CN118919602A - Solar cell preparation method and solar cell - Google Patents
Solar cell preparation method and solar cell Download PDFInfo
- Publication number
- CN118919602A CN118919602A CN202411014368.3A CN202411014368A CN118919602A CN 118919602 A CN118919602 A CN 118919602A CN 202411014368 A CN202411014368 A CN 202411014368A CN 118919602 A CN118919602 A CN 118919602A
- Authority
- CN
- China
- Prior art keywords
- passivation
- layer
- solar cell
- silicon substrate
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 238000002161 passivation Methods 0.000 claims abstract description 103
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 96
- 239000010703 silicon Substances 0.000 claims abstract description 96
- 230000005540 biological transmission Effects 0.000 claims abstract description 93
- 239000000758 substrate Substances 0.000 claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 238000007650 screen-printing Methods 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 238000005530 etching Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 30
- 238000009792 diffusion process Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 238000010248 power generation Methods 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 230000002950 deficient Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical group ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光伏发电技术领域,特别是涉及一种太阳能电池制备方法及太阳能电池。The present invention relates to the technical field of photovoltaic power generation, and in particular to a method for preparing a solar cell and a solar cell.
背景技术Background Art
光伏发电的主要原理是半导体的光电效应。光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子吸收能量后逸出而形成电流,即光生电。太阳能电池,是一种利用太阳光直接发电的光电半导体薄片,又称为“太阳能芯片”或“光电池”,它只要被满足一定照度条件的光照度,瞬间就可输出电压及在有回路的情况下产生电流。The main principle of photovoltaic power generation is the photoelectric effect of semiconductors. The photoelectric effect is an important and magical phenomenon in physics. Under the irradiation of electromagnetic waves above a certain frequency, the electrons inside certain substances absorb energy and escape to form current, which is photoelectricity. Solar cells are a type of photoelectric semiconductor sheet that uses sunlight to directly generate electricity. They are also called "solar chips" or "photovoltaic cells". As long as they are illuminated by light that meets certain illumination conditions, they can instantly output voltage and generate current in the presence of a circuit.
现有的关于局部钝化接触的太阳能电池的制备工艺,通常采用先在硅基底的背面制备介电层与导电传输层,然后在导电传输层的预设位置处涂覆耐腐蚀浆料,而在硅基底正面的P+掺杂层覆盖有硼硅玻璃层,然后通过刻蚀加工去除硅基底背面裸露的介电层与导电传输层,刻蚀完成后再去除耐腐蚀浆料与硼硅玻璃层,最后在正面制备钝化减反层在背面制备钝化层,并丝网印刷电极。The existing preparation process for solar cells with local passivation contacts usually involves first preparing a dielectric layer and a conductive transmission layer on the back of a silicon substrate, then coating a corrosion-resistant slurry at a preset position of the conductive transmission layer, and covering the P+ doped layer on the front of the silicon substrate with a borosilicate glass layer. The exposed dielectric layer and conductive transmission layer on the back of the silicon substrate are then removed by etching, and the corrosion-resistant slurry and borosilicate glass layer are removed after the etching is completed. Finally, a passivation anti-reflection layer is prepared on the front and a passivation layer is prepared on the back, and electrodes are screen-printed.
在现有的关于局部钝化接触的太阳能电池的制备工艺中,由于耐腐蚀浆料只能对导电传输层的外侧面进行防护,而在刻蚀环节中的刻蚀程度难以把控,所以常常出现刻蚀过度,导致被耐腐蚀浆料覆盖区域的介电层与导电传输层的周缘处也被刻蚀,进而导致发电效率降低;也容易产生刻蚀过轻,进而导致未被耐腐蚀浆料覆盖的介电层与导电传输层去除不彻底。整体上导致制备太阳能电池的产品不良率较高。In the existing preparation process of solar cells with local passivation contacts, since the corrosion-resistant slurry can only protect the outer side of the conductive transmission layer, and the etching degree in the etching process is difficult to control, excessive etching often occurs, resulting in etching of the dielectric layer and the periphery of the conductive transmission layer in the area covered by the corrosion-resistant slurry, which in turn leads to reduced power generation efficiency; it is also easy to produce too light etching, which leads to incomplete removal of the dielectric layer and the conductive transmission layer not covered by the corrosion-resistant slurry. Overall, it leads to a high defective rate of solar cell products.
发明内容Summary of the invention
本发明要解决的技术问题是:The technical problems to be solved by the present invention are:
刻蚀程度难以把控,导致太阳能电池生产的产品不良率高。The degree of etching is difficult to control, resulting in a high rate of defective products in solar cell production.
为了解决上述技术问题,本发明提供了一种太阳能电池制备方法,包括:In order to solve the above technical problems, the present invention provides a method for preparing a solar cell, comprising:
提供硅基底,硅基底具有相对的正面与背面;Providing a silicon substrate, wherein the silicon substrate has a front side and a back side opposite to each other;
在所述硅基底正面制备钝化减反层,在所述硅基底背面制备钝化层;A passivation anti-reflection layer is prepared on the front side of the silicon substrate, and a passivation layer is prepared on the back side of the silicon substrate;
对所述钝化层进行开槽,所述开槽深度直至所述硅基底;Grooving the passivation layer, wherein the groove depth reaches the silicon substrate;
在所述开槽内制备钝化传输结构,所述钝化传输结构的厚度小于所述开槽的深度;preparing a passivation transmission structure in the groove, wherein the thickness of the passivation transmission structure is less than the depth of the groove;
在所述钝化传输结构上丝网印刷第一电极,在所述第一电极所在硅基底一面的相对另一面丝网印刷第二电极;Screen printing a first electrode on the passivation transmission structure, and screen printing a second electrode on the other side of the silicon substrate opposite to the side where the first electrode is located;
烧结,制得太阳能电池。Sintering to produce a solar cell.
在其中一个实施例中,所述在所述开槽内制备钝化传输结构,所述钝化传输结构的厚度小于所述开槽的深度的步骤包括:In one embodiment, the step of preparing a passivation transmission structure in the groove, wherein the thickness of the passivation transmission structure is less than the depth of the groove, comprises:
在所述硅基底开设有所述开槽的一侧制备介电层,在所述介电层远离所述硅基底的一侧制备导电传输层;A dielectric layer is prepared on the side of the silicon substrate where the groove is formed, and a conductive transmission layer is prepared on the side of the dielectric layer away from the silicon substrate;
对所述开槽内的所述导电传输层覆盖掩膜;Covering the conductive transmission layer in the groove with a mask;
去除所述开槽外部的导电传输层,或,去除开槽外部的导电传输层和介电层;Removing the conductive transmission layer outside the groove, or removing the conductive transmission layer and the dielectric layer outside the groove;
去除所述开槽内的所述掩膜。The mask in the groove is removed.
在其中一个实施例中,所述介电层和所述导电传输层的制备方式采用等离子增强化学气相沉积形成。In one embodiment, the dielectric layer and the conductive transmission layer are prepared by plasma enhanced chemical vapor deposition.
在其中一个实施例中,所述介电层材料为氧化硅,所述导电传输层材料为掺杂多晶硅。In one embodiment, the dielectric layer material is silicon oxide, and the conductive transmission layer material is doped polysilicon.
在其中一个实施例中,所述掩膜为耐碱性掩膜。In one embodiment, the mask is an alkali-resistant mask.
在其中一个实施例中,在所述对所述钝化层进行开槽,所述开槽深度直至所述硅基底的步骤中:In one embodiment, in the step of grooving the passivation layer, wherein the grooving depth reaches the silicon substrate:
所述开槽的制备方式采用光刻加工或者刻蚀加工。The grooves are prepared by photolithography or etching.
在其中一个实施例中,所述提供硅基底,硅基底具有相对的正面与背面的步骤包括:In one embodiment, the step of providing a silicon substrate having a front side and a back side opposite to each other comprises:
提供硅片,对硅片进行制绒、扩散及清洗绕镀加工,以得到所述硅基底。A silicon wafer is provided, and the silicon wafer is subjected to texturing, diffusion, cleaning and plating processes to obtain the silicon substrate.
在其中一个实施例中,对硅片进行扩散加工包括:In one embodiment, performing diffusion processing on a silicon wafer includes:
将制绒后的硅片放入扩散炉内;Put the textured silicon wafer into the diffusion furnace;
向扩散炉内通入掺杂源,以在硅片表面形成高浓度掺杂层;A doping source is introduced into the diffusion furnace to form a high-concentration doping layer on the surface of the silicon wafer;
将高浓度掺杂层的掺杂原子由外表的高浓度区域向深处的低浓度区域扩散。The doping atoms in the high-concentration doping layer are diffused from the high-concentration area on the surface to the low-concentration area deep inside.
在其中一个实施例中,所述钝化减反层设置有多层,各层所述钝化减反层依次叠加于所述硅基底的正面。In one of the embodiments, the passivation anti-reflection layer is provided with multiple layers, and each layer of the passivation anti-reflection layer is sequentially stacked on the front side of the silicon substrate.
一种太阳能电池,采用上述的太阳能电池制备方法制得。A solar cell is manufactured by using the above-mentioned solar cell manufacturing method.
上述太阳能电池制备方法与现有技术相比,其有益效果在于:Compared with the prior art, the above solar cell preparation method has the following beneficial effects:
通过先制备钝化减反层与钝化层,再对钝化层进行开槽,在开槽内进行钝化传输结构的制备。通过开槽形成高低落差,进而利用开槽结构对开槽内的钝化传输结构进行保护,保证刻蚀开槽外的钝化传输结构时不会损伤开槽内的钝化传输结构,避免开槽内的介电层与导电传输层也被刻蚀减少从而会降低电池发电效率和避免产生漏电现象,降低太阳能电池生产不良率。The passivation anti-reflection layer and the passivation layer are first prepared, and then the passivation layer is grooved, and the passivation transmission structure is prepared in the groove. The groove is formed to form a height difference, and then the groove structure is used to protect the passivation transmission structure in the groove, so that the passivation transmission structure outside the groove is not damaged when etching the passivation transmission structure inside the groove, and the dielectric layer and the conductive transmission layer in the groove are not also etched, which will reduce the power generation efficiency of the battery and avoid leakage, thereby reducing the defective rate of solar cell production.
并且通过先行制备钝化层,钝化层可以在刻蚀过程中对硅基底进行防护,避免刻蚀过度时对硅基底的背面造成损伤。Furthermore, by preparing a passivation layer in advance, the passivation layer can protect the silicon substrate during the etching process to avoid damage to the back side of the silicon substrate due to excessive etching.
由于刻蚀区域的钝化层阻隔在介电层与硅基底之间,刻蚀区域的介电层又与开槽内的介电层是分离的,而介电层材料又是氧化硅,所以在刻蚀过程中可以仅将导电传输层去除,将介电层保留在钝化层远离硅基底的一侧,以提高太阳能电池背面的钝化效果,避免去除介电层的成本投入。而且由于只需要刻蚀导电传输层,有效缩减刻蚀的时长,提高太阳能电池的生产效率。Since the passivation layer in the etched area is separated between the dielectric layer and the silicon substrate, the dielectric layer in the etched area is separated from the dielectric layer in the groove, and the dielectric layer material is silicon oxide, only the conductive transmission layer can be removed during the etching process, and the dielectric layer is retained on the side of the passivation layer away from the silicon substrate to improve the passivation effect on the back of the solar cell and avoid the cost of removing the dielectric layer. In addition, since only the conductive transmission layer needs to be etched, the etching time is effectively reduced, and the production efficiency of solar cells is improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明一实施方式的太阳能电池制备方法的工艺流程图;FIG1 is a process flow chart of a method for preparing a solar cell according to an embodiment of the present invention;
图2为本发明一实施方式的太阳能电池的结构示意图;FIG2 is a schematic structural diagram of a solar cell according to an embodiment of the present invention;
图3为图2中太阳能电池在制备过程中,经过步骤S42未经过步骤S43状态下的结构示意图。FIG. 3 is a schematic structural diagram of the solar cell in FIG. 2 during the preparation process, after step S42 but not after step S43.
附图中标号的含义为:The meanings of the numbers in the accompanying drawings are:
100、太阳能电池;100. Solar cells;
10、硅基底;10. Silicon substrate;
20、钝化减反层;20. Passivation anti-reflection layer;
30、第二电极;30. a second electrode;
40、钝化层;45、开槽;40. passivation layer; 45. slotting;
50、介电层;50. Dielectric layer;
60、导电传输层;60. Conductive transmission layer;
70、第一电极;70. a first electrode;
80、掩膜。80. Mask.
具体实施方式DETAILED DESCRIPTION
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. In the following description, many specific details are set forth to facilitate a full understanding of the present invention. However, the present invention can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without violating the connotation of the present invention, so the present invention is not limited by the specific embodiments disclosed below.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", "clockwise", "counterclockwise", "axial", "radial", "circumferential" and the like indicate orientations or positional relationships based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as limiting the present invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, the terms "installed", "connected", "connected", "fixed" and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined. For ordinary technicians in this field, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "above" or "below" a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. Moreover, a first feature being "above", "above" or "above" a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. A first feature being "below", "below" or "below" a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。It should be noted that when an element is referred to as being "fixed to" or "disposed on" another element, it may be directly on the other element or there may be a central element. When an element is considered to be "connected to" another element, it may be directly connected to the other element or there may be a central element at the same time. The terms "vertical", "horizontal", "upper", "lower", "left", "right" and similar expressions used herein are for illustrative purposes only and are not intended to be the only implementation method.
请参阅图1,为本发明一实施方式的太阳能电池制备方法,包括:Please refer to FIG1 , which is a method for preparing a solar cell according to an embodiment of the present invention, comprising:
S1:提供硅基底,硅基底具有相对的正面与背面;S1: providing a silicon substrate, wherein the silicon substrate has a front side and a back side opposite to each other;
S2:在所述硅基底正面制备钝化减反层,在所述硅基底背面制备钝化层;S2: preparing a passivation anti-reflection layer on the front side of the silicon substrate, and preparing a passivation layer on the back side of the silicon substrate;
S3:对所述钝化层进行开槽,所述开槽深度直至所述硅基底;S3: Grooving the passivation layer, wherein the groove depth reaches the silicon substrate;
S4:在所述开槽内制备钝化传输结构,所述钝化传输结构的厚度小于所述开槽的深度;S4: preparing a passivation transmission structure in the groove, wherein the thickness of the passivation transmission structure is less than the depth of the groove;
S5:在所述钝化传输结构上丝网印刷第一电极,在所述第一电极所在硅基底一面的相对另一面丝网印刷第二电极;S5: screen-printing a first electrode on the passivation transmission structure, and screen-printing a second electrode on the other side of the silicon substrate opposite to the side where the first electrode is located;
S6:烧结,制得太阳能电池。S6: Sintering to produce a solar cell.
通过先在硅基底正面制备钝化减反层,在硅基底背面制备钝化层,再对钝化传输结构进行制备,在钝化传输结构的制备过程中需要通过刻蚀工艺进行加工。由于直接进行钝化传输结构制备无法保证电极与硅基底的连通,为了克服上述技术难题需要再制备钝化层与钝化减反层后进行开槽,再在开槽内进行钝化传输结构的制备。通过开槽形成高低落差,进而利用开槽结构和掩膜对开槽内的钝化传输结构进行保护,保证刻蚀开槽外的钝化传输结构时不会损伤开槽内的钝化传输结构,降低太阳能电池生产不良率。By first preparing a passivation anti-reflection layer on the front of the silicon substrate, preparing a passivation layer on the back of the silicon substrate, and then preparing a passivation transmission structure, the passivation transmission structure needs to be processed through an etching process during the preparation process. Since the direct preparation of the passivation transmission structure cannot ensure the connection between the electrode and the silicon substrate, in order to overcome the above technical difficulties, it is necessary to prepare the passivation layer and the passivation anti-reflection layer and then groove them, and then prepare the passivation transmission structure in the groove. The groove is formed by the height difference, and then the groove structure and the mask are used to protect the passivation transmission structure in the groove, ensuring that the passivation transmission structure outside the groove will not be damaged when etching the passivation transmission structure, thereby reducing the defective rate of solar cell production.
进一步地,步骤S1包括:提供硅片,对硅片进行制绒、扩散及清洗绕镀加工,以得到硅基底。步骤S1中包括对硅片进行处理,以得到所需的硅基底。需要说明的是,硅片可以是N型硅片也可以是P型硅片。Further, step S1 includes: providing a silicon wafer, performing texturing, diffusion, cleaning and plating on the silicon wafer to obtain a silicon substrate. Step S1 includes processing the silicon wafer to obtain the required silicon substrate. It should be noted that the silicon wafer can be an N-type silicon wafer or a P-type silicon wafer.
进一步地,在步骤S1中对硅片进行制绒加工后进行扩散加工,扩散加工具体包括:Furthermore, in step S1, the silicon wafer is subjected to a diffusion process after being subjected to a texturing process. The diffusion process specifically includes:
S11:将制绒后的硅片放入扩散炉内;S11: placing the silicon wafer after texturing into a diffusion furnace;
S12:向扩散炉内通入掺杂源,以在硅片表面形成高浓度掺杂层;S12: introducing a doping source into the diffusion furnace to form a high-concentration doping layer on the surface of the silicon wafer;
S13:将高浓度掺杂层的掺杂原子由外表的高浓度区域向深处的低浓度区域扩散。S13: Diffuse the doping atoms of the high-concentration doping layer from the high-concentration area on the surface to the low-concentration area in the depth.
其中,步骤S12中,掺杂源为POCl3或BBr3,POCl3常用于N型硅基底,BBr3常用于P型硅基底。POCl3与氧气反应生成P2O5,BBr3与氧气反应生成B2O3,所生成的P2O5或B2O3在结构上与SiO2近似,所以更容易溶入SiO2中,进而形成高浓度掺杂层。步骤S13中,高浓度掺杂层的掺杂原子在高温下会由高浓度区域向低浓度区域推进,使得硅片表面的掺杂原子浓度降低并向硅片内部扩散,形成新的掺杂原子的分布,在硅片内部形成PN结,保证光伏发电。Wherein, in step S12, the doping source is POCl 3 or BBr 3 , POCl 3 is commonly used for N-type silicon substrates, and BBr 3 is commonly used for P-type silicon substrates. POCl 3 reacts with oxygen to generate P 2 O 5 , and BBr 3 reacts with oxygen to generate B 2 O 3. The generated P 2 O 5 or B 2 O 3 is similar in structure to SiO 2 , so it is easier to dissolve in SiO 2 , thereby forming a high-concentration doped layer. In step S13, the doped atoms of the high-concentration doped layer will advance from the high-concentration area to the low-concentration area at high temperature, so that the doped atom concentration on the surface of the silicon wafer is reduced and diffused into the inside of the silicon wafer, forming a new distribution of doped atoms, forming a PN junction inside the silicon wafer, and ensuring photovoltaic power generation.
进一步地,在步骤S1中对硅片进行扩散加工后会产生绕镀,故要进行清洗背面和侧面绕镀加工。清洗背面绕镀加工是通过HNO3和HF的混合溶液对扩散后的硅片背面和侧面进行腐蚀,去除侧面的绕镀,使得硅片正面与背面相互绝缘。Furthermore, after the silicon wafer is diffused in step S1, wrap-around plating will occur, so it is necessary to clean the back and side wrap-around plating. The back wrap-around plating cleaning process is to etch the back and side of the diffused silicon wafer with a mixed solution of HNO3 and HF to remove the wrap-around plating on the side, so that the front and back of the silicon wafer are insulated from each other.
需要说明的是,上述步骤S12中掺杂源也可以是其他掺杂物,不对具体掺杂源成分进行限定,扩散方式也可以多种多样。It should be noted that the doping source in the above step S12 may also be other dopants, and there is no limitation on the specific doping source components, and the diffusion method may also be various.
进一步地,步骤S2中的钝化层设置有多层,各层钝化层依次叠加于硅基底的背面。该钝化减反层设置有多层,各层钝化减反层依次叠加于硅基底的正面。可以理解地,该钝化层与钝化减反层的具体设置层数可根据实际使用需求进行设置,可以设置一层也可以设置多层,此处不对钝化层与钝化减反层所设置的具体层数进行限制。Further, the passivation layer in step S2 is provided with multiple layers, and each passivation layer is sequentially superimposed on the back side of the silicon substrate. The passivation anti-reflection layer is provided with multiple layers, and each passivation anti-reflection layer is sequentially superimposed on the front side of the silicon substrate. It can be understood that the specific number of layers of the passivation layer and the passivation anti-reflection layer can be set according to actual use requirements, and one layer can be set or multiple layers can be set. The specific number of layers of the passivation layer and the passivation anti-reflection layer is not limited here.
进一步地,步骤S3中,开槽的制备方式采用光刻加工或者刻蚀加工。光刻指的是通过激光的方式在预设的开槽位置处进行开槽,开槽的位置对应的就是预定安装电极的位置。刻蚀加工指的是在不开槽的区域覆盖耐腐蚀浆料,使得预设的开槽位置处裸露,再将工件放入刻蚀溶液中,对裸露的预设开槽位置处进行反应消耗,刻蚀完成后再将覆盖的耐腐蚀浆料去除,即可实现对预设位置进行开槽加工。可以理解地,根据实际使用需要,可选择开槽是通过光刻方式或者刻蚀方式进行制备,此处不对开槽的具体加工方式进行限定,保证可以对预设位置进行开槽处理即可。Furthermore, in step S3, the preparation method of the groove is photolithography or etching. Photolithography refers to the use of laser to make grooves at the preset groove positions, and the groove positions correspond to the predetermined installation positions of the electrodes. Etching refers to covering the non-grooved area with corrosion-resistant slurry so that the preset groove positions are exposed, and then placing the workpiece in an etching solution to react and consume the exposed preset groove positions. After etching is completed, the covered corrosion-resistant slurry is removed to achieve the groove processing of the preset positions. It can be understood that according to actual use needs, the grooves can be prepared by photolithography or etching. The specific processing method of the grooves is not limited here, and it is sufficient to ensure that the preset positions can be grooved.
进一步地,步骤S4包括:Further, step S4 includes:
S41:在硅基底开设有开槽的一侧制备介电层,在介电层远离硅基底的一侧制备导电传输层;S41: preparing a dielectric layer on the side of the silicon substrate where the groove is formed, and preparing a conductive transmission layer on the side of the dielectric layer away from the silicon substrate;
S42:对开槽内的导电传输层覆盖掩膜;S42: Covering the conductive transmission layer in the groove with a mask;
S43:去除开槽外部的导电传输层,或,去除开槽外部的导电传输层和介电层;S43: removing the conductive transmission layer outside the groove, or removing the conductive transmission layer and the dielectric layer outside the groove;
S44:去除开槽内的掩膜。S44: removing the mask in the groove.
通过气相沉积的方式,在硅基底开设有开槽的一侧生长介电层,请参阅图3,由于气相沉积的过程中无法控制只在开槽内生长介电层,所以经过气相沉积后,以钝化层上开设有开槽为例,经过气相沉积后,介电层会附着在电极区域内的开槽内,同时介电层也会附着在电极区域以外的钝化层上。在制备介电层后会沉积导电传输层,导电传输层在沉积过程中也同样无法控制只在开槽内制备,所以导电传输层分布在开槽内的介电层外侧以及开槽外的介电层外侧。在本实施例中,该介电层与导电传输层的制备方式均采用等离子增强化学气相沉积(PECVD)工艺,使得介电层与导电传输层可以在同一个设备中制备,进而提高加工效率。By means of vapor deposition, a dielectric layer is grown on the side of the silicon substrate where a groove is opened. Please refer to FIG3. Since it is impossible to control the dielectric layer to grow only in the groove during the vapor deposition process, after vapor deposition, taking the groove opened on the passivation layer as an example, after vapor deposition, the dielectric layer will be attached to the groove in the electrode area, and the dielectric layer will also be attached to the passivation layer outside the electrode area. After the dielectric layer is prepared, a conductive transmission layer will be deposited. During the deposition process, the conductive transmission layer cannot be controlled to be prepared only in the groove, so the conductive transmission layer is distributed on the outside of the dielectric layer in the groove and the outside of the dielectric layer outside the groove. In this embodiment, the preparation method of the dielectric layer and the conductive transmission layer adopts a plasma enhanced chemical vapor deposition (PECVD) process, so that the dielectric layer and the conductive transmission layer can be prepared in the same equipment, thereby improving the processing efficiency.
进一步地,需要去除开槽外部的导电传输层,所以步骤S42在制备介电层与导线传输层后,先通过掩膜对开槽内的导电传输层覆盖,此时开槽内的介电层与导电传输层被掩膜覆盖保护,而开槽外部的导电传输层裸露。步骤S43中,通过刻蚀的方式将裸露的导电传输层去除,而开槽内的介电层与导电传输层被掩膜覆盖,而且由于开槽制造的高度差,即使刻蚀过度,由于开槽内的导电传输层与介电层不会裸露,所以不需要担心开槽内的导电传输层与介电层被刻蚀,避免开槽内的导电传输层也被刻蚀减少从而会降低电池发电效率和避免产生漏电现象,降低太阳能电池生产的不良率。在本实施例中,该掩膜通过印刷或涂覆的方式覆盖在开槽内的导电传输层上,该掩膜为耐碱性掩膜,便于通过碱液腐蚀开槽外部的导电传输层。进而在步骤S44中通过仅与掩膜反应的液体,去除掩膜。Furthermore, it is necessary to remove the conductive transmission layer outside the slot, so in step S42, after preparing the dielectric layer and the wire transmission layer, the conductive transmission layer in the slot is first covered by a mask. At this time, the dielectric layer and the conductive transmission layer in the slot are covered and protected by the mask, while the conductive transmission layer outside the slot is exposed. In step S43, the exposed conductive transmission layer is removed by etching, and the dielectric layer and the conductive transmission layer in the slot are covered by the mask. Moreover, due to the height difference of the slot manufacturing, even if the etching is excessive, since the conductive transmission layer and the dielectric layer in the slot will not be exposed, there is no need to worry about the conductive transmission layer and the dielectric layer in the slot being etched, so as to avoid the conductive transmission layer in the slot being etched and reduced, thereby reducing the power generation efficiency of the battery and avoiding leakage, and reducing the defective rate of solar cell production. In this embodiment, the mask is covered on the conductive transmission layer in the slot by printing or coating, and the mask is an alkali-resistant mask, which is convenient for corroding the conductive transmission layer outside the slot by alkali solution. Furthermore, in step S44, the mask is removed by the liquid that reacts only with the mask.
进一步地,该介电层材料为氧化硅,该导电传输层材料为掺杂多晶硅。由于介电层为氧化硅制件,所以在步骤S43中可以仅去除开槽外部的导电传输层,以将介电层保留在钝化层的外侧,以提高太阳能电池背面的钝化效果,避免去除介电层的成本投入。当然,也可以将开槽外部的导电传输层和介电层一起去除,如此就得到如图2所述的电池结构。Furthermore, the dielectric layer material is silicon oxide, and the conductive transmission layer material is doped polysilicon. Since the dielectric layer is made of silicon oxide, in step S43, only the conductive transmission layer outside the groove can be removed to retain the dielectric layer outside the passivation layer to improve the passivation effect on the back of the solar cell and avoid the cost of removing the dielectric layer. Of course, the conductive transmission layer and the dielectric layer outside the groove can also be removed together, so as to obtain the battery structure as shown in Figure 2.
进一步地,由于步骤S43在刻蚀过程中,掩膜对开槽内的介电层与导电传输层进行保护,钝化层对开槽外部的硅基底进行保护,所以不需要担心过度刻蚀时,导致硅基底裸露而被损坏,进一步提高加工的良品率。Furthermore, during the etching process in step S43, the mask protects the dielectric layer and the conductive transmission layer in the groove, and the passivation layer protects the silicon substrate outside the groove. Therefore, there is no need to worry about the silicon substrate being exposed and damaged due to over-etching, thereby further improving the processing yield.
进一步地,步骤S5与步骤S6中,在开槽内的导电传输层上印刷电极,并在硅基底远离开槽的一侧印刷电极,再通过将印刷电极后的硅基底整体送入结炉内烧结,以制备第一电极与第二电极,完成太阳能电池的制作。在本实施例中,所述钝化层具有第一极区域,所述钝化减反层具有第二极区域;所述第一极区域与所述第二极区域对应预设电极位置处,第一极区域与第二极区域对称布置于硅基底的两侧。请参阅图2,开槽设置在钝化层上,第一极区域为预设第一电极的位置处,第二极区域为预设第二电极的位置处,开槽对应开设在第一极区域处。Furthermore, in step S5 and step S6, an electrode is printed on the conductive transmission layer in the groove, and an electrode is printed on the side of the silicon substrate away from the groove, and then the silicon substrate after printing the electrode is sent as a whole into the sintering furnace to prepare the first electrode and the second electrode, thereby completing the production of the solar cell. In this embodiment, the passivation layer has a first polar region, and the passivation anti-reflection layer has a second polar region; the first polar region and the second polar region correspond to the preset electrode positions, and the first polar region and the second polar region are symmetrically arranged on both sides of the silicon substrate. Please refer to Figure 2, the groove is set on the passivation layer, the first polar region is the position of the preset first electrode, the second polar region is the position of the preset second electrode, and the groove is correspondingly opened at the first polar region.
请参阅图2,本发明还公开了一种太阳能电池100,包括硅基底10、钝化减反层20、第二电极30、钝化层40、介电层50、导电传输层60及第一电极70。该硅基底10相对的两侧分别设置有正面与背面。该钝化减反层20设置在硅基底10的正面上;第二电极30设置在钝化减反层20上。该钝化层40设置在硅基底10的背面上;钝化层40远离硅基底10的一侧设置有开槽45,开槽45沿钝化层40间隔布置,开槽45深度直至硅基底10。介电层50设置在开槽45内,介电层50与硅基底10连接;导电传输层60设置在开槽45内,导电传输层60设置在介电层50远离硅基底10的一侧。该第一电极70的一端位于开槽45内,并与导电传输层60连接。其中,在开槽45的深度方向上,开槽45的深度为H,介电层50的厚度为B1,导电传输层60的厚度为B2;则H>B1+B2。通过H>B1+B2,保证介电层50与导电传输层60嵌入开槽45内,进而保证在刻蚀的过程中,掩膜80和开槽45两侧的钝化层40可以对开槽45内的介电层50与导电传输层60进行保护,避免刻蚀开槽外的导电传输层60时会损伤开槽45内的介电层50与导电传输层60,避免开槽内的介电层50与导电传输层60也被刻蚀减少从而会降低电池发电效率和避免产生漏电现象,降低太阳能电池100的生产不良率。Referring to FIG. 2 , the present invention further discloses a solar cell 100, comprising a silicon substrate 10, a passivation anti-reflection layer 20, a second electrode 30, a passivation layer 40, a dielectric layer 50, a conductive transmission layer 60 and a first electrode 70. The silicon substrate 10 is provided with a front side and a back side on opposite sides. The passivation anti-reflection layer 20 is provided on the front side of the silicon substrate 10; the second electrode 30 is provided on the passivation anti-reflection layer 20. The passivation layer 40 is provided on the back side of the silicon substrate 10; a groove 45 is provided on the side of the passivation layer 40 away from the silicon substrate 10, the grooves 45 are arranged at intervals along the passivation layer 40, and the depth of the grooves 45 reaches the silicon substrate 10. The dielectric layer 50 is provided in the groove 45, and the dielectric layer 50 is connected to the silicon substrate 10; the conductive transmission layer 60 is provided in the groove 45, and the conductive transmission layer 60 is provided on the side of the dielectric layer 50 away from the silicon substrate 10. One end of the first electrode 70 is located in the groove 45 and is connected to the conductive transmission layer 60. Among them, in the depth direction of the groove 45, the depth of the groove 45 is H, the thickness of the dielectric layer 50 is B1, and the thickness of the conductive transmission layer 60 is B2; then H>B1+B2. By H>B1+B2, it is ensured that the dielectric layer 50 and the conductive transmission layer 60 are embedded in the groove 45, and then it is ensured that during the etching process, the mask 80 and the passivation layer 40 on both sides of the groove 45 can protect the dielectric layer 50 and the conductive transmission layer 60 in the groove 45, so as to avoid the dielectric layer 50 and the conductive transmission layer 60 in the groove 45 being damaged when etching the conductive transmission layer 60 outside the groove, and to avoid the dielectric layer 50 and the conductive transmission layer 60 in the groove being etched and reduced, thereby reducing the power generation efficiency of the battery and avoiding leakage, thereby reducing the production defect rate of the solar cell 100.
综上,本发明实施例提供一种太阳能电池100制备方法及太阳能电池100,其有益效果在于:In summary, the embodiment of the present invention provides a method for preparing a solar cell 100 and a solar cell 100, and the beneficial effects thereof are:
通过先制备钝化减反层20与钝化层40,再对钝化层40进行开槽45,在开槽45内进行钝化传输结构的制备。通过开槽45形成高低落差,进而利用开槽45结构及掩膜80对对开槽45内的钝化传输结构进行保护,保证刻蚀开槽外的钝化传输结构时不会损伤开槽45内的钝化传输结构,避免开槽内的介电层50与导电传输层60也被刻蚀减少从而会降低电池发电效率和避免产生漏电现象,降低太阳能电池100生产不良率。The passivation anti-reflection layer 20 and the passivation layer 40 are first prepared, and then the passivation layer 40 is grooved 45, and the passivation transmission structure is prepared in the groove 45. The groove 45 forms a height difference, and then the groove 45 structure and the mask 80 are used to protect the passivation transmission structure in the groove 45, so that the passivation transmission structure outside the groove is not damaged when etching, and the dielectric layer 50 and the conductive transmission layer 60 in the groove are not also etched, which will reduce the power generation efficiency of the battery and avoid leakage, thereby reducing the production defect rate of the solar cell 100.
并且通过先行制备钝化层40,钝化层40可以在刻蚀过程中对硅基底10进行防护,避免刻蚀过度时对硅基底10的背面造成损伤。Furthermore, by preparing the passivation layer 40 in advance, the passivation layer 40 can protect the silicon substrate 10 during the etching process, thereby preventing the back side of the silicon substrate 10 from being damaged when the etching is excessive.
由于刻蚀区域的钝化层40阻隔在介电层50与硅基底10之间,刻蚀区域的介电层50又与开槽45内的介电层50是分离的,而介电层50材料又是氧化硅,所以在刻蚀过程中可以仅将导电传输层60去除,将介电层50保留在钝化层40远离硅基底10的一侧,以提高太阳能电池100背面的钝化效果,避免去除介电层50的成本投入。而且由于只需要刻蚀导电传输层60,有效缩减刻蚀的时长,提高太阳能电池100的生产效率。Since the passivation layer 40 in the etched area is blocked between the dielectric layer 50 and the silicon substrate 10, the dielectric layer 50 in the etched area is separated from the dielectric layer 50 in the groove 45, and the dielectric layer 50 material is silicon oxide, only the conductive transmission layer 60 can be removed during the etching process, and the dielectric layer 50 is retained on the side of the passivation layer 40 away from the silicon substrate 10, so as to improve the passivation effect on the back of the solar cell 100 and avoid the cost of removing the dielectric layer 50. In addition, since only the conductive transmission layer 60 needs to be etched, the etching time is effectively shortened, and the production efficiency of the solar cell 100 is improved.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present invention, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for ordinary technicians in this field, several variations and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411014368.3A CN118919602A (en) | 2024-07-26 | 2024-07-26 | Solar cell preparation method and solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411014368.3A CN118919602A (en) | 2024-07-26 | 2024-07-26 | Solar cell preparation method and solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118919602A true CN118919602A (en) | 2024-11-08 |
Family
ID=93309776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411014368.3A Pending CN118919602A (en) | 2024-07-26 | 2024-07-26 | Solar cell preparation method and solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118919602A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209183556U (en) * | 2018-10-19 | 2019-07-30 | 晶澳(扬州)太阳能科技有限公司 | Silica-based solar cell and photovoltaic module |
CN110233179A (en) * | 2019-05-31 | 2019-09-13 | 苏州腾晖光伏技术有限公司 | A kind of crystal-silicon solar cell and preparation method thereof of selectivity passivation contact structures |
CN110690297A (en) * | 2019-10-12 | 2020-01-14 | 通威太阳能(安徽)有限公司 | P-type tunneling oxide passivation contact solar cell and preparation method thereof |
CN115513339A (en) * | 2022-08-19 | 2022-12-23 | 隆基绿能科技股份有限公司 | Solar cell, preparation thereof and photovoltaic module |
CN115642196A (en) * | 2022-09-09 | 2023-01-24 | 滁州捷泰新能源科技有限公司 | N-type TOPCON battery and manufacturing method thereof |
CN116525692A (en) * | 2023-05-11 | 2023-08-01 | 北京工业大学 | A grid line preparation method for efficiency improvement and cost reduction of silicon heterojunction solar cells |
CN117790632A (en) * | 2023-12-29 | 2024-03-29 | 天合光能股份有限公司 | Solar crystalline silicon battery and preparation method thereof |
CN118380508A (en) * | 2024-05-11 | 2024-07-23 | 帝尔激光科技(无锡)有限公司 | A solar cell and a method for preparing the same |
-
2024
- 2024-07-26 CN CN202411014368.3A patent/CN118919602A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209183556U (en) * | 2018-10-19 | 2019-07-30 | 晶澳(扬州)太阳能科技有限公司 | Silica-based solar cell and photovoltaic module |
CN110233179A (en) * | 2019-05-31 | 2019-09-13 | 苏州腾晖光伏技术有限公司 | A kind of crystal-silicon solar cell and preparation method thereof of selectivity passivation contact structures |
CN110690297A (en) * | 2019-10-12 | 2020-01-14 | 通威太阳能(安徽)有限公司 | P-type tunneling oxide passivation contact solar cell and preparation method thereof |
CN115513339A (en) * | 2022-08-19 | 2022-12-23 | 隆基绿能科技股份有限公司 | Solar cell, preparation thereof and photovoltaic module |
CN115642196A (en) * | 2022-09-09 | 2023-01-24 | 滁州捷泰新能源科技有限公司 | N-type TOPCON battery and manufacturing method thereof |
CN116525692A (en) * | 2023-05-11 | 2023-08-01 | 北京工业大学 | A grid line preparation method for efficiency improvement and cost reduction of silicon heterojunction solar cells |
CN117790632A (en) * | 2023-12-29 | 2024-03-29 | 天合光能股份有限公司 | Solar crystalline silicon battery and preparation method thereof |
CN118380508A (en) * | 2024-05-11 | 2024-07-23 | 帝尔激光科技(无锡)有限公司 | A solar cell and a method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106057934B (en) | Back contact solar cell device | |
US9496428B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
CN105609571A (en) | IBC solar cell and manufacturing method thereof | |
CN110911528A (en) | TOPCon battery and manufacturing method thereof | |
CN103858239A (en) | All-black-contact solar cell and fabrication method | |
CN110676160A (en) | Solar cell and manufacturing method thereof | |
CN112466967A (en) | Selective emitter solar cell and preparation method thereof | |
JP6199727B2 (en) | Manufacturing method of solar cell | |
JP6410951B2 (en) | Solar cell and method for manufacturing solar cell | |
CN117637875A (en) | A back contact battery and its manufacturing method | |
CN103811572B (en) | Electrooptical device and its manufacture method | |
CN116864548A (en) | P-type back junction TOPCON battery and preparation method thereof | |
KR101153377B1 (en) | Back junction solar cell having improved rear structure and method for manufacturing therof | |
JP2010251343A (en) | Solar cell and method of manufacturing the same | |
JP5817046B2 (en) | Manufacturing method of back contact type crystalline silicon solar cell | |
KR101160116B1 (en) | Method of manufacturing Back junction solar cell | |
CN110098284A (en) | A kind of N-type selective emitter solar battery and its manufacturing method | |
KR101065384B1 (en) | Solar cell and manufacturing method | |
JP2025065571A (en) | Solar cell and its manufacturing method, photovoltaic module | |
WO2013111312A1 (en) | Photovoltaic device, method for manufacturing same, and photovoltaic module | |
CN115036381B (en) | P-type silicon back contact battery and preparation method thereof | |
CN117613134A (en) | Solar cell, method for manufacturing the same, solar cell module, and power generation system | |
CN216311815U (en) | TBC solar cells | |
CN118919602A (en) | Solar cell preparation method and solar cell | |
CN116469948A (en) | A kind of TOPCon battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |