CN118922152A - Intraocular lenses with nanostructures and methods of making the same - Google Patents
Intraocular lenses with nanostructures and methods of making the same Download PDFInfo
- Publication number
- CN118922152A CN118922152A CN202380028827.0A CN202380028827A CN118922152A CN 118922152 A CN118922152 A CN 118922152A CN 202380028827 A CN202380028827 A CN 202380028827A CN 118922152 A CN118922152 A CN 118922152A
- Authority
- CN
- China
- Prior art keywords
- lens element
- iol
- nanostructure
- unitary
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Prostheses (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
背景技术Background Art
人眼就其最简单的方面而言功能是通过使光透过被称为角膜的透明外部部分并借助于晶状体将图像聚焦到视网膜上来提供视觉。所聚焦的图像的质量取决于很多因素,这些因素包括眼睛的大小和形状以及角膜和晶状体的透明度。当年龄或疾病导致晶状体变得不太透明时,由于能够透射到视网膜的光线减弱,视力会变差。眼睛晶状体的这种缺陷在医学上称为白内障。针对这种症状,一种所接受的治疗是手术去除晶状体、并用眼内透镜(IOL)代替晶状体功能。The human eye, in its simplest terms, functions to provide vision by transmitting light through a transparent outer portion called the cornea and focusing an image onto the retina with the aid of the lens. The quality of the focused image depends on many factors, including the size and shape of the eye and the transparency of the cornea and lens. When age or disease causes the lens to become less transparent, vision deteriorates because less light is able to be transmitted to the retina. Such defects in the lens of the eye are medically known as cataracts. One accepted treatment for this condition is surgical removal of the lens and replacement of the lens function with an intraocular lens (IOL).
尽管现有IOL以及用于制造其的方法和系统可能是可接受的,但是它们也具有某些缺点。因此,需要改进IOL的设计和用于复杂光学设计的相关联制造技术。Although existing IOLs and methods and systems for manufacturing the same may be acceptable, they also have certain disadvantages.Therefore, there is a need for improved IOL designs and associated manufacturing techniques for complex optical designs.
发明内容Summary of the invention
本披露内容的方面提供了一种眼内透镜(IOL),该眼内透镜包括透镜本体,该透镜本体具有在其上形成有前纳米结构组件的整体前透镜元件、以及在其上形成有后纳米结构组件的整体后透镜元件。Aspects of the present disclosure provide an intraocular lens (IOL) comprising a lens body having an integral anterior lens element having an anterior nanostructure assembly formed thereon, and an integral posterior lens element having a posterior nanostructure assembly formed thereon.
本披露内容的方面还提供了一种用于制造眼内透镜(IOL)的方法。该方法包括:制造整体前透镜元件和整体后透镜元件,将整体前透镜元件和整体后透镜元件结合以在其间形成空腔;以及用光学流体填充该空腔。整体前透镜元件上形成有前纳米结构组件,并且整体后透镜元件上形成有后纳米结构组件。Aspects of the present disclosure also provide a method for manufacturing an intraocular lens (IOL). The method includes: manufacturing an integral front lens element and an integral rear lens element, combining the integral front lens element and the integral rear lens element to form a cavity therebetween; and filling the cavity with an optical fluid. The integral front lens element has a front nanostructure component formed thereon, and the integral rear lens element has a rear nanostructure component formed thereon.
本披露内容的方面进一步提供了一种用于配置眼内透镜(IOL)的方法。所述方法包括:计算形成在IOL的前透镜元件上的前纳米结构组件和形成在IOL的后透镜元件上的后纳米结构组件的配置,该计算基于IOL的透镜基础焦度和所需折射率值;以及基于前纳米结构组件和后纳米结构组件的计算出的配置来形成IOL或使得形成IOL。Aspects of the present disclosure further provide a method for configuring an intraocular lens (IOL). The method includes: calculating a configuration of a front nanostructure component formed on an anterior lens element of the IOL and a rear nanostructure component formed on a rear lens element of the IOL, the calculation being based on a lens base power of the IOL and a desired refractive index value; and forming the IOL or causing the IOL to be formed based on the calculated configuration of the front nanostructure component and the rear nanostructure component.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了能够详细理解本披露内容的上述特征,可以通过参考实施例来对以上简要概括的本披露内容进行更具体描述,在附图中图示了其中一些实施例。然而,应注意的是,附图仅图示了本披露内容的一些方面,并且本披露内容可以允许其他同样有效的实施例。In order to be able to understand the above-mentioned features of the present disclosure in detail, the present disclosure briefly summarized above may be described in more detail by reference to embodiments, some of which are illustrated in the accompanying drawings. However, it should be noted that the accompanying drawings illustrate only some aspects of the present disclosure, and the present disclosure may allow for other equally effective embodiments.
图1A描绘了根据某些实施例的眼内透镜(IOL)的俯视图。1A depicts a top view of an intraocular lens (IOL) according to some embodiments.
图1B描绘了根据某些实施例的图1A的IOL的一部分的侧视图。1B depicts a side view of a portion of the IOL of FIG. 1A , according to some embodiments.
图1C描绘了根据某些实施例的图1A的IOL的一部分的放大视图。1C depicts an enlarged view of a portion of the IOL of FIG. 1A , according to some embodiments.
图2描绘了根据某些实施例的用于制造具有纳米结构的IOL的示例操作。2 depicts example operations for fabricating an IOL having nanostructures, in accordance with some embodiments.
图3描绘了根据某些实施例的用于形成透镜元件的示例操作。3 depicts example operations for forming a lens element, in accordance with certain embodiments.
图4A、图4B和图4C图示了根据某些实施例的透镜元件的对应于图3的操作的不同阶段的不同方面。4A , 4B, and 4C illustrate various aspects of a lens element corresponding to various stages of operation of FIG. 3 , according to some embodiments.
图5描绘了根据某些实施例的用于设计、配置和/或形成IOL的示例系统。FIG. 5 depicts an example system for designing, configuring, and/or forming an IOL, according to some embodiments.
图6描绘了根据某些实施例的用于形成IOL的示例操作。FIG. 6 depicts example operations for forming an IOL in accordance with some embodiments.
为了便于理解,在可能的情况下使用相同的附图标记来标示附图所共有的相同的要素。设想的是,一个实施例的要素和特征可以有益地结合在其他实施例中而无需进一步叙述。To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
具体实施方式DETAILED DESCRIPTION
本文中描述的实施例提供了用于制造具有在IOL的外表面上压印出的纳米结构化图形的眼内透镜(IOL)的方法和系统。在某些实施例中,这些方法和系统包括:生产前透镜元件和后透镜元件,该前透镜元件和该后透镜元件均具有纳米结构化图形;将前透镜元件和后透镜元件结合以在其间形成空腔;以及用光学流体填充该空腔。Embodiments described herein provide methods and systems for manufacturing an intraocular lens (IOL) having a nanostructured pattern embossed on an outer surface of the IOL. In certain embodiments, the methods and systems include: producing a front lens element and a rear lens element, each of which has a nanostructured pattern; combining the front lens element and the rear lens element to form a cavity therebetween; and filling the cavity with an optical fluid.
具有纳米结构的IOLIOL with nanostructures
图1A图示了根据某些实施例的眼内透镜(IOL)100的俯视图。图1B图示了IOL 100的一部分的侧视图。图1C图示了IOL 100的一部分的放大侧视图。IOL 100包括透镜本体102和袢部分104,该袢部分耦接到透镜本体102的周边非光学部分。Figure 1A illustrates a top view of an intraocular lens (IOL) 100 according to some embodiments. Figure 1B illustrates a side view of a portion of IOL 100. Figure 1C illustrates an enlarged side view of a portion of IOL 100. IOL 100 includes a lens body 102 and a haptic portion 104 coupled to a peripheral non-optical portion of lens body 102.
透镜本体102包括前透镜元件102A和后透镜元件102P。透镜元件102A和102P结合在一起以形成空腔106。空腔106填充有光学流体。光学流体可以是不可压缩的或基本上不可压缩的流体,表现出与透镜元件102A和102P不同的折射率。光学流体可以是眼科级的折射率匹配硅油,诸如从美国马萨诸塞州比勒利卡的英特格公司(Entegris,Inc.)可获得的光学流体。前透镜元件102A和后透镜元件102P可以由透明柔性的生物相容性聚合物制成,该聚合物是诸如柔性聚合物,包括聚(二甲基硅氧烷)(PDMS)。透镜本体102的直径φ在约4.5mm到约7.5mm之间,例如为约6.0mm。The lens body 102 includes a front lens element 102A and a rear lens element 102P. The lens elements 102A and 102P are joined together to form a cavity 106. The cavity 106 is filled with an optical fluid. The optical fluid can be an incompressible or substantially incompressible fluid that exhibits a different refractive index than the lens elements 102A and 102P. The optical fluid can be an ophthalmic grade index-matched silicone oil, such as an optical fluid available from Entegris, Inc. of Billerica, Massachusetts, USA. The front lens element 102A and the rear lens element 102P can be made of a transparent, flexible, biocompatible polymer, such as a flexible polymer including poly(dimethylsiloxane) (PDMS). The diameter φ of the lens body 102 is between about 4.5 mm and about 7.5 mm, for example, about 6.0 mm.
袢部分104包括中空径向延伸的支柱(又称为“袢”)104A和104B,这些支柱耦接(例如,胶合或焊接)到透镜本体102的周边部分或与透镜本体102的一部分一起成型,并且因此从透镜本体102向外延伸以接合眼睛的囊袋(capsular sac)的周壁,从而将透镜本体102保持在眼睛中的所需位置。袢104A和104B均具有内部体积108A、108B,该内部体积与透镜本体102的空腔106处于流体连通。袢104A和104B可以由生物相容性材料(诸如改性的聚(甲基丙烯酸甲酯)(PMMA)、改性的PMMA水凝胶、甲基丙烯酸羟乙酯(HEMA)、PVA水凝胶、其他硅酮聚合物材料、疏水性丙烯酸聚合物材料,例如从美国德克萨斯州沃思堡爱尔康公司可获得的和)制造而成。袢104A和104B典型地具有限定弧形末端部分的径向向外端。袢104A和104B的末端部分可以分开约6mm到约22mm之间的长度L,例如分开约13mm。袢104A和104B具有特定的长度,使得当在植入后与囊袋的赤道区域接触时,末端部分产生轻微的接合压力。虽然图1A图示了袢104A和104B的一个示例配置,但是可以使用任何片状袢或其他类型的袢。The haptic portion 104 includes hollow radially extending struts (also referred to as "haptics") 104A and 104B that are coupled (e.g., glued or welded) to a peripheral portion of the lens body 102 or molded with a portion of the lens body 102 and thus extend outwardly from the lens body 102 to engage a peripheral wall of the capsular sac of the eye to maintain the lens body 102 in a desired position in the eye. The haptics 104A and 104B each have an interior volume 108A, 108B that is in fluid communication with the cavity 106 of the lens body 102. The haptics 104A and 104B can be made of a biocompatible material such as modified poly(methyl methacrylate) (PMMA), modified PMMA hydrogel, hydroxyethyl methacrylate (HEMA), PVA hydrogel, other silicone polymer materials, hydrophobic acrylic polymer materials, such as those available from Alcon, Inc., Fort Worth, Texas, USA. and ) are manufactured from a circumferentially spaced 40-ft (102 m) area. The loops 104A and 104B typically have radially outward ends defining arcuate end portions. The end portions of the loops 104A and 104B may be separated by a length L between about 6 mm and about 22 mm, for example about 13 mm. The loops 104A and 104B have a specific length so that when in contact with the equatorial region of the capsular bag after implantation, the end portions generate a slight engagement pressure. Although FIG. 1A illustrates one example configuration of the loops 104A and 104B, any sheet-like loop or other type of loop may be used.
应注意,透镜本体102的形状和曲率仅出于说明性目的而示出,并且其他形状和曲率也在本披露内容的范围内。例如,图1B中所示的透镜本体102具有双凸形状。在其他示例中,透镜本体102可以具有平凸形状、凸凹形状或平凹形状。在某些实施例中,如图1B中所示,IOL 100是在前透镜元件102A或后透镜元件102P上未形成有环形小阶梯光栅的单焦点IOL(具有单焦点)。在一些其他实施例中,IOL 100是在前透镜元件102A和/或后透镜元件102P(未示出)上具有环形小阶梯光栅的多焦点IOL(具有多焦点,例如双焦点和三焦点)。在一些其他实施例中,IOL 100是在后透镜元件102P(未示出)上具有环形小阶梯光栅的扩展焦深(EDOF)IOL(具有长焦点)。It should be noted that the shape and curvature of the lens body 102 are shown for illustrative purposes only, and other shapes and curvatures are also within the scope of the present disclosure. For example, the lens body 102 shown in FIG. 1B has a biconvex shape. In other examples, the lens body 102 may have a plano-convex shape, a convexo-concave shape, or a plano-concave shape. In some embodiments, as shown in FIG. 1B, the IOL 100 is a monofocal IOL (having a monofocal focus) in which an annular echelon grating is not formed on the front lens element 102A or the rear lens element 102P. In some other embodiments, the IOL 100 is a multifocal IOL (having multiple focal points, such as bifocals and trifocals) with an annular echelon grating on the front lens element 102A and/or the rear lens element 102P (not shown). In some other embodiments, the IOL 100 is an extended depth of focus (EDOF) IOL (having a long focus) with an annular echelon grating on the rear lens element 102P (not shown).
在本文所述的实施例中,前透镜元件102A包括形成在其上的前纳米结构组件110A,并且后透镜元件102P包括形成在其上的后纳米结构组件110P(未示出)。前纳米结构组件110A和前透镜元件102A形成为相同材料(例如柔性聚合物,包括PDMS)的整体单件。后纳米结构组件110P和后透镜元件102P也形成为整体(例如柔性聚合物,包括PDMS)材料单件。在某些实施例中,透镜本体102仅包括前纳米结构组件110A或后纳米结构组件110P中的一个。在其上未形成有纳米结构组件的透镜元件102A或102P可以包括衍射结构以调节透镜的折射率和/或反射率。In the embodiments described herein, the front lens element 102A includes a front nanostructure component 110A formed thereon, and the rear lens element 102P includes a rear nanostructure component 110P (not shown) formed thereon. The front nanostructure component 110A and the front lens element 102A are formed as an integral single piece of the same material (e.g., a flexible polymer, including PDMS). The rear nanostructure component 110P and the rear lens element 102P are also formed as an integral single piece of material (e.g., a flexible polymer, including PDMS). In some embodiments, the lens body 102 includes only one of the front nanostructure component 110A or the rear nanostructure component 110P. The lens element 102A or 102P on which the nanostructure component is not formed may include a diffractive structure to adjust the refractive index and/or reflectivity of the lens.
如图1C中所示,前纳米结构组件110A包括突起112。后纳米结构组件110P包括类似的突起112。突起112的形状、大小和密度(例如,相邻突起112之间的间距)被设计用于使透镜本体102提供所需的折射率。例如,突起112可以具有在约30nm到约200nm之间的高度H、在约30nm到约300nm之间的宽度、以及在约30nm到约300nm之间的相邻突起112之间的间距。与在其前外表面或后外表面上没有纳米结构组件的透镜本体相比,纳米结构组件110A、110P可以进一步将反射率降低约10%到约90%之间。在某些实施例中,如图1B中所示,纳米结构组件110A、110P分别完全覆盖前透镜元件102A和后透镜元件102P。然而,在一些其他实施例中,纳米结构组件110A、110P分别仅部分地覆盖前透镜元件102A和后透镜元件102P。As shown in FIG. 1C , the front nanostructure component 110A includes protrusions 112. The rear nanostructure component 110P includes similar protrusions 112. The shape, size, and density (e.g., the spacing between adjacent protrusions 112) of the protrusions 112 are designed to provide the lens body 102 with a desired refractive index. For example, the protrusions 112 can have a height H between about 30 nm and about 200 nm, a width between about 30 nm and about 300 nm, and a spacing between adjacent protrusions 112 between about 30 nm and about 300 nm. The nanostructure components 110A, 110P can further reduce the reflectivity by between about 10% and about 90% compared to a lens body without a nanostructure component on its front or rear outer surface. In some embodiments, as shown in FIG. 1B , the nanostructure components 110A, 110P completely cover the front lens element 102A and the rear lens element 102P, respectively. However, in some other embodiments, the nanostructure assemblies 110A, 110P only partially cover the front lens element 102A and the rear lens element 102P, respectively.
具有纳米结构的IOL的制造Fabrication of IOLs with nanostructures
图2描绘了根据某些实施例的用于形成具有纳米结构的IOL的示例操作200。FIG. 2 depicts example operations 200 for forming an IOL having nanostructures, in accordance with some embodiments.
在步骤210,如下文关于操作300所述,形成具有纳米结构组件(例如,纳米结构组件110A(如图1C所示))的前透镜元件(例如,前透镜元件102A)和具有纳米结构组件(例如,纳米结构组件110P)的后透镜元件(例如,后透镜元件102P)。At step 210, a front lens element (e.g., front lens element 102A) having a nanostructure component (e.g., nanostructure component 110A (shown in FIG. 1C)) and a rear lens element (e.g., rear lens element 102P) having a nanostructure component (e.g., nanostructure component 110P) are formed, as described below with respect to operation 300.
在步骤220,组装并密封前透镜元件和后透镜元件以形成空腔(例如,(图1B所示的)空腔106)。前透镜元件和后透镜元件可以通过化学结合、热结合、UV结合或其他适当类型的结合而结合在一起,以在透镜本体(例如,透镜本体102)的周边非光学部分中形成密封,其间有空腔。At step 220, the front lens element and the rear lens element are assembled and sealed to form a cavity (e.g., cavity 106 (shown in FIG. 1B )). The front lens element and the rear lens element can be bonded together by chemical bonding, thermal bonding, UV bonding, or other suitable types of bonding to form a seal in the peripheral non-optical portion of the lens body (e.g., lens body 102) with the cavity therebetween.
在步骤230,用光学流体(如硅油)填充空腔。At step 230, the cavity is filled with an optical fluid, such as silicone oil.
图3描绘了用于形成透镜元件102A、102P中的每一个的示例操作300(即,步骤210)。图4A、图4B和图4C图示了与操作300的不同阶段相对应的透镜元件的不同方面。这样,图3、图4A、图4B和图4C一起描述。Figure 3 depicts an example operation 300 (i.e., step 210) for forming each of the lens elements 102A, 102P. Figures 4A, 4B, and 4C illustrate different aspects of the lens elements corresponding to different stages of the operation 300. As such, Figures 3, 4A, 4B, and 4C are described together.
在步骤310,纳米结构化图形(例如,纳米结构化图形402)通过标准微米/纳米制造方法形成在基材(例如,基材404)上,如图4A中的等距视图和图4B中的剖视图所示。例如,首先,执行光刻工艺以在基材上旋涂上光刻胶,并且光刻胶的选定区域暴露于光并显影。第二,通过反应离子蚀刻将光刻胶的图形转移到基材上。然后,通过等离子体过蚀刻去除其余的光刻胶。纳米结构化图形可以在基材上约7mm乘约7mm的面积上延伸,并且包括在基材上雕刻出的沟槽阵列(例如,沟槽406阵列),其高度在约30nm到约200nm之间,宽度在约30nm到约300nm之间,相邻沟槽之间的间距在约30nm到约300nm之间。In step 310, a nanostructured pattern (e.g., nanostructured pattern 402) is formed on a substrate (e.g., substrate 404) by a standard micron/nano manufacturing method, as shown in the isometric view in FIG. 4A and the cross-sectional view in FIG. 4B. For example, first, a photolithography process is performed to spin-coat a photoresist on the substrate, and selected areas of the photoresist are exposed to light and developed. Second, the pattern of the photoresist is transferred to the substrate by reactive ion etching. Then, the remaining photoresist is removed by plasma overetching. The nanostructured pattern can extend over an area of about 7 mm by about 7 mm on the substrate and include an array of grooves (e.g., groove 406 array) carved out on the substrate, with a height between about 30 nm and about 200 nm, a width between about 30 nm and about 300 nm, and a spacing between adjacent grooves between about 30 nm and about 300 nm.
如本文中使用的术语“基材”是指材料层,该材料层用作随后的加工操作的基础并且包括有待清洁的表面。例如,基材可以包括玻璃、或一种或多种导电金属,诸如镍、钛、铂、钼、铼、锇、铬、铁、铝、铜、钨或以上的组合。基材还可以包括一种或多种包含硅的材料,包括与第IV族或第III-V族相关联的材料,这些材料包括化合物,诸如Si、多晶硅、非晶硅、氮化硅、氮氧化硅、氧化硅、Ge、SiGe、GaAs、InP、InAs、GaAs、GaP、InGaAs、InGaAsP、GaSb、InSb等、或以上的组合。另外,基材还可以包括介质材料,诸如二氧化硅、有机硅酸盐、以及碳掺杂的氧化硅。进一步地,取决于应用,基材可以包括任何其他材料,诸如金属氮化物、金属氧化物和金属合金。The term "substrate" as used herein refers to a material layer that is used as the basis for subsequent processing operations and includes a surface to be cleaned. For example, the substrate may include glass or one or more conductive metals, such as nickel, titanium, platinum, molybdenum, rhenium, osmium, chromium, iron, aluminum, copper, tungsten or a combination thereof. The substrate may also include one or more materials comprising silicon, including materials associated with Group IV or Group III-V, including compounds such as Si, polycrystalline silicon, amorphous silicon, silicon nitride, silicon oxynitride, silicon oxide, Ge, SiGe, GaAs, InP, InAs, GaAs, GaP, InGaAs, InGaAsP, GaSb, InSb, etc. or a combination thereof. In addition, the substrate may also include dielectric materials, such as silicon dioxide, organic silicates, and carbon-doped silicon oxide. Further, depending on the application, the substrate may include any other material, such as metal nitrides, metal oxides, and metal alloys.
此外,基材不限于任何特定大小或形状。基材可以是具有200mm直径、300mm直径、450mm直径或其他直径的圆形晶片。基材还可以是任何多边形、正方形、矩形、弯曲的或其他非圆形的工件,诸如多边形玻璃、塑料基材。In addition, the substrate is not limited to any particular size or shape. The substrate can be a circular wafer with a diameter of 200 mm, a diameter of 300 mm, a diameter of 450 mm, or other diameters. The substrate can also be any polygonal, square, rectangular, curved, or other non-circular workpiece, such as a polygonal glass, plastic substrate.
在步骤320,将弹性膜(例如,弹性膜408)铸造在其上形成有纳米结构化图形的基材上,如图4C中所示。弹性膜可以由薄PDMS形成。在铸造过程中,可以将呈液体形式的PDMS与交联剂混合并且倾倒到基材上并且加热到在约250℃到约350℃之间的升高的温度,硬化并且交联PDMS,以形成弹性膜。弹性膜的厚度可以在约200μm到500μm之间。弹性膜具有复制出基材上的纳米结构化图形的突起(例如,突起410)。突起可以具有在约30nm到约200nm之间的高度、在约30nm到约300nm之间的宽度、以及在约30nm到约300nm之间的相邻沟槽之间的间距。在铸造之后,从基材上移除弹性膜。该弹性膜可以用作具有前纳米结构组件的前透镜元件或具有后纳米结构组件的后透镜元件(示例性图1C中所示)。In step 320, an elastic film (e.g., elastic film 408) is cast on a substrate having a nanostructured pattern formed thereon, as shown in FIG. 4C. The elastic film can be formed of a thin PDMS. During the casting process, the PDMS in liquid form can be mixed with a crosslinking agent and poured onto the substrate and heated to an elevated temperature between about 250° C. to about 350° C., hardening and crosslinking the PDMS to form an elastic film. The thickness of the elastic film can be between about 200 μm and 500 μm. The elastic film has a protrusion (e.g., protrusion 410) that replicates the nanostructured pattern on the substrate. The protrusion can have a height between about 30 nm and about 200 nm, a width between about 30 nm and about 300 nm, and a spacing between adjacent grooves between about 30 nm and about 300 nm. After casting, the elastic film is removed from the substrate. The elastic film can be used as a front lens element with a front nanostructure component or a rear lens element with a rear nanostructure component (shown in exemplary FIG. 1C).
用于设计IOL的系统Systems for designing IOLs
图5描绘了用于设计、配置和/或形成IOL 100的示例性系统500。如图所示,系统500包括但不限于控制模块502、用户界面显示器504、互连件506、输出装置508以及至少一个I/O装置接口510,该接口可以允许不同I/O装置(例如,键盘、显示器、鼠标装置、笔输入等)连接至系统500。5 depicts an exemplary system 500 for designing, configuring, and/or forming an IOL 100. As shown, the system 500 includes, but is not limited to, a control module 502, a user interface display 504, an interconnect 506, an output device 508, and at least one I/O device interface 510 that can allow different I/O devices (e.g., a keyboard, a display, a mouse device, a pen input, etc.) to be connected to the system 500.
控制模块502包括中央处理器(CPU)512、存储器514和存储装置516。CPU 512可以取得并执行存储在存储器514中的编程指令。类似地,CPU 512可以取得并存储驻留在存储器514中的应用数据。互连件506在CPU 512、I/O装置接口510、用户界面显示器504、存储器514、存储装置516、输出装置508等之间传输编程指令和应用数据。CPU 512可以表示单个CPU、多个CPU、具有多个处理核的单个CPU等。另外地,在某些实施例中,存储器514表示易失性存储器,诸如随机存取存储器。另外,在某些实施例中,存储装置516可以是非易失性存储器,诸如磁盘驱动器、固态驱动器、或分布在多个存储系统上的存储装置的集合。The control module 502 includes a central processing unit (CPU) 512, a memory 514, and a storage device 516. The CPU 512 can retrieve and execute programming instructions stored in the memory 514. Similarly, the CPU 512 can retrieve and store application data residing in the memory 514. The interconnect 506 transmits programming instructions and application data between the CPU 512, the I/O device interface 510, the user interface display 504, the memory 514, the storage device 516, the output device 508, etc. The CPU 512 can represent a single CPU, multiple CPUs, a single CPU with multiple processing cores, etc. Additionally, in some embodiments, the memory 514 represents a volatile memory, such as a random access memory. Additionally, in some embodiments, the storage device 516 can be a non-volatile memory, such as a disk drive, a solid state drive, or a collection of storage devices distributed on multiple storage systems.
如图所示,存储装置516包括输入参数518。输入参数518包括透镜基础焦度和透镜本体的所需折射率值。存储器514包括计算模块520,以用于计算控制参数,诸如纳米结构组件110A、110P的配置(例如,形状、大小和密度)。此外,存储器514包括输入参数522。As shown, the storage device 516 includes input parameters 518. The input parameters 518 include the base power of the lens and the desired refractive index value of the lens body. The memory 514 includes a calculation module 520 for calculating control parameters such as the configuration (e.g., shape, size, and density) of the nanostructure assemblies 110A, 110P. In addition, the memory 514 includes input parameters 522.
在某些实施例中,输入参数522对应于输入参数518或其至少一个子集。在这样的实施例中,在计算控制参数过程中,输入参数522从存储装置516中取得并在存储器514中执行。在这样的示例中,计算模块520包括用于基于输入参数522来计算控制参数的可执行指令(例如,包括本文中描述的公式中的一个或多个公式)。在某些其他实施例中,输入参数522对应于通过用户界面显示器504从用户接收的参数。在这样的实施例中,计算模块520包括用于基于从用户界面显示器504接收的信息来计算控制参数的可执行指令。In some embodiments, the input parameters 522 correspond to the input parameters 518 or at least a subset thereof. In such embodiments, the input parameters 522 are retrieved from the storage device 516 and executed in the memory 514 during the calculation of the control parameters. In such examples, the calculation module 520 includes executable instructions (e.g., including one or more of the formulas described herein) for calculating the control parameters based on the input parameters 522. In some other embodiments, the input parameters 522 correspond to parameters received from a user via the user interface display 504. In such embodiments, the calculation module 520 includes executable instructions for calculating the control parameters based on the information received from the user interface display 504.
在某些实施例中,经由输出装置508向透镜制造系统输出计算出的控制参数,该透镜制造系统被配置为接收控制参数并且相应地形成透镜。在某些其他实施例中,系统500本身代表透镜制造系统的至少一部分。在这样的实施例中,控制模块502然后使系统500的硬件部件(未示出)根据上述操作200的控制参数形成透镜。In some embodiments, the calculated control parameters are outputted to a lens manufacturing system via output device 508, which is configured to receive the control parameters and form a lens accordingly. In some other embodiments, system 500 itself represents at least a portion of a lens manufacturing system. In such embodiments, control module 502 then causes hardware components (not shown) of system 500 to form a lens according to the control parameters of operation 200 described above.
用于形成IOL的方法Methods for forming an IOL
图6描绘了用于形成IOL(例如,IOL 100)的示例操作600。在一些实施例中,操作600的步骤610由一个系统(例如,系统500)执行,而步骤620由透镜制造系统执行。在一些其他实施例中,步骤610和620都由透镜制造系统执行。6 depicts an example operation 600 for forming an IOL (e.g., IOL 100). In some embodiments, step 610 of operation 600 is performed by a system (e.g., system 500), and step 620 is performed by a lens manufacturing system. In some other embodiments, both steps 610 and 620 are performed by a lens manufacturing system.
在步骤610,基于输入参数(例如,透镜基础焦度和透镜本体的所需折射率值)计算控制参数,诸如纳米结构组件110A、110P的配置(例如,形状、大小和密度)。在步骤610执行的计算是基于本文中描述的实施例(包括公式)中的一个或多个。At step 610, control parameters such as the configuration (e.g., shape, size, and density) of the nanostructure assemblies 110A, 110P are calculated based on input parameters (e.g., lens base power and desired refractive index value of the lens body). The calculations performed at step 610 are based on one or more of the embodiments (including formulas) described herein.
在步骤620,使用本领域普通技术人员已知的通常用于制造透镜的适当方法、系统和装置,根据上述操作200形成基于计算出的控制参数(诸如纳米结构组件110A、110P的配置(例如,形状、大小和密度))的IOL(例如,IOL 100)。At step 620, an IOL (e.g., IOL 100) based on the calculated control parameters (such as the configuration (e.g., shape, size, and density) of the nanostructure assemblies 110A, 110P) is formed according to the above-described operation 200 using appropriate methods, systems, and apparatus commonly used to manufacture lenses known to those of ordinary skill in the art.
本文中所述的实施例提供了用于通过以下方式制造在IOL的外表面上压印出的纳米结构化图形的IOL的方法和系统:生产前透镜元件和后透镜元件,该前透镜元件和该后透镜元件均具有纳米结构化图形;将前透镜元件和后透镜元件结合以在其间形成空腔;以及用光学流体填充该空腔。与常规制造工艺相比,本文所描述的方法可以提供具有在外表面上压印出的纳米结构化图形的IOL的简化制造工艺。另外地,所描述的方法可以进一步消除与通过单独制造纳米结构、后续将其附接到IOL而形成的植入的IOL的崩解相关联的担忧。因此,本文披露的改进的制造技术允许制造在外表面上具有纳米结构的改进的IOL,以减少客户对眩光和晕圈的抱怨以及可能与瘢痕眼睛现象相关联的反射问题。Embodiments described herein provide methods and systems for manufacturing an IOL having a nanostructured pattern embossed on the outer surface of the IOL by: producing a front lens element and a rear lens element, each of which has a nanostructured pattern; combining the front lens element and the rear lens element to form a cavity therebetween; and filling the cavity with an optical fluid. The methods described herein can provide a simplified manufacturing process for an IOL having a nanostructured pattern embossed on the outer surface compared to conventional manufacturing processes. Additionally, the described methods can further eliminate concerns associated with the disintegration of an implanted IOL formed by separately manufacturing the nanostructures and subsequently attaching them to the IOL. Thus, the improved manufacturing techniques disclosed herein allow for the manufacture of an improved IOL having nanostructures on the outer surface to reduce customer complaints of glare and halos and reflection issues that may be associated with the scarred eye phenomenon.
尽管前文针对本披露内容的实施例,但在不脱离本披露内容的基本范围的情况下可以设想本披露内容的其他和另外的实施例,并且本披露内容的范围由所附权利要求确定。While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the present disclosure may be envisaged without departing from the basic scope of the present disclosure, and the scope of the present disclosure is determined by the claims that follow.
Claims (20)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63/269,719 | 2022-03-22 | ||
US63/363,828 | 2022-04-29 | ||
US202263364813P | 2022-05-17 | 2022-05-17 | |
US63/364,813 | 2022-05-17 | ||
PCT/IB2023/052774 WO2023180934A1 (en) | 2022-03-22 | 2023-03-21 | Intraocular lenses with nanostructures and methods of fabricating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118922152A true CN118922152A (en) | 2024-11-08 |
Family
ID=93309503
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380028822.8A Pending CN118946330A (en) | 2022-03-22 | 2023-03-21 | Intraocular lens with nanostructure and method for manufacturing the same |
CN202380028812.4A Pending CN118973518A (en) | 2022-03-22 | 2023-03-21 | Multilayer structure for improved presbyopia correction lens and method of making the same |
CN202380028827.0A Pending CN118922152A (en) | 2022-03-22 | 2023-03-21 | Intraocular lenses with nanostructures and methods of making the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380028822.8A Pending CN118946330A (en) | 2022-03-22 | 2023-03-21 | Intraocular lens with nanostructure and method for manufacturing the same |
CN202380028812.4A Pending CN118973518A (en) | 2022-03-22 | 2023-03-21 | Multilayer structure for improved presbyopia correction lens and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN118946330A (en) |
-
2023
- 2023-03-21 CN CN202380028822.8A patent/CN118946330A/en active Pending
- 2023-03-21 CN CN202380028812.4A patent/CN118973518A/en active Pending
- 2023-03-21 CN CN202380028827.0A patent/CN118922152A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN118946330A (en) | 2024-11-12 |
CN118973518A (en) | 2024-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7454614B2 (en) | Multi-piece accommodating intraocular lens | |
KR101378718B1 (en) | Zonal difractive multifocal intraocular lenses | |
EP3359089B1 (en) | Accommodating intraocular lens | |
JP5785093B2 (en) | Diffractive multifocal intraocular lens with altered center distance zone | |
EP2908777B1 (en) | System for providing an intraocular lens having an improved depth of field | |
US20040085511A1 (en) | Intraocular lens | |
CN102099730A (en) | Accommodating IOL with Toric Optics and Extended Depth of Focus | |
US20110130833A1 (en) | Intraocular lens having edge configured to reduce posterior capsule opacification | |
CN114402251A (en) | Systems and methods for forming ophthalmic lenses including meta-optics | |
CN118922152A (en) | Intraocular lenses with nanostructures and methods of making the same | |
US20230301779A1 (en) | Intraocular lenses with nanostructures and methods of fabricating the same | |
JP2025509891A (en) | Nanostructured intraocular lens and method for making same | |
WO2018043366A1 (en) | Intraocular lens, method of designing same, and method of manufacturing same | |
JP2025509839A (en) | Nanostructured intraocular lens and method for making same | |
JP2025509195A (en) | Multilayer structure for improved presbyopia correcting lenses and method for making same - Patents.com | |
KR102117329B1 (en) | Method for manufacturing of accommodating intraocular lens | |
CN118234453A (en) | Achromatic IOL with multilayer diffractive optic | |
JP2025061750A (en) | Multi-piece accommodating intraocular lens | |
CN115515532A (en) | Artificial eye lens | |
RU2024129133A (en) | INTRAOCULAR LENSES WITH NANOSTRUCTURES AND METHODS OF THEIR MANUFACTURING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |