CN118903476A - Composition containing LNP and mRNA and application thereof in treating Gaucher disease - Google Patents
Composition containing LNP and mRNA and application thereof in treating Gaucher disease Download PDFInfo
- Publication number
- CN118903476A CN118903476A CN202411406666.7A CN202411406666A CN118903476A CN 118903476 A CN118903476 A CN 118903476A CN 202411406666 A CN202411406666 A CN 202411406666A CN 118903476 A CN118903476 A CN 118903476A
- Authority
- CN
- China
- Prior art keywords
- mrna
- nucleotide sequence
- composition according
- hgba
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108020004999 messenger RNA Proteins 0.000 title claims abstract description 88
- 239000000203 mixture Substances 0.000 title claims abstract description 56
- 208000015872 Gaucher disease Diseases 0.000 title claims abstract description 44
- 150000002632 lipids Chemical class 0.000 claims abstract description 69
- 102100033342 Lysosomal acid glucosylceramidase Human genes 0.000 claims abstract description 61
- 230000000694 effects Effects 0.000 claims abstract description 56
- 210000002966 serum Anatomy 0.000 claims abstract description 48
- 239000002773 nucleotide Substances 0.000 claims abstract description 46
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 46
- 230000014509 gene expression Effects 0.000 claims abstract description 35
- 239000002105 nanoparticle Substances 0.000 claims abstract description 30
- 210000000056 organ Anatomy 0.000 claims abstract description 23
- 108010017544 Glucosylceramidase Proteins 0.000 claims abstract description 18
- 210000004185 liver Anatomy 0.000 claims description 64
- 239000002502 liposome Substances 0.000 claims description 53
- 210000000952 spleen Anatomy 0.000 claims description 47
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 44
- 108090000623 proteins and genes Proteins 0.000 claims description 41
- 101000997662 Homo sapiens Lysosomal acid glucosylceramidase Proteins 0.000 claims description 30
- 239000008194 pharmaceutical composition Substances 0.000 claims description 30
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 claims description 26
- 125000002091 cationic group Chemical group 0.000 claims description 25
- 238000010253 intravenous injection Methods 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 210000001185 bone marrow Anatomy 0.000 claims description 15
- 150000003431 steroids Chemical class 0.000 claims description 15
- 210000004556 brain Anatomy 0.000 claims description 14
- 210000003734 kidney Anatomy 0.000 claims description 14
- 210000004072 lung Anatomy 0.000 claims description 14
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 claims description 13
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 claims description 13
- 229940045145 uridine Drugs 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 11
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 10
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 10
- 229940106189 ceramide Drugs 0.000 claims description 9
- 108091026898 Leader sequence (mRNA) Proteins 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 claims description 7
- 108091036066 Three prime untranslated region Proteins 0.000 claims description 7
- UVBYMVOUBXYSFV-XUTVFYLZSA-N 1-methylpseudouridine Chemical compound O=C1NC(=O)N(C)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UVBYMVOUBXYSFV-XUTVFYLZSA-N 0.000 claims description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 5
- 108091036407 Polyadenylation Proteins 0.000 claims description 5
- 235000012000 cholesterol Nutrition 0.000 claims description 5
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 241000699800 Cricetinae Species 0.000 claims description 4
- 208000020322 Gaucher disease type I Diseases 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 claims description 3
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 claims description 3
- MWRBNPKJOOWZPW-NYVOMTAGSA-N 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-NYVOMTAGSA-N 0.000 claims description 3
- BIABMEZBCHDPBV-MPQUPPDSSA-N 1,2-palmitoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-MPQUPPDSSA-N 0.000 claims description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 claims description 3
- DSNRWDQKZIEDDB-GCMPNPAFSA-N [(2r)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C/CCCCCCCC DSNRWDQKZIEDDB-GCMPNPAFSA-N 0.000 claims description 3
- HHJTWTPUPVQKNA-JIAPQYILSA-N beta-D-glucosylsphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HHJTWTPUPVQKNA-JIAPQYILSA-N 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- 239000000651 prodrug Substances 0.000 claims description 3
- 229940002612 prodrug Drugs 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 241000283690 Bos taurus Species 0.000 claims description 2
- 241000282693 Cercopithecidae Species 0.000 claims description 2
- 241000283074 Equus asinus Species 0.000 claims description 2
- 241000282326 Felis catus Species 0.000 claims description 2
- 241000287828 Gallus gallus Species 0.000 claims description 2
- 208000020916 Gaucher disease type II Diseases 0.000 claims description 2
- 208000028735 Gaucher disease type III Diseases 0.000 claims description 2
- 241000282575 Gorilla Species 0.000 claims description 2
- 241000124008 Mammalia Species 0.000 claims description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 2
- 241001494479 Pecora Species 0.000 claims description 2
- 241000009328 Perro Species 0.000 claims description 2
- 241000282898 Sus scrofa Species 0.000 claims description 2
- SRLOHQKOADWDBV-NRONOFSHSA-M sodium;[(2r)-2,3-di(octadecanoyloxy)propyl] 2-(2-methoxyethoxycarbonylamino)ethyl phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCCNC(=O)OCCOC)OC(=O)CCCCCCCCCCCCCCCCC SRLOHQKOADWDBV-NRONOFSHSA-M 0.000 claims description 2
- SLKDGVPOSSLUAI-PGUFJCEWSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCCCCCC SLKDGVPOSSLUAI-PGUFJCEWSA-N 0.000 claims 1
- LVNGJLRDBYCPGB-UHFFFAOYSA-N 1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-UHFFFAOYSA-N 0.000 claims 1
- JQKOHRZNEOQNJE-ZZEZOPTASA-N 2-azaniumylethyl [3-octadecanoyloxy-2-[(z)-octadec-9-enoyl]oxypropyl] phosphate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCC\C=C/CCCCCCCC JQKOHRZNEOQNJE-ZZEZOPTASA-N 0.000 claims 1
- 101150077194 CAP1 gene Proteins 0.000 claims 1
- 101100245221 Mus musculus Prss8 gene Proteins 0.000 claims 1
- NONFBHXKNNVFMO-UHFFFAOYSA-N [2-aminoethoxy(tetradecanoyloxy)phosphoryl] tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OP(=O)(OCCN)OC(=O)CCCCCCCCCCCCC NONFBHXKNNVFMO-UHFFFAOYSA-N 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 48
- 239000003814 drug Substances 0.000 abstract description 19
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 4
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 abstract description 3
- 239000008103 glucose Substances 0.000 abstract description 3
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 abstract description 3
- 101100282787 Caenorhabditis elegans gba-1 gene Proteins 0.000 abstract 1
- 241000699670 Mus sp. Species 0.000 description 61
- 108010039650 imiglucerase Proteins 0.000 description 33
- 229940049197 cerezyme Drugs 0.000 description 31
- 238000002347 injection Methods 0.000 description 31
- 239000007924 injection Substances 0.000 description 31
- 102000004169 proteins and genes Human genes 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 17
- 229940079593 drug Drugs 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 13
- 102000004127 Cytokines Human genes 0.000 description 11
- 108090000695 Cytokines Proteins 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 238000003753 real-time PCR Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 238000002641 enzyme replacement therapy Methods 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 210000003292 kidney cell Anatomy 0.000 description 6
- 238000002203 pretreatment Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 108020003589 5' Untranslated Regions Proteins 0.000 description 5
- 150000003838 adenosines Chemical class 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- -1 cationic lipid Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 108091023045 Untranslated Region Proteins 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 150000002305 glucosylceramides Chemical class 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000000926 neurological effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 108090000467 Interferon-beta Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 208000015439 Lysosomal storage disease Diseases 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- YUDPTGPSBJVHCN-YMILTQATSA-N 4-methylumbelliferyl beta-D-glucoside Chemical compound C1=CC=2C(C)=CC(=O)OC=2C=C1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O YUDPTGPSBJVHCN-YMILTQATSA-N 0.000 description 2
- 208000005452 Acute intermittent porphyria Diseases 0.000 description 2
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 2
- 241000282552 Chlorocebus aethiops Species 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101000952099 Homo sapiens Antiviral innate immune response receptor RIG-I Proteins 0.000 description 2
- 102100026720 Interferon beta Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 206010036182 Porphyria acute Diseases 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 229930183167 cerebroside Natural products 0.000 description 2
- 150000001784 cerebrosides Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 238000002651 drug therapy Methods 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 229960002127 imiglucerase Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 201000003694 methylmalonic acidemia Diseases 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- HHJTWTPUPVQKNA-SKXACSAKSA-N (2r,3s,4s,5s,6r)-2-[(e,3r)-2-amino-3-hydroxyoctadec-4-enoxy]-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)C(N)CO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]1O HHJTWTPUPVQKNA-SKXACSAKSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 1
- 208000032529 Accidental overdose Diseases 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 101100372317 Arabidopsis thaliana UTR7 gene Proteins 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- YBSQGNFRWZKFMJ-UHFFFAOYSA-N Cerebroside B Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(C(O)C=CCCC=C(C)CCCCCCCCC)COC1OC(CO)C(O)C(O)C1O YBSQGNFRWZKFMJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 101150028412 GBA gene Proteins 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 206010018341 Gliosis Diseases 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010085747 Methylmalonyl-CoA Decarboxylase Proteins 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- YRXOQXUDKDCXME-YIVRLKKSSA-N N,N-dimethylsphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO)N(C)C YRXOQXUDKDCXME-YIVRLKKSSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010060860 Neurological symptom Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 238000010806 PrimeScriptTM RT Reagent kit Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- WBWWGRHZICKQGZ-UHFFFAOYSA-N Taurocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCCS(O)(=O)=O)C)C1(C)C(O)C2 WBWWGRHZICKQGZ-UHFFFAOYSA-N 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 238000010811 Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Methods 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229940050528 albumin Drugs 0.000 description 1
- 108010060162 alglucerase Proteins 0.000 description 1
- 229960003122 alglucerase Drugs 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000037875 astrocytosis Diseases 0.000 description 1
- 230000007341 astrogliosis Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 208000025698 brain inflammatory disease Diseases 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000002101 electrospray ionisation tandem mass spectrometry Methods 0.000 description 1
- 229960002856 eliglustat Drugs 0.000 description 1
- FJZZPCZKBUKGGU-AUSIDOKSSA-N eliglustat Chemical compound C([C@@H](NC(=O)CCCCCCC)[C@H](O)C=1C=C2OCCOC2=CC=1)N1CCCC1 FJZZPCZKBUKGGU-AUSIDOKSSA-N 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 206010019847 hepatosplenomegaly Diseases 0.000 description 1
- 102000045630 human GBA Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960001512 miglustat Drugs 0.000 description 1
- UQRORFVVSGFNRO-UTINFBMNSA-N miglustat Chemical compound CCCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO UQRORFVVSGFNRO-UTINFBMNSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 201000004012 propionic acidemia Diseases 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- WBWWGRHZICKQGZ-GIHLXUJPSA-N taurocholic acid Chemical compound C([C@@H]1C[C@H]2O)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@H](O)C1 WBWWGRHZICKQGZ-GIHLXUJPSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical group [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
- A61K48/0025—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
- A61K48/0033—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Genetics & Genomics (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Neurosurgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
技术领域Technical Field
本发明属于生物医药领域,具体涉及一种含LNP和mRNA的组合物及其在治疗戈谢病中的应用。The invention belongs to the field of biomedicine, and specifically relates to a composition containing LNP and mRNA and application of the composition in treating Gaucher disease.
背景技术Background Art
戈谢病(Gaucher Disease,缩写为GD)是一种由葡萄糖脑苷脂酶β(GBA1)基因突变引起的溶酶体贮积疾病(Lysosomal Storage Disorder,缩写为LSD)。该基因位于人类染色体1q21位点,主要编码溶酶体β-葡萄糖脑苷脂酶(β-GCase)。目前已经发现与戈谢病有关的突变超过400种。这些突变可能导致β-GCase缺乏,进而导致葡萄糖苷酯酰鞘氨醇(GL1或GlcCer)及其去酰化形式的葡萄糖鞘氨醇(Lyso-GL1或GlcSph)在细胞内的溶酶体中积累,尤其在网状内皮系统细胞中表现明显,形成所谓的戈谢细胞,这些细胞主要分布在患有戈谢病的患者的肝脏、脾脏、骨髓、淋巴结等器官中。Gaucher Disease (GD) is a lysosomal storage disorder (LSD) caused by mutations in the glucocerebrosidase β (GBA1) gene. This gene is located at the 1q21 locus of human chromosomes and mainly encodes lysosomal β-glucocerebrosidase (β-GCase). More than 400 mutations associated with Gaucher disease have been found. These mutations may lead to β-GCase deficiency, which in turn leads to the accumulation of glucosylceramide (GL1 or GlcCer) and its deacylated form of glucosylceramide (Lyso-GL1 or GlcSph) in the intracellular lysosomes, especially in the cells of the reticuloendothelial system, forming so-called Gaucher cells, which are mainly distributed in the liver, spleen, bone marrow, lymph nodes and other organs of patients with Gaucher disease.
戈谢病是最常见的溶酶体贮积疾病,其疾病过程呈现渐进性发展。由于戈谢病可能影响多个系统,所以患者的症状在个体间表现差异很大。戈谢病主要包括神经性和非神经性两种形式。非神经性形式,也被称为1型戈谢病,主要表现为全身性症状,包括肝脾肿大、贫血、白细胞减少以及骨骼异常。而神经性戈谢病则包括2型和3型,其特点是星形胶质细胞增生、神经噬食(即脑部发炎)以及神经元减少,其中3型相较于2型的发病时间更晚且更为缓慢。Gaucher disease is the most common lysosomal storage disease, and its disease course is progressive. Because Gaucher disease can affect multiple systems, the symptoms of patients vary greatly from person to person. Gaucher disease includes two main forms: neurological and non-neurological. The non-neurological form, also known as type 1 Gaucher disease, mainly manifests as systemic symptoms, including hepatosplenomegaly, anemia, leukopenia, and bone abnormalities. The neurological form includes types 2 and 3, which are characterized by astrogliosis, neurophagocytosis (i.e., brain inflammation), and neuronal loss. Type 3 has a later and slower onset than type 2.
一旦确诊为戈谢病,患者需要定期检查,并通常需要终身治疗。在戈谢病治疗中,有两种主要方法:酶替代疗法(ERT)和底物减少疗法(SRT)。ERT旨在通过提供外源性β-GCase来减缓疾病进展,而SRT则通过抑制葡糖脑苷合成酶来降低GL1的产生。这两种方法已在治疗1型戈谢病方面证明有效,但在2型和3型戈谢病患者中并未改善神经系统症状,且成本较高。Once diagnosed with Gaucher disease, patients require regular checkups and usually lifelong treatment. There are two main approaches to the treatment of Gaucher disease: enzyme replacement therapy (ERT) and substrate reduction therapy (SRT). ERT aims to slow disease progression by providing exogenous β-GCase, while SRT reduces GL1 production by inhibiting glucocerebroside synthase. Both approaches have proven effective in treating type 1 Gaucher disease, but have not improved neurological symptoms in patients with type 2 and 3 Gaucher disease and are costly.
目前市售的两种SRT药物Miglustat和Eliglustat仅适用于成年患者,不适用于儿童。Alglucerase,一种来自胎盘的葡糖脑苷酶衍生物,是首个治疗戈谢病的ERT药物。之后,陆续开发的用于治疗戈谢病的药物有Imiglucerase、Velaglucerase和Taliglucerase。需要指出的是,这些药物在给药后的有效半衰期较短。例如,Imiglucerase的血清半衰期为3.6至10.4分钟,Velaglucerase为11至12分钟,而Taliglucerase稍微增加,为18.9至28.7分钟。因此,开发一种半衰期更长的新型ERT药物,将有望为戈谢病治疗提供更为理想的选择。The two SRT drugs currently on the market, Miglustat and Eliglustat, are only suitable for adult patients and not for children. Alglucerase, a derivative of glucocerebrosidase from the placenta, is the first ERT drug for the treatment of Gaucher disease. Since then, the drugs developed for the treatment of Gaucher disease include Imiglucerase, Velaglucerase, and Taliglucerase. It should be pointed out that the effective half-life of these drugs after administration is short. For example, the serum half-life of Imiglucerase is 3.6 to 10.4 minutes, that of Velaglucerase is 11 to 12 minutes, and that of Taliglucerase is slightly increased to 18.9 to 28.7 minutes. Therefore, the development of a new ERT drug with a longer half-life will hopefully provide a more ideal option for the treatment of Gaucher disease.
基于信使核糖核酸(Messenger RNA , mRNA)的药物已被广泛研究,被视为在多个治疗领域中具有巨大潜力的治疗策略。同时,在mRNA化学修饰方面所取得的成果也显著提升了非免疫刺激性mRNA药物疗法的安全性。就戈谢病而言,通过将mRNA直接传递到组织中以恢复β-GCase蛋白功能,相对于传统的ERT疗法,具有显著优势。因为编码mRNA可以利用细胞内机制,在所需的细胞位置产生目标蛋白,从而为治疗带来益处。与基于病毒载体的基因传递相比,mRNA疗法能够在不修改基因组DNA的情况下纠正蛋白功能异常。此外,mRNA的瞬时蛋白质表达可以降低蛋白质持续性功能所带来的意外过量风险。同时,与基于病毒载体的基因治疗相比,mRNA疗法呈现出线性剂量响应,有助于为每位患者确定理想剂量,这在基因治疗中并不容易实现。Messenger RNA (mRNA)-based drugs have been extensively studied and are considered to be a therapeutic strategy with great potential in multiple therapeutic areas. At the same time, the achievements in mRNA chemical modification have also significantly improved the safety of non-immunostimulatory mRNA drug therapy. In the case of Gaucher disease, the restoration of β-GCase protein function by delivering mRNA directly into tissues has significant advantages over traditional ERT therapy. Because the encoding mRNA can use intracellular machinery to produce the target protein at the desired cellular location, it brings benefits to treatment. Compared with viral vector-based gene delivery, mRNA therapy can correct protein dysfunction without modifying genomic DNA. In addition, transient protein expression of mRNA can reduce the risk of accidental overdose caused by the continuous function of proteins. At the same time, compared with viral vector-based gene therapy, mRNA therapy presents a linear dose response, which helps to determine the ideal dose for each patient, which is not easy to achieve in gene therapy.
通过改变分子生物学的核心原则,基于mRNA治疗策略的预防性疫苗和治疗药物已经得到迅速普及,但多种生理屏障的存在通常会限制mRNA分子在细胞内的摄取。因此需要开发一种递送系统以规避这些障碍,以实现药物的精确靶向递送。基于脂质纳米颗粒(LNP)的mRNA递送系统具有复杂的组成,这其中系统性地包含了不同的组分,同时也涉及它们之间的多种不同摩尔比。到目前为止,一个相对成熟的LNP递送系统通常包括四种组分,分别是可电离阳离子脂质体、磷脂、聚乙二醇化脂质体和胆固醇。在LNP配方中,可电离阳离子脂质体发挥着重要作用。一方面,带正电的可电离阳离子脂质体可以与带负电的mRNA链形成复合物。同时可电离阳离子脂质体应具备适当的表观酸解离常数(pKa),以确保在正确的位置释放mRNA。另一方面,依靠可电离阳离子脂质体的特性,载有mRNA的脂质纳米颗粒更容易与细胞膜融合,从而将荷载物传递到细胞质中。近年来的研究表明,可电离脂质体在不同化学结构和表达之间具有关键的结构-活性关系。优化可电离脂质体的化学结构将有助于在特定细胞或组织中实现更高的表达水平。因此,有必要筛选脂质的化学结构,以实现表达的优化。By changing the core principles of molecular biology, preventive vaccines and therapeutic drugs based on mRNA therapeutic strategies have rapidly gained popularity, but the existence of multiple physiological barriers usually limits the uptake of mRNA molecules into cells. Therefore, a delivery system needs to be developed to circumvent these obstacles to achieve precise targeted delivery of drugs. The mRNA delivery system based on lipid nanoparticles (LNPs) has a complex composition, which systematically includes different components and also involves a variety of different molar ratios between them. So far, a relatively mature LNP delivery system usually includes four components, namely ionizable cationic liposomes, phospholipids, PEGylated liposomes and cholesterol. In the LNP formulation, ionizable cationic liposomes play an important role. On the one hand, positively charged ionizable cationic liposomes can form complexes with negatively charged mRNA chains. At the same time, ionizable cationic liposomes should have an appropriate apparent acid dissociation constant (pKa) to ensure the release of mRNA at the right location. On the other hand, relying on the characteristics of ionizable cationic liposomes, lipid nanoparticles loaded with mRNA are more likely to fuse with cell membranes, thereby delivering the payload to the cytoplasm. Recent studies have shown that ionizable liposomes have a key structure-activity relationship between different chemical structures and expression. Optimizing the chemical structure of ionizable liposomes will help achieve higher expression levels in specific cells or tissues. Therefore, it is necessary to screen the chemical structure of lipids to achieve optimal expression.
最新发展表明,作为mRNA传递工具,脂质纳米颗粒已成功解决了带有负电荷的长链mRNA分子跨越细胞膜的问题。在动物模型中,LNP技术的安全、有效且可重复给药性在治疗肝脏代谢性疾病方面具有治疗潜力,如甲基丙二酸血症(MMA)、急性间歇性卟啉病(AIP)、法布里病等。这些令人鼓舞的临床前的进展表明了mRNA治疗模式在恢复细胞内或跨膜蛋白的缺陷功能方面的优势,而这在当前的酶替代治疗药物中是很难实现的。 事实上,由Moderna开发的LNP-mRNA药物mRNA-3927,通过静脉注射,已经可以恢复肝脏内丙酰辅酶A羧化酶的活性,目前正在丙酸血症患者中进行了Ⅰ/Ⅱ期研究。中期结果显示mRNA-3927的耐受性良好,并且在多次剂量后出现了潜在的临床改善迹象。Recent developments have shown that lipid nanoparticles, as mRNA delivery tools, have successfully solved the problem of long mRNA molecules with negative charges crossing the cell membrane. In animal models, the safety, effectiveness and reproducibility of LNP technology have therapeutic potential in the treatment of liver metabolic diseases, such as methylmalonic acidemia (MMA), acute intermittent porphyria (AIP), Fabry disease, etc. These encouraging preclinical advances show the advantages of mRNA treatment mode in restoring the defective function of intracellular or transmembrane proteins, which is difficult to achieve with current enzyme replacement therapy drugs. In fact, the LNP-mRNA drug mRNA-3927 developed by Moderna, through intravenous injection, can restore the activity of propionyl-CoA carboxylase in the liver and is currently undergoing a phase I/II study in patients with propionic acidemia. Interim results showed that mRNA-3927 was well tolerated and showed potential signs of clinical improvement after multiple doses.
发明内容Summary of the invention
本发明首先提供一种组合物,其含有脂质纳米颗粒(LNP)及mRNA,所述mRNA包封在所述脂质纳米颗粒中或与所述脂质纳米颗粒相关联;其中,所述mRNA中含有编码GBA1的核苷酸序列。The present invention first provides a composition, which contains lipid nanoparticles (LNP) and mRNA, wherein the mRNA is encapsulated in the lipid nanoparticles or associated with the lipid nanoparticles; wherein the mRNA contains a nucleotide sequence encoding GBA1.
本发明进一步提供如前所述的组合物的制备方法,其包括:The present invention further provides a method for preparing the composition as described above, comprising:
将所述脂质纳米颗粒中含有的脂质溶解在乙醇中,得到脂质乙醇溶液;dissolving the lipid contained in the lipid nanoparticles in ethanol to obtain a lipid ethanol solution;
将所述脂质乙醇溶液与含有所述mRNA的水溶液混合;mixing the lipid ethanol solution with an aqueous solution containing the mRNA;
而后除去乙醇,分离或纯化得到所述组合物。Then the ethanol is removed and the composition is obtained by separation or purification.
本发明进一步提供一种药物组合物,其含有如前所述的组合物,以及药学上可接受的载体或稀释剂。The present invention further provides a pharmaceutical composition, which contains the composition as described above and a pharmaceutically acceptable carrier or diluent.
本发明进一步提供如前所述的组合物或如前所述的药物组合物在预防或治疗戈谢病中的应用。The present invention further provides use of the above-mentioned composition or the above-mentioned pharmaceutical composition in preventing or treating Gaucher disease.
本发明进一步提供如前所述的组合物在制备药物组合物中的应用,所述药物组合物被用于预防或治疗戈谢病。The present invention further provides use of the aforementioned composition in preparing a pharmaceutical composition, wherein the pharmaceutical composition is used to prevent or treat Gaucher disease.
本发明中的组合物能够有效增加受试者体内的血清及多个靶器官中的β-GCase的表达和活性,并降低其中的Lyso-GL1水平,且具有较长的半衰期,在戈谢病的治疗中具有应用前景。The composition of the present invention can effectively increase the expression and activity of β-GCase in the serum and multiple target organs of the subject, and reduce the level of Lyso-GL1 therein, and has a long half-life, and has application prospects in the treatment of Gaucher disease.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation methods of the present invention or the technical solutions in the prior art, the drawings required for use in the specific implementation methods or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some implementation methods of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1 为本发明实施例中三种可电离阳离子脂质体的化学结构式。图1中的A为脂质体#9的化学结构式,图1中的B为脂质体#10的化学结构式,图1中的C为脂质体#13的化学结构式。Figure 1 is the chemical structural formula of three ionizable cationic liposomes in the embodiments of the present invention. A in Figure 1 is the chemical structural formula of liposome #9, B in Figure 1 is the chemical structural formula of liposome #10, and C in Figure 1 is the chemical structural formula of liposome #13.
图2为本发明实施例中通过对包括脂质体#9,脂质体#10和脂质体#13三种不同可电离阳离子脂质体的LNP递送hGBA-mRNA在不同细胞系(人胚肾细胞293T,非洲绿猴肾细胞,仓鼠肾细胞)中转染表达的蛋白水平进行对比。FIG2 is a comparison of the protein levels of hGBA-mRNA transfected and expressed in different cell lines (human embryonic kidney cells 293T, African green monkey kidney cells, and hamster kidney cells) by LNP delivery of three different ionizable cationic liposomes including liposome #9, liposome #10, and liposome #13 in an embodiment of the present invention.
图3为本发明实施例中分析对比包含脂质体#9,脂质体#10和脂质体#13三种阳离子脂质体的LNP递送hGBA-mRNA在不同细胞系(人胚肾细胞293T,非洲绿猴肾细胞,仓鼠肾细胞)中表达水平的定量化对比。FIG3 is a quantitative comparison of the expression levels of hGBA-mRNA delivered by LNPs containing three cationic liposomes, liposome #9, liposome #10 and liposome #13, in different cell lines (human embryonic kidney cells 293T, African green monkey kidney cells, and hamster kidney cells) in an example of the present invention.
图4为本发明实施例中mGBA-mRNA治疗后小鼠血清中β-葡萄糖脑苷脂酶表达水平和酶活性。FIG. 4 shows the expression level and enzyme activity of β-glucocerebrosidase in the serum of mice after mGBA-mRNA treatment in an example of the present invention.
图5为本发明实施例中mGBA-mRNA治疗后小鼠肝脏中β-葡萄糖脑苷脂酶表达水平和酶活性。FIG. 5 shows the expression level and enzyme activity of β-glucocerebrosidase in the liver of mice after mGBA-mRNA treatment in an example of the present invention.
图6为本发明实施例中mGBA-mRNA治疗后小鼠脾脏中β-葡萄糖脑苷脂酶表达水平和酶活性。FIG. 6 shows the expression level and enzyme activity of β-glucocerebrosidase in the spleen of mice after mGBA-mRNA treatment in an example of the present invention.
图7为本发明实施例中经过多次mGBA-mRNA治疗后小鼠血清中β-葡萄糖脑苷脂酶活性。FIG. 7 shows the β-glucocerebrosidase activity in the serum of mice after multiple mGBA-mRNA treatments in an example of the present invention.
图8为本发明实施例中mGBA-mRNA治疗后小鼠血清和肝脏中的葡萄糖鞘氨醇水平,以及第一次注射后第3天mGBA-mRNA治疗组小鼠血清和肝脏中葡萄糖鞘氨醇相对于生理盐水处理组的相对表达水平。8 shows the levels of glucosylceramide in the serum and liver of mice after mGBA-mRNA treatment in an embodiment of the present invention, as well as the relative expression levels of glucosylceramide in the serum and liver of mice in the mGBA-mRNA treatment group relative to the saline treatment group on the third day after the first injection.
图9为本发明实施例中mGBA-mRNA治疗小鼠中的抗药物抗体反应。FIG. 9 shows the anti-drug antibody response in mice treated with mGBA-mRNA according to an embodiment of the present invention.
图10为本发明实施例中以盐水处理对照小鼠为基准,mGBA-mRNA治疗小鼠的肝脏和脾脏中天然免疫相关细胞因子的相对差异倍数水平。FIG. 10 is a graph showing the relative fold difference levels of innate immune-related cytokines in the liver and spleen of mice treated with mGBA-mRNA, with saline-treated control mice as a benchmark in an example of the present invention.
图11为本发明实施例中hGBA-mRNA和Cerezyme单剂量给药后小鼠肝脏中β-葡萄糖脑苷脂酶的蛋白水平及蛋白印迹的定量分析结果。FIG. 11 is a quantitative analysis result of protein level of β-glucocerebrosidase in mouse liver and western blot after single-dose administration of hGBA-mRNA and Cerezyme in an example of the present invention.
图12为本发明实施例中hGBA-mRNA和Cerezyme单剂量给药后小鼠脾脏中β-葡萄糖脑苷脂酶的蛋白水平及蛋白印迹的定量分析结果。FIG. 12 is the protein level of β-glucocerebrosidase in the spleen of mice after single-dose administration of hGBA-mRNA and Cerezyme in an example of the present invention and the results of quantitative analysis by Western blot.
图13为本发明实施例中在单剂量hGBA-mRNA和Cerezyme静脉注射后对比小鼠血清中的β-葡萄糖脑苷脂酶活性。FIG. 13 is a graph showing the comparison of β-glucocerebrosidase activity in mouse serum after intravenous injection of a single dose of hGBA-mRNA and Cerezyme in an example of the present invention.
图14为本发明实施例中在单剂量hGBA-mRNA和Cerezyme静脉注射后对比小鼠肝脏中的β-葡萄糖脑苷脂酶活性。FIG. 14 is a graph showing the comparison of β-glucocerebrosidase activity in the liver of mice after intravenous injection of a single dose of hGBA-mRNA and Cerezyme in an example of the present invention.
图15为本发明实施例中在单剂量hGBA-mRNA和Cerezyme静脉注射后对比小鼠脾脏中的β-葡萄糖脑苷脂酶活性。FIG. 15 is a graph showing the comparison of β-glucocerebrosidase activity in the spleen of mice after intravenous injection of a single dose of hGBA-mRNA and Cerezyme in an example of the present invention.
图16为本发明实施例中hGBA-mRNA和Cerezyme多剂量给药后对比小鼠血清中β-葡萄糖脑苷脂酶活性的变化。FIG. 16 is a graph showing changes in β-glucocerebrosidase activity in serum of mice after multiple doses of hGBA-mRNA and Cerezyme were administered in accordance with an embodiment of the present invention.
图17为本发明实施例中hGBA-mRNA和Cerezyme多剂量给药后对比小鼠肝脏中β-葡萄糖脑苷脂酶活性的变化。FIG. 17 is a graph showing changes in β-glucocerebrosidase activity in the liver of mice after multiple doses of hGBA-mRNA and Cerezyme were administered in accordance with an embodiment of the present invention.
图18为本发明实施例中hGBA-mRNA和Cerezyme多剂量给药后对比小鼠脾脏中β-葡萄糖脑苷脂酶活性的变化。FIG. 18 is a graph showing changes in β-glucocerebrosidase activity in the spleen of mice after multiple doses of hGBA-mRNA and Cerezyme were administered in an example of the present invention.
图19为本发明实施例中第一次注射hGBA-mRNA治疗后小鼠血清和肝脏中的葡萄糖鞘氨醇水平。FIG. 19 shows the levels of glucosphingosine in serum and liver of mice after the first injection of hGBA-mRNA treatment in an example of the present invention.
图20为本发明实施例中第二次注射hGBA-mRNA治疗后小鼠血清和肝脏中的葡萄糖鞘氨醇水平。FIG. 20 shows the levels of glucosphingosine in serum and liver of mice after the second injection of hGBA-mRNA in an example of the present invention.
图21为本发明实施例中第三次注射hGBA-mRNA治疗后小鼠血清和肝脏中的葡萄糖鞘氨醇水平。FIG. 21 shows the levels of glucose sphingosine in the serum and liver of mice after the third injection of hGBA-mRNA treatment in an example of the present invention.
图22为本发明实施例中hGBA-mRNA治疗小鼠中的抗药物抗体反应。FIG. 22 is a graph showing the anti-drug antibody response in mice treated with hGBA-mRNA according to an example of the present invention.
图23为本发明实施例中以生理盐水对照组小鼠为基准,hGBA-mRNA治疗小鼠在肝脏中的天然免疫相关细胞因子的表达相对倍数。FIG. 23 is a graph showing the relative multiples of innate immune-related cytokines in the liver of mice treated with hGBA-mRNA, with the normal saline control group mice as the benchmark in an embodiment of the present invention.
图24为本发明实施例中以生理盐水对照组小鼠为基准,hGBA-mRNA治疗小鼠在脾脏中的天然免疫相关细胞因子的表达相对倍数。FIG. 24 is a graph showing the relative multiples of innate immune-related cytokines in the spleen of mice treated with hGBA-mRNA, with the normal saline control group mice as the benchmark in an embodiment of the present invention.
图25为本发明实施例中以生理盐水对照组小鼠为基准,接受单次hGBA-mRNA剂量的小鼠mRNA在各组织分布的相对差异倍数。FIG. 25 is a graph showing the relative differences in the distribution of mRNA in various tissues of mice that received a single dose of hGBA-mRNA, with the normal saline control group mice as a benchmark in an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明,本领域技术人员可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。The specific embodiments of the present invention are described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, and are not used to limit the present invention. Those skilled in the art may make various modifications and changes to the present invention without departing from the scope or spirit of the present invention. For example, a feature described or illustrated as part of one embodiment may be used in another embodiment to produce a further embodiment.
除非另有说明,用于披露本发明的所有术语(包括技术和科学术语)的意义与本发明所属领域普通技术人员所通常理解的相同。通过进一步的指导,随后的定义用于更好地理解本发明的教导。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。Unless otherwise indicated, the meaning of all terms (including technical and scientific terms) used to disclose the present invention is the same as that commonly understood by those of ordinary skill in the art to which the present invention belongs. By way of further guidance, the following definitions are used to better understand the teachings of the present invention. The terms used herein in the specification of the present invention are only for the purpose of describing specific embodiments and are not intended to limit the present invention.
本文所使用的术语“和/或”、“或/和”、“及/或”的选择范围包括两个或两个以上相关所列项目中任一个项目,也包括相关所列项目的任意的和所有的组合,所述任意的和所有的组合包括任意的两个相关所列项目、任意的更多个相关所列项目、或者全部相关所列项目的组合。需要说明的是,当用至少两个选自“和/或”、“或/和”、“及/或”的连词组合连接至少三个项目时,应当理解,在本申请中,该技术方案毫无疑问地包括均用“逻辑与”连接的技术方案,还毫无疑问地包括均用“逻辑或”连接的技术方案。比如,“A及/或B”包括A、B和A+B三种并列方案。又比如,“A,及/或,B,及/或,C,及/或,D”的技术方案,包括A、B、C、D中任一项(也即均用“逻辑或”连接的技术方案),也包括A、B、C、D的任意的和所有的组合,也即包括A、B、C、D中任两项或任三项的组合,还包括A、B、C、D的四项组合(也即均用“逻辑与”连接的技术方案)。The terms "and/or", "or/and", and "and/or" used in this article include any one of two or more related listed items, and also include any and all combinations of related listed items, and the arbitrary and all combinations include any two related listed items, any more related listed items, or a combination of all related listed items. It should be noted that when at least three items are connected by at least two conjunctions selected from "and/or", "or/and", and "and/or", it should be understood that in this application, the technical solution undoubtedly includes technical solutions that are all connected by "logical and", and undoubtedly includes technical solutions that are all connected by "logical or". For example, "A and/or B" includes three parallel solutions of A, B and A+B. For example, the technical solution of "A, and/or, B, and/or, C, and/or, D" includes any one of A, B, C, and D (that is, the technical solution that is all connected by "logical OR"), and also includes any and all combinations of A, B, C, and D, that is, the combination of any two or any three of A, B, C, and D, and also includes the combination of four of A, B, C, and D (that is, the technical solution that is all connected by "logical AND").
本发明中所使用的术语“含有”、“包含”和“包括”是同义词,其是包容性或开放式的,不排除额外的、未被引述的成员、元素或方法步骤。As used herein, the terms "comprising", "including" and "comprising" are synonymous and are inclusive or open-ended and do not exclude additional, unrecited members, elements or method steps.
本发明中用端点表示的数值范围包括该范围内所包含的所有数值及分数,以及所引述的端点。Numerical ranges expressed as endpoints herein include all numbers and fractions subsumed within the range, as well as the recited endpoints.
本发明中涉及浓度数值,其含义包括在一定范围内的波动。比如,可以在相应的精度范围内波动。比如2%,可以允许±0.1%范围内波动。对于数值较大或无需过于精细控制的数值,还允许其含义包括更大波动。比如100mM,可以允许±1%、±2%、±5%等范围内的波动。涉及分子量,允许其含义包括±10%的波动。The present invention relates to concentration values, and the meaning includes fluctuations within a certain range. For example, it can fluctuate within a corresponding precision range. For example, 2%, it is allowed to fluctuate within ±0.1%. For values that are large or do not require too fine control, it is also allowed to have a greater fluctuation. For example, 100mM, it is allowed to fluctuate within the range of ±1%, ±2%, ±5%, etc. Involving molecular weight, it is allowed to have a fluctuation of ±10%.
本发明中,涉及“多个”、“多种”等描述,如无特别限定,指在数量上指大于等于2。In the present invention, descriptions such as "plurality" and "multiple" refer to quantities greater than or equal to 2 unless otherwise specified.
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。In the present invention, the technical features described in an open manner include closed technical solutions composed of the listed features, and also include open technical solutions containing the listed features.
本发明中,“优选”、“更好”、“更佳”、“为宜”仅为描述效果更好的实施方式或实施例,应当理解,并不构成对本发明保护范围的限制。本发明中,“可选地”、“可选的”、“可选”,指可有可无,也即指选自“有”或“无”两种并列方案中的任一种。如果一个技术方案中出现多处“可选”,如无特别说明,且无矛盾之处或相互制约关系,则每项“可选”各自独立。In the present invention, "preferably", "better", "more preferably", and "suitably" are only used to describe implementation methods or examples with better effects, and it should be understood that they do not constitute a limitation on the scope of protection of the present invention. In the present invention, "optionally", "optional", and "optional" refer to being optional, that is, any one of the two parallel schemes of "yes" or "no". If multiple "options" appear in a technical solution, unless otherwise specified and there is no contradiction or mutual restriction, each "optional" is independent of each other.
本发明中所提到术语缩写及对应通用名如下表1:The abbreviations and corresponding common names of the terms mentioned in the present invention are as follows in Table 1:
表1Table 1
组合物Composition
本发明首先提供一种组合物,其含有脂质纳米颗粒(LNP)及mRNA,所述mRNA包封在所述脂质纳米颗粒中或与所述脂质纳米颗粒相关联;其中,所述mRNA中含有编码GBA1的核苷酸序列。The present invention first provides a composition, which contains lipid nanoparticles (LNP) and mRNA, wherein the mRNA is encapsulated in the lipid nanoparticles or associated with the lipid nanoparticles; wherein the mRNA contains a nucleotide sequence encoding GBA1.
在一些实施方式中,所述脂质纳米颗粒中含有如式I和/或式II所示的可电离阳离子脂质:In some embodiments, the lipid nanoparticles contain ionizable cationic lipids as shown in Formula I and/or Formula II:
式I 脂质体#10;Formula I Liposome #10;
式II 脂质体#13;Formula II Liposome #13;
或其药学上可接受的盐、互变异构体、前药或立体异构体。or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof.
本发明发现,上述的阳离子脂质能够明显改善本发明所述mRNA的递送效果。The present invention has found that the above-mentioned cationic lipids can significantly improve the delivery effect of the mRNA of the present invention.
在一些优选的实施方式中,所述脂质纳米颗粒中含有如式I所示的可电离阳离子脂质或其药学上可接受的盐、互变异构体、前药或立体异构体。In some preferred embodiments, the lipid nanoparticles contain an ionizable cationic lipid as shown in Formula I or a pharmaceutically acceptable salt, tautomer, prodrug or stereoisomer thereof.
在一些实施方式中,所述编码GBA1的核苷酸序列源自人或小鼠。In some embodiments, the nucleotide sequence encoding GBA1 is derived from human or mouse.
在一些实施方式中,所述编码GBA1的核苷酸序列为如下任一序列:In some embodiments, the nucleotide sequence encoding GBA1 is any of the following sequences:
i)如NCBI基因组数据库(NCBI GenBank)中基因编号(GeneID)2629所示的核苷酸序列;i) the nucleotide sequence as shown in the NCBI GenBank gene ID 2629;
ii)如NCBI基因组数据库中基因编号14466所示的核苷酸序列;ii) the nucleotide sequence as shown in the NCBI genome database gene number 14466;
iii)与i)或ii)所示的核苷酸序列具有至少90%,优选至少95%,更优选至少97%,进一步优选至少98%,最优选至少99%的序列同一性的核苷酸序列。iii) a nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 97%, further preferably at least 98%, and most preferably at least 99% sequence identity with the nucleotide sequence shown in i) or ii).
此处iii)中所提到的核苷酸序列与i)或ii)所示的核苷酸序列相比可以表现出一个或多个核苷酸缺失、插入、添加和/或置换。在一种优选的实施方式中,iii)中的核苷酸序列与i)或ii)所示的核苷酸序列仍具有相同或相近的功能。The nucleotide sequence mentioned in iii) herein may show one or more nucleotide deletions, insertions, additions and/or substitutions compared to the nucleotide sequence shown in i) or ii). In a preferred embodiment, the nucleotide sequence in iii) still has the same or similar function as the nucleotide sequence shown in i) or ii).
在一些实施方式中,所述mRNA中的部分或全部尿苷被N1-甲基假尿苷所取代。此处所提到的“部分尿苷”指大于等于5%的尿苷,优选为大于等于10%的尿苷,更优选为大于等于30%的尿苷,进一步优选为大于等于50%的尿苷,进一步优选为大于等于60%的尿苷,进一步优选为大于等于70%的尿苷,进一步优选为大于等于80%的尿苷,进一步优选为大于等于90%的尿苷。In some embodiments, part or all of the uridine in the mRNA is replaced by N1-methyl pseudouridine. The "partial uridine" mentioned herein refers to 5% or more uridine, preferably 10% or more uridine, more preferably 30% or more uridine, further preferably 50% or more uridine, further preferably 60% or more uridine, further preferably 70% or more uridine, further preferably 80% or more uridine, further preferably 90% or more uridine.
在一些优选的实施方式中,所述mRNA中的全部尿苷被N1-甲基假尿苷所取代。In some preferred embodiments, all uridines in the mRNA are replaced by N1-methylpseudouridine.
在一些实施方式中,所述mRNA的5’端含有帽子(Cap)结构。In some embodiments, the 5' end of the mRNA contains a cap structure.
在一些实施方式中,所述mRNA的5’端含有Cap 1结构。In some embodiments, the 5' end of the mRNA contains a Cap 1 structure.
在一些实施方式中,所述mRNA自5’端至3’端依次含有:Cap 1结构、5’端非翻译区、编码GBA1的核苷酸序列、3’端非翻译区和聚腺苷酸尾巴。In some embodiments, the mRNA contains, from the 5' end to the 3' end, the following: Cap 1 structure, a 5' untranslated region, a nucleotide sequence encoding GBA1, a 3' untranslated region, and a poly(A) tail.
本发明中所提到的“帽子”是指附着在mRNA分子5’端的特殊修饰结构。它通常由一个7-甲基鸟苷(7-methylguanylate)组成,并通过一个三磷酸链连接到mRNA的5’端。根据帽子的具体修饰类型,它可以分为不同的形式,如Cap 0、Cap 1和Cap 2等。The "cap" mentioned in the present invention refers to a special modified structure attached to the 5' end of the mRNA molecule. It is usually composed of a 7-methylguanylate and connected to the 5' end of the mRNA through a triphosphate chain. Depending on the specific modification type of the cap, it can be divided into different forms, such as Cap 0, Cap 1 and Cap 2.
本发明中所提到“Cap 1结构”指在Cap 0(m7GPPPN结构)的基础上,第一个核苷酸的2'-O位置增加了甲基化修饰所形成m7GPPPNm结构。The "Cap 1 structure" mentioned in the present invention refers to the m7GPPPNm structure formed by adding a methylation modification to the 2'-O position of the first nucleotide based on Cap 0 (m7GPPPN structure).
本发明中所提到的“聚腺苷酸尾巴”典型地是胞嘧啶核苷酸的长序列,典型地约25个至约400个腺苷核苷酸,优选地约50个至约200个腺苷核苷酸,更优选地约100个至约150个腺苷核苷酸,或甚至更优选地约120个至约130个腺苷核苷酸。在一个具体的实施方式中,本发明中所述聚腺苷酸尾巴中含有125个腺苷核苷酸。The "poly(A) tail" referred to in the present invention is typically a long sequence of cytosine nucleotides, typically about 25 to about 400 adenosine nucleotides, preferably about 50 to about 200 adenosine nucleotides, more preferably about 100 to about 150 adenosine nucleotides, or even more preferably about 120 to about 130 adenosine nucleotides. In a specific embodiment, the poly(A) tail of the present invention contains 125 adenosine nucleotides.
本发明中所提到的3’-未翻译区(3’-UTR)典型地是mRNA的一部分,它位于mRNA的蛋白编码区(即开放阅读框)与poly(A)序列之间。mRNA的3’-UTR不翻译成氨基酸序列。3’-UTR序列通常由在基因表达过程中转录成相应mRNA的基因编码。The 3'-untranslated region (3'-UTR) mentioned in the present invention is typically a part of mRNA, which is located between the protein coding region (i.e., open reading frame) and the poly (A) sequence of the mRNA. The 3'-UTR of the mRNA is not translated into an amino acid sequence. The 3'-UTR sequence is usually encoded by a gene that is transcribed into the corresponding mRNA during gene expression.
本发明中所提到的5’-未翻译区(5’-UTR)典型地被理解为信使RNA(mRNA)的特定部段。它位于mRNA的开放阅读框的5’。典型地,5’-UTR始于转录起始位点,并终止于开放阅读框的起始密码子之前的一个核苷酸。5’-UTR可以包含用于控制基因表达的元件,也称为调控元件。此类调控元件可以是例如核糖体结合位点或5’-端寡嘧啶束(OligopyrimidineTract)。5’-UTR可以例如通过添加5’-帽而转录后修饰。The 5'-untranslated region (5'-UTR) mentioned in the present invention is typically understood as a specific segment of messenger RNA (mRNA). It is located at the 5' of the open reading frame of the mRNA. Typically, the 5'-UTR starts at the transcription start site and ends at a nucleotide before the start codon of the open reading frame. The 5'-UTR may include elements for controlling gene expression, also referred to as regulatory elements. Such regulatory elements may be, for example, a ribosome binding site or a 5'-terminal oligopyrimidine tract. The 5'-UTR may be modified post-transcriptionally, for example, by adding a 5'-cap.
在一些实施方式中,所述mRNA还含有具有一个或多个调控功能的序列。比如,在一些具体的实施方式中,所述mRNA中还含有能促进起始翻译的功能序列,如Kozak序列、Shine-Dalgarno序列、TISU(Translation Initiation Stimulation Element)序列、或优化的5'UTR序列(如UTR7)等。又比如,在一些具体的实施方式中,所述mRNA中还含有能够调控mRNA稳定性和翻译效率的序列,如Chi-β球蛋白(Chi-β-Globin)序列、AU富集元件(AREs)序列、内部核糖体进入位点 (IRESs)序列、miRNA结合位点(MicroRNA (miRNA)Binding Sites)等。在具体实施时,本领域人员可以结合常识确认上述序列的具体序列及设置位置。In some embodiments, the mRNA also contains a sequence with one or more regulatory functions. For example, in some specific embodiments, the mRNA also contains a functional sequence that can promote the initiation of translation, such as a Kozak sequence, a Shine-Dalgarno sequence, a TISU (Translation Initiation Stimulation Element) sequence, or an optimized 5'UTR sequence (such as UTR7), etc. For another example, in some specific embodiments, the mRNA also contains a sequence that can regulate the stability and translation efficiency of mRNA, such as a Chi-β-Globin sequence, an AU enrichment element (AREs) sequence, an internal ribosome entry site (IRESs) sequence, a miRNA binding site (MicroRNA (miRNA) Binding Sites), etc. In the specific implementation, those skilled in the art can confirm the specific sequence and setting position of the above sequence in combination with common sense.
在一些具体的实施方式中,所述mRNA自5’端至3’端依次含有:Cap 1结构、Chi-β-Globin Δ4 5’端非翻译区(改良的Chi-β-Globin 5'非翻译区)、Kozak序列、编码GBA1的核苷酸序列、Chi-β-Globin 3’端非翻译区和聚腺苷酸尾巴。In some specific embodiments, the mRNA contains, from the 5' end to the 3' end, the following: Cap 1 structure, Chi-β-Globin Δ4 5' untranslated region (improved Chi-β-Globin 5' untranslated region), Kozak sequence, a nucleotide sequence encoding GBA1, Chi-β-Globin 3' untranslated region and a poly(A) tail.
在具体实施时,本领域人员可以结合常识确定上述mRNA中所提到的功能组件的具体序列,或者对部分功能组件和调控序列进行增减和替换,其均能实现本发明的技术效果。In specific implementation, those skilled in the art can determine the specific sequence of the functional components mentioned in the above mRNA based on common sense, or add, subtract and replace some functional components and regulatory sequences, all of which can achieve the technical effects of the present invention.
在一些实施方式中,所述mRNA含有如下任一核苷酸序列:In some embodiments, the mRNA contains any of the following nucleotide sequences:
I)如SEQ ID No.3~4中任一项所示的核苷酸序列;I) a nucleotide sequence as shown in any one of SEQ ID No.3 to 4;
II)与I)所示的核苷酸序列具有至少90%的序列同一性的核苷酸序列。II) A nucleotide sequence having at least 90% sequence identity with the nucleotide sequence shown in I).
在一些具体的实施方式中,所述mRNA含有如下任一核苷酸序列,且5’端含有Cap 1结构,优选所述mRNA中的部分或全部尿苷被N1-甲基假尿苷所取代:In some specific embodiments, the mRNA contains any of the following nucleotide sequences, and the 5' end contains a Cap 1 structure, and preferably part or all of the uridine in the mRNA is replaced by N1-methyl pseudouridine:
I)如SEQ ID No.3~4中任一项所示的核苷酸序列;I) a nucleotide sequence as shown in any one of SEQ ID No.3 to 4;
II)与I)所示的核苷酸序列具有至少90%,优选至少95%,更优选至少97%,进一步优选至少98%,最优选至少99%的序列同一性的核苷酸序列。II) is a nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 97%, further preferably at least 98%, and most preferably at least 99% sequence identity with the nucleotide sequence shown in I).
此处II)中所提到的核苷酸序列与I)所示的核苷酸序列相比可以表现出一个或多个核苷酸缺失、插入、添加和/或置换。在一种优选的实施方式中,II)中的核苷酸序列与I)所示的核苷酸序列仍具有相同或相近的功能。The nucleotide sequence mentioned in II) herein may show one or more nucleotide deletions, insertions, additions and/or substitutions compared to the nucleotide sequence shown in I). In a preferred embodiment, the nucleotide sequence in II) still has the same or similar function as the nucleotide sequence shown in I).
本发明中,术语“脂质纳米颗粒(LNP)”可包含能够形成一种或多种核酸分子附接到其上的或一种或多种核酸分子被包封在其中的颗粒的任何脂质。术语“脂质”是指一组有机化合物,它们是脂肪酸的衍生物(例如酯)并且特征通常在于不溶于水但可溶于许多有机溶剂。脂质通常分为至少三类:(1)包括脂肪和油以及蜡的“简单脂质”;(2)包括磷脂和糖脂的“复合脂质”;(3)诸如类固醇的“衍生脂质”。In the present invention, the term "lipid nanoparticle (LNP)" may include any lipid that can form a particle to which one or more nucleic acid molecules are attached or in which one or more nucleic acid molecules are encapsulated. The term "lipid" refers to a group of organic compounds that are derivatives of fatty acids (e.g., esters) and are generally characterized by being insoluble in water but soluble in many organic solvents. Lipids are generally divided into at least three categories: (1) "simple lipids" including fats and oils and waxes; (2) "complex lipids" including phospholipids and glycolipids; (3) "derivatized lipids" such as steroids.
在一些实施方式中,所述脂质纳米颗粒还含有选自如下a)~c)中的一种或多种:a)中性脂质;b)PEG脂质;c)类固醇或类固醇类似物。In some embodiments, the lipid nanoparticles further contain one or more selected from the following a) to c): a) neutral lipids; b) PEG lipids; c) steroids or steroid analogs.
本发明中,术语“中性脂质”是指在生理pH下以不带电或中性两性离子形式存在的许多脂质物质中的任一种。在一些实施方式中,所述中性脂质选自二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰磷脂酰乙醇胺(DOPE)、棕榈酰油酰磷脂酰胆碱(POPC)、棕榈酰油酰磷脂酰乙醇胺(POPE)和二油酰磷脂酰乙醇胺4-(N-马来酰亚胺甲基)-环己烷-1-羧酸酯(DOPE-mal)、二棕榈酰磷脂酰乙醇胺(DPPE)、二肉豆蔻酰磷酸乙醇胺(DMPE)、二硬脂酰磷脂酰乙醇胺(DSPE)、16-O-单甲基PE、16-O-二甲基PE、18-1-反式PE、1-硬脂酰-2-油酰磷脂酰乙醇胺(SOPE)和1,2-二油酰-sn-甘油-3-磷酸乙醇胺(反式DOPE)中的一种或几种。In the present invention, the term "neutral lipid" refers to any of a number of lipid substances that exist in the form of uncharged or neutral zwitterions at physiological pH. In some embodiments, the neutral lipid is selected from distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoylphosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE) and dioleoylphosphatidylethanolamine 4-(N-maleimidoyl)phosphatidylcholine). One or more of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (trans-DOPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE-mal ...
在一些优选的实施方式中,所述中性脂质为二硬脂酰磷脂酰胆碱(DSPC)。In some preferred embodiments, the neutral lipid is distearoylphosphatidylcholine (DSPC).
在本发明的范围内的PEG脂质本身是本领域已知的。在一些实施方式中,所述PEG脂质选自PEG-磷脂和PEG-神经酰胺中的一种或几种,例如选自PEG2000-DMG、PEG2000-DSPE、PEG2000-DPPE、PEG2000-DMPE、PEG2000-DOPE、PEG1000-DSPE、PEG1000-DPPE、PEG1000-DMPE、PEG1000-DOPE、PEG550-DSPE、PEG550-DPPE、PEG-550DMPE、PEG-1000DOPE、PEG-BML、PEG-胆固醇、PEG2000-神经酰胺、PEG1000-神经酰胺、PEG750-神经酰胺、PEG550-神经酰胺中的一种或几种。PEG lipids within the scope of the present invention are known in the art per se. In some embodiments, the PEG lipid is selected from one or more of PEG-phospholipids and PEG-ceramides, for example, selected from one or more of PEG2000-DMG, PEG2000-DSPE, PEG2000-DPPE, PEG2000-DMPE, PEG2000-DOPE, PEG1000-DSPE, PEG1000-DPPE, PEG1000-DMPE, PEG1000-DOPE, PEG550-DSPE, PEG550-DPPE, PEG-550DMPE, PEG-1000DOPE, PEG-BML, PEG-cholesterol, PEG2000-ceramide, PEG1000-ceramide, PEG750-ceramide, PEG550-ceramide.
在一些优选的实施方式中,所述PEG脂质为PEG2000-DMG。In some preferred embodiments, the PEG lipid is PEG2000-DMG.
在一些实施方式中,所述类固醇为胆固醇。In some embodiments, the steroid is cholesterol.
在一些实施方式中,所述脂质纳米颗粒中含有摩尔比为(35~45):(43~54):(8~12):(1~2)的所述可电离阳离子脂质、类固醇或类固醇类似物、中性脂质、以及PEG脂质。In some embodiments, the lipid nanoparticles contain the ionizable cationic lipid, steroid or steroid analog, neutral lipid, and PEG lipid in a molar ratio of (35-45):(43-54):(8-12):(1-2).
在一些优选的实施方式中,所述可电离阳离子脂质、类固醇或类固醇类似物、中性脂质、PEG脂质的摩尔比为(37~43):(45~52):(9~11):(1.2~1.7)。In some preferred embodiments, the molar ratio of the ionizable cationic lipid, steroid or steroid analog, neutral lipid, and PEG lipid is (37-43): (45-52): (9-11): (1.2-1.7).
在一些更优选的实施方式中,所述可电离阳离子脂质、类固醇或类固醇类似物、中性脂质、PEG脂质的摩尔比为40: 48.5: 10: 1.5。In some more preferred embodiments, the molar ratio of the ionizable cationic lipid, steroid or steroid analog, neutral lipid, and PEG lipid is 40: 48.5: 10: 1.5.
在一些实施方式中,所述组合物的N/P比在从约0.1至约20的范围内,优选地在从约0.5至约15的范围内,更优选地在从约5至约15的范围内。作为示例,所述组合物的N/P比可以为0.1、0.5、1、3、5、6、7、8、9、10、12、15、18或20。In some embodiments, the N/P ratio of the composition is in the range of from about 0.1 to about 20, preferably in the range of from about 0.5 to about 15, and more preferably in the range of from about 5 to about 15. By way of example, the N/P ratio of the composition can be 0.1, 0.5, 1, 3, 5, 6, 7, 8, 9, 10, 12, 15, 18, or 20.
在本发明中,N/P比定义为脂质纳米颗粒中的碱性含氮基团的氮原子(“N”)与mRNA中的磷酸基团(“P”)的摩尔比。脂质纳米颗粒中的“N”值可以基于其分子量和永久阳离子基团与若存在的可阳离子化基团的相对含量来计算。In the present invention, the N/P ratio is defined as the molar ratio of nitrogen atoms ("N") of the basic nitrogen-containing groups in the lipid nanoparticles to the phosphate groups ("P") in the mRNA. The "N" value in the lipid nanoparticle can be calculated based on its molecular weight and the relative content of permanent cationic groups and cationizable groups, if present.
组合物的制备方法Preparation method of composition
本发明进一步提供如前所述的组合物的制备方法,其包括:The present invention further provides a method for preparing the above-mentioned composition, which comprises:
将所述脂质纳米颗粒中含有的脂质溶解在乙醇中,得到脂质乙醇溶液;dissolving the lipid contained in the lipid nanoparticles in ethanol to obtain a lipid ethanol solution;
将所述脂质乙醇溶液与含有所述mRNA的水溶液混合;mixing the lipid ethanol solution with an aqueous solution containing the mRNA;
而后除去乙醇,分离或纯化得到所述组合物。Then the ethanol is removed and the composition is obtained by separation or purification.
在具体实施时,本领域人员可结合现有文献而确认组合物的制备方法中所涉及的其他细节技术特征。During specific implementation, those skilled in the art may confirm other detailed technical features involved in the preparation method of the composition in combination with existing literature.
在一些具体的实施方式中,所述mRNA的水溶液为mRNA与浓度为50±5 mM、pH 6.0±1.0的柠檬酸盐缓冲液的混合溶液。In some specific embodiments, the aqueous solution of mRNA is a mixed solution of mRNA and a citrate buffer with a concentration of 50±5 mM and a pH of 6.0±1.0.
在具体实施时,可以通过不会对脂质或所形成的组合物产生负面影响的任何合适的方法除去乙醇。在本发明的一个实施例中,通过透析除去乙醇。在替代性实施例中,通过渗滤除去乙醇。In a specific implementation, ethanol can be removed by any suitable method that does not negatively affect the lipids or the formed composition. In one embodiment of the present invention, ethanol is removed by dialysis. In an alternative embodiment, ethanol is removed by diafiltration.
在具体实施时,脂质纳米颗粒的分离和任选的纯化也可以通过任何合适的方法进行。优选地,对脂质纳米颗粒进行过滤,更优选地,通过无菌过滤器过滤而分离或纯化脂质纳米颗粒。In a specific implementation, the separation and optional purification of lipid nanoparticles can also be performed by any suitable method. Preferably, the lipid nanoparticles are filtered, more preferably, the lipid nanoparticles are separated or purified by filtering through a sterile filter.
药物组合物Pharmaceutical composition
本发明进一步提供一种药物组合物,其含有如前所述的组合物,以及药学上可接受的载体或稀释剂。The present invention further provides a pharmaceutical composition, which contains the composition as described above and a pharmaceutically acceptable carrier or diluent.
本发明的药物组合物中包含治疗有效量的活性成分。其中,治疗有效量取决于给药途径、所治疗的动物的类型(包括人)以及所考虑的特定动物的体格特征。可以调整剂量以实现期望的效果,但剂量取决于诸如以下的因素:体重、饮食、并行药物治疗和医学领域的技术人员会认识到的其它因素。更具体地,治疗有效量是指有效预防、缓解或改善疾病的症状或延长所治疗个体的存活的活性成分的量。治疗有效量的确定在本领域技术人员的能力范围内,尤其是鉴于本发明的公开内容。The pharmaceutical compositions of the present invention contain a therapeutically effective amount of active ingredients. Wherein, the therapeutically effective amount depends on the route of administration, the type of animal (including humans) being treated, and the physical characteristics of the particular animal under consideration. The dosage can be adjusted to achieve the desired effect, but the dosage depends on factors such as body weight, diet, concurrent drug therapy, and other factors that will be recognized by those skilled in the art of medicine. More specifically, a therapeutically effective amount refers to an amount of active ingredient that effectively prevents, alleviates, or ameliorates the symptoms of a disease or prolongs the survival of the individual being treated. The determination of a therapeutically effective amount is within the capabilities of those skilled in the art, especially in light of the disclosure of the present invention.
本发明中,组合物或药物组合物的合适的给药途径可包括例如肠胃外递送,包括肌内、皮下、静脉内、髓内注射,以及在对应靶器官(如脾脏、肝脏、肾脏、肺、脑和骨髓等)位置的注射。所述药物组合物也可以缓释或控释剂型(包括储库型注射剂(depotinjections)、渗透泵等)给药,以便以预定的速率长期和/或定时、脉冲给药。此外,给药途径可以是局部或全身性的。In the present invention, suitable routes of administration of the composition or pharmaceutical composition may include, for example, parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injection, and injection at the location of the corresponding target organ (such as spleen, liver, kidney, lung, brain and bone marrow, etc.). The pharmaceutical composition can also be administered in a sustained release or controlled release dosage form (including depot injections, osmotic pumps, etc.) so as to be administered for a long time and/or regularly, pulsed at a predetermined rate. In addition, the route of administration may be local or systemic.
所述药物组合物可以本身已知的方式,例如,通过常规的混合、溶解、制粒、制锭、磨细、乳化、包封、包埋或压片过程制备。The pharmaceutical composition can be manufactured in a manner that is itself known, eg, by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tableting processes.
所述药物组合物可以任何常规的方式,使用一种或多种生理学上可接受的药物载体进行配制,所述药物载体包括有助于将活性物质加工成药学上可使用的制剂的赋形剂和辅剂。适当的制剂取决于所选择的给药途径。可适当地并且如本领域中所理解地使用任何熟知的技术、药物载体、赋形剂和稀释剂。The pharmaceutical composition can be prepared in any conventional manner using one or more physiologically acceptable pharmaceutical carriers, which include excipients and adjuvants that help process the active substance into a pharmaceutically usable preparation. Suitable formulations depend on the selected route of administration. Any well-known technology, pharmaceutical carriers, excipients and diluents can be used appropriately and as understood in the art.
在一些实施方式中,所述药物组合物为注射剂。In some embodiments, the pharmaceutical composition is an injection.
本发明中,所述注射剂可以制备成常规形式:液体溶液或混悬剂,适于在注射前在液体中制备成溶液或混悬剂的固体形式,或乳剂。合适的赋形剂是例如水、盐水、右旋糖、甘露醇、乳糖、卵磷脂、白蛋白、谷氨酸钠、盐酸半胱氨酸等。此外,如果需要,可注射的药物制剂还可以包含少量的无毒性辅助物质,例如润湿剂、pH缓冲剂等。生理上相容的缓冲液包括但不限于Hanks液、林格氏溶液或生理盐水缓冲液。另外,如果需要,还可以使用吸收增强制剂。In the present invention, the injection can be prepared in conventional forms: liquid solution or suspension, solid form suitable for preparing solution or suspension in liquid before injection, or emulsion. Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride, etc. In addition, if necessary, the injectable pharmaceutical preparation can also contain a small amount of non-toxic auxiliary substances, such as wetting agents, pH buffers, etc. Physiologically compatible buffers include, but are not limited to, Hanks solution, Ringer's solution, or physiological saline buffer. In addition, if necessary, absorption enhancement preparations can also be used.
在一些优选的实施方式中,所述药物组合物为静脉注射剂。In some preferred embodiments, the pharmaceutical composition is an intravenous injection.
治疗及制药用途Therapeutic and pharmaceutical uses
本发明进一步提供如前所述的组合物或如前所述的药物组合物在预防或治疗戈谢病中的应用。亦即,本发明进一步提供一种预防或治疗戈谢病的方法,其包括:使用如前所述的组合物或如前所述的药物组合物。The present invention further provides the use of the above-mentioned composition or the above-mentioned pharmaceutical composition in preventing or treating Gaucher disease. That is, the present invention further provides a method for preventing or treating Gaucher disease, which comprises: using the above-mentioned composition or the above-mentioned pharmaceutical composition.
本发明进一步提供如前所述的组合物在制备药物组合物中的应用,所述药物组合物被用于预防或治疗戈谢病。The present invention further provides use of the aforementioned composition in preparing a pharmaceutical composition, wherein the pharmaceutical composition is used to prevent or treat Gaucher disease.
本领域知晓,本发明中如前所述的组合物或如前所述的药物组合物的应用均为其安全有效量的应用,所述的“安全有效量”在本发明中进一步可以被理解为足以预防或治疗戈谢病,同时能避免严重的副作用的用量。本领域人员可以结合体外细胞试验及动物实验等已知方式确认所述组合物或药物组合物的安全有效量。在临床应用中,医生也可以结合体重、饮食、并行药物治疗和医学领域的技术人员会认识到的其它因素而对所述组合物或药物组合物的用量进行调整,使其达到安全有效量。It is known in the art that the use of the composition or the pharmaceutical composition as described above in the present invention is the use of its safe and effective amount, and the "safe and effective amount" in the present invention can be further understood as an amount sufficient to prevent or treat Gaucher disease while avoiding serious side effects. Those skilled in the art can confirm the safe and effective amount of the composition or pharmaceutical composition in combination with known methods such as in vitro cell tests and animal experiments. In clinical applications, doctors can also adjust the dosage of the composition or pharmaceutical composition in combination with weight, diet, concurrent drug treatment and other factors that technicians in the medical field will recognize, so that it reaches a safe and effective amount.
在一些实施方式中,所述戈谢病包括1型戈谢病、2型戈谢病、3型戈谢病中的至少一种。In some embodiments, the Gaucher disease comprises at least one of type 1 Gaucher disease, type 2 Gaucher disease, and type 3 Gaucher disease.
在一些实施方式中,所述药物组合物为注射剂。In some embodiments, the pharmaceutical composition is an injection.
在一些优选的实施方式中,所述药物组合物为静脉注射剂。In some preferred embodiments, the pharmaceutical composition is an intravenous injection.
在一些实施方式中,所述组合物或所述药物组合物被用于实现以下至少一种用途:In some embodiments, the composition or the pharmaceutical composition is used to achieve at least one of the following uses:
1)提高受试者体内血清及靶器官中的β-GCase的表达和活性;1) Increase the expression and activity of β-GCase in the serum and target organs of the subjects;
2)降低受试者体内血清及靶器官中的Lyso-GL1水平。2) Reduce the level of Lyso-GL1 in the serum and target organs of the subjects.
在一些实施方式中,所述靶器官包括脾脏、肝脏、肾脏、肺、脑和骨髓中的至少一种。In some embodiments, the target organ comprises at least one of spleen, liver, kidney, lung, brain and bone marrow.
在一些优选的实施方式中,所述靶器官包括脾脏和肝脏。In some preferred embodiments, the target organs include spleen and liver.
在一些更优选的实施方式中,所述靶器官还包括肾脏、肺、脑和骨髓中的至少一种。In some more preferred embodiments, the target organ further includes at least one of kidney, lung, brain and bone marrow.
在一些实施方式中,所述靶器官包括脾脏、肝脏、肾脏、肺、脑和骨髓。In some embodiments, the target organs include spleen, liver, kidney, lung, brain, and bone marrow.
在一些实施方式中,受试者为脊椎动物。In some embodiments, the subject is a vertebrate.
在一些优选的实施方式中,受试者为哺乳动物。In some preferred embodiments, the subject is a mammal.
在一些优选的实施方式中,受试者为鸡、小鼠、仓鼠、兔子、羊、牛、猪、狗、猫、驴、猴、猩猩、猿或人。In some preferred embodiments, the subject is a chicken, mouse, hamster, rabbit, sheep, cow, pig, dog, cat, donkey, monkey, gorilla, ape, or human.
在一些更优选的实施方式中,受试者为人。In some more preferred embodiments, the subject is a human.
实施例Example
下面将以hGBA-mRNA(含有编码人源葡萄糖鞘脂酶β1(GBA1)的mRNA)和mGBA-mRNA(含有编码鼠源葡萄糖鞘脂酶β1(GBA1)的mRNA)为例,对本发明的实施方案进行详细描述。The embodiments of the present invention will be described in detail below by taking hGBA-mRNA (containing mRNA encoding human glucosphingolipidase β1 (GBA1)) and mGBA-mRNA (containing mRNA encoding mouse glucosphingolipidase β1 (GBA1)) as examples.
应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,优先参考本发明中给出的指引,还可以按照本领域的实验手册或常规条件,还可以参考本领域已知的其它实验方法,或者按照制造厂商所建议的条件。It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For experimental methods in the following examples where specific conditions are not specified, reference should be made to the instructions given in the present invention, or to experimental manuals or conventional conditions in the art, or to other experimental methods known in the art, or to conditions recommended by manufacturers.
下述的具体实施例中,涉及原料组分的量度参数,如无特别说明,可能存在称量精度范围内的细微偏差。涉及温度和时间参数,允许仪器测试精度或操作精度导致的可接受的偏差。In the following specific embodiments, the measured parameters of raw material components may have slight deviations within the range of weighing accuracy unless otherwise specified. For temperature and time parameters, acceptable deviations caused by instrument test accuracy or operation accuracy are allowed.
1、方法1. Methods
1.1 hGBA-mRNA的mRNA序列1.1 mRNA sequence of hGBA-mRNA
hGBA-mRNA的mRNA序列包含帽子(Cap)结构、Chi-β-Globin Δ4 5'端非翻译区(UTR)、Kozak序列、用于编码人源葡萄糖鞘脂酶β1的核苷酸序列(GBA1,在NCBI基因组数据库中的基因编号为2629),以及Chi-β-Globin 3'端非翻译区(UTR)和聚腺苷酸尾巴(长度为125A)。The mRNA sequence of hGBA-mRNA contains a cap structure, Chi-β-Globin Δ4 5' untranslated region (UTR), a Kozak sequence, a nucleotide sequence encoding human glucosphingolipidase β1 (GBA1, gene number 2629 in the NCBI genome database), and Chi-β-Globin 3' untranslated region (UTR) and a polyadenylic acid tail (125A in length).
mGBA-mRNA的mRNA序列包含帽子(Cap)结构、Chi-β-Globin Δ4 5'端非翻译区(UTR)、Kozak序列、用于编码鼠源葡萄糖鞘脂酶β1的核苷酸序列(GBA1,在NCBI基因组数据库中的基因编号为14466)(在mGBA-mRNA中),以及Chi-β-Globin 3'端非翻译区(UTR)和聚腺苷酸尾巴(长度为125A)。The mRNA sequence of mGBA-mRNA contains a cap structure, Chi-β-Globin Δ4 5' untranslated region (UTR), a Kozak sequence, a nucleotide sequence encoding mouse glucosphingolipidase β1 (GBA1, gene number 14466 in the NCBI genome database) (in mGBA-mRNA), and Chi-β-Globin 3' untranslated region (UTR) and a polyadenylation tail (length 125A).
1.2 hGBA-mRNA和mGBA-mRNA的制备1.2 Preparation of hGBA-mRNA and mGBA-mRNA
首先,通过BspQ1酶切割质粒产生了线性化的DNA模板,关于hGBA和mGBA的DNA序列分别如SEQ ID No.1和SEQ ID No.2所示。而后,在体外由T7 RNA聚合酶合成mRNA,hGBA-mRNA和mGBA-mRNA的序列分别如SEQ ID No.3和SEQ ID No.4所示。之后,通过天花病毒帽子酶对所合成的mRNA进行加帽,添加7-甲基鸟苷酸盖帽结构(Cap 0)到转录mRNA的5'端,使用Cap 2'-O 甲基转移酶将Cap 0结构转变为Cap 1结构,并将mRNA中的尿苷完全替换为1-N-甲基假尿苷三磷酸(1-N-Me-Pseudo-UTP)。First, the plasmid was cut by BspQ1 enzyme to produce a linearized DNA template, and the DNA sequences of hGBA and mGBA are shown in SEQ ID No. 1 and SEQ ID No. 2, respectively. Then, mRNA was synthesized by T7 RNA polymerase in vitro, and the sequences of hGBA-mRNA and mGBA-mRNA are shown in SEQ ID No. 3 and SEQ ID No. 4, respectively. After that, the synthesized mRNA was capped by smallpox virus capping enzyme, adding a 7-methylguanylate capping structure (Cap 0) to the 5' end of the transcribed mRNA, and using Cap 2'-O methyltransferase to convert the Cap 0 structure to the Cap 1 structure, and completely replacing the uridine in the mRNA with 1-N-methyl pseudouridine triphosphate (1-N-Me-Pseudo-UTP).
mRNA被封装在由专有的阳离子脂质体、胆固醇、DSPC和PEG2000-DMG构成的LNP中。阳离子脂质体是一种可由脂肪酶高度降解的可离子化阳离子脂质。在制剂中,四种脂质成分的摩尔比为40: 48.5: 10: 1.5(阳离子脂质体: 胆固醇: DSPC: PEG2000-DMG)。脂质以乙醇溶解,如Sabnis, S等在A Novel Amino Lipid Series for mRNA Delivery:Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-humanPrimates(Mol Ther, 2018. 26(6): p. 1509-1519.)中所描述的。mRNA被溶解在50 mM pH6.0的柠檬酸盐缓冲液中,以达到N/P=8。两种溶液通过纳米医学系统(I-Nano) 混合,总流速为每分钟16 mL,流速比为4: 1 v/v(水相: 有机相)。随后,所得悬浮液在无RNA酶水中进行两次透析,每次一小时,然后在Tris缓冲液中透析至少16小时,随后通过Amicon Ultra浓缩并使用0.22 µm Millex-GV滤器进行过滤。封装效率比和mRNA浓度通过Quant-iT™RiboGreen™ RNA Assay Kit根据制造商的说明进行检测。hGBA-mRNA的详细信息列在表2中。mRNA was encapsulated in LNPs composed of proprietary cationic liposomes, cholesterol, DSPC, and PEG2000-DMG. Cationic liposomes are ionizable cationic lipids that are highly degradable by lipases. In the formulation, the molar ratio of the four lipid components was 40: 48.5: 10: 1.5 (cationic liposomes: cholesterol: DSPC: PEG2000-DMG). Lipids were dissolved in ethanol as described by Sabnis, S et al. in A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates (Mol Ther, 2018. 26(6): p. 1509-1519.). mRNA was dissolved in 50 mM citrate buffer, pH 6.0, to achieve N/P = 8. The two solutions were mixed by a nanomedicine system (I-Nano) at a total flow rate of 16 mL per minute and a flow rate ratio of 4: 1 v/v (aqueous phase: organic phase). Subsequently, the resulting suspension was dialyzed twice in RNase-free water for one hour each, and then dialyzed in Tris buffer for at least 16 hours, followed by concentration by Amicon Ultra and filtration using a 0.22 µm Millex-GV filter. The encapsulation efficiency ratio and mRNA concentration were measured by Quant-iT™ RiboGreen™ RNA Assay Kit according to the manufacturer's instructions. The detailed information of hGBA-mRNA is listed in Table 2.
表2. hGBA-mRNA信息Table 2. hGBA-mRNA information
1.3 血清和组织采集1.3 Serum and tissue collection
在全血静置1小时后,从眼眶取血清样本,并经离心(16,000 xg,30分钟)。小鼠在处死后,取得肝脏和脾脏组织,立即冷冻并存储在-80℃,以备进一步使用。将组织用组织破碎器(60 Hz,4℃下180秒)裂解,然后进行离心(16,000 xg,4℃下30分钟)并收集上清液。使用Pierce BCA蛋白质测定试剂盒(Thermo-23225)按照制造商的说明测定蛋白质浓度。After the whole blood had rested for 1 hour, serum samples were collected from the orbit and centrifuged (16,000 x g, 30 minutes). After the mice were sacrificed, liver and spleen tissues were obtained, immediately frozen and stored at -80°C for further use. The tissues were lysed with a tissue disruptor (60 Hz, 4°C for 180 seconds), followed by centrifugation (16,000 x g, 4°C for 30 minutes) and the supernatant was collected. The protein concentration was determined using the Pierce BCA protein assay kit (Thermo-23225) according to the manufacturer's instructions.
1.4 蛋白质印迹1.4 Western blotting
基因转染后的两天,将培养基排除,用PBS洗涤细胞,然后用RIPA裂解缓冲液裂解细胞。随后,用细胞刮板刮取细胞,并在4℃下进行30分钟的离心。使用BCA蛋白定量试剂盒(Beyotime Biotechnology, 上海,中国)测定总蛋白质的浓度。样本在95°C下煮沸15分钟,然后加载40 μg总蛋白质进行SDS-聚丙烯酰胺凝胶电泳。蛋白质随后转移到PVDF膜上。PVDF膜用5%无脂干奶粉阻断一小时,然后分别与抗β-GCase(Sigma-G4171)、β-actin(Sigma-A2228)和GAPDH(Proteintech-60004)的初级抗体在4°C下孵育过夜。膜进行三次洗涤。然后,将抗兔抗体(Beyotime-A0208)和抗鼠抗体(Invitrogen-35519)添加,以便在室温下与初级抗体结合一个小时。蛋白质通过Alexa 680荧光通道和增强化学发光(ECL,Thermo-32106)底物以Bio-RAD ChemiDocTM MP成像系统进行可视化。Two days after gene transfection, the medium was removed, the cells were washed with PBS, and then lysed with RIPA lysis buffer. Subsequently, the cells were scraped with a cell scraper and centrifuged at 4°C for 30 minutes. The concentration of total protein was determined using a BCA protein quantification kit (Beyotime Biotechnology, Shanghai, China). The samples were boiled at 95°C for 15 minutes, and then 40 μg of total protein was loaded for SDS-polyacrylamide gel electrophoresis. The proteins were then transferred to a PVDF membrane. The PVDF membrane was blocked with 5% fat-free dry milk powder for one hour and then incubated with primary antibodies against β-GCase (Sigma-G4171), β-actin (Sigma-A2228), and GAPDH (Proteintech-60004) at 4°C overnight. The membrane was washed three times. Then, anti-rabbit antibody (Beyotime-A0208) and anti-mouse antibody (Invitrogen-35519) were added to allow binding to the primary antibodies for one hour at room temperature. Proteins were visualized using the Alexa 680 fluorescence channel and enhanced chemiluminescence (ECL, Thermo-32106) substrate using the Bio-RAD ChemiDocTM MP imaging system.
1.5 β-GCase酶活性分析1.5 Analysis of β-GCase activity
组织在60 Hz、180秒的条件下通过组织破碎器匀浆,然后进行30分钟的离心以获取上清液。β-GCase酶活性分析遵循文献描述(PMID: 34106956)。将组织裂解液或血清样品与底物4-甲基伞形酮-葡糖苷(TCI-M3022)(浓度为10 mM),在150 mM柠檬酸盐-磷酸盐缓冲液(pH 5.4)中含有牛磺胆酸(0.25%,w/w)和Triton X-100(0.25%,w/w)的反应缓冲液中混合,然后在37℃下孵育60分钟。通过添加pH 10.5的1M甘氨酸终止反应。4-甲基伞形酮-葡糖苷产物的生成通过微孔板读数仪(Thermo-VarioSkan lux)进行测量,激发波长为365 nm,发射波长为445 nm。The tissues were homogenized by a tissue disruptor at 60 Hz for 180 seconds, followed by centrifugation for 30 minutes to obtain the supernatant. The β-GCase enzyme activity assay was performed as described in the literature (PMID: 34106956). Tissue lysates or serum samples were mixed with the substrate 4-methylumbelliferyl-glucoside (TCI-M3022) (at a concentration of 10 mM) in a reaction buffer containing taurocholic acid (0.25%, w/w) and Triton X-100 (0.25%, w/w) in 150 mM citrate-phosphate buffer (pH 5.4), and then incubated at 37°C for 60 minutes. The reaction was terminated by adding 1 M glycine at pH 10.5. The formation of 4-methylumbelliferyl-glucoside product was measured by a microplate reader (Thermo-VarioSkan lux) with an excitation wavelength of 365 nm and an emission wavelength of 445 nm.
1.6 Lyso_GL1的制备1.6 Preparation of Lyso_GL1
通过LC-MS检测Lyso_GL1水平。血清Lyso_GL1的提取基于Bligh和Dyer方法的改进。对于血清样品,将50 μL的80%甲醇加入5 μL的血清样品,同时添加500 pg的N,N-二甲基-D-麦角酮(Matreya-1320)作为内标(PMID: 21868580)。将混合物涡旋3分钟,然后以16,000 x g离心10分钟,收集上清液。上清液转移到自动进样瓶中进行LC-MS/MS分析。校准曲线使用与上述样品制备相同的方法制备,使用Lyso-GL1标准和内标。进样体积为10 μL。Lyso_GL1 levels were detected by LC-MS. The extraction of serum Lyso_GL1 was based on a modification of the method of Bligh and Dyer. For serum samples, 50 μL of 80% methanol was added to 5 μL of serum sample, and 500 pg of N,N-dimethyl-D-ergosterol (Matreya-1320) was added as an internal standard (PMID: 21868580). The mixture was vortexed for 3 minutes and then centrifuged at 16,000 x g for 10 minutes to collect the supernatant. The supernatant was transferred to an autosampler vial for LC-MS/MS analysis. The calibration curve was prepared using the same method as the sample preparation above, using Lyso-GL1 standards and internal standards. The injection volume was 10 μL.
对于肝脏样品,取约0.1克湿重肝脏样品,与2 mL氯仿-甲醇(体积比2:1)匀浆,然后进行离心以获取上清液。将上清液干燥后,用40 μL 80%甲醇溶解。进样体积为10 μL。For liver samples, approximately 0.1 g of wet weight liver sample was homogenized with 2 mL of chloroform-methanol (volume ratio 2:1), and then centrifuged to obtain the supernatant. The supernatant was dried and dissolved with 40 μL of 80% methanol. The injection volume was 10 μL.
1.7 Lyso_GL1的UPLC-ESI-MS/MS定量分析1.7 UPLC-ESI-MS/MS quantitative analysis of Lyso_GL1
采用Thermo UPLC系统配备Q-exactive orbitrap质谱仪(Thermo FisherScientific,美国)进行UPLC-MS/MS分析。使用Acquity BEH C18柱(2.1×100 mm,1.7 μm柱)在50℃下实现组分的分离。流动相A(0.1%甲酸水溶液)和流动相B(0.1%甲酸乙腈溶液)采用梯度洗脱,如下所示:0~0.5分钟30% B,0.5~2分钟从30% B到70% B,2~4分钟70% B,4~4.2分钟从70% B到30% B,4.2~6分钟30% B,流速为0.4 mL/min。随后,在质谱仪上采用正电模式进行电喷雾电离(ESI)检测。离子源设置如下:喷雾电压为3.8 kV;毛细管温度为320°C;鞘气和辅助气体分别设定为35单位和8单位;射频透镜为80%;最大充填时间为50 ms;自动增益控制(AGC)目标为3E6。Lyso-GL1和N,N-二甲基-D-麦角酮的最佳碰撞能量分别为35%和10%。扫描事件数据采集在PRM模式下进行,采用以下转换:m/z 462.34253>282.27901/264.26848用于Lyso-GL1,以及m/z 328.32101>310.30960/280.29920用于N,N-二甲基-D-赤型-神经鞘氨醇,分辨率为70,000。系统和采集的数据均由Chromeleon软件(Thermo,美国)处理。UPLC-MS/MS analysis was performed using a Thermo UPLC system equipped with a Q-exactive orbitrap mass spectrometer (Thermo Fisher Scientific, USA). Separation of the components was achieved using an Acquity BEH C18 column (2.1×100 mm, 1.7 μm column) at 50°C. Mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile) were gradient eluted as follows: 30% B from 0 to 0.5 min, from 30% B to 70% B from 0.5 to 2 min, 70% B from 2 to 4 min, from 70% B to 30% B from 4 to 4.2 min, and 30% B from 4.2 to 6 min, with a flow rate of 0.4 mL/min. Subsequently, electrospray ionization (ESI) detection was performed on the mass spectrometer in positive mode. The ion source settings were as follows: spray voltage was 3.8 kV; capillary temperature was 320 °C; sheath gas and auxiliary gas were set to 35 units and 8 units, respectively; RF lens was 80%; maximum fill time was 50 ms; and automatic gain control (AGC) target was 3E6. The optimal collision energies for Lyso-GL1 and N,N-dimethyl-D-ergosterol were 35% and 10%, respectively. Scan event data acquisition was performed in PRM mode with the following transitions: m/z 462.34253>282.27901/264.26848 for Lyso-GL1 and m/z 328.32101>310.30960/280.29920 for N,N-dimethyl-D-erythro-sphingosine with a resolution of 70,000. The system and acquired data were processed by Chromeleon software (Thermo, USA).
1.8 通过qPCR评估细胞因子mRNA水平1.8 Assessment of cytokine mRNA levels by qPCR
根据厂家说明书使用RNAiso plus(Takara-9108Q)提取总RNA,并使用PrimeScript RT试剂盒含gDNA Eraser(Takara-RR047A)进行反转录制备cDNA。使用ChamQUniversal SYBR qPCR Master Mix(Vazyme,Q711-02)在QuantStudio™ 6 Flex实时PCR系统(Applied Biosystems)上进行qPCR分析。Total RNA was extracted using RNAiso plus (Takara-9108Q) according to the manufacturer's instructions, and cDNA was prepared by reverse transcription using PrimeScript RT Reagent Kit with gDNA Eraser (Takara-RR047A). qPCR analysis was performed on the QuantStudio™ 6 Flex Real-Time PCR System (Applied Biosystems) using ChamQUniversal SYBR qPCR Master Mix (Vazyme, Q711-02).
2. 结果2. Results
2.1 用于LNP包裹的可电离阳离子脂质体筛选2.1 Screening of ionizable cationic liposomes for LNP encapsulation
含不同可电离阳离子脂质体的LNP系统对于不同目的基因的递送效率有所不同,因此需要进行筛选以找到适合递送特定目的基因的LNP系统。对脂质体#9,脂质体#10和脂质体#13三种可电离阳离子脂质体进行了分析,其结构分别依次如图1中的A、图1中的B、图1中的C所示。在三个不同细胞系中(293T,Vero和BHK),三种剂量的hGBA-mRNA分别通过包含有这三种阳离子脂质体的LNP系统进行转染,之后在24 h,48h,72h分别对各组所表达的蛋白水平进行评估比较(图2,其中空白对照为生理盐水)。可以看出在蛋白表达水平上,包含不同结构阳离子脂质体的LNP系统产生了不同的效果。三个时间段hGBA-mRNA的蛋白表达水平,含有脂质体#13和脂质体#10可电离阳离子脂质体的LNP均优于脂质体#9。The delivery efficiency of LNP systems containing different ionizable cationic liposomes for different target genes is different, so it is necessary to screen to find an LNP system suitable for delivering specific target genes. Three ionizable cationic liposomes, liposome #9, liposome #10 and liposome #13, were analyzed, and their structures are shown in Figure 1 A, Figure 1 B, and Figure 1 C, respectively. In three different cell lines (293T, Vero and BHK), three doses of hGBA-mRNA were transfected by LNP systems containing these three cationic liposomes, and then the protein levels expressed in each group were evaluated and compared at 24 h, 48 h, and 72 h (Figure 2, where the blank control is saline). It can be seen that the LNP systems containing cationic liposomes with different structures have different effects on the protein expression level. The protein expression level of hGBA-mRNA in the three time periods, LNP containing ionizable cationic liposomes of liposome #13 and liposome #10 is better than liposome #9.
通过对以上数据的定量化转换,可以直观看出脂质体#10和脂质体#13在293T,Vero和BHK三个细胞系的蛋白水平表达均优于脂质体#9(图3)。体外实验的结果说明包含脂质体#10和脂质体#13的阳离子脂质体的LNP系统更适合递送hGBA-mRNA,并在细胞内实现更高效的蛋白表达。而对比脂质体#10和脂质体#13的结果,除了在293T细胞系中,含脂质体#13的LNP递送时hGBA表达稍高于用含脂质体#10的LNP递送外,在Vero和BHK细胞系中,含脂质体#10的LNP递送时hGBA表达水平更高,这说明脂质体#10相对更适合作为hGBA-mRNA的递送载体的阳离子脂质体。Through the quantitative conversion of the above data, it can be intuitively seen that the protein expression levels of liposome #10 and liposome #13 in the three cell lines of 293T, Vero and BHK are better than those of liposome #9 (Figure 3). The results of in vitro experiments show that the LNP system of cationic liposomes containing liposome #10 and liposome #13 is more suitable for delivering hGBA-mRNA and achieving more efficient protein expression in cells. Comparing the results of liposome #10 and liposome #13, except that in the 293T cell line, the hGBA expression when delivered by LNP containing liposome #13 is slightly higher than that when delivered by LNP containing liposome #10, in the Vero and BHK cell lines, the hGBA expression level is higher when delivered by LNP containing liposome #10, which shows that liposome #10 is relatively more suitable as a cationic liposome for the delivery of hGBA-mRNA.
2.2 体内研究2.2 In vivo studies
已完成的非临床药理/药代动力学研究表明(表3):The completed nonclinical pharmacology/pharmacokinetic studies have shown (Table 3):
1)在GD的GBA D427V小鼠模型中,通过静脉注射小鼠hGBA-mRNA(或mGBA-mRNA)以恢复血清、肝脏和脾脏中缺乏的β-GCase,使得这些靶器官中代谢底物Lyso-GL1水平降低。1) In the GBA D427V mouse model of GD, intravenous injection of mouse hGBA-mRNA (or mGBA-mRNA) restored the deficient β-GCase in serum, liver, and spleen, resulting in reduced levels of the metabolic substrate Lyso-GL1 in these target organs.
2)在GBA D427V小鼠模型中,静脉注射hGBA-mRNA可实现以下效果:1)增加靶器官中的β-GCase表达和活性,且剂量依赖性显著;2)相较于目前的Cerezyme标准疗法,实现更长时间的β-GCase表达;3)重复给药后一致地增加靶器官中的β-GCase活性,同时Lyso-GL1水平降低;4)经过重复给药后耐受性良好,没有显著诱导抗PEG抗体和先天免疫相关细胞因子。2) In the GBA D427V mouse model, intravenous injection of hGBA-mRNA can achieve the following effects: 1) Increased β-GCase expression and activity in target organs in a dose-dependent manner; 2) Achieved longer-term β-GCase expression compared to the current Cerezyme standard therapy; 3) Consistently increased β-GCase activity in target organs after repeated administration, while reducing Lyso-GL1 levels; 4) Good tolerance after repeated administration, without significant induction of anti-PEG antibodies and innate immune-related cytokines.
3) hGBA-mRNA在经过静脉给药后的第1天在脾脏、肾脏、肺脏、脑、肝脏和骨髓等测试组织中达到峰值。在所有组织中,hGBA-mRNA水平在7天后显著降低。3) hGBA-mRNA reached its peak in the spleen, kidney, lung, brain, liver and bone marrow on the first day after intravenous administration. In all tissues, hGBA-mRNA levels decreased significantly after 7 days.
表3. mGBA-mRNA和hGBA-mRNA非临床研究摘要Table 3. Summary of nonclinical studies of mGBA-mRNA and hGBA-mRNA
2.2.1 小鼠的hGBA-mRNA组织分布2.2.1 Tissue distribution of hGBA-mRNA in mice
对hGBA-mRNA的组织分布情况进行评估。对GBA D427V小鼠进行了单次静脉注射,分别注射了生理盐水或0.5 mg/kg的hGBA-mRNA。从大脑、肝脏、脾脏、肾脏、肺和骨髓中分离出RNA,并使用特异于人源β-GCase基因的引物进行qPCR (quantitative polymerasechain reaction)定量分析。相对于接受生理盐水处理的动物,人源β-GCase mRNA水平的相对增加。Tissue distribution of hGBA-mRNA was evaluated. GBA D427V mice were given a single intravenous injection of saline or 0.5 mg/kg of hGBA-mRNA. RNA was isolated from brain, liver, spleen, kidney, lung, and bone marrow and quantified by qPCR (quantitative polymerase chain reaction) using primers specific for the human β-GCase gene. Relative increase in human β-GCase mRNA levels was observed relative to animals treated with saline.
在治疗后的第1天,hGBA-mRNA水平在所有测试的组织中均达到峰值,包括脾脏、肾脏、肺、脑、肝脏和骨髓。其中,脾脏的倍数增加最高,其次是肾脏、肺、脑、肝脏和骨髓,依次递减。治疗7天后,所有组织中的hGBA-mRNA水平显著下降。这些结果与非临床药理学研究结果一致,该研究显示hGBA-mRNA治疗能够在目标器官中保持β-GCase活性增加,持续时间至少为3天,最多可达7天。On the first day after treatment, hGBA-mRNA levels peaked in all tissues tested, including spleen, kidney, lung, brain, liver, and bone marrow. Among them, the spleen had the highest fold increase, followed by kidney, lung, brain, liver, and bone marrow, in descending order. After 7 days of treatment, hGBA-mRNA levels in all tissues decreased significantly. These results are consistent with the results of nonclinical pharmacology studies, which showed that hGBA-mRNA treatment was able to maintain increased β-GCase activity in the target organs for at least 3 days and up to 7 days.
众所周知,戈谢病导致肝脏、脾脏、肾脏、肺、脑和骨髓中脑苷脂的积累。人源β-GCase mRNA的长时间存在表明hGBA-mRNA具有在这些器官中补偿β-GCase活性的潜力,从而为患者提供比基于蛋白质的ERT更全面的效益。Gaucher disease is known to result in the accumulation of cerebrosides in the liver, spleen, kidney, lung, brain, and bone marrow. The prolonged presence of human β-GCase mRNA suggests that hGBA-mRNA has the potential to compensate for β-GCase activity in these organs, thereby providing patients with a more comprehensive benefit than protein-based ERT.
2.2.2 GBA D427V突变小鼠中mGBA-mRNA的静脉注射治疗效果2.2.2 Therapeutic effect of intravenous injection of mGBA-mRNA in GBA D427V mutant mice
本实验的目标是作为概念验证,展示mGBA-mRNA在GBA D427V突变小鼠(在C57BL/6背景上携带GBA基因D427V突变)中的体内效果,mGBA-mRNA是hGBA-mRNA在小鼠中的替代品。表4展示了本实验的研究设计。The goal of this experiment was to demonstrate the in vivo effects of mGBA-mRNA in GBA D427V mutant mice (carrying the GBA gene D427V mutation on a C57BL/6 background) as a proof of concept, as an alternative to hGBA-mRNA in mice. Table 4 shows the study design of this experiment.
表4.mGBA-mRNA静脉注射治疗效果在GBA D427V突变小鼠中的研究设计Table 4. Study design of the therapeutic effect of intravenous injection of mGBA-mRNA in GBA D427V mutant mice
为评估mGBA-mRNA治疗的体内效果,将GBA D427V小鼠每两周一次(Q2W)静脉注射0.5 mg/kg的mGBA-mRNA,在0,14和28天共注射3次。To evaluate the in vivo effects of mGBA-mRNA treatment, GBA D427V mice were intravenously injected with 0.5 mg/kg mGBA-mRNA once every two weeks (Q2W) for a total of 3 injections on days 0, 14, and 28.
通过免疫印迹法评估了血清、肝脏和脾脏中β-GCase蛋白水平,使用生理盐水处理的小鼠作为阴性对照组。在血清中,β-GCase水平在mGBA-mRNA注射后的12小时达到峰值,并在接下来的3天内保持可检测水平,而生理盐水组中未检测到β-GCase蛋白质(见图4)。同样,在肝脏和脾脏中,β-GCase表达在mGBA-mRNA注射后的12小时达到峰值,并在接下来的至少3天内保持升高水平(见图5和图6)。除了蛋白质表达水平外,还测量了β-GCase酶活性,以进一步评估mGBA-mRNA疗法改善缺陷的β-GCase功能的效果。mGBA-mRNA疗法导致血清中β-GCase酶活性在注射12小时后达到峰值,相对于预处理水平增加了14倍(1.4 x 106vs. 1 x105;单位为pmol/min/μg/μL),在之后第7天恢复至基线水平(见图4)。β-GCase protein levels were assessed in serum, liver, and spleen by immunoblotting, using saline-treated mice as a negative control group. In serum, β-GCase levels peaked at 12 hours after mGBA-mRNA injection and remained detectable for the next 3 days, while no β-GCase protein was detected in the saline group (see Figure 4). Similarly, in liver and spleen, β-GCase expression peaked at 12 hours after mGBA-mRNA injection and remained elevated for at least the next 3 days (see Figures 5 and 6). In addition to protein expression levels, β-GCase enzyme activity was measured to further evaluate the effect of mGBA-mRNA therapy on improving defective β-GCase function. mGBA-mRNA therapy resulted in a 14-fold increase in serum β-GCase enzyme activity (1.4 x 10 6 vs. 1 x10 5 ; pmol/min/μg/μL) at 12 hours after injection relative to pretreatment levels, which returned to baseline levels by day 7 (see Figure 4).
肝脏和脾脏是GD的主要发病器官。在接受mGBA-mRNA治疗后,肝脏中的β-GCase酶活性在治疗后1天达到峰值(相对于剂前水平增加了9倍),脾脏中也是如此(相对于剂前水平增加了7倍),并且在至少3天内保持在较高水平,然后在第14天回到基线水平(见图5和图6)。The liver and spleen are the main pathogenic organs of GD. After receiving mGBA-mRNA treatment, the β-GCase enzyme activity in the liver reached a peak 1 day after treatment (9-fold increase relative to the pre-dose level) and in the spleen (7-fold increase relative to the pre-dose level), and remained at a high level for at least 3 days, and then returned to the baseline level on the 14th day (see Figures 5 and 6).
戈谢病是一种需要重复药物治疗的终身性疾病。为了模拟可能的临床治疗方案,GBA D427V突变小鼠通过静脉注射多次剂量的mGBA-mRNA(0.5 mg/kg)。与单次剂量给药后的观察一致,与基线水平相比,mGBA-mRNA治疗的GBA D427V小鼠在每次治疗后3小时至3天之间显示出血清中β-GCase酶活性的显著增加,每次治疗后12小时达到峰值(图7)。增强的β-GCase酶活性水平在每次注射后没有明显差异。Gaucher disease is a lifelong disease that requires repeated drug treatment. To simulate a possible clinical treatment regimen, GBA D427V mutant mice were given multiple doses of mGBA-mRNA (0.5 mg/kg) by intravenous injection. Consistent with observations after a single dose, mGBA-mRNA-treated GBA D427V mice showed a significant increase in β-GCase enzyme activity in serum between 3 hours and 3 days after each treatment compared to baseline levels, reaching a peak 12 hours after each treatment (Figure 7). The levels of enhanced β-GCase enzyme activity did not differ significantly after each injection.
β-GCase底物Lyso-GL1是戈谢病的关键生物标志物,降低的Lyso-GL1水平表明对治疗的积极反应。因此,测量Lyso-GL1的浓度可以验证mGBA-mRNA治疗的最终疗效。未经处理的GBA D427V小鼠的血清和肝脏中Lyso-GL1的浓度升高,接受mGBA-mRNA治疗后的3小时内,Lyso-GL1的浓度开始下降,然后在3天内达到最低点。在第3天,与盐水注射小鼠相比,接受mGBA-mRNA治疗的小鼠血清中Lyso-GL1水平下降到15%,肝脏中下降到10%以下(图8)。此外,在接受mGBA-mRNA治疗的动物中,经过多次给药后,肝脏中Lyso-GL1水平仍然保持降低到盐水注射对照组Lyso-GL1水平30%以下。Lyso-GL1, a β-GCase substrate, is a key biomarker for Gaucher disease, and reduced levels of Lyso-GL1 indicate a positive response to treatment. Therefore, measuring the concentration of Lyso-GL1 can verify the ultimate efficacy of mGBA-mRNA treatment. Lyso-GL1 concentrations were elevated in the serum and liver of untreated GBA D427V mice, and within 3 hours after mGBA-mRNA treatment, Lyso-GL1 concentrations began to decline and then reached a nadir within 3 days. On day 3, Lyso-GL1 levels in the serum of mice treated with mGBA-mRNA decreased to 15% and in the liver to less than 10% compared with saline-injected mice (Figure 8). In addition, in animals treated with mGBA-mRNA, after multiple doses, Lyso-GL1 levels in the liver remained reduced to less than 30% of Lyso-GL1 levels in the saline-injected control group.
聚乙二醇(PEG)是脂质体纳米粒(LNP)中的一个成分,先前的报告表明在重复给药后会引发抗体反应。抗药物抗体(ADA)的产生可能会影响药物的药代动力学和药效学,从而降低其疗效。因此,通过ELISA法检测mGBA-mRNA治疗的GBA D427V小鼠血清中的抗聚乙二醇(anti-PEG)和抗β-GCase(anti-β-GCase)IgG抗体水平。在经过多次mGBA-mRNA静脉注射后,这些动物的血清中未检测到超出个体差异的抗聚乙二醇抗体或抗β-GCase IgG抗体(图9)。Polyethylene glycol (PEG) is a component of liposome nanoparticles (LNPs), and previous reports have shown that it can induce antibody responses after repeated administration. The production of anti-drug antibodies (ADA) may affect the pharmacokinetics and pharmacodynamics of drugs, thereby reducing their efficacy. Therefore, the levels of anti-polyethylene glycol (anti-PEG) and anti-β-GCase (anti-β-GCase) IgG antibodies in the serum of GBA D427V mice treated with mGBA-mRNA were measured by ELISA. After multiple intravenous injections of mGBA-mRNA, no anti-PEG antibodies or anti-β-GCase IgG antibodies were detected in the sera of these animals beyond individual differences (Figure 9).
通过刺激天然免疫细胞因子的产生,可以用来评估静脉注射mGBA-mRNA疗法的耐受性。从每两周治疗的GBA D427V小鼠中在不同时间点收集了肝脏和脾脏样本,并通过定量RT-PCR测量了干扰素α(IFN-α)、干扰素β(IFN-β)、干扰素γ(IFN-γ)、白细胞介素-6(IL-6)、肿瘤坏死因子α(TNF-α)和维甲酸诱导基因-I(RIG-I)的水平。如图10所示,以盐水处理的对照小鼠数据做为基准,对试验组进行归一化处理对比各样本,在mGBA-mRNA治疗期间的任何时间点,无论是在肝脏还是脾脏中,测量的细胞因子水平均未显示出显著增加,表明静脉注射mGBA-mRNA未引发天然免疫的激活。The tolerability of intravenous mGBA-mRNA therapy can be assessed by stimulating the production of innate immune cytokines. Liver and spleen samples were collected at different time points from GBA D427V mice treated every two weeks, and the levels of interferon α (IFN-α), interferon β (IFN-β), interferon γ (IFN-γ), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and retinoic acid-inducible gene-I (RIG-I) were measured by quantitative RT-PCR. As shown in Figure 10, the experimental groups were normalized to the data of saline-treated control mice as the baseline. The measured cytokine levels did not show a significant increase in either the liver or spleen at any time point during mGBA-mRNA treatment, indicating that intravenous mGBA-mRNA did not induce activation of innate immunity.
总之,0.5mg/kg剂量的mGBA-mRNA在GBA D427V型GD小鼠模型中表现出显著的治疗效果,如肝脏和脾脏中β-GCase的表达、β-GCase活性可持续增加72小时,同时血清和肝脏中代谢底物Lyso-GL1水平持续降低。此外,mGBA-mRNA的重复给药在体内未诱导抗PEG或抗β-GCase的IgG抗体,并且未激发固有细胞因子,显示出良好的耐受性特性。In conclusion, mGBA-mRNA at a dose of 0.5 mg/kg showed significant therapeutic effects in the GBA D427V GD mouse model, such as the expression of β-GCase in the liver and spleen, and the sustained increase in β-GCase activity for 72 hours, while the level of the metabolic substrate Lyso-GL1 in serum and liver continued to decrease. In addition, repeated administration of mGBA-mRNA did not induce anti-PEG or anti-β-GCase IgG antibodies in vivo, and did not stimulate intrinsic cytokines, showing good tolerability characteristics.
2.2.3 hGBA-mRNA的静脉给药对比Cerezyme在GBA D427V突变小鼠中的治疗效果2.2.3 Intravenous administration of hGBA-mRNA versus the therapeutic effect of Cerezyme in GBA D427V mutant mice
鉴于在GBA D427V小鼠中获得的mGBA-mRNA的结果,本实施例进一步研究了LNP所包裹编码人源GBA的mRNA产品,即hGBA-mRNA,以便进一步评估其疗效,并与目前的ERT标准治疗(SoC)Cerezyme进行比较。In view of the results obtained with mGBA-mRNA in GBA D427V mice, this example further investigated LNP-encapsulated mRNA products encoding human GBA, namely hGBA-mRNA, to further evaluate its efficacy and compare it with the current ERT standard of care (SoC) Cerezyme.
在这项研究中,本实施例通过对GBA D427V突变小鼠分别进行剂量为0.02 mg/kg、0.1 mg/kg或0.5 mg/kg(体重单位)的单次注射,评估了hGBA-mRNA的治疗效果。此外,还对一组GBA D427V小鼠进行每两周注射一次(Q2W),共三次静脉注射hGBA-mRNA,剂量为0.5mg/kg。作为主要比较对象,本实施例使用了60 U/kg的Cerezyme作为对照,该剂量在先前小鼠试验中有所报道。研究设计详见表5。In this study, the present example evaluated the therapeutic effect of hGBA-mRNA by single injection of GBA D427V mutant mice at a dose of 0.02 mg/kg, 0.1 mg/kg, or 0.5 mg/kg (body weight). In addition, a group of GBA D427V mice were injected once every two weeks (Q2W) for a total of three intravenous injections of hGBA-mRNA at a dose of 0.5 mg/kg. As the primary comparison object, this example used 60 U/kg of Cerezyme as a control, which was reported in previous mouse studies. The study design is detailed in Table 5.
表5. hGBA-mRNA静脉注射治疗效果与Cerezyme对比研究设计Table 5. Study design for comparison of the therapeutic effect of hGBA-mRNA intravenous injection with Cerezyme
通过蛋白质印迹法评估β-GCase在肝脏(图11)和脾脏(图12)中的表达。结果与D427V模型中的mGBA-mRNA一致。β-GCase蛋白在肝脏和脾脏中的表达量与mGBA-mRNA的剂量呈正相关;且β-GCase蛋白的降解速度与肝脏和脾脏中的蛋白存在水平呈正相关;因此,肝脏和脾脏中β-GCase蛋白量在某个时间点的值是一个动态平衡的结果。在本次测试的高、中和低剂量条件下, β-GCase在肝脏和脾脏中的表达在第1天达到峰值(除脾脏低剂量组在第3天达峰值外),并有明显的剂量效应。hGBA-mRNA高、中、低剂量给药后分别在7天、3天和1天,肝脏中β-GCase的水平仍高于基线(给药前第0天肝脏和脾脏中β-GCase的基础量),而在hGBA-mRNA所有3个剂量水平给药后3天,脾脏中β-GCase的表达水平则呈现低、中剂量组高于高剂量组的状态。与文献中先前报道的数据一致,β-GCase水平在Cerezyme静脉注射后的20-40分钟内达到峰值,然后在12小时内迅速下降,这比hGBA-mRNA给药后β-GCase水平增加持续的时间要短得多。因此,在体内,hGBA-mRNA的静脉注射后的β-GCase水平明显比Cerezyme持续时间更长。The expression of β-GCase in the liver (Figure 11) and spleen (Figure 12) was evaluated by Western blotting. The results were consistent with the mGBA-mRNA in the D427V model. The expression of β-GCase protein in the liver and spleen was positively correlated with the dose of mGBA-mRNA; and the degradation rate of β-GCase protein was positively correlated with the protein presence level in the liver and spleen; therefore, the value of β-GCase protein in the liver and spleen at a certain time point is a result of a dynamic balance. Under the high, medium and low dose conditions tested in this study, the expression of β-GCase in the liver and spleen reached a peak on the first day (except for the low-dose group in the spleen, which reached a peak on the third day), and there was a significant dose effect. After administration of high, medium and low doses of hGBA-mRNA for 7 days, 3 days and 1 day respectively, the level of β-GCase in the liver was still higher than the baseline (the basal amount of β-GCase in the liver and spleen on day 0 before administration), while 3 days after administration of all 3 dose levels of hGBA-mRNA, the expression level of β-GCase in the spleen showed that the low and medium dose groups were higher than the high dose group. Consistent with the data previously reported in the literature, the β-GCase level peaked within 20-40 minutes after intravenous injection of Cerezyme and then rapidly declined within 12 hours, which is much shorter than the duration of the increase in β-GCase level after administration of hGBA-mRNA. Therefore, in vivo, the β-GCase level after intravenous injection of hGBA-mRNA lasts significantly longer than Cerezyme.
此外,本实施例还测定了血清、肝脏和脾脏中的β-GCase酶活性,以评估hGBA-mRNA治疗在修复缺陷的β-GCase功能方面的效果。在单剂量静脉注射hGBA-mRNA或Cerezyme(即第0天注射一次)后,β-GCase酶活性均有所增加,但动力学特性完全不同。hGBA-mRNA疗法导致的血清中β-GCase酶活性增加在静脉注射后的24小时内达到峰值,然后在治疗后3天回到基线水平(图13);该效应呈剂量依赖性,相对于治疗前的水平(2.8x105vs. 5.5x104pmol/min/μg/μL,1.6 x 105vs 5.5 x 104pmol/min/μg/μL,1.1 x 105vs 5.5 x 104pmol/min/μg/μL),0.5 mg/kg计量的hGBA-mRNA使β-GCase酶活性增加了5倍,0.1 mg/kg剂量组增加了β-GCase酶活性2.9倍,0.02 mg/kg剂量组增加了β-GCase酶活性2.0倍。相反地,Cerezyme治疗后,血清中的β-GCase活性迅速增加,在5分钟内达到峰值,约为治疗前水平的10倍(5.7 x105vs. 5.5 x 104pmol/min/μg/μL),然后在20分钟内迅速降至基线水平,与先前报道的数据一致。与血清中类似,在0.02、0.1或0.5 mg/kg的hGBA-mRNA治疗后,肝脏中的β-GCase酶活性在1天后达到最大值(相对于治疗前的水平分别增加3.7、7.3或9.0倍),脾脏中也是如此(相对于治疗前的水平分别增加2.7、5.4或6.7倍),在至少3天内保持升高水平,然后在第7天回到基线水平(图14和图15)。与血清中类似,Cerezyme治疗后,肝脏中的β-GCase酶活性在20分钟后短暂达到峰值(相对于治疗前水平增加5.2倍),脾脏中的β-GCase酶活性同样在20分钟后短暂达到峰值(相对于治疗前水平增加4.9倍),这两个器官中在12小时内回到基线水平。这些数据证实,与Cerezyme相比,hGBA-mRNA治疗导致治疗动物的血清、肝脏和脾脏中β-GCase酶活性的功能性持续时间更长。与Cerezyme的20-40分钟相比,hGBA-mRNA的β-GCase水平至少持续3天,且呈剂量依赖性增加(图13~图15)。In addition, the present example also measured the β-GCase enzyme activity in serum, liver and spleen to evaluate the effect of hGBA-mRNA treatment in repairing the defective β-GCase function. After a single intravenous injection of hGBA-mRNA or Cerezyme (i.e., one injection on day 0), the β-GCase enzyme activity increased, but the kinetic properties were completely different. The increase in serum β-GCase activity caused by hGBA-mRNA therapy reached a peak within 24 hours after intravenous injection and then returned to baseline levels 3 days after treatment (Figure 13); this effect was dose-dependent. Compared with the pre-treatment levels (2.8x10 5 vs. 5.5x10 4 pmol/min/μg/μL, 1.6 x 10 5 vs 5.5 x 10 4 pmol/min/μg/μL, 1.1 x 10 5 vs 5.5 x 10 4 pmol/min/μg/μL), a 0.5 mg/kg dose of hGBA-mRNA increased β-GCase activity by 5-fold, a 0.1 mg/kg dose group increased β-GCase activity by 2.9-fold, and a 0.02 mg/kg dose group increased β-GCase activity by 2.0-fold. In contrast, after Cerezyme treatment, β-GCase activity in serum increased rapidly, reaching a peak within 5 minutes, approximately 10 times the pre-treatment level (5.7 x10 5 vs. 5.5 x 10 4 pmol/min/μg/μL), and then rapidly decreased to baseline levels within 20 minutes, consistent with previously reported data. Similar to serum, after treatment with 0.02, 0.1, or 0.5 mg/kg of hGBA-mRNA, β-GCase enzyme activity in the liver reached a maximum after 1 day (3.7, 7.3, or 9.0-fold increase relative to pre-treatment levels, respectively), as did that in the spleen (2.7, 5.4, or 6.7-fold increase relative to pre-treatment levels, respectively), remained elevated for at least 3 days, and then returned to baseline levels on the 7th day (Figures 14 and 15). Similar to serum, after Cerezyme treatment, β-GCase enzyme activity in the liver peaked briefly after 20 minutes (5.2-fold increase relative to pre-treatment levels), and β-GCase enzyme activity in the spleen also peaked briefly after 20 minutes (4.9-fold increase relative to pre-treatment levels), and returned to baseline levels in both organs within 12 hours. These data confirm that hGBA-mRNA treatment results in a longer functional duration of β-GCase enzyme activity in the serum, liver, and spleen of treated animals compared to Cerezyme. Compared to Cerezyme's 20-40 minutes, hGBA-mRNA's β-GCase levels lasted for at least 3 days and increased in a dose-dependent manner (Figures 13 to 15).
在GBA D427V突变小鼠中分别通过静脉注射给予了多剂量的0.5 mg/kg hGBA-mRNA和60 U/kg的Cerezyme,每两周注射一次,在第0,14和28天共注射3次。与单剂量给药(第0天注射一次)一致,hGBA-mRNA治疗的GBA D427V小鼠显示出在每次药物给予后的6小时至3天内,血清中β-GCase酶活性显著增加,每次药物给予后的12小时达到峰值(见图16)。每次hGBA-mRNA注射后,升高的β-GCase活性在不同注射间隔之间没有显著差异。与Cerezyme相比,注射hGBA-mRNA的小鼠在脾脏和肝脏中持续观察到β-GCase活性增加持续时间更长(7天 vs. 12小时;见图17和图18)。Multiple doses of 0.5 mg/kg hGBA-mRNA and 60 U/kg Cerezyme were administered intravenously to GBA D427V mutant mice, respectively, once every two weeks for a total of three injections on days 0, 14, and 28. Consistent with single-dose administration (one injection on day 0), hGBA-mRNA-treated GBA D427V mice showed a significant increase in serum β-GCase enzyme activity from 6 hours to 3 days after each drug administration, reaching a peak at 12 hours after each drug administration (see Figure 16). After each hGBA-mRNA injection, the elevated β-GCase activity did not differ significantly between injection intervals. Compared with Cerezyme, mice injected with hGBA-mRNA continued to observe increased β-GCase activity in the spleen and liver for a longer period of time (7 days vs. 12 hours; see Figures 17 and 18).
正如前面提到的,Lyso-GL1是评估GD治疗效果的主要生物标志物。在hGBA-mRNA静脉治疗后,观察到血清和肝脏中的Lyso-GL1减少。单次剂量的hGBA-mRNA显示肝脏中Lyso-GL1的水平减少似乎具有剂量依赖性(高剂量、中剂量、低剂量分别减少69%、60%、46%),这与60 U/kg的Cerezyme降低Lyso-GL1水平的效果相似或更大(减少56%)。第一次、第二次和第三次注射hGBA-mRNA治疗后小鼠血清和肝脏中的葡萄糖鞘氨醇水平分别见图19、图20和图21,由该结果可见,在重复给予0.5 mg/kg的hGBA-mRNA后,血清中的Lyso-GL1水平在第一次和第二次注射后降低到盐水注射对照组水平的约60%到70%,而在第三次注射后Lyso-GL1相对水平变化没有前两次大。相比之下,使用60 U/kg的Cerezyme,血清中的lyso-GL1水平在每次注射后降低到与盐水对照组lyso-GL1水平的60%到80%。然而,相较于Cerezyme,使用0.5 mg/kg剂量的hGBA-mRNA治疗在第一次和第二次注射后显示出在肝脏中Lyso-GL1水平更大的降低趋势。在第三次注射后,hGBA-mRNA组中Lyso-GL1水平降低约为50%,而Cerezyme组Lyso-GL1水平降低约为70%(见图19~图21)。As mentioned earlier, Lyso-GL1 is the main biomarker for evaluating the therapeutic effect of GD. After intravenous treatment with hGBA-mRNA, a decrease in Lyso-GL1 in serum and liver was observed. A single dose of hGBA-mRNA showed that the reduction in the level of Lyso-GL1 in the liver appeared to be dose-dependent (69%, 60%, and 46% reductions for high, medium, and low doses, respectively), which was similar to or greater than the effect of 60 U/kg of Cerezyme in reducing Lyso-GL1 levels (56% reduction). The levels of glucose sphingosine in the serum and liver of mice after the first, second, and third injections of hGBA-mRNA treatment are shown in Figures 19, 20, and 21, respectively. From the results, it can be seen that after repeated administration of 0.5 mg/kg of hGBA-mRNA, the level of Lyso-GL1 in serum was reduced to about 60% to 70% of the level of the saline-injected control group after the first and second injections, and the relative level of Lyso-GL1 after the third injection did not change as much as the first two. In contrast, with 60 U/kg of Cerezyme, serum lyso-GL1 levels decreased to 60% to 80% of saline control lyso-GL1 levels after each injection. However, hGBA-mRNA treatment at a dose of 0.5 mg/kg showed a trend toward a greater decrease in liver lyso-GL1 levels after the first and second injections compared with Cerezyme. After the third injection, the hGBA-mRNA group had a decrease in lyso-GL1 levels of approximately 50%, while the Cerezyme group had a decrease in lyso-GL1 levels of approximately 70% (see Figures 19 to 21).
为评估抗药物免疫反应,在研究期间每隔14天收集了接受0.5 mg/kg hGBA-mRNA或60 U/kg Cerezyme重复给药的小鼠的血清样本(图22)。对各只小鼠的抗-PEG和抗人源β-GCase IgG滴度进行了测定。与获取的mGBA-mRNA结果类似,在进行两次或三次hGBA-mRNA或Cerezyme的静脉注射后,这些动物中未检测到超出个体变异的抗PEG IgG抗体。To evaluate anti-drug immune responses, serum samples were collected from mice that received repeated doses of 0.5 mg/kg hGBA-mRNA or 60 U/kg Cerezyme every 14 days during the study (Figure 22). Anti-PEG and anti-human β-GCase IgG titers were determined for each mouse. Similar to the results obtained for mGBA-mRNA, no anti-PEG IgG antibodies beyond individual variability were detected in these animals after two or three intravenous injections of hGBA-mRNA or Cerezyme.
尽管在接受Cerezyme注射的小鼠中未检测到抗人源β-GCase IgG,但在第二次hGBA-mRNA注射后,血清中的抗人源β-GCase IgG水平增加了约100倍,保持至研究结束的第42天。这些结果表明人源β-GCase蛋白在小鼠中可能具有免疫原性。这可能是导致小鼠在第三次注射hGBA-mRNA时Lyso-GL1水平变化减少的原因,但在注射mGBA-mRNA时并未出现这种情况。Although anti-human β-GCase IgG was not detected in mice injected with Cerezyme, the level of anti-human β-GCase IgG in serum increased by about 100-fold after the second hGBA-mRNA injection and remained until day 42 at the end of the study. These results suggest that human β-GCase protein may be immunogenic in mice. This may be the reason for the decrease in Lyso-GL1 levels when mice were injected with the third hGBA-mRNA, but this did not occur when injected with mGBA-mRNA.
LNP-mRNA 治疗药物避免被内在固有免疫系统检测到是至关重要的。通过定量聚合酶链反应(Q-PCR),对接受hGBA-mRNA治疗的小鼠在肝脏和脾脏中的TNF-α、IL6、IFN-α、IFN-β和IFN-γ的表达进行了测量,并相对于盐水处理对照小鼠的相关细胞因子水平计算了倍数变化(见图23和图24)。结果显示,在hGBA-mRNA治疗期间,无论是在肝脏还是脾脏,这些细胞因子的表达都没有显著增加。类似的结果也在Cerezyme治疗组中观察到。It is critical that LNP-mRNA therapeutics avoid detection by the intrinsic innate immune system. The expression of TNF-α, IL6, IFN-α, IFN-β, and IFN-γ in the liver and spleen of mice treated with hGBA-mRNA was measured by quantitative polymerase chain reaction (Q-PCR), and the fold changes were calculated relative to the levels of the relevant cytokines in saline-treated control mice (see Figures 23 and 24). The results showed that there was no significant increase in the expression of these cytokines during hGBA-mRNA treatment, either in the liver or spleen. Similar results were observed in the Cerezyme treatment group.
综上所述,通过静脉注射hGBA-mRNA,在GBA D427V小鼠的血清、肝脏和脾脏中实现表达β-GCase,该表达具有剂量依赖性。通过对GBA D427V突变小鼠进行药代动力学分析,发现hGBA-mRNA在血清、肝脏和脾脏中的β-GCase表达持续时间明显长于目前标准治疗Cerezyme的表达持续时间。同时,通过hGBA-mRNA治疗,血清和肝脏中的β-GCase代谢底物Lyso-GL1减少,且该治疗效果在重复给药后得以维持。此外,在体内多次给药hGBA-mRNA后,未发现明显的抗-PEG抗体或内在细胞因子。In summary, intravenous injection of hGBA-mRNA achieved the expression of β-GCase in the serum, liver, and spleen of GBA D427V mice, and the expression was dose-dependent. Pharmacokinetic analysis of GBA D427V mutant mice showed that the duration of β-GCase expression in serum, liver, and spleen by hGBA-mRNA was significantly longer than that of the current standard treatment Cerezyme. At the same time, hGBA-mRNA treatment reduced the β-GCase metabolic substrate Lyso-GL1 in serum and liver, and the therapeutic effect was maintained after repeated administration. In addition, no obvious anti-PEG antibodies or intrinsic cytokines were found after multiple administrations of hGBA-mRNA in vivo.
2.2.4 药物动力学2.2.4 Pharmacokinetics
对GBA D427V小鼠进行了hGBA-mRNA的组织分布评估。在第0天,给予GBA D427V小鼠单次静脉注射生理盐水或0.5 mg/kg的hGBA-mRNA。分别在用药前、用药后第1天、第3天和第7天,从脑、肝、脾、肾、肺和骨髓中分离RNA。使用特异于人源β-GCase基因的引物进行了定量聚合酶链式反应(qPCR)。相对于生理盐水对照组,评估了人源β-GCase mRNA水平的相对增加。研究设计详见表6。Tissue distribution of hGBA-mRNA was evaluated in GBA D427V mice. GBA D427V mice were given a single intravenous injection of saline or 0.5 mg/kg of hGBA-mRNA on day 0. RNA was isolated from brain, liver, spleen, kidney, lung, and bone marrow before, on days 1, 3, and 7 after treatment. Quantitative polymerase chain reaction (qPCR) was performed using primers specific for the human β-GCase gene. The relative increase in human β-GCase mRNA levels was evaluated relative to the saline control group. The study design is detailed in Table 6.
表6.GBA D427V小鼠单次静脉注射hGBA-mRNA后组织分布研究设计Table 6. Tissue distribution study design after single intravenous injection of hGBA-mRNA in GBA D427V mice
注:a. 对于血液、肿瘤和其他组织基质Note: a. For blood, tumor and other tissue matrices
如图25所示,在所有组织中,hGBA-mRNA水平的峰值出现在治疗后的第1天。脾脏中hGBA-mRNA分布增长最高,为6923倍。其次是肾脏、肺、脑、肝脏和骨髓,依次递减(分别为1833 ± 405、509 ± 129、92 ± 33、51 ± 11、19 ± 8)。在第7天,hGBA-mRNA的mRNA水平在所有组织中显著降低(其倍增为脾脏177 ± 69,肾脏110 ± 31,肺43 ± 11,脑6.4 ±2.8,肝脏0.9 ± 0.3,骨髓7.7 ± 6.4)。这些结果与hGBA-mRNA治疗可以在靶器官内维持增加的β-GCase活性至少3天,最多7天的前提相符。众所周知,戈谢病导致脑苷脂在肝脏、脾脏、肾脏、肺、脑和骨髓中积聚。人源β-葡萄糖苷酶(β-GCase)mRNA的存在表明hGBA-mRNA具有在这些器官中补偿β-GCase活性的潜力,从而为患者提供比蛋白质基因替代疗法更全面的益处。As shown in Figure 25, in all tissues, the peak of hGBA-mRNA levels occurred on the first day after treatment. The highest increase in hGBA-mRNA distribution was 6923-fold in the spleen. This was followed by kidney, lung, brain, liver, and bone marrow, in descending order (1833 ± 405, 509 ± 129, 92 ± 33, 51 ± 11, and 19 ± 8, respectively). On day 7, the mRNA level of hGBA-mRNA was significantly reduced in all tissues (the fold increase was 177 ± 69 in spleen, 110 ± 31 in kidney, 43 ± 11 in lung, 6.4 ± 2.8 in brain, 0.9 ± 0.3 in liver, and 7.7 ± 6.4 in bone marrow). These results are consistent with the premise that hGBA-mRNA treatment can maintain increased β-GCase activity in the target organ for at least 3 days and up to 7 days. It is well known that Gaucher disease causes accumulation of cerebrosides in the liver, spleen, kidney, lung, brain, and bone marrow. The presence of human β-glucosidase (β-GCase) mRNA suggests that hGBA-mRNA has the potential to compensate for β-GCase activity in these organs, thereby providing patients with more comprehensive benefits than protein gene replacement therapy.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The above-mentioned embodiments only express several implementation methods of the present invention, and the description is relatively specific and detailed, but it cannot be understood as limiting the scope of the invention patent. It should be pointed out that for ordinary technicians in this field, several modifications and improvements can be made without departing from the concept of the present invention, which all belong to the protection scope of the present invention.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411406666.7A CN118903476A (en) | 2024-10-10 | 2024-10-10 | Composition containing LNP and mRNA and application thereof in treating Gaucher disease |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411406666.7A CN118903476A (en) | 2024-10-10 | 2024-10-10 | Composition containing LNP and mRNA and application thereof in treating Gaucher disease |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118903476A true CN118903476A (en) | 2024-11-08 |
Family
ID=93301554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411406666.7A Pending CN118903476A (en) | 2024-10-10 | 2024-10-10 | Composition containing LNP and mRNA and application thereof in treating Gaucher disease |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118903476A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023141676A1 (en) * | 2022-01-28 | 2023-08-03 | The University Of Melbourne | THERAPEUTIC mRNA |
CN117241836A (en) * | 2020-12-24 | 2023-12-15 | 银汉斯德生物技术公司 | Composition for preventing or treating cancer comprising lipid nanoparticles |
CN117396604A (en) * | 2021-04-30 | 2024-01-12 | 宾夕法尼亚大学理事会 | Compositions and methods for targeting lipid nanoparticle therapeutics to stem cells |
CN117642380A (en) * | 2021-06-14 | 2024-03-01 | 世代生物公司 | Cationic lipids and compositions thereof |
-
2024
- 2024-10-10 CN CN202411406666.7A patent/CN118903476A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117241836A (en) * | 2020-12-24 | 2023-12-15 | 银汉斯德生物技术公司 | Composition for preventing or treating cancer comprising lipid nanoparticles |
CN117396604A (en) * | 2021-04-30 | 2024-01-12 | 宾夕法尼亚大学理事会 | Compositions and methods for targeting lipid nanoparticle therapeutics to stem cells |
CN117642380A (en) * | 2021-06-14 | 2024-03-01 | 世代生物公司 | Cationic lipids and compositions thereof |
WO2023141676A1 (en) * | 2022-01-28 | 2023-08-03 | The University Of Melbourne | THERAPEUTIC mRNA |
Non-Patent Citations (1)
Title |
---|
SHUNPING FENG ET AL.: "A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach", INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, vol. 20, no. 6, 17 March 2024 (2024-03-17), pages 2111 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240009131A1 (en) | Methods of making lipid nanoparticles | |
EP3595727B1 (en) | Lipid nanoparticle formulation | |
US20220062175A1 (en) | Methods of preparing lipid nanoparticles | |
US12263227B2 (en) | Optimized mRNA encoding CAS9 for use in LNPs | |
ES2740248T3 (en) | Lipid nanoparticle compositions and methods for mRNA administration | |
JP2018529738A (en) | Methods for therapeutic administration of messenger ribonucleic acid drugs | |
JP2019525901A (en) | Stabilized preparation of lipid nanoparticles | |
JP2017500865A (en) | Compositions and formulations of leptin mRNA | |
EP3349730B1 (en) | Systems for nucleic acid expression in vivo | |
US20240218399A1 (en) | Lipid compounds and lipid nanoparticle compositions | |
US12188060B2 (en) | Messenger RNA encoding Cas9 for use in genome-editing systems | |
US20230001021A1 (en) | Ornithine transcarbamylase (otc) constructs and methods of using the same | |
CN118903476A (en) | Composition containing LNP and mRNA and application thereof in treating Gaucher disease | |
US20240216545A1 (en) | Mrna delivery constructs and methods of using the same | |
JP2025500880A (en) | Lyme Disease RNA Vaccine | |
CN119661723A (en) | Growth hormone fusion protein, nucleic acid medicine and application thereof | |
AU2023209892A1 (en) | Ionizable lipids, lipid nanoparticles, and uses thereof | |
WO2023009499A1 (en) | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease type 1a (gsd1a) | |
TW202444745A (en) | Compositions and methods for the treatment of disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |