[go: up one dir, main page]

CN118895435B - 一种铝基金刚石复合材料及其制备方法 - Google Patents

一种铝基金刚石复合材料及其制备方法 Download PDF

Info

Publication number
CN118895435B
CN118895435B CN202411112729.8A CN202411112729A CN118895435B CN 118895435 B CN118895435 B CN 118895435B CN 202411112729 A CN202411112729 A CN 202411112729A CN 118895435 B CN118895435 B CN 118895435B
Authority
CN
China
Prior art keywords
diamond
powder
aluminum
composite material
micro powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411112729.8A
Other languages
English (en)
Other versions
CN118895435A (zh
Inventor
贾建平
张杨
易淑君
罗楷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Haten Technology Co ltd
Original Assignee
Suzhou Haten Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Haten Technology Co ltd filed Critical Suzhou Haten Technology Co ltd
Priority to CN202411112729.8A priority Critical patent/CN118895435B/zh
Publication of CN118895435A publication Critical patent/CN118895435A/zh
Application granted granted Critical
Publication of CN118895435B publication Critical patent/CN118895435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及金属基复合材料技术领域,且公开了一种铝基金刚石复合材料及其制备方法,具体包括:通过对铝金刚石复合材料的配方进行优化和改进,来调节铝基金刚石的热膨胀系数,并采用不同的金刚石颗粒级配,确保产品的致密程度;采用磁控溅射法对金刚石粉表面进行W/Re/Ir金属镀膜,提高金刚石粉的导电性和导热性,增强与铝基材料的粘附力;此外结合独特的快速热压烧结技术设计了铝金刚石复合材料的制备工艺,在烧结过程中引入直流电场辅助烧结,使材料的强度、刚度及耐腐蚀寿命得到明显改善;本发明制备的铝金刚石复合材料性能优良、寿命持久,可满足当代封装材料对于高散热、高强度的要求。

Description

一种铝基金刚石复合材料及其制备方法
技术领域
本发明涉及金属基复合材料技术领域,具体为一种铝基金刚石复合材料及其制备方法。
背景技术
电子信息产业是当今世界经济发展的先导和支柱产业之一,随着电子器件向高性能、高可靠性、轻量化的方向发展,功率器件对电子封装材料的性能提出了更高的要求;传统电子封装材料的热导率低,不能满足电子器件的散热需求,金属基复合材料将金属基体良好的导热和塑性变形性能以及增强体较低的热膨胀系数和较高的强度有机地结合起来,获得热导率和热膨胀系数等性能在很大范围内可控的电子封装材料,因此急待开发一种新的金属基复合材料以满足日益提高的电子封装要求。
与常规的铝、铝合金比较,铝基复合材料表现出较高的比强度、较大的比模量,这种优异的性能主要源于铝基复合材料中的增强主体,通常是一种高硬度的陶瓷;铝金刚石复合材料作为铝基复合材料的一种,金刚石以其超高的硬度和良好的热稳定性,为铝基复合材料提供了强大的支撑,这种复合材料的尺寸稳定性极佳,即使在高温或极端环境下,其形状和尺寸也几乎不会发生变化;此外铝金刚石复合材料的热膨胀系数小,减少了因热应力导致的材料损伤;除了这些基本性能外,铝金刚石复合材料还表现出卓越的抗疲劳、抗断裂和抗老化特性,同时铝金刚石复合材料还具有出色的耐腐蚀性能,能够在潮湿、酸碱等恶劣环境中长期稳定运行,延长了使用寿命。在实际应用中,铝金刚石复合材料被广泛应用于航空航天、汽车制造、电子电器等领域,如在电子电器领域被广泛应用于电子设备的散热片和基板,这种材料的抗腐蚀、抗老化特性使得电子产品的外壳和内部结构更加稳定、可靠。
然而在电子封装等领域的实际应用中,铝金刚石复合材料的性能常常出现不稳定的情况,这主要是由于铝与金刚石之间的界面结合力较弱,容易在界面处发生应力集中和失效;现有的制备工艺成本高、效率低,且制备出的材料的致密性、热膨胀系数和导热等性能等都达不到日益发展的新要求;为了解决上述问题,研究者们正在不断探索新的制备工艺和技术手段,例如通过优化铝金刚石复合材料的微观结构、提高界面结合力来改善材料的性能稳定性;通过开发新型的加工设备和方法来降低制备成本;通过改进制备工艺、提高生产效率来满足大规模生产的需求。
由于铝和金刚石的物理和化学性质差异较大,二者之间的界面结合往往不够紧密,容易导致材料在受力时发生界面失效,为了解决这个问题,研究人员可以尝试引入界面活性剂或采用特殊的表面处理技术,改善铝和金刚石之间的润湿性和结合力,铝金刚石复合材料在实际应用中还需要考虑其耐磨性、耐腐蚀性和抗疲劳性能等,这些性能的提升将有助于拓宽材料的应用领域,提高其在实际工作环境中的稳定性和可靠性;此外现有的制备工艺往往存在能耗高、周期长、成本高等问题,不利于材料的大规模生产和应用。因此本发明旨在探索出新型制备技术,以降低成本、提高生产效率,并进一步提升复合材料的综合性能。
发明内容
本发明的目的在于克服现有技术存在的不足之处,提供了一种铝基金刚石复合材料及其制备方法,解决了现有铝金刚石复合材料致密程度、力学性能、热膨胀系数和导热性能不佳、界面结合不够紧密的问题。
为实现上述目的,本发明采取的技术方案为:
一种铝基金刚石复合材料的制备方法包括以下步骤:按重量百分比计,将含量为50-60%的表面镀W-Re-Ir金刚石微粉和40-50%的铝合金在150-250r/min的球磨机中连续球磨5-8h,磨球为氧化锆球,球料质量比为(3-5):1,在100-160MPa下预压15-25s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至5-10Pa,以80-100℃/min的升温速率升温至550-650℃进行烧结,烧结完成后自然冷却,脱模后得到铝基金刚石复合材料。
进一步的,烧结压力为70-100MPa,烧结时间为10-30min。
进一步的,表面镀W-Re-Ir金刚石微粉的粒径为100μm、50μm、25μm、10μm和5μm中的任意几种组合,各粒径间采用不同配比进行颗粒级配。
进一步的,表面镀W-Re-Ir金刚石微粉的制备方法包括以下步骤:
步骤(1)、将金属W粉、金属Re粉和金属Ir粉置于卧式混料机中,在1000-1500r/min下混料5-10h,混合均匀后,在四柱液压成型机中压制成型,接着置于中频感应炉中,抽真空至250-350Pa,以2-5℃/min升温至800-1000℃预烧2-4h,接着以1-3℃/min升温至2200-2500℃保温6-9h,随炉冷却,得到W-Re-Ir合金。
步骤(2)、采用磁控溅射技术在金刚石微粉表面镀覆镀W-Re-Ir膜,依次用浓度为10%的NaOH和30%的HNO3溶液将金刚石微粉煮沸25-40min,并用去离子水洗涤3-5次,干燥后置于磁控溅射镀膜设备的加热台上,并进行超声振动,腔室内抽真空到4-6×10-3Pa,加热至180-220℃,以W-Re-Ir合金为靶材,采用磁控溅射工艺在金刚石微粉表面沉积W-Re-Ir镀膜,膜层厚度为20-200nm,腔室温度为室温,得到表面镀W-Re-Ir金刚石微粉。
进一步的,步骤(1)中按重量份数计,金属W粉为100份,金属Re粉为10-15份,金属Ir粉为1-5份。
进一步的,步骤(1)中压制成型的压力为10-20MPa,时间为20-40s。
进一步的,步骤(2)中在磁控溅射的工艺条件为:溅射功率为140-160W、钯电流为0.4-0.6A、工作气压为0.3-0.5Pa、溅射时间为20-40min。
采取上述技术方案,本发明的有益效果在于:
(1)对铝金刚石复合材料的配方进行优化和改进,调节铝基金刚石的热膨胀系数,并采用不同的金刚石颗粒级配,确保产品的致密程度限制出现气孔量,以满足热膨胀系数等与电子电器领域的芯片等相匹配的需求。
(2)通过粉末冶金法制备出耐热性和稳定性好的W-Re-Ir合金,采用磁控溅射法对金刚石粉表面进行了W-Re-Ir金属镀膜,金属W、Re和Ir具有较强的耐热性和高强度,通过在高真空环境中利用磁场和电场的作用,使金属靶材上的原子被电离并溅射到金刚石粉表面,形成一层均匀致密的金属镀膜,高了金刚石与Al的界面结合程度,导热系数显著提高;且利用其优异的抗腐蚀特性,有效阻止了外界环境中的腐蚀介质对基材的侵蚀,同时对金刚石粉体表面进行金属镀膜,可以在烧结过程中防止金刚石碳化与Al生成Al4C3,进一步增强了其与铝基的粘附力,满足大规模集成电路及芯片的散热需求。
(3)结合独特的快速热压烧结技术设计了铝金刚石复合材料的制备工艺,在烧结过程中引入直流电场辅助烧结,通过烧结温度-直流电场辅助-压力共同作用促进铝基复合材料的微观层面结构以更紧密的方式进行排列,材料的致密化程度更高;同时瞬态液相烧结可浸润晶界,促进颗粒的重排、烧结与扩散,晶粒的长大与晶界迁移会更加容易,有利于气孔的排出和产品的致密化;较短的烧结时间可形成细晶结构使得力学性能显著提高,均匀致密的微观结构及良好的界面结合使得铝基金刚石材料的热性能参数得到明显提升。
(4)本发明制备的铝金刚石复合材料解决了铝金刚石复合材料致密程度、力学性能、热膨胀系数和导热性能等不高、界面结合不够紧密的问题,能够适应现有电子设备的散热片和基板的要求,可满足航空航天领域大功率器件散热对高导热及轻量化热管理材料的迫切需求。
附图说明
图1是实施例1制备的铝基金刚石复合材料的SEM图。
图2是实施例2制备的铝基金刚石复合材料的SEM图。
图3是实施例3制备的铝基金刚石复合材料的SEM图。
图4是FHP快速热压烧结设备原理示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将100g金属W粉、12g金属Re粉和3g金属Ir粉置于卧式混料机中,在1300r/min下混料8h,混合均匀后,在四柱液压成型机中压制成型,压力为15MPa,保压时间为35s,接着置于中频感应炉中,抽真空至300Pa,以4℃/min升温至900℃预烧3h,接着以2℃/min升温至2400℃保温8h,随炉冷却,得到W-Re-Ir合金。
(2)采用磁控溅射技术在金刚石微粉表面镀覆镀W-Re-Ir膜,依次用浓度为10%的NaOH和30%的HNO3溶液将金刚石微粉煮沸30min,并用去离子水洗涤4次,干燥后置于磁控溅射镀膜设备的加热台上,并进行超声振动,腔室内抽真空到5×10-3Pa,加热至200℃,以W-Re-Ir合金为靶材,溅射功率为150W、钯电流为0.5A、工作气压为0.4Pa,溅射时间为30min,在金刚石微粉表面沉积W-Re-Ir镀膜,膜层厚度为200nm,腔室温度为室温,得到表面镀W-Re-Ir金刚石微粉。
(3)按重量百分比计,将含量为50%的表面镀W-Re-Ir金刚石微粉和50%的铝合金在200r/min的球磨机中连续球磨6h,磨球为氧化锆球,球料质量比为5:1,其中表面镀W-Re-Ir金刚石微粉选用双粒径粉体10μm和5μm,配比为5:1,在120MPa下预压20s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至8Pa,以90℃/min的升温速率升温至560℃进行烧结,烧结压力为80MPa,烧结时间为15min,自然冷却,脱模后得到铝基金刚石复合材料。
实施例2
(1)将100g金属W粉、10g金属Re粉和5g金属Ir粉置于卧式混料机中,在1500r/min下混料5h,混合均匀后,在四柱液压成型机中压制成型,压力为20MPa,保压时间为20s,接着置于中频感应炉中,抽真空至250Pa,以5℃/min升温至800℃预烧4h,接着以3℃/min升温至2200℃保温9h,随炉冷却,得到W-Re-Ir合金。
(2)采用磁控溅射技术在金刚石微粉表面镀覆镀W-Re-Ir膜,依次用浓度为10%的NaOH和30%的HNO3溶液将金刚石微粉煮沸40min,并用去离子水洗涤3次,干燥后置于磁控溅射镀膜设备的加热台上,并进行超声振动,腔室内抽真空到6×10-3Pa,加热至220℃,以W-Re-Ir合金为靶材,溅射功率为140W、钯电流为0.6A、工作气压为0.5Pa,溅射时间为20min,在金刚石微粉表面沉积W-Re-Ir镀膜,膜层厚度为200nm,腔室温度为室温,得到表面镀W-Re-Ir金刚石微粉。
(3)按重量百分比计,将含量为55%的表面镀W-Re-Ir金刚石微粉和45%的铝合金在250r/min的球磨机中连续球磨8h,磨球为氧化锆球,球料质量比为3:1,其中表面镀W-Re-Ir金刚石微粉选用双粒径粉体25μm和5μm,配比为3:1,在160MPa下预压15s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至10Pa,以80℃/min的升温速率升温至580℃进行烧结,烧结压力为90MPa,烧结时间为20min,自然冷却,脱模后得到铝基金刚石复合材料。
实施例3
(1)将100g金属W粉、15g金属Re粉和1g金属Ir粉置于卧式混料机中,在1000r/min下混料10h,混合均匀后,在四柱液压成型机中压制成型,压力为10MPa,保压时间为40s,接着置于中频感应炉中,抽真空至350Pa,以2℃/min升温至1000℃预烧2h,接着以1℃/min升温至2500℃保温6h,随炉冷却,得到W-Re-Ir合金。
(2)采用磁控溅射技术在金刚石微粉表面镀覆镀W-Re-Ir膜,依次用浓度为10%的NaOH和30%的HNO3溶液将金刚石微粉煮沸40min,并用去离子水洗涤5次,干燥后置于磁控溅射镀膜设备的加热台上,并进行超声振动,腔室内抽真空到4×10-3Pa,加热至220℃,以W-Re-Ir合金为靶材,溅射功率为160W、钯电流为0.4A、工作气压为0.3Pa,溅射时间为20min,在金刚石微粉表面沉积W-Re-Ir镀膜,膜层厚度为200nm,腔室温度为室温,得到表面镀W-Re-Ir金刚石微粉。
(3)按重量百分比计,将含量为65%的表面镀W-Re-Ir金刚石微粉和35%的铝合金在150r/min的球磨机中连续球磨8h,磨球为氧化锆球,球料质量比为4:1,其中表面镀W-Re-Ir金刚石微粉选用三粒径粉体100μm、50μm和5μm,配比为1:3:1,在160MPa下预压15s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至5Pa,以100℃/min的升温速率升温至650℃进行烧结,烧结压力为100MPa,烧结时间为30min,自然冷却,脱模后得到铝基金刚石复合材料。
对比例1
按重量百分比计,将含量为50%的金刚石微粉和50%的铝合金在200r/min的球磨机中连续球磨6h,磨球为氧化锆球,球料质量比为5:1,其中金刚石微粉选用双粒径粉体10μm和5μm,配比为5:1,在120MPa下预压20s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至8Pa,以90℃/min的升温速率升温至560℃进行烧结,烧结压力为80MPa,烧结时间为15min,自然冷却,脱模后得到铝基金刚石复合材料。
相对密度测试:根据阿基米德原理,利用排水法测量铝基金刚石复合材料的实际密度ρ1,理论密度ρ2通过混合定律计算得到,相对密度=ρ12×100%;理论密度反应试样内部结合的致密程度,相对密度越接近于1,则表示试样内部缺陷少,界面结合好。
热膨胀系数测试:采用静态热机械分析仪对铝基金刚石复合材料的热膨胀系数进行测量。
热导率测试:采用激光导热分析仪对铝基金刚石复合材料的热导率进行测试,测试试样为圆柱体,尺寸为
力学性能测试:采用电子拉力机进行力学性能测试,拉伸试样尺寸为3mm×4mm×15mm,弯曲试样尺寸为3mm×3mm×8mm,拉伸速率为0.5mm/s,弯曲速率为0.3mm/s。
表1铝基金刚石复合材料的性能测试
相对密度的数值越接近100%,则表示材料越密实,内部缺陷越少,界面结合较好,对比例1中的金刚石表面未经镀膜处理,与铝合金的界面结合脱粘严重,材料内部缺陷多,因而制得的复合材料的相对密度较低;实施例1-3中随着表面镀W-Re-Ir金刚石微粉含量的增加,有效的减少了金刚石与铝合金的选择性界面粘结,材料内部缺陷少,相对密度较高。
热膨胀系数是衡量物体在温度变化时体积或长度变化的物理量,过高的热膨胀系数可能导致材料在温度变化时的体积变化过大,这可能会影响材料的性能和稳定性。
本发明中配方中金刚石均采用了不同的颗粒级配,确保产品的致密程度限制出现气孔量,以满足热膨胀系数等与电子电器领域的芯片等相匹配的需求;采用磁控溅射法对金刚石粉表面进行了W-Re-Ir金属镀膜,通过在高真空环境中利用磁场和电场的作用,使金属靶材上的原子被电离并溅射到金刚石粉表面,形成一层均匀致密的金属镀膜。这层镀膜不仅提高了金刚石粉的导电性和导热性,还增强了其与铝基的粘附力,从而提高了界面结合程度,热导率也显著提高。
采用FHP快速热压烧结技术,在目标烧结温度-直流电场辅助-压力作用下促进铝金刚石复合材料的烧结致密化,促进颗粒的重排、烧结与扩散,晶粒的长大与晶界迁移会更加容易,有利于产品的致密化,强化烧结效果;随着烧结温度的升高,金属膜可迅速扩散至铝基体和金刚石颗粒的间隙处润湿两者之间的界面,可以有效降低Al的黏度与表面张力,使其与金刚石颗粒更好的结合,冷却降温后脱模取出并经过表面处理得到产品致密、性能优良的复合材料。
本具体实施例仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (7)

1.一种铝基金刚石复合材料的制备方法,其特征在于,所述制备方法包括以下步骤:按重量百分比计,将含量为50-60%的表面镀W-Re-Ir金刚石微粉和40-50%的铝合金在150-250r/min的球磨机中连续球磨5-8h,磨球为氧化锆球,球料质量比为(3-5):1,然后在100-160MPa下预压15-25s,将预压后的原料粉末置于石墨模具中并放入FHP快速热压烧结设备的真空室内,使用电极压头加持在模具两侧,通以直流电源对装有粉料的模具进行加压加热,抽真空至5-10Pa,以80-100℃/min的升温速率升温至550-650℃进行烧结,烧结完成后自然冷却,脱模后得到铝基金刚石复合材料;
所述表面镀W-Re-Ir金刚石微粉的制备方法包括以下步骤:
步骤(1)、将金属W粉、金属Re粉和金属Ir粉置于卧式混料机中,在1000-1500r/min下混料5-10h,混合均匀后,在四柱液压成型机中压制成型,接着置于中频感应炉中,抽真空至250-350Pa,以2-5℃/min升温至800-1000℃预烧2-4h,接着以1-3℃/min升温至2200-2500℃保温6-9h,随炉冷却,得到W-Re-Ir合金;
步骤(2)、采用磁控溅射技术在金刚石微粉表面镀覆W-Re-Ir镀膜,依次用浓度为10%的NaOH和30%的HNO3溶液将金刚石微粉煮沸25-40min,并用去离子水洗涤3-5次,干燥后置于磁控溅射镀膜设备的加热台上,并进行超声振动,腔室内抽真空到4-6×10-3Pa,加热至180-220℃,以W-Re-Ir合金为靶材,采用磁控溅射工艺在金刚石微粉表面沉积W-Re-Ir镀膜,膜层厚度为20-200nm,腔室温度为室温,得到表面镀W-Re-Ir金刚石微粉。
2.根据权利要求1所述的铝基金刚石复合材料的制备方法,其特征在于,烧结压力为70-100MPa,烧结时间为10-30min。
3.根据权利要求1所述的铝基金刚石复合材料的制备方法,其特征在于,所述表面镀W-Re-Ir金刚石微粉的粒径为100μm、50μm、25μm、10μm和5μm中的任意几种组合,各粒径间采用不同配比进行颗粒级配。
4.根据权利要求1所述的铝基金刚石复合材料的制备方法,其特征在于,所述步骤(1)中按重量份数计,金属W粉为100份,金属Re粉为10-15份,金属Ir粉为1-5份。
5.根据权利要求1所述的铝基金刚石复合材料的制备方法,其特征在于,所述步骤(1)中压制成型的压力为10-20MPa,时间为20-40s。
6.根据权利要求1所述的铝基金刚石复合材料的制备方法,其特征在于,所述步骤(2)中在磁控溅射的工艺条件为:溅射功率为140-160W、钯电流为0.4-0.6A、工作气压为0.3-0.5Pa、溅射时间为20-40min。
7.一种铝基金刚石复合材料,其特征在于,由权利要求1-6任一项所述的制备方法得到。
CN202411112729.8A 2024-08-14 2024-08-14 一种铝基金刚石复合材料及其制备方法 Active CN118895435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411112729.8A CN118895435B (zh) 2024-08-14 2024-08-14 一种铝基金刚石复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411112729.8A CN118895435B (zh) 2024-08-14 2024-08-14 一种铝基金刚石复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN118895435A CN118895435A (zh) 2024-11-05
CN118895435B true CN118895435B (zh) 2025-01-21

Family

ID=93263038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411112729.8A Active CN118895435B (zh) 2024-08-14 2024-08-14 一种铝基金刚石复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN118895435B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886849A (zh) * 2016-06-22 2016-08-24 哈尔滨工业大学 镀w金刚石/铝复合材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985051A (en) * 1984-08-24 1991-01-15 The Australian National University Diamond compacts
US4874398A (en) * 1984-08-24 1989-10-17 Ringwood Alfred E Diamond compacts and process for making same
JPH10310838A (ja) * 1997-05-12 1998-11-24 Sumitomo Electric Ind Ltd 超硬質複合部材およびその製造方法
US10865464B2 (en) * 2016-11-16 2020-12-15 Hrl Laboratories, Llc Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom
CN116656985B (zh) * 2023-04-27 2024-02-02 苏州科技大学 一种金刚石/铝复合材料的制备方法
CN117344186A (zh) * 2023-07-04 2024-01-05 盐城工学院 一种三元硼化物基金属陶瓷耐磨耐蚀涂层及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886849A (zh) * 2016-06-22 2016-08-24 哈尔滨工业大学 镀w金刚石/铝复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电子封装用铝基复合材料的制备及性能研究;中国优秀硕士学位论文全文数据库(电子期刊);中国优秀硕士学位论文全文数据库(电子期刊);20240415;第9-10、13-14和41-52页 *

Also Published As

Publication number Publication date
CN118895435A (zh) 2024-11-05

Similar Documents

Publication Publication Date Title
CN105803242B (zh) 一种片状与线状导热材料耦合增强复合材料及制备方法
CN106636989B (zh) 一种高强度、高导热石墨-铜复合材料的制备方法
CN100432016C (zh) 一种制备氮化铝/氮化硼复相陶瓷的方法
CN103981382A (zh) 一种高导热金刚石/铜基复合材料的制备方法
CN106799496B (zh) 一种石墨和铝硅合金复合电子封装材料及其制备方法
CN105819882B (zh) 一种陶瓷金属复合基板及其制备工艺
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN111876622A (zh) 一种石墨烯增强铝合金抗拉导热复合材料的制备方法
CN112609115B (zh) 电子封装用金刚石/铜热沉材料及其制备方法
CN106521230A (zh) 一种垂直定向散热用的石墨鳞片/铜复合材料及其制备方法
CN106086494A (zh) 一种电子封装用硅铝合金的制备方法
CN114478022A (zh) 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN106756177B (zh) 一种碳化钛陶瓷颗粒增强铜基复合材料的制备方法
CN109332705B (zh) 石墨烯改性铜-钼-铜复合材料及其制备方法
CN116516197B (zh) 一种高热导率金刚石/金属复合材料的制备方法
CN118895435B (zh) 一种铝基金刚石复合材料及其制备方法
CN111590080A (zh) 一种sps快速制备镀钛金刚石铜复合材料的方法
CN113698213B (zh) 一种高导热陶瓷通用覆铜基板及其制备方法
CN1964113A (zh) 一种导电陶瓷/石墨质子交换膜燃料电池用双极板及其制备方法
CN110643860A (zh) 一种陶瓷膜修饰的金刚石/铝复合材料及其无压浸渗制备工艺
CN112143987B (zh) 铝基复合材料的制备方法
CN115740458B (zh) 钼铜合金型材的制备方法
CN115821211B (zh) 一种低温高压制备金刚石/铜复合材料的方法
CN115595531A (zh) 一种三明治结构的石墨-铜-石墨散热膜及其制备方法
CN114717441B (zh) 一种低成本制备低密度高热导率的金刚石/铜复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant