CN118917719A - Transparentization education tracking and evaluating system - Google Patents
Transparentization education tracking and evaluating system Download PDFInfo
- Publication number
- CN118917719A CN118917719A CN202410940938.5A CN202410940938A CN118917719A CN 118917719 A CN118917719 A CN 118917719A CN 202410940938 A CN202410940938 A CN 202410940938A CN 118917719 A CN118917719 A CN 118917719A
- Authority
- CN
- China
- Prior art keywords
- data
- learning
- students
- teaching
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 claims abstract description 34
- 238000012545 processing Methods 0.000 claims abstract description 32
- 238000005516 engineering process Methods 0.000 claims abstract description 31
- 238000007726 management method Methods 0.000 claims abstract description 31
- 238000012544 monitoring process Methods 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims abstract description 22
- 230000002452 interceptive effect Effects 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 17
- 238000011156 evaluation Methods 0.000 claims abstract description 16
- 238000013480 data collection Methods 0.000 claims abstract description 15
- 238000013136 deep learning model Methods 0.000 claims abstract description 15
- 230000003993 interaction Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000007405 data analysis Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000006399 behavior Effects 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000003044 adaptive effect Effects 0.000 claims description 11
- 230000002996 emotional effect Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 230000002155 anti-virotic effect Effects 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 10
- 230000008451 emotion Effects 0.000 abstract description 2
- 238000004148 unit process Methods 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 7
- 238000013527 convolutional neural network Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000012549 training Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010921 in-depth analysis Methods 0.000 description 4
- 208000025174 PANDAS Diseases 0.000 description 3
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 3
- 240000004718 Panda Species 0.000 description 3
- 235000016496 Panda oleosa Nutrition 0.000 description 3
- 238000012098 association analyses Methods 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 3
- 238000007621 cluster analysis Methods 0.000 description 3
- 230000007786 learning performance Effects 0.000 description 3
- 230000037081 physical activity Effects 0.000 description 3
- 238000000611 regression analysis Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000013079 data visualisation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 206010012374 Depressed mood Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06398—Performance of employee with respect to a job function
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/78—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
- G06Q50/205—Education administration or guidance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/53—Recognition of crowd images, e.g. recognition of crowd congestion
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/63—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Educational Technology (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Child & Adolescent Psychology (AREA)
- General Engineering & Computer Science (AREA)
- Primary Health Care (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Electrically Operated Instructional Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及教育技术领域,具体涉及一种透明化教育追踪与评估系统,该系统通过多源数据采集和处理技术,利用深度学习模型和高性能计算设备,实现对学生学习过程的全面监控和评估,旨在提升教学效果和学生学习体验。The present invention relates to the field of educational technology, and specifically to a transparent education tracking and evaluation system. The system uses multi-source data collection and processing technology, deep learning models and high-performance computing equipment to achieve comprehensive monitoring and evaluation of students' learning process, aiming to improve teaching effectiveness and students' learning experience.
背景技术Background Art
现有技术的不足Disadvantages of existing technology
目前,传统的教育管理系统主要依赖于教师的主观判断和有限的学生成绩数据来评估学生的学习表现。然而,这种方法存在以下几个问题:At present, traditional education management systems mainly rely on teachers' subjective judgment and limited student performance data to evaluate students' learning performance. However, this approach has the following problems:
1.数据单一性:传统系统仅依赖于考试成绩和作业完成情况,无法全面反映学生在课堂上的互动和学习过程。1. Data uniformity: Traditional systems rely only on test scores and homework completion, and cannot fully reflect students’ interactions and learning process in class.
2.实时性差:教师难以及时掌握学生的学习状态和行为表现,无法根据学生的实时反馈调整教学计划。2. Poor real-time performance: It is difficult for teachers to grasp students’ learning status and behavioral performance in a timely manner, and they are unable to adjust teaching plans based on students’ real-time feedback.
3.个性化不足:传统系统难以为每个学生提供个性化的学习建议和资源推荐,导致教学效果有限。3. Lack of personalization: Traditional systems find it difficult to provide personalized learning suggestions and resource recommendations for each student, resulting in limited teaching effectiveness.
4.沟通受限:师生之间的交流主要依赖于面对面的互动,无法充分利用现代技术手段提升沟通效率和效果。4. Limited communication: Communication between teachers and students mainly relies on face-to-face interaction, and it is impossible to fully utilize modern technology to improve communication efficiency and effectiveness.
相关专利技术Related patent technologies
近年来,已有一些技术尝试通过智能设备和数据分析改进教育管理系统。例如,中国专利CN108829702A公开了一种基于物联网的智慧校园系统,通过传感器和物联网技术实现校园内人员和设备的智能管理。该系统虽然在一定程度上提高了校园管理的智能化水平,但主要侧重于硬件设备的管理,未能深入挖掘学生的学习数据用于教育评估。In recent years, some technologies have attempted to improve education management systems through smart devices and data analysis. For example, Chinese patent CN108829702A discloses a smart campus system based on the Internet of Things, which uses sensors and Internet of Things technology to achieve intelligent management of personnel and equipment on campus. Although this system has improved the level of intelligent campus management to a certain extent, it mainly focuses on the management of hardware equipment and fails to deeply mine students' learning data for educational evaluation.
另一个例子是美国专利US20180324511A1,该专利介绍了一种利用人工智能进行教育评估的方法,能够通过学生的行为数据和学习记录生成个性化的学习建议。然而,该系统的实施需要大量的人工标注数据,并且对实时性的支持较弱,难以满足动态调整教学计划的需求。Another example is US Patent US20180324511A1, which introduces a method of using artificial intelligence for educational assessment, which can generate personalized learning suggestions based on students' behavioral data and learning records. However, the implementation of this system requires a large amount of manually labeled data, and has weak support for real-time performance, making it difficult to meet the needs of dynamically adjusting teaching plans.
相关学术研究Related academic research
在学术研究方面,许多研究者致力于利用大数据和人工智能技术提升教育评估的准确性和有效性。例如,Smith等人在其论文《Educational Data Mining:A Review of theState of the Art》中指出,教育数据挖掘(EDM)技术可以通过分析学生的行为数据,识别出影响学习效果的关键因素,从而为个性化教学提供依据。In terms of academic research, many researchers are committed to using big data and artificial intelligence technologies to improve the accuracy and effectiveness of educational assessment. For example, Smith et al. pointed out in their paper "Educational Data Mining: A Review of the State of the Art" that educational data mining (EDM) technology can identify key factors that affect learning outcomes by analyzing students' behavioral data, thereby providing a basis for personalized teaching.
此外,Jones等人的研究《Real-time Student Monitoring and AdaptiveLearning》提出了一种实时学生监控和自适应学习系统,能够根据学生的实时表现动态调整教学内容。尽管这些研究在理论上证明了智能教育评估系统的可行性,但在实际应用中,仍面临数据安全、系统集成和实际效果等方面的挑战。In addition, Jones et al.'s study "Real-time Student Monitoring and Adaptive Learning" proposed a real-time student monitoring and adaptive learning system that can dynamically adjust teaching content based on students' real-time performance. Although these studies have theoretically proved the feasibility of intelligent education evaluation systems, in practical applications, they still face challenges in data security, system integration, and actual effects.
本发明的创新点Innovation of the present invention
为克服现有技术和研究中的不足,本发明提出了一种透明化教育追踪与评估系统。该系统集成了多种传感器和数据处理技术,通过高性能计算设备和深度学习模型对学生的互动和学习数据进行全面分析。系统能够生成详细的学生行为和学习效率报告,支持自然语言交流和情感分析,提供个性化的教学资源和学习建议,动态调整教学计划,提升教学效果和学生学习体验。此外,通过安全管理单元和追踪监控系统,确保数据的安全性和教学过程的透明化。In order to overcome the deficiencies in existing technologies and research, the present invention proposes a transparent education tracking and evaluation system. The system integrates a variety of sensors and data processing technologies, and comprehensively analyzes students' interaction and learning data through high-performance computing devices and deep learning models. The system can generate detailed student behavior and learning efficiency reports, support natural language communication and sentiment analysis, provide personalized teaching resources and learning suggestions, dynamically adjust teaching plans, and improve teaching effects and student learning experience. In addition, the security management unit and tracking monitoring system ensure the security of data and the transparency of the teaching process.
发明内容Summary of the invention
发明目的Purpose of the Invention
本发明的目的是提供一种透明化教育追踪与评估系统,通过多源数据采集和处理技术,利用高性能计算设备和深度学习模型,实现对学生学习过程的全面监控和评估,从而提升教学效果和学生的学习体验。The purpose of this invention is to provide a transparent education tracking and evaluation system, which, through multi-source data acquisition and processing technology, utilizes high-performance computing equipment and deep learning models to achieve comprehensive monitoring and evaluation of students' learning process, thereby improving teaching effectiveness and students' learning experience.
技术方案Technical Solution
为实现上述发明目的,本发明提出了一种透明化教育追踪与评估系统,该系统包括数据收集单元、数据处理单元、自适应教学模块、互动式沟通单元、报告生成单元、安全管理单元和追踪与监控单元。To achieve the above-mentioned purpose of the invention, the present invention proposes a transparent education tracking and evaluation system, which includes a data collection unit, a data processing unit, an adaptive teaching module, an interactive communication unit, a report generation unit, a security management unit and a tracking and monitoring unit.
数据收集单元Data collection unit
数据收集单元通过多种传感器采集学生的互动和学习数据,包括:The data collection unit collects students’ interaction and learning data through a variety of sensors, including:
1.全景摄像头:安装在教室四角的4K全景摄像头,用于捕捉全景视角的学生互动。摄像头的安装高度为2.5米,以确保视角覆盖整个教室。摄像头通过RJ45网线连接到教室内的交换机,配置使用H.265编码技术,以减少带宽占用,同时保证高清画质。1. Panoramic camera: 4K panoramic cameras installed in the four corners of the classroom are used to capture student interactions from a panoramic perspective. The camera is installed at a height of 2.5 meters to ensure that the entire classroom is covered. The camera is connected to the switch in the classroom via an RJ45 network cable and is configured using H.265 encoding technology to reduce bandwidth usage while ensuring high-definition image quality.
2.麦克风阵列:带有方向感应的麦克风阵列,用于清晰捕捉学生的发言和课堂讨论声音。每个麦克风阵列包含8个麦克风单元,布置成360度全方位拾音,通过USB接口连接到数据处理服务器,并安装定制的驱动程序,启用内置的降噪和回声消除算法,以保证录音质量。2. Microphone array: A microphone array with directional sensing is used to clearly capture students' speeches and classroom discussions. Each microphone array contains 8 microphone units, arranged to pick up sound in all directions at 360 degrees, connected to the data processing server via a USB interface, and installed with a customized driver, enabling built-in noise reduction and echo cancellation algorithms to ensure recording quality.
3.压力和运动传感器:安装在每个学生座位上的压力传感器和运动传感器,用于监测学生的身体活动和姿势变化。压力传感器安装在学生座椅下方,采用电容式测量技术,灵敏度设为0.1公斤;运动传感器安装在座椅靠背,采用加速度计和陀螺仪组合,实时检测学生的姿势变化。传感器数据通过蓝牙5.0协议传输到教室内的中央接收器,再通过Wi-Fi传输到数据处理服务器。3. Pressure and motion sensors: Pressure sensors and motion sensors installed on each student seat are used to monitor students' physical activities and posture changes. The pressure sensor is installed under the student's seat and uses capacitive measurement technology with a sensitivity of 0.1 kg; the motion sensor is installed on the seat back and uses a combination of accelerometer and gyroscope to detect students' posture changes in real time. The sensor data is transmitted to the central receiver in the classroom via Bluetooth 5.0 protocol, and then transmitted to the data processing server via Wi-Fi.
数据处理单元Data processing unit
数据处理单元利用高性能计算设备和深度学习模型对采集的数据进行处理和分析,包括:The data processing unit uses high-performance computing equipment and deep learning models to process and analyze the collected data, including:
1.数据处理服务器:配备NVIDIA A100 GPU的数据处理服务器,采用双路IntelXeon处理器,配备512GB内存,安装8张NVIDIA A100 GPU,每张GPU拥有40GB显存。服务器安装在标准42U机柜中,通过千兆以太网与校园网络连接。1. Data processing server: The data processing server is equipped with NVIDIA A100 GPU, uses dual-core Intel Xeon processors, is equipped with 512GB memory, and is installed with 8 NVIDIA A100 GPUs, each with 40GB video memory. The server is installed in a standard 42U cabinet and connected to the campus network via Gigabit Ethernet.
2.深度学习模型:采用Python编写的自定义深度学习模型,结合TensorFlow和PyTorch框架进行优化。数据预处理模块采用NumPy和Pandas库,进行数据清洗和格式转换。设计卷积神经网络(CNN)模型结构,包括输入层、卷积层、激活层、池化层、全连接层和输出层;设计长短期记忆网络(LSTM)模型结构,包括输入层、LSTM层、全连接层和输出层。采用TensorFlow的分布式训练策略,加快模型训练速度,使用交叉验证和超参数调优技术进行模型评估和优化。2. Deep learning model: A custom deep learning model written in Python is optimized with TensorFlow and PyTorch frameworks. The data preprocessing module uses NumPy and Pandas libraries for data cleaning and format conversion. Design the convolutional neural network (CNN) model structure, including the input layer, convolution layer, activation layer, pooling layer, fully connected layer, and output layer; design the long short-term memory network (LSTM) model structure, including the input layer, LSTM layer, fully connected layer, and output layer. Use TensorFlow's distributed training strategy to speed up model training, and use cross-validation and hyperparameter tuning techniques for model evaluation and optimization.
3.数据处理:处理的视频、音频和传感器数据,用于生成学生行为和学习效率的综合报告。通过OpenCV库解析视频数据,提取关键帧和动作特征;通过Librosa库分析音频数据,提取语音特征和情感信息;通过SciPy库处理传感器数据,分析学生的身体活动和姿势变化。将所有数据融合在综合报告生成模块中,生成图表和文字描述,并通过Web界面展示给教师和学生。3. Data processing: The processed video, audio and sensor data are used to generate comprehensive reports on student behavior and learning efficiency. The OpenCV library is used to parse video data and extract key frames and motion features; the Librosa library is used to analyze audio data and extract voice features and emotional information; the SciPy library is used to process sensor data and analyze student physical activity and posture changes. All data are integrated into the comprehensive report generation module to generate charts and text descriptions, which are then presented to teachers and students through the web interface.
自适应教学模块Adaptive teaching module
自适应教学模块根据学生的实时表现和历史学习数据调整教学计划和资源,包括:The adaptive teaching module adjusts teaching plans and resources based on students' real-time performance and historical learning data, including:
1.集成多个在线学习平台的API接口,自动拉取最新教育资源和资料。系统集成Coursera、edX、Khan Academy等平台的API接口,定期同步最新课程和教材。数据同步模块每24小时自动运行,确保教学资源的及时更新,并将同步的数据存储在本地数据库中,包括课程视频、讲义、习题和答案解析。1. Integrate the API interfaces of multiple online learning platforms to automatically pull the latest educational resources and materials. The system integrates the API interfaces of Coursera, edX, Khan Academy and other platforms to regularly synchronize the latest courses and teaching materials. The data synchronization module runs automatically every 24 hours to ensure the timely update of teaching resources and store the synchronized data in the local database, including course videos, handouts, exercises and answer analysis.
2.基于学生的实时表现和历史学习数据调整教学计划和资源,采用协同过滤和内容推荐算法,根据学生的学习兴趣和成绩调整教学内容。使用实时表现数据(课堂参与度、测验成绩和作业完成情况)和历史数据(学习记录和考试成绩)进行分析,教学计划调整模块每周生成新的教学计划,推荐个性化的学习路径和资源。2. Adjust teaching plans and resources based on students' real-time performance and historical learning data, and use collaborative filtering and content recommendation algorithms to adjust teaching content according to students' learning interests and grades. Using real-time performance data (class participation, test scores, and homework completion) and historical data (learning records and test scores) for analysis, the teaching plan adjustment module generates new teaching plans every week and recommends personalized learning paths and resources.
3.内置推荐引擎,利用机器学习算法预测学生的学习需求,自动推荐个性化教学视频、测验和互动练习。推荐引擎采用XGBoost和LightGBM模型进行训练,结合学生的学习行为数据,通过API接口将推荐结果实时推送到学生的学习界面。学生可以对推荐结果进行反馈,系统根据反馈数据不断优化推荐模型。3. Built-in recommendation engine, using machine learning algorithms to predict students' learning needs, automatically recommending personalized teaching videos, quizzes and interactive exercises. The recommendation engine is trained with XGBoost and LightGBM models, combined with students' learning behavior data, and pushes the recommendation results to the students' learning interface in real time through the API interface. Students can provide feedback on the recommendation results, and the system continuously optimizes the recommendation model based on the feedback data.
互动式沟通单元Interactive Communication Unit
互动式沟通单元支持自然语言交流和情感分析,增强师生互动,包括:The interactive communication unit supports natural language communication and sentiment analysis to enhance teacher-student interaction, including:
1.集成语音识别和语音合成技术,能够理解和回应自然语言查询。语音识别模块采用Google1. Integrate speech recognition and speech synthesis technology to understand and respond to natural language queries. The speech recognition module uses Google
Speech-to-Text API,支持多种语言的语音识别;语音合成模块采用AmazonPolly API,根据文本生成自然流畅的语音回应。系统支持实时语音对话,学生可以通过麦克风直接向系统提问,系统即时做出回应。The Speech-to-Text API supports speech recognition in multiple languages; the speech synthesis module uses the Amazon Polly API to generate natural and fluent speech responses based on text. The system supports real-time voice conversations, and students can ask questions directly to the system through the microphone, and the system will respond immediately.
2.通过情感分析算法调整回应的语调和内容,以匹配学生的情绪状态。情感分析模块采用BERT模型,结合学生的语音和表情数据,分析其情绪状态。系统根据情绪分析结果,调整语音回应的语调和内容,例如在学生情绪低落时,提供鼓励和安慰。情绪分析结果存储在学生的个人档案中,教师可以随时查看和参考。2. Adjust the tone and content of the response to match the student's emotional state through sentiment analysis algorithms. The sentiment analysis module uses the BERT model to analyze the student's emotional state in combination with their voice and expression data. Based on the sentiment analysis results, the system adjusts the tone and content of the voice response, such as providing encouragement and comfort when the student is feeling down. The sentiment analysis results are stored in the student's personal profile, which teachers can view and refer to at any time.
3.支持视频会议功能,允许教师与学生进行面对面的虚拟互动,增强远程教育的交互体验。视频会议模块采用WebRTC技术,支持多方视频通话和屏幕共享功能。教师可以通过视频会议功能进行远程授课、答疑和辅导,学生可以随时加入会议并互动。系统支持录制和回放视频会议,学生可以在课后复习和参考。3. Support video conferencing function, allowing teachers and students to have face-to-face virtual interactions, enhancing the interactive experience of distance education. The video conferencing module uses WebRTC technology and supports multi-party video calls and screen sharing functions. Teachers can conduct remote teaching, answer questions and provide tutoring through video conferencing functions, and students can join the meeting and interact at any time. The system supports recording and playback of video conferences, and students can review and refer to them after class.
报告生成单元Report generation unit
报告生成单元使用数据分析工具生成详细的学习报告,包括:The Report Generation Unit uses data analysis tools to generate detailed study reports, including:
1.使用SAS和R语言进行数据处理和分析。数据分析模块采用SAS进行大规模数据处理,生成详细的统计报告和图表;使用R语言进行数据可视化,生成直观的学习进度图和知识掌握深度分析。数据分析算法包括回归分析、聚类分析和关联分析。1. Use SAS and R languages for data processing and analysis. The data analysis module uses SAS for large-scale data processing to generate detailed statistical reports and charts; uses R language for data visualization to generate intuitive learning progress charts and knowledge mastery depth analysis. Data analysis algorithms include regression analysis, cluster analysis, and association analysis.
2.生成的报告包括详细的学习进度图表、知识掌握深度分析和未来学习建议。学习进度图表显示学生在不同课程和知识点上的学习情况,包括学习时间、完成率和得分;知识掌握深度分析根据学生的测验和考试成绩,评估其对各个知识点的掌握程度,生成雷达图和热力图;未来学习建议模块结合学生的学习表现和兴趣,推荐适合的学习资源和计划,帮助学生提高学习效果。2. The generated reports include detailed learning progress charts, knowledge mastery depth analysis and future learning suggestions. The learning progress chart shows the student's learning status in different courses and knowledge points, including learning time, completion rate and score; the knowledge mastery depth analysis evaluates the student's mastery of each knowledge point based on the student's test and exam scores, and generates radar charts and heat maps; the future learning suggestion module combines the student's learning performance and interests to recommend suitable learning resources and plans to help students improve their learning effects.
3.报告可以在Web界面中实时查看,也可以导出为PDF或Excel文件,便于教师和家长下载和打印。Web界面采用HTML5和JavaScript技术,提供交互式的数据展示和分析工具;报告生成模块支持将分析结果导出为PDF或Excel文件,格式美观、内容详细,便于保存和分享;教师和家长可以通过系统账号登录,随时查看和下载学生的学习报告。3. The report can be viewed in real time in the web interface, or exported as a PDF or Excel file, which is convenient for teachers and parents to download and print. The web interface uses HTML5 and JavaScript technology to provide interactive data display and analysis tools; the report generation module supports exporting analysis results as PDF or Excel files, with beautiful format and detailed content, which is easy to save and share; teachers and parents can log in through the system account to view and download students' learning reports at any time.
安全管理单元Security Management Unit
安全管理单元确保数据的安全性,包括:The security management unit ensures data security, including:
1.所有数据传输均采用SSL/TLS加密技术。数据传输模块使用OpenSSL库,确保所有数据在传输过程中的加密和解密;SSL/TLS证书由可信的证书颁发机构(CA)签发,确保通信的安全性和可靠性;系统定期更新SSL/TLS证书,防止因证书过期而导致的安全风险。1. All data transmission uses SSL/TLS encryption technology. The data transmission module uses the OpenSSL library to ensure the encryption and decryption of all data during transmission; SSL/TLS certificates are issued by a trusted certificate authority (CA) to ensure the security and reliability of communications; the system regularly updates SSL/TLS certificates to prevent security risks caused by expired certificates.
2.系统数据库采用加密存储解决方案,使用MongoDB的加密存储引擎,确保存储数据的安全。数据库加密采用AES-256算法,确保存储数据的机密性和完整性;MongoDB加密存储引擎支持透明加密,所有数据在写入和读取时自动加解密;数据库访问控制严格限制,只有经过授权的用户和应用程序才能访问敏感数据。2. The system database adopts an encrypted storage solution and uses MongoDB's encrypted storage engine to ensure the security of stored data. Database encryption uses the AES-256 algorithm to ensure the confidentiality and integrity of stored data; the MongoDB encrypted storage engine supports transparent encryption, and all data is automatically encrypted and decrypted when written and read; database access control is strictly restricted, and only authorized users and applications can access sensitive data.
3.定期自动更新的防病毒和防恶意软件系统,以及一个综合的访问控制系统,通过多因素认证和动态权限分配保障数据访问的安全性。防病毒和防恶意软件系统采用企业级解决方案,定期扫描和更新病毒库;访问控制系统采用RBAC(基于角色的访问控制)模型,不同角色具有不同的权限,确保数据访问的安全性;多因素认证包括密码、短信验证码和生物识别(如指纹或人脸识别),提高系统的安全性和防护能力。3. Regularly and automatically updated anti-virus and anti-malware systems, as well as a comprehensive access control system, ensure the security of data access through multi-factor authentication and dynamic permission allocation. The anti-virus and anti-malware systems use enterprise-level solutions to regularly scan and update virus databases; the access control system uses the RBAC (role-based access control) model, with different roles having different permissions to ensure the security of data access; multi-factor authentication includes passwords, SMS verification codes, and biometrics (such as fingerprint or face recognition) to improve the security and protection capabilities of the system.
追踪和监控系统Tracking and monitoring systems
追踪和监控系统用于实时监控学生的位置和学习活动,包括:Tracking and monitoring systems are used to monitor students’ location and learning activities in real time, including:
1.集成GPS和Wi-Fi定位技术,实时监控学生的物理位置。GPS模块采用高精度定位芯片,实时获取学生的位置信息,定位精度达到3米以内;Wi-Fi定位模块通过分析附近Wi-Fi热点的信号强度和MAC地址,辅助提高室内定位精度;定位数据通过加密协议传输到系统服务器,确保学生位置隐私的安全性。1. Integrate GPS and Wi-Fi positioning technology to monitor students' physical location in real time. The GPS module uses a high-precision positioning chip to obtain students' location information in real time, with a positioning accuracy of less than 3 meters; the Wi-Fi positioning module assists in improving indoor positioning accuracy by analyzing the signal strength and MAC address of nearby Wi-Fi hotspots; the positioning data is transmitted to the system server through an encrypted protocol to ensure the security of students' location privacy.
2.系统能够识别学生是否在教室或指定学习区域内,以及他们的出勤情况。系统通过比对学生的实时位置和教室或指定学习区域的位置,判断学生是否按时到达和离开;出勤管理模块记录学生的出勤情况,包括到达时间、离开时间和缺勤记录,生成出勤报告;教师可以通过Web界面实时查看学生的出勤情况,并进行必要的提醒和管理。2. The system can identify whether students are in the classroom or designated learning area, as well as their attendance. The system determines whether students arrive and leave on time by comparing their real-time location with the location of the classroom or designated learning area; the attendance management module records students' attendance, including arrival time, departure time and absence records, and generates attendance reports; teachers can view students' attendance in real time through the web interface and make necessary reminders and management.
3.通过分析学生的移动设备使用情况,监控学习活动的时间分配,以确保学生的学习效率。移动设备监控模块通过分析学生的设备使用日志,记录使用时间、应用类型和使用频率;学习活动分析模块根据设备使用数据,评估学生在不同学习任务上的时间分配,生成学习效率报告;系统提供学习时间管理建议,帮助学生合理安排学习时间,提高学习效率。3. Analyze students' mobile device usage and monitor the time allocation of learning activities to ensure students' learning efficiency. The mobile device monitoring module analyzes students' device usage logs to record usage time, application type and usage frequency; the learning activity analysis module evaluates students' time allocation on different learning tasks based on device usage data and generates a learning efficiency report; the system provides learning time management suggestions to help students arrange their learning time reasonably and improve their learning efficiency.
有益效果Beneficial Effects
本发明通过透明化教育追踪与评估系统,实现了对学生学习过程的全面监控和评估,具有以下有益效果:The present invention realizes comprehensive monitoring and evaluation of students' learning process through a transparent education tracking and evaluation system, which has the following beneficial effects:
1.数据全面性:本系统通过多种传感器,如全景摄像头、麦克风阵列、压力和运动传感器,全面采集学生在课堂上的互动和学习数据。这些多源数据能够真实、全面地反映学生的学习行为和状态,克服了传统教育管理系统数据单一的缺陷。1. Comprehensiveness of data: This system uses a variety of sensors, such as panoramic cameras, microphone arrays, pressure and motion sensors, to comprehensively collect students’ interaction and learning data in the classroom. These multi-source data can truly and comprehensively reflect students’ learning behaviors and status, overcoming the defects of single data in traditional education management systems.
2.实时监控与反馈:本系统能够实时监控学生的学习状态和行为表现,通过高性能计算设备和深度学习模型对数据进行实时处理和分析。教师可以根据系统生成的实时报告,及时了解学生的学习情况,并根据反馈动态调整教学计划,提高教学的及时性和有效性。2. Real-time monitoring and feedback: This system can monitor students’ learning status and behavior in real time, and process and analyze data in real time through high-performance computing equipment and deep learning models. Teachers can understand students’ learning status in a timely manner based on the real-time reports generated by the system, and dynamically adjust teaching plans based on feedback to improve the timeliness and effectiveness of teaching.
3.个性化教学:系统内置的自适应教学模块和推荐引擎,能够根据学生的实时表现和历史学习数据,提供个性化的教学资源和学习建议。通过协同过滤和内容推荐算法,系统能够精准识别学生的学习需求,推荐适合的学习内容和路径,提升学习效果。3. Personalized teaching: The system's built-in adaptive teaching module and recommendation engine can provide personalized teaching resources and learning suggestions based on students' real-time performance and historical learning data. Through collaborative filtering and content recommendation algorithms, the system can accurately identify students' learning needs, recommend appropriate learning content and paths, and improve learning outcomes.
4.增强互动性:互动式沟通单元支持自然语言交流和情感分析,能够理解和回应学生的自然语言查询,增强师生之间的互动。通过语音识别和语音合成技术,系统可以实现实时语音对话;情感分析模块则能够根据学生的情绪状态调整回应内容,提高互动的情感化和人性化水平。4. Enhanced interactivity: The interactive communication unit supports natural language communication and sentiment analysis, can understand and respond to students' natural language queries, and enhance the interaction between teachers and students. Through speech recognition and speech synthesis technology, the system can achieve real-time voice dialogue; the sentiment analysis module can adjust the response content according to the emotional state of the students, and improve the emotional and human level of interaction.
5.全面学习评估:报告生成单元利用SAS和R语言等数据分析工具,生成详细的学习进度图表、知识掌握深度分析和未来学习建议。通过多种数据分析算法,如回归分析、聚类分析和关联分析,系统能够提供科学、全面的学习评估报告,为教师和学生提供有力的决策支持。5. Comprehensive learning assessment: The report generation unit uses data analysis tools such as SAS and R language to generate detailed learning progress charts, knowledge mastery in-depth analysis and future learning suggestions. Through a variety of data analysis algorithms, such as regression analysis, cluster analysis and association analysis, the system can provide scientific and comprehensive learning assessment reports to provide strong decision-making support for teachers and students.
6.数据安全与隐私保护:系统通过SSL/TLS加密技术保障数据传输的安全性,采用MongoDB的加密存储引擎确保数据存储的安全。多层防火墙和入侵检测系统、定期更新的防病毒和防恶意软件系统,以及多因素认证和动态权限分配的综合访问控制系统,共同构建了一个高度安全的数据管理环境,保障学生数据的隐私和安全。6. Data security and privacy protection: The system uses SSL/TLS encryption technology to ensure the security of data transmission and MongoDB's encrypted storage engine to ensure the security of data storage. Multi-layer firewalls and intrusion detection systems, regularly updated anti-virus and anti-malware systems, and comprehensive access control systems with multi-factor authentication and dynamic permission allocation jointly build a highly secure data management environment to protect the privacy and security of student data.
7.高效出勤管理与学习活动监控:系统集成了GPS和Wi-Fi定位技术,能够实时监控学生的物理位置和出勤情况,自动生成出勤报告。通过分析学生的移动设备使用情况,系统能够监控学习活动的时间分配,提供学习时间管理建议,帮助学生合理安排学习时间,提高学习效率。7. Efficient attendance management and learning activity monitoring: The system integrates GPS and Wi-Fi positioning technology, which can monitor students' physical location and attendance in real time and automatically generate attendance reports. By analyzing the use of students' mobile devices, the system can monitor the time allocation of learning activities, provide learning time management suggestions, help students arrange their study time reasonably, and improve learning efficiency.
综上所述,本发明的透明化教育追踪与评估系统,通过全面的数据采集、实时的监控与反馈、个性化的教学资源推荐、增强的师生互动、科学的学习评估和高度的数据安全保障,实现了教育管理的智能化、科学化和高效化,显著提升了教学效果和学生的学习体验。In summary, the transparent education tracking and evaluation system of the present invention realizes the intelligent, scientific and efficient education management through comprehensive data collection, real-time monitoring and feedback, personalized teaching resource recommendations, enhanced teacher-student interaction, scientific learning evaluation and high data security protection, and significantly improves the teaching effect and students' learning experience.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:透明化教育追踪与评估系统的总体架构图Figure 1: Overall architecture of the transparent education tracking and evaluation system
该图展示了系统的整体架构,包括数据收集单元、数据处理单元、动态自适应教学模块、互动式沟通单元、报告生成单元、安全管理单元和追踪与监控单元。The figure shows the overall architecture of the system, which includes a data collection unit, a data processing unit, a dynamic adaptive teaching module, an interactive communication unit, a report generation unit, a security management unit, and a tracking and monitoring unit.
图2:数据收集单元的组成及安装位置示意图Figure 2: Schematic diagram of the composition and installation location of the data collection unit
该图展示了数据收集单元的组成及其在教室中的安装位置,包括4K全景摄像头、麦克风阵列、压力传感器和运动传感器的布置。The diagram shows the composition of the data collection unit and its installation location in the classroom, including the arrangement of the 4K panoramic camera, microphone array, pressure sensor and motion sensor.
图3:数据处理单元的硬件架构图Figure 3: Hardware architecture of the data processing unit
该图展示了数据处理单元的硬件组成,包括服务器、处理器、内存和GPU等部件。The figure shows the hardware composition of the data processing unit, including components such as servers, processors, memory, and GPUs.
图4:深度学习模型结构图Figure 4: Deep learning model structure diagram
该图展示了用于数据处理单元中的深度学习模型结构,包括卷积神经网络(CNN)和长短期记忆网络(LSTM)的详细结构。This figure shows the deep learning model structure used in the data processing unit, including the detailed structure of the convolutional neural network (CNN) and the long short-term memory network (LSTM).
图5:综合报告生成模块的工作流程图Figure 5: Workflow diagram of the comprehensive report generation module
该图展示了综合报告生成模块的工作流程,包括数据采集、数据处理、分析及报告生成和展示。The figure shows the workflow of the comprehensive report generation module, including data collection, data processing, analysis, and report generation and presentation.
图6:互动式沟通单元架构图Figure 6: Interactive communication unit architecture
该图展示了互动式沟通单元的组成,包括语音识别模块、语音合成模块和情感分析模块。The figure shows the composition of the interactive communication unit, including the speech recognition module, speech synthesis module and sentiment analysis module.
图7:安全管理单元架构图Figure 7: Security management unit architecture diagram
该图展示了安全管理单元的组成和工作流程,包括数据传输加密、数据库加密存储和访问控制。The diagram shows the composition and workflow of the security management unit, including data transmission encryption, database encryption storage, and access control.
图8:追踪与监控系统架构图Figure 8: Tracking and monitoring system architecture
该图展示了追踪与监控系统的组成,包括GPS定位模块、Wi-Fi定位模块和出勤管理模块。The figure shows the composition of the tracking and monitoring system, including the GPS positioning module, Wi-Fi positioning module and attendance management module.
实施例Example
实施例1:数据收集单元的安装与配置Example 1: Installation and configuration of data collection unit
全景摄像头安装Panoramic camera installation
1.确定教室四角为全景摄像头的安装位置,每个摄像头安装高度为2.5米,确保视角覆盖整个教室。1. Determine the four corners of the classroom as the installation locations for the panoramic cameras. Each camera should be installed at a height of 2.5 meters to ensure that the viewing angle covers the entire classroom.
2.使用电钻在四角的墙壁上钻孔,安装固定支架,确保支架稳固。2. Use an electric drill to drill holes on the walls at the four corners, install the fixed brackets, and ensure that the brackets are stable.
3.将4K全景摄像头固定在支架上,并使用水平仪调整角度,确保视角覆盖整个教室。3. Fix the 4K panoramic camera on the bracket and use a level to adjust the angle to ensure that the viewing angle covers the entire classroom.
4.使用高质量的RJ45网线将摄像头连接到教室内的交换机,确保视频流的稳定传输。4. Use a high-quality RJ45 network cable to connect the camera to the switch in the classroom to ensure stable transmission of the video stream.
5.在摄像头配置界面中设置H.265编码技术,以减少带宽占用,同时保证高清画质。5. Set H.265 encoding technology in the camera configuration interface to reduce bandwidth usage while ensuring high-definition image quality.
6.测试摄像头连接和视频质量,确保所有摄像头正常工作。6. Test camera connections and video quality to ensure all cameras are working properly.
麦克风阵列配置Microphone array configuration
1.选择教室中央区域作为麦克风阵列安装位置,确保布置成360度全方位拾音。1. Select the central area of the classroom as the installation location for the microphone array, ensuring that it is arranged to pick up sound in all directions at 360 degrees.
2.使用电钻在选择的位置钻孔,并安装麦克风阵列支架。2. Use an electric drill to drill holes at the selected locations and install the microphone array bracket.
3.将麦克风阵列固定在支架上,并通过USB线缆连接到数据处理服务器,确保连接稳定。3. Fix the microphone array on the bracket and connect it to the data processing server via USB cable, ensuring a stable connection.
4.在服务器上安装定制的麦克风驱动程序,确保设备正常识别。4. Install the customized microphone driver on the server to ensure that the device is recognized normally.
5.在驱动程序配置界面启用内置的降噪和回声消除算法,以保证录音质量清晰。5. Enable the built-in noise reduction and echo cancellation algorithms in the driver configuration interface to ensure clear recording quality.
6.进行录音测试,确保麦克风阵列能够清晰捕捉到各个方位的声音。6. Perform a recording test to ensure that the microphone array can clearly capture sounds from all directions.
压力和运动传感器安装Pressure and Motion Sensor Installation
1.在每个学生座椅下方选择适当位置安装压力传感器,采用电容式测量技术,灵敏度设为0.1公斤。1. Select an appropriate location under each student's seat to install a pressure sensor, using capacitive measurement technology and setting the sensitivity to 0.1 kg.
2.使用强力双面胶将压力传感器粘贴在座椅下方,确保传感器稳固不易掉落。2. Use strong double-sided tape to stick the pressure sensor under the seat to ensure that the sensor is stable and not easy to fall off.
3.将传感器线缆整理好,并连接到数据传输模块。3. Arrange the sensor cables and connect them to the data transmission module.
4.在座椅靠背选择适当位置安装运动传感器,采用加速度计和陀螺仪组合,实时检测学生的姿势变化。4. Install a motion sensor at an appropriate location on the seat back, using a combination of an accelerometer and gyroscope to detect students' posture changes in real time.
5.使用强力双面胶将运动传感器粘贴在座椅靠背,并确保线缆整齐连接到数据传输模块。5. Use strong double-sided tape to stick the motion sensor to the seat back and make sure the cable is neatly connected to the data transmission module.
6.通过蓝牙5.0协议将传感器数据传输到教室内的中央接收器,再通过Wi-Fi传输到数据处理服务器。6. Transmit sensor data to a central receiver in the classroom via Bluetooth 5.0 protocol, and then transmit to a data processing server via Wi-Fi.
7.测试所有传感器的连接和数据传输,确保数据采集准确。7. Test the connection and data transmission of all sensors to ensure accurate data collection.
实施例2:数据处理单元的配置与运行Example 2: Configuration and operation of data processing unit
数据处理服务器配置Data processing server configuration
1.选择标准42U机柜的位置,并确保机柜稳固安装在数据中心。1. Select a location for a standard 42U cabinet and ensure that the cabinet is securely installed in the data center.
2.将双路Intel Xeon处理器和512GB内存的服务器组件安装在机柜中。2. Install the server components with dual-socket Intel Xeon processors and 512GB of memory in the cabinet.
3.插入并固定8张NVIDIA A100 GPU,每张GPU拥有40GB显存,确保GPU正确连接到主板。3. Insert and secure 8 NVIDIA A100 GPUs, each with 40GB of video memory, and ensure that the GPUs are properly connected to the motherboard.
4.连接服务器电源线和网络线缆,将服务器通过千兆以太网与校园网络连接。4. Connect the server power cord and network cable, and connect the server to the campus network via Gigabit Ethernet.
5.启动服务器并进入BIOS设置,确保所有组件正常识别。5. Start the server and enter the BIOS setup to ensure that all components are recognized normally.
6.安装Linux操作系统,并进行基本配置。6. Install the Linux operating system and perform basic configuration.
7.安装必要的驱动程序和CUDA工具包,确保GPU能够正常工作。7. Install necessary drivers and CUDA toolkit to ensure that the GPU can work properly.
8.安装TensorFlow和PyTorch框架,并测试环境配置,确保深度学习框架正常运行。8. Install TensorFlow and PyTorch frameworks and test the environment configuration to ensure the normal operation of the deep learning framework.
深度学习模型开发Deep learning model development
1.使用Python编写自定义深度学习模型,安装NumPy、Pandas、TensorFlow和PyTorch等依赖库。1. Use Python to write custom deep learning models and install dependent libraries such as NumPy, Pandas, TensorFlow, and PyTorch.
2.在数据预处理模块中使用NumPy和Pandas库进行数据清洗和格式转换。2. Use NumPy and Pandas libraries for data cleaning and format conversion in the data preprocessing module.
3.设计卷积神经网络(CNN)模型结构,包括输入层、卷积层、激活层、池化层、全连接层和输出层。3. Design the convolutional neural network (CNN) model structure, including input layer, convolution layer, activation layer, pooling layer, fully connected layer and output layer.
4.设计长短期记忆网络(LSTM)模型结构,包括输入层、LSTM层、全连接层和输出层。4. Design the long short-term memory network (LSTM) model structure, including the input layer, LSTM layer, fully connected layer and output layer.
5.采用TensorFlow的分布式训练策略,加快模型训练速度,使用交叉验证和超参数调优技术进行模型评估和优化。5. Use TensorFlow's distributed training strategy to speed up model training, and use cross-validation and hyperparameter tuning techniques to evaluate and optimize the model.
数据处理与分析Data processing and analysis
1.通过OpenCV库解析视频数据,提取关键帧和动作特征。1. Parse video data through the OpenCV library to extract key frames and motion features.
2.通过Librosa库分析音频数据,提取语音特征和情感信息。2. Analyze audio data through the Librosa library to extract speech features and emotional information.
3.通过SciPy库处理传感器数据,分析学生的身体活动和姿势变化。3. Process sensor data through the SciPy library to analyze students’ physical activities and posture changes.
4.将所有数据融合在综合报告生成模块中,生成图表和文字描述。4. Integrate all data into the comprehensive report generation module to generate charts and text descriptions.
5.通过Web界面展示分析结果,教师和学生可以实时查看。5. The analysis results are displayed through the web interface, and teachers and students can view them in real time.
实施例3:自适应教学模块的实现Example 3: Implementation of the Adaptive Teaching Module
在线学习平台集成Online learning platform integration
1.获取Coursera、edX、Khan Academy等平台的API接口开发文档,编写API调用程序,定期拉取最新课程和教材数据。1. Obtain the API interface development documents of Coursera, edX, Khan Academy and other platforms, write API call programs, and regularly pull the latest course and textbook data.
2.设置数据同步模块,每24小时自动运行,确保教学资源的及时更新。2. Set up a data synchronization module to run automatically every 24 hours to ensure timely updating of teaching resources.
3.将同步的数据存储在本地数据库中,包含课程视频、讲义、习题和答案解析。3. Store the synchronized data in the local database, including course videos, handouts, exercises, and answers.
自适应算法应用Adaptive algorithm application
1.收集学生的实时表现数据和历史数据,采用协同过滤和内容推荐算法,根据学生的学习兴趣和成绩调整教学内容。1. Collect students’ real-time performance data and historical data, use collaborative filtering and content recommendation algorithms, and adjust teaching content according to students’ learning interests and grades.
2.使用实时数据和历史数据进行分析,生成个性化教学计划。2. Use real-time and historical data for analysis and generate personalized teaching plans.
3.教学计划调整模块每周生成新的教学计划,推荐个性化的学习路径和资源。3. The teaching plan adjustment module generates new teaching plans every week and recommends personalized learning paths and resources.
智能推荐引擎Intelligent recommendation engine
1.使用XGBoost和LightGBM模型进行训练,结合学生的学习行为数据,通过API接口将推荐结果实时推送到学生的学习界面。1. Use XGBoost and LightGBM models for training, combine with students’ learning behavior data, and push the recommendation results to students’ learning interface in real time through the API interface.
2.学生对推荐结果进行反馈,系统根据反馈数据不断优化推荐模型。2. Students provide feedback on the recommendation results, and the system continuously optimizes the recommendation model based on the feedback data.
实施例4:互动式沟通单元的部署Example 4: Deployment of interactive communication unit
语音识别和合成Speech Recognition and Synthesis
1.集成Google Speech-to-Text API进行语音识别,支持多种语言的语音识别。1. Integrate Google Speech-to-Text API for speech recognition and support speech recognition in multiple languages.
2.使用Amazon Polly API进行语音合成,根据文本生成自然流畅的语音回应。2. Use the Amazon Polly API for speech synthesis to generate natural and fluent voice responses based on text.
3.系统支持实时语音对话,学生通过麦克风直接向系统提问,系统即时做出回应。3. The system supports real-time voice dialogue. Students can ask questions directly to the system through the microphone, and the system will respond immediately.
情感分析Sentiment Analysis
1.情感分析模块采用BERT模型,结合学生的语音和表情数据,分析其情绪状态。1. The sentiment analysis module uses the BERT model to combine students’ voice and expression data to analyze their emotional state.
2.系统根据情绪分析结果,调整语音回应的语调和内容,例如在学生情绪低落时,提供鼓励和安慰。2. The system adjusts the tone and content of voice responses based on the results of emotion analysis, for example, providing encouragement and comfort when students are depressed.
3.情感分析结果存储在学生的个人档案中,教师可以随时查看和参考。3. The sentiment analysis results are stored in the students’ personal profiles and can be viewed and referenced by teachers at any time.
视频会议功能Video conferencing capabilities
1.视频会议模块采用WebRTC技术,支持多方视频通话和屏幕共享功能。1. The video conferencing module uses WebRTC technology and supports multi-party video calls and screen sharing functions.
2.教师可以通过视频会议功能进行远程授课、答疑和辅导,学生可以随时加入会议并互动。2. Teachers can conduct remote teaching, answer questions and provide tutoring through video conferencing, and students can join the meeting and interact at any time.
3.系统支持录制和回放视频会议,学生可以在课后复习和参考。3. The system supports recording and playback of video conferences, which students can review and refer to after class.
实施例5:报告生成单元的实现Example 5: Implementation of a report generation unit
数据分析工具配置Data analysis tool configuration
1.数据分析模块采用SAS进行大规模数据处理,生成详细的统计报告和图表。1. The data analysis module uses SAS for large-scale data processing and generates detailed statistical reports and charts.
2.使用R语言进行数据可视化,生成直观的学习进度图和知识掌握深度分析。2. Use R language for data visualization to generate intuitive learning progress charts and in-depth analysis of knowledge mastery.
3.数据分析算法包括回归分析、聚类分析和关联分析。3. Data analysis algorithms include regression analysis, cluster analysis and association analysis.
学习报告生成Study report generation
1.生成详细的学习进度图表、知识掌握深度分析和未来学习建议。1. Generate detailed learning progress charts, in-depth analysis of knowledge mastery, and future learning suggestions.
2.学习进度图表显示学生在不同课程和知识点上的学习情况,包括学习时间、完成率和得分。2. The learning progress chart shows students’ learning status on different courses and knowledge points, including learning time, completion rate and scores.
3.知识掌握深度分析根据学生的测验和考试成绩,评估其对各个知识点的掌握程度,生成雷达图和热力图。3. In-depth analysis of knowledge mastery: Based on students’ test and exam scores, the system evaluates their mastery of each knowledge point and generates radar charts and heat maps.
4.未来学习建议模块结合学生的学习表现和兴趣,推荐适合的学习资源和计划,帮助学生提高学习效果。4. The future learning suggestion module combines students’ learning performance and interests to recommend appropriate learning resources and plans to help students improve their learning outcomes.
报告展示与导出Report display and export
1.报告可以在Web界面中实时查看,教师和家长可以通过系统账号登录查看。1. The report can be viewed in real time in the web interface, and teachers and parents can log in and view it through the system account.
2.报告生成模块支持将分析结果导出为PDF或Excel文件,格式美观、内容详细,便于保存和分享。2. The report generation module supports exporting analysis results as PDF or Excel files with beautiful format and detailed content, which is easy to save and share.
3.通过Web界面提供交互式的数据展示和分析工具,教师和家长随时查看和下载学生的学习报告。3. Provide interactive data display and analysis tools through the web interface, so that teachers and parents can view and download students' learning reports at any time.
实施例6:安全管理单元的部署Example 6: Deployment of a security management unit
数据传输安全Data transmission security
1.所有数据传输均采用SSL/TLS加密技术,数据传输模块使用OpenSSL库,确保所有数据在传输过程中的加密和解密。1. All data transmission uses SSL/TLS encryption technology, and the data transmission module uses the OpenSSL library to ensure the encryption and decryption of all data during transmission.
2.SSL/TLS证书由可信的证书颁发机构签发,确保通信的安全性和可靠性。2.SSL/TLS certificates are issued by trusted certificate authorities to ensure the security and reliability of communications.
3.系统定期更新SSL/TLS证书,防止因证书过期而导致的安全风险。3. The system regularly updates SSL/TLS certificates to prevent security risks caused by expired certificates.
数据库安全Database security
1.系统数据库采用MongoDB的加密存储引擎,确保存储数据的安全。1. The system database uses MongoDB's encrypted storage engine to ensure the security of stored data.
2.数据库加密采用AES-256算法,确保存储数据的机密性和完整性。2. Database encryption uses AES-256 algorithm to ensure the confidentiality and integrity of stored data.
3.MongoDB加密存储引擎支持透明加密,所有数据在写入和读取时自动加解密。3. The MongoDB encrypted storage engine supports transparent encryption, and all data is automatically encrypted and decrypted when writing and reading.
4.数据库访问控制严格限制,只有经过授权的用户和应用程序才能访问敏感数据。4. Database access control is strictly limited, and only authorized users and applications can access sensitive data.
防病毒和访问控制Antivirus and access control
1.系统采用定期自动更新的防病毒和防恶意软件系统,定期扫描和更新病毒库。1. The system uses an anti-virus and anti-malware system that is automatically updated regularly, and the virus database is scanned and updated regularly.
2.访问控制系统采用基于角色的访问控制模型,不同角色具有不同的权限,确保数据访问的安全性。2. The access control system adopts a role-based access control model, where different roles have different permissions to ensure the security of data access.
3.多因素认证包括密码、短信验证码和生物识别,提高系统的安全性和防护能力。3. Multi-factor authentication includes passwords, SMS verification codes and biometrics to improve the security and protection capabilities of the system.
实施例7:追踪和监控系统的实施Example 7: Implementation of Tracking and Monitoring System
定位技术Positioning Technology
1.系统集成GPS和Wi-Fi定位技术,实时监控学生的物理位置。1. The system integrates GPS and Wi-Fi positioning technology to monitor students’ physical location in real time.
2.GPS模块采用高精度定位芯片,实时获取学生的位置信息,定位精度达到3米以内。2. The GPS module uses a high-precision positioning chip to obtain students' location information in real time, with a positioning accuracy of within 3 meters.
3.Wi-Fi定位模块通过分析附近Wi-Fi热点的信号强度和MAC地址,辅助提高室内定位精度。3. The Wi-Fi positioning module helps improve indoor positioning accuracy by analyzing the signal strength and MAC address of nearby Wi-Fi hotspots.
4.定位数据通过加密协议传输到系统服务器,确保学生位置隐私的安全性。4. The positioning data is transmitted to the system server through an encrypted protocol to ensure the security of the student's location privacy.
出勤管理Attendance Management
1.系统能够识别学生是否在教室或指定学习区域内,通过比对学生的实时位置和教室或指定学习区域的位置,判断学生是否按时到达和离开。1. The system can identify whether students are in the classroom or designated learning area, and determine whether students arrive and leave on time by comparing their real-time location with the location of the classroom or designated learning area.
2.出勤管理模块记录学生的出勤情况,包括到达时间、离开时间和缺勤记录,生成出勤报告。2. The attendance management module records students’ attendance, including arrival time, departure time and absence records, and generates attendance reports.
3.教师可以通过Web界面实时查看学生的出勤情况,并进行必要的提醒和管理。3. Teachers can check students' attendance in real time through the web interface and make necessary reminders and management.
学习活动监控Learning activity monitoring
1.系统通过分析学生的移动设备使用情况,监控学习活动的时间分配。1. The system monitors the time allocation for learning activities by analyzing students’ mobile device usage.
2.移动设备监控模块通过分析学生的设备使用日志,记录使用时间、应用类型和使用频率。2. The mobile device monitoring module records usage time, application type and frequency of use by analyzing students’ device usage logs.
3.学习活动分析模块根据设备使用数据,评估学生在不同学习任务上的时间分配,生成学习效率报告。3. The learning activity analysis module evaluates students’ time allocation on different learning tasks based on device usage data and generates a learning efficiency report.
4.系统提供学习时间管理建议,帮助学生合理分配学习时间,提高学习效率。4. The system provides study time management suggestions to help students allocate study time reasonably and improve learning efficiency.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410940938.5A CN118917719A (en) | 2024-07-15 | 2024-07-15 | Transparentization education tracking and evaluating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410940938.5A CN118917719A (en) | 2024-07-15 | 2024-07-15 | Transparentization education tracking and evaluating system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118917719A true CN118917719A (en) | 2024-11-08 |
Family
ID=93307534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410940938.5A Pending CN118917719A (en) | 2024-07-15 | 2024-07-15 | Transparentization education tracking and evaluating system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118917719A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119228094A (en) * | 2024-12-03 | 2024-12-31 | 四川储仁教育科技有限公司 | A comprehensive management system for smart digital campus |
-
2024
- 2024-07-15 CN CN202410940938.5A patent/CN118917719A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119228094A (en) * | 2024-12-03 | 2024-12-31 | 四川储仁教育科技有限公司 | A comprehensive management system for smart digital campus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mershad et al. | A learning management system enhanced with internet of things applications | |
US11372709B2 (en) | Automated testing error assessment system | |
CN111949822A (en) | An intelligent educational video service system based on cloud computing and mobile terminal and its operation method | |
CN104575142B (en) | Seamless across the Media open teaching experiment room of experience type digitlization multi-screen | |
US20190340944A1 (en) | Multimedia Interactive Teaching System and Method | |
KR100466709B1 (en) | learning system | |
US20190025906A1 (en) | Systems and methods for virtual reality-based assessment | |
US5924069A (en) | Voice-control integrated field support data communications system for maintenance, repair and emergency services | |
US20150279426A1 (en) | Learning Environment Systems and Methods | |
KR102438587B1 (en) | How to replay participatory content that reflects the learner's response signal | |
Sanchez-Pizani et al. | Hybrid flexible (HyFlex) seminar delivery–A technical overview of the implementation | |
US10567523B2 (en) | Correlating detected patterns with content delivery | |
CN118917719A (en) | Transparentization education tracking and evaluating system | |
CN109086693B (en) | Detection technology for on-line teaching learning attention | |
US20180176156A1 (en) | Systems and methods for automatic multi-recipient electronic notification | |
CN118691432B (en) | Personalized Education Experience AI Enables Student Card System | |
CN110349460A (en) | A kind of online education and examination system | |
CN109214965A (en) | Data preparation method, system and device | |
CN116800919A (en) | Intelligent touch screen interaction teaching equipment | |
KR20150112193A (en) | Smart school system based on interactive educational solution and method thereof | |
CN115278272B (en) | Education practice online guidance system and method | |
KR20130099381A (en) | Assessment system for education | |
US20160180170A1 (en) | Systems and methods for eye tracking-based exam proctoring | |
CN119228608B (en) | AI-based teaching interactive method and system | |
Ahmad et al. | Towards a Low‐Cost Teacher Orchestration Using Ubiquitous Computing Devices for Detecting Student’s Engagement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |