any of the methods described in EEE 1 to 42. EEE45.

Claims (15)

1. A method, comprising:
Extracting a set of Standard Dynamic Range (SDR) image feature points from a training SDR image and extracting a set of High Dynamic Range (HDR) image feature points from a training HDR image;
Matching a subset of one or more SDR image feature points of the set of SDR image feature points with a subset of one or more HDR image feature points of the set of HDR image feature points;
Generating a geometric transformation using the subset of the one or more SDR image feature points and the subset of the one or more HDR image feature points to spatially align a set of SDR pixels in the training SDR image with a set of HDR pixels in the training HDR image;
determining a set of paired SDR color patches and HDR color patches from the set of SDR pixels in the training SDR image and the set of HDR pixels in the training HDR image after the training SDR image and the training HDR image have been spatially aligned by the geometric transformation;
Generating an optimized SDR-to-HDR mapping based at least in part on the set of paired SDR color patches and HDR color patches derived from the training SDR image and the training HDR image;
The optimized SDR-to-HDR mapping is applied to one or more non-trained SDR images to generate one or more corresponding non-trained HDR images.
2. The method of claim 1, wherein the training SDR image and the training HDR image are captured from a three-dimensional (3D) visual scene by a capture device operating in SDR and HDR capture modes, respectively.
3. The method of claim 1 or 2, wherein the training SDR image and the training HDR image form a pair of training SDR image and training HDR image of a plurality of pairs of training SDR image and training HDR image; wherein the optimized SDR-to-HDR mapping is generated based at least in part on multiple sets of paired SDR color patches and HDR color patches derived from the multiple pairs of training SDR images and training HDR images.
4. The method of any of claims 1 to 3, wherein each SDR image feature point of the subset of one or more SDR image feature points is matched to a respective HDR image feature point of the subset of one or more HDR image feature points; wherein the SDR image feature points and the HDR image feature points are extracted from the training SDR image and the HDR image, respectively, using a common feature point extraction algorithm.
5. A method, comprising:
performing a respective camera distortion correction operation on each training image of a pair of training Standard Dynamic Range (SDR) images and training High Dynamic Range (HDR) images to generate a respective undistorted image of a pair of undistorted training SDR images and undistorted training HDR images;
Generating a pair of SDR image projective transforms and a corresponding projective transform of an HDR image projective transform using the detected angular pattern markers from each of the pair of undistorted training SDR images and the undistorted training HDR image;
Applying each projective transformation of the pair of SDR image projective transformations and HDR image projective transformations to a respective undistorted image of the pair of undistorted training SDR images and undistorted training HDR images to generate a respective corrected image of a pair of corrected training SDR images and corrected training HDR images;
extracting a set of SDR color patches from the corrected training SDR image and extracting a set of HDR color patches from the corrected training HDR image;
Generating an optimized SDR-to-HDR mapping based at least in part on the set of SDR color patches and the set of HDR color patches derived from the training SDR image and the training HDR image;
The optimized SDR-to-HDR mapping is applied to one or more non-trained SDR images to generate one or more corresponding non-trained HDR images.
6. The method of claim 5, wherein the training SDR image and the training HDR image are captured from a common color table image by a first capture device operating in an SDR capture mode and a second capture device operating in an HDR capture mode, respectively.
7. The method of any of claims 5 or 6, wherein the common color table image is rendered on a screen of a common reference image display and captured from the screen by the first and second capture devices.
8. The method of any of claims 5 to 7, wherein the respective camera distortion correction operations are based at least in part on camera specific distortion coefficients generated from a camera calibration process performed with a camera used to acquire the training images.
9. The method of any of claims 5 to 8, wherein the set of SDR color patches and the set of HDR color patches are used to derive a three-dimensional mapping table (3 DMT); wherein the optimized SDR-to-HDR mapping is generated based at least in part on the 3 DMT.
10. The method of any of claims 5 to 9, wherein the optimized SDR-to-HDR mapping represents one of: tensor product B spline (TPB) based mapping or non-TPB based mapping.
11. A method, comprising:
constructing sampled High Dynamic Range (HDR) color space points distributed in an HDR color space for representing a reconstructed HDR image;
converting the sampled HDR color space point to a first Standard Dynamic Range (SDR) color space point in an SDR color space in which an SDR image to be edited by an editing device is represented;
Determining a bounding SDR color space rectangle based on extreme SDR codeword values of the SDR color space points in the first SDR color space and determining an irregular three-dimensional (3D) shape from a distribution of the SDR color space points;
Constructing sampling SDR color space points distributed in the bounding SDR color space rectangle in the first SDR color space;
Generating a boundary clipping 3D lookup table (3D-LUT) using the sampled SDR color space points and the irregular shape, wherein the boundary clipping 3D-LUT uses the sampled SDR color space points as lookup keys;
A clipping operation is performed on the edited SDR image in the first SDR color space based at least in part on the boundary clipping 3D-LUT to generate a clipped edited SDR image of a boundary in the first SDR color space.
12. The method of claim 11, wherein the cropping operation comprises first performing a regular cropping on the edited SDR image using the bounding SDR color space rectangle to generate a regular cropped edited SDR image, and then performing an irregular cropping on the regular cropped edited SDR image using the 3D-LUT to generate the boundary cropped edited SDR image.
13. The method of any of claims 11 or 12, wherein the 3D-LUT comprises one or more nodes, each of the nodes comprising a lookup key and a lookup value; wherein the search key is outside the irregular shape and the search value is inside the irregular shape.
14. An apparatus comprising a processor and configured to perform any of the methods of claims 1-13.
15. A non-transitory computer-readable storage medium having stored thereon computer-executable instructions for performing any one of the methods of claims 1-13 with one or more processors.
CN202380028390.0A 2022-03-18 2023-03-17 Image optimization in mobile capture and editing applications Pending CN118922855A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263321363P 2022-03-18 2022-03-18
EP22162984.3 2022-03-18
US63/321,363 2022-03-18
PCT/US2023/015510 WO2023177873A2 (en) 2022-03-18 2023-03-17 Image optimization in mobile capture and editing applications

Publications (1)

Publication Number Publication Date
CN118922855A true CN118922855A (en) 2024-11-08

Family

ID=93305434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202380028390.0A Pending CN118922855A (en) 2022-03-18 2023-03-17 Image optimization in mobile capture and editing applications

Country Status (1)

Country Link
CN (1) CN118922855A (en)

Similar Documents

Publication Publication Date Title
US10659749B2 (en) Efficient histogram-based luma look matching
US11430095B2 (en) Automatic display management metadata generation for gaming and/or SDR+ contents
CN112106357B (en) Method and device for encoding and decoding image data
US10244244B2 (en) Screen-adaptive decoding of high dynamic range video
US10701375B2 (en) Encoding and decoding reversible production-quality single-layer video signals
CN113228660B (en) Machine learning based dynamic synthesis in enhanced standard dynamic range video (SDR+)
JP2021521517A (en) HDR image representation using neural network mapping
US9042682B2 (en) Content creation using interpolation between content versions
KR102523233B1 (en) Method and device for decoding a color picture
US20170324959A1 (en) Method and apparatus for encoding/decoding a high dynamic range picture into a coded bitstream
CN114731426A (en) B smooth curve predictor of tensor product
CN116485979B (en) Mapping relation calculation method, color calibration method and electronic equipment
CN107148648B (en) Method and apparatus for estimating color mapping between two different color graded versions of an image sequence
CN114175647B (en) Electro-optical transfer function conversion and signal legalization
JP2019515562A (en) Method and apparatus for encoding / decoding high dynamic range images into a coded bit stream
CN118985127A (en) Image optimization in mobile capture and editing applications
CN110999300B (en) Single channel inverse mapping for image/video processing
CN118922855A (en) Image optimization in mobile capture and editing applications
EP4494090A2 (en) Image optimization in mobile capture and editing applications
CN116508324A (en) Adaptive local shaping for SDR to HDR up-conversion
EP4526879A1 (en) Trim pass metadata prediction in video sequences using neural networks
CN116888959A (en) Image enhancement via global and local shaping
HK1248904A1 (en) Inverse luma/chroma mappings with histogram transfer and approximation
Ahmad et al. Pragmatic Manifestation of High Dynamic Range Imaging–A Review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination