CN118866920A - Imaging system, image sensor and method for manufacturing the same - Google Patents
Imaging system, image sensor and method for manufacturing the same Download PDFInfo
- Publication number
- CN118866920A CN118866920A CN202410868816.XA CN202410868816A CN118866920A CN 118866920 A CN118866920 A CN 118866920A CN 202410868816 A CN202410868816 A CN 202410868816A CN 118866920 A CN118866920 A CN 118866920A
- Authority
- CN
- China
- Prior art keywords
- layer
- grid
- image sensor
- substrate
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000003384 imaging method Methods 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 238000002955 isolation Methods 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims description 37
- 150000004767 nitrides Chemical class 0.000 claims description 31
- -1 nitrogen-containing compound Chemical class 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- 238000000059 patterning Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 317
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 238000012546 transfer Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 10
- 238000007667 floating Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000005137 deposition process Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
本公开实施例涉及半导体领域,提供了一种成像系统、图像传感器及其制备方法,包括:基底,包括多个像素单元和分离多个像素单元的隔离结构;多个滤色器,位于基底上,并与多个像素单元分别对应;栅格结构,栅格结构位于所述滤色器之间,并且分别沿第一方向和第二方向延伸,栅格结构包括第一栅格层和第二栅格层,第二栅格层覆盖第一栅格层的侧壁和顶部,其中,第二栅格层的折射率大于第一栅格层的折射率。
The embodiments of the present disclosure relate to the semiconductor field and provide an imaging system, an image sensor and a method for preparing the same, comprising: a substrate comprising a plurality of pixel units and an isolation structure for separating the plurality of pixel units; a plurality of color filters located on the substrate and corresponding to the plurality of pixel units, respectively; a grid structure, the grid structure being located between the color filters and extending in a first direction and a second direction, respectively, the grid structure comprising a first grid layer and a second grid layer, the second grid layer covering the side wall and the top of the first grid layer, wherein the refractive index of the second grid layer is greater than the refractive index of the first grid layer.
Description
技术领域Technical Field
本公开实施例涉及半导体领域,特别涉及一种成像系统、图像传感器及其制备方法。The embodiments of the present disclosure relate to the semiconductor field, and in particular to an imaging system, an image sensor, and a method for manufacturing the same.
背景技术Background Art
图像传感器是将光学信息转换成电信号的半导体器件。例如,图像传感器可以将光波的可变衰减转换成信号(即,传递信息的小电流突发),这样的图像传感器可以包括电荷耦合器件(CCD)图像传感器和互补金属氧化物半导体(CMOS)图像传感器。根据光路径的差别,CMOS图像传感器可以进一步被分成正照式(FSI)图像传感器和背照式(BSI)图像传感器。Image sensors are semiconductor devices that convert optical information into electrical signals. For example, image sensors can convert the variable attenuation of light waves into signals (i.e., small current bursts that convey information), and such image sensors can include charge coupled device (CCD) image sensors and complementary metal oxide semiconductor (CMOS) image sensors. Based on the difference in light paths, CMOS image sensors can be further divided into front-illuminated (FSI) image sensors and back-illuminated (BSI) image sensors.
BSI图像传感器中不存在源于附加层(例如,金属层)的阻碍,光入射到CMOS图像传感器的背面上,可以通过直接路径射向光电二极管,有利于增大光子到电子的转换量。然而,随着图像传感器中的像素单元减小,光可能被相邻的或邻近的感光单元检测到,即在光射到像素的相邻像素上时像素也会产生电子,这使得因为不恰当的感光单元检测到光而会导致串扰,串扰可能降低图像传感器的性能、增加噪声以及减少图像传感器产生的信号。因此,目前有必要提出一种新的图像传感器及其制备方法。There is no obstruction from additional layers (e.g., metal layers) in the BSI image sensor. When light is incident on the back of the CMOS image sensor, it can be directed to the photodiode through a direct path, which is beneficial to increase the conversion of photons to electrons. However, as the pixel unit in the image sensor decreases, light may be detected by adjacent or neighboring photosensitive units, that is, when light is incident on the adjacent pixels of the pixel, the pixel will also generate electrons, which may cause crosstalk due to the detection of light by inappropriate photosensitive units. The crosstalk may reduce the performance of the image sensor, increase noise, and reduce the signal generated by the image sensor. Therefore, it is necessary to propose a new image sensor and a preparation method thereof.
发明内容Summary of the invention
根据本公开一些实施例,本公开实施例一方面提供一种图像传感器,包括:According to some embodiments of the present disclosure, an image sensor is provided on one hand, including:
基底,包括多个像素单元和分离多个所述像素单元的隔离结构;A substrate, comprising a plurality of pixel units and an isolation structure separating the plurality of pixel units;
多个滤色器,位于所述基底上,并与多个所述像素单元分别对应;A plurality of color filters are located on the substrate and correspond to the plurality of pixel units respectively;
栅格结构,所述栅格结构位于多个所述滤色器之间,并且分别沿第一方向和第二方向延伸,所述栅格结构包括第一栅格层和第二栅格层,所述第二栅格层覆盖所述第一栅格层的侧壁和顶部,其中,所述第二栅格层的折射率大于所述第一栅格层的折射率。A grid structure, wherein the grid structure is located between the plurality of color filters and extends along a first direction and a second direction respectively, wherein the grid structure comprises a first grid layer and a second grid layer, wherein the second grid layer covers the side wall and the top of the first grid layer, wherein the refractive index of the second grid layer is greater than the refractive index of the first grid layer.
在一些实施例中,所述第一栅格层包括依次堆叠的第一氧化层、导电层和第二氧化层,所述第二栅格层覆盖所述导电层和所述第一氧化层的侧壁以及所述第二氧化层的顶部和侧壁。In some embodiments, the first grid layer includes a first oxide layer, a conductive layer, and a second oxide layer stacked in sequence, and the second grid layer covers the conductive layer and sidewalls of the first oxide layer and the top and sidewalls of the second oxide layer.
在一些实施例中,所述第一栅格层还包括氮化物层,所述第一氧化层、所述导电层和所述第二氧化层依次堆叠于所述氮化物层上,所述第二栅格层覆盖所述氮化物层、所述导电层、所述第一氧化层的侧壁以及所述第二氧化层的顶部和侧壁。In some embodiments, the first grid layer also includes a nitride layer, the first oxide layer, the conductive layer and the second oxide layer are stacked sequentially on the nitride layer, and the second grid layer covers the nitride layer, the conductive layer, the sidewall of the first oxide layer and the top and sidewall of the second oxide layer.
在一些实施例中,所述第一氧化层、所述导电层和所述第二氧化层的厚度沿背离所述基底的方向依次增加。In some embodiments, the thicknesses of the first oxide layer, the conductive layer, and the second oxide layer increase sequentially along a direction away from the substrate.
在一些实施例中,所述氮化物层的厚度大于所述第一氧化层的厚度且小于所述导电层的厚度以及所述第二氧化层的厚度。In some embodiments, the thickness of the nitride layer is greater than the thickness of the first oxide layer and less than the thickness of the conductive layer and the thickness of the second oxide layer.
在一些实施例中,所述第一氧化层的折射率与所述第二氧化层的折射率相等。In some embodiments, a refractive index of the first oxide layer is equal to a refractive index of the second oxide layer.
在一些实施例中,所述第一氧化层与所述第二氧化层的折射率均小于所述导电层的折射率,且所述导电层的折射率小于所述第二栅格层的折射率。In some embodiments, the refractive indexes of the first oxide layer and the second oxide layer are both smaller than the refractive index of the conductive layer, and the refractive index of the conductive layer is smaller than the refractive index of the second grid layer.
在一些实施例中,所述氮化物层的折射率与所述第二栅格层的折射率相等。In some embodiments, the refractive index of the nitride layer is equal to the refractive index of the second grid layer.
在一些实施例中,所述第二栅格层的材料包括含氮化合物,所述第二栅格层的顶面与所述滤色器的顶面的高度齐平。In some embodiments, a material of the second grid layer includes a nitrogen-containing compound, and a top surface of the second grid layer is flush with a top surface of the color filter.
在一些实施例中,所述隔离结构包括第一介电层和第二介电层,所述第一介电层和所述第二介电层填充所述隔离结构,并延伸至所述基底上表面。In some embodiments, the isolation structure includes a first dielectric layer and a second dielectric layer, wherein the first dielectric layer and the second dielectric layer fill the isolation structure and extend to the upper surface of the substrate.
根据本公开一些实施例,本公开实施例另一方面还提供一种图像传感器的制备方法,包括:According to some embodiments of the present disclosure, another aspect of the present disclosure further provides a method for preparing an image sensor, including:
提供基底,所述基底内形成有多个像素单元和分离多个所述像素单元的隔离结构;Providing a substrate, wherein a plurality of pixel units and an isolation structure for separating the plurality of pixel units are formed in the substrate;
形成栅格结构,所述栅格结构形成于所述基底上,且分别沿第一方向和第二方向延伸,所述栅格结构包括第一栅格层和第二栅格层,所述第二栅格层覆盖所述第一栅格层的侧壁和顶部,其中,所述第二栅格层的折射率大于所述第一栅格层的折射率;forming a grid structure, wherein the grid structure is formed on the substrate and extends in a first direction and a second direction respectively, the grid structure comprises a first grid layer and a second grid layer, the second grid layer covers the sidewall and the top of the first grid layer, wherein the refractive index of the second grid layer is greater than the refractive index of the first grid layer;
形成多个滤色器,所述滤色器形成于所述基底上,并与多个所述像素单元分别对应,所述栅格结构位于多个所述滤色器之间。A plurality of color filters are formed, wherein the color filters are formed on the substrate and correspond to the plurality of pixel units respectively, and the grid structure is located between the plurality of color filters.
在一些实施例中,形成栅格结构的步骤包括:在所述基底上依次堆叠沉积第一氧化层、导电层和第二氧化层,图案化所述第一氧化层、所述导电层和所述第二氧化层,以形成所述第一栅格层;在所述基底和所述第一栅格层上沉积第二栅格材料层,并去除所述基底上的所述第二栅格材料层,以形成覆盖所述第一栅格层的侧壁和顶部的所述第二栅格层,所述第一栅格层和所述第二栅格层构成所述栅格结构。In some embodiments, the step of forming a grid structure includes: stacking and depositing a first oxide layer, a conductive layer, and a second oxide layer in sequence on the substrate, and patterning the first oxide layer, the conductive layer, and the second oxide layer to form the first grid layer; depositing a second grid material layer on the substrate and the first grid layer, and removing the second grid material layer on the substrate to form the second grid layer covering the sidewalls and the top of the first grid layer, and the first grid layer and the second grid layer constitute the grid structure.
在一些实施例中,在所述基底上沉积所述第一氧化层之前还包括沉积氮化物层;图案化所述氮化物层、所述第一氧化层、所述导电层和所述第二氧化层,以形成所述第一栅格层。In some embodiments, before depositing the first oxide layer on the substrate, the method further includes depositing a nitride layer; and patterning the nitride layer, the first oxide layer, the conductive layer, and the second oxide layer to form the first grid layer.
在一些实施例中,在所述基底和所述栅格结构上沉积滤色器材料层,图案化所述滤色器材料层,以形成被所述栅格结构间隔开的多个所述滤色器。In some embodiments, a color filter material layer is deposited on the substrate and the grid structure, and the color filter material layer is patterned to form a plurality of the color filters separated by the grid structure.
根据本公开一些实施例,本公开实施例另一方面还提供一种成像系统,包括:处理器和存储器;According to some embodiments of the present disclosure, another aspect of the present disclosure further provides an imaging system, including: a processor and a memory;
相机,所述相机包括镜头以及所述图像传感器或者所述制备方法制备的所述图像传感器。A camera comprises a lens and the image sensor or the image sensor prepared by the preparation method.
根据本公开的实施例,栅格结构包括第一栅格层和第二栅格层,第二栅格层覆盖所述第一栅格层的侧壁和顶部,通过设置第二栅格层的折射率大于第一栅格层的折射率,从滤色器入射到第二栅格层的光可以在第二栅格层与第一栅格层的界面处发生全反射,将光线反射回相应的像素单元,使光线偏离其它相邻的像素单元,从而有效避免了相邻像素单元之间的光学串扰。According to an embodiment of the present disclosure, the grid structure includes a first grid layer and a second grid layer, the second grid layer covers the side wall and the top of the first grid layer, and by setting the refractive index of the second grid layer to be greater than the refractive index of the first grid layer, light incident from the color filter to the second grid layer can be totally reflected at the interface between the second grid layer and the first grid layer, reflecting the light back to the corresponding pixel unit, causing the light to deviate from other adjacent pixel units, thereby effectively avoiding optical crosstalk between adjacent pixel units.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制;为了更清楚地说明本公开实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。One or more embodiments are exemplarily illustrated by pictures in the corresponding drawings, and these exemplified descriptions do not constitute a limitation on the embodiments. Unless otherwise specified, the pictures in the drawings do not constitute a scale limitation. In order to more clearly illustrate the embodiments of the present disclosure or the technical solutions in the traditional technology, the drawings required for use in the embodiments are briefly introduced below. Obviously, the drawings described below are only some embodiments of the present disclosure. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本公开实施例中的图像传感器部分结构的俯视示意图。FIG. 1 is a schematic top view of a partial structure of an image sensor in an embodiment of the present disclosure.
图2为本公开实施例中的图像传感器的像素单元的电路原理图。FIG. 2 is a circuit diagram of a pixel unit of an image sensor in an embodiment of the present disclosure.
图3(a)-3(b)为本公开实施例中的图像传感器沿图1中A-A’方向的截面图。3(a)-3(b) are cross-sectional views of the image sensor in the embodiment of the present disclosure along the A-A’ direction in FIG1 .
图4为提供的一种图像传感器制备方法的流程示意图。FIG. 4 is a schematic flow chart of a method for preparing an image sensor.
图5至图11为本公开实施例提供的一种图像传感器制备方法各步骤对应的沿图1中A-A’方向的截面图结构示意图。5 to 11 are schematic diagrams of cross-sectional structures along the A-A’ direction in FIG. 1 corresponding to each step of an image sensor manufacturing method provided in an embodiment of the present disclosure.
图12为本公开实施例提供的一种成像系统的示意图。FIG. 12 is a schematic diagram of an imaging system provided in an embodiment of the present disclosure.
具体实施方式DETAILED DESCRIPTION
下面将结合附图对本公开的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本公开而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本公开所要求保护的技术方案。The following will describe the various embodiments of the present disclosure in detail with reference to the accompanying drawings. However, it will be appreciated by those skilled in the art that in the various embodiments of the present disclosure, many technical details are provided in order to enable the reader to better understand the present disclosure. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the present disclosure can be implemented.
CMOS图像传感器可以包括形成在衬底的顶部上的多个附加层,诸如介电层和互连金属层,其中,互连金属层用于连接像素单元与外围电路。CMOS图像传感器的具有附加层的一侧通常称作前侧,而衬底的与前侧相反的一侧称为背侧。根据光路径的不同,CMOS图像传感器可以进一步分为两个主要类别,即前照式(Front Side Illumination, FSI)图像传感器和背照式(Back Side Illumination, BSI)图像传感器。在FSI图像传感器中,微透镜和滤色器设置在衬底的前侧,并且光从前侧通过微透镜和滤色器入射到感光单元。与FSI图像传感器相比较,BSI图像传感器中的微透镜和滤色器设置于衬底背侧。感光单元阵列安置在衬底内且对通过衬底的背侧入射的光敏感。由于没有金属阻挡入射光线,感光单元能够接收到更多的光,进而提高了图像传感器的光学灵敏度。CMOS image sensors may include multiple additional layers formed on top of a substrate, such as dielectric layers and interconnect metal layers, wherein the interconnect metal layers are used to connect pixel units to peripheral circuits. The side of a CMOS image sensor with additional layers is generally referred to as the front side, while the side of the substrate opposite to the front side is referred to as the back side. Depending on the light path, CMOS image sensors can be further divided into two main categories, namely, front side illumination (FSI) image sensors and back side illumination (BSI) image sensors. In FSI image sensors, microlenses and color filters are arranged on the front side of the substrate, and light is incident on the photosensitive unit from the front side through the microlenses and color filters. Compared with FSI image sensors, microlenses and color filters in BSI image sensors are arranged on the back side of the substrate. The array of photosensitive units is arranged in the substrate and is sensitive to light incident through the back side of the substrate. Since there is no metal to block the incident light, the photosensitive unit can receive more light, thereby improving the optical sensitivity of the image sensor.
BSI图像传感器的一个挑战是相邻的像素单元之间的光学串扰。随着BSI图像传感器的尺寸变得越来越小,相邻的像素单元之间的距离也随之下降,进而导致光学串扰的可能性也随之增加。One challenge of BSI image sensors is optical crosstalk between adjacent pixel units. As the size of BSI image sensors becomes smaller, the distance between adjacent pixel units decreases, which in turn increases the possibility of optical crosstalk.
为解决上述问题,本公开实施例提供一图像传感器,以下将结合附图对本公开实施例提供的图像传感器进行说明。图1为本公开实施例中的图像传感器部分结构的俯视示意图;图2为本公开实施例中的图像传感器的像素单元的电路原理图;图3(a)-3(b)为本公开实施例中的图像传感器沿图1中A-A’方向的截面图。In order to solve the above problems, the embodiment of the present disclosure provides an image sensor, and the image sensor provided by the embodiment of the present disclosure will be described below in conjunction with the accompanying drawings. Figure 1 is a top view of a partial structure of the image sensor in the embodiment of the present disclosure; Figure 2 is a circuit schematic diagram of a pixel unit of the image sensor in the embodiment of the present disclosure; Figures 3(a)-3(b) are cross-sectional views of the image sensor in the embodiment of the present disclosure along the A-A’ direction in Figure 1.
参考图1-图3,本公开实施例提供的图像传感器10包括:基底101,包括多个像素单元102和分离多个像素单元102的隔离结构103;1 to 3 , an image sensor 10 provided by an embodiment of the present disclosure includes: a substrate 101 including a plurality of pixel units 102 and an isolation structure 103 separating the plurality of pixel units 102;
多个滤色器108,位于基底101上,并与多个像素单元102分别对应;A plurality of color filters 108 are located on the substrate 101 and correspond to the plurality of pixel units 102 respectively;
栅格结构106,栅格结构106位于多个滤色器108之间,并且分别沿第一方向X和第二方向Y延伸,栅格结构106包括第一栅格层106和第二栅格层107,第二栅格层107覆盖第一栅格层106的侧壁和顶部,其中,第二栅格层107的折射率大于第一栅格层106的折射率,以下将结合附图进行详细说明。The grid structure 106 is located between the multiple color filters 108 and extends along the first direction X and the second direction Y respectively. The grid structure 106 includes a first grid layer 106 and a second grid layer 107. The second grid layer 107 covers the side wall and the top of the first grid layer 106, wherein the refractive index of the second grid layer 107 is greater than the refractive index of the first grid layer 106. The details will be described below in conjunction with the accompanying drawings.
参考图3(a)-3(b),基底101,包括多个像素单元102和分离多个像素单元102的隔离结构103,其中,基底101可以是绝缘体上硅(SOI),也可以是硅基底或者由诸如硅锗、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓等材料制备而成。3(a)-3(b), a substrate 101 includes a plurality of pixel units 102 and an isolation structure 103 separating the plurality of pixel units 102, wherein the substrate 101 may be a silicon-on-insulator (SOI) substrate or a silicon substrate or may be made of materials such as silicon germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide.
参考图2,每个像素单元102可以包括光电转换层PD、转移晶体管TG、浮置扩散区FD、复位晶体管RST、源极跟随器晶体管SF和选择晶体管SEL。光电转换层PD可以产生与从外部入射的光的量成比例的电荷。光电转换层PD可以耦接到将产生并累积的电荷转移到浮置扩散区FD的转移晶体管TG。浮置扩散区FD是将电荷转换成电压并且由于其寄生电容而可以累积地存储电荷的区域。转移晶体管TG的一端可以连接到光电转换层PD,并且转移晶体管TG的另一端可以连接到浮置扩散区FD。转移晶体管TG可以是由预定偏压,例如,转移信号TX驱动的晶体管。转移晶体管TG可以根据转移信号TX将由光电转换层PD产生的电荷转移到浮置扩散区FD。源极跟随器晶体管SF可以放大从光电转换层PD接收电荷的浮置扩散区FD的电势变化,并且可以将放大的变化输出到输出线Vout。当源极跟随器晶体管SF导通时,提供给源极跟随器晶体管SF的漏极的预定电位,例如,电源电压VDD可以被转移到选择晶体管SEL的漏极区。选择晶体管SEL可以逐行选择要读取的单位像素。选择晶体管SEL可以是由施加预定偏压,例如,行选择信号RS的选择线驱动的晶体管。复位晶体管RST可以定期地复位浮置扩散区FD。复位晶体管RST可以由施加预定偏压,例如,复位信号RX的复位线驱动。当通过复位信号RX使复位晶体管RST导通时,提供给复位晶体管RST的漏极的预定电势,例如,电源电压VDD,可以被转移到浮置扩散区FD。2, each pixel unit 102 may include a photoelectric conversion layer PD, a transfer transistor TG, a floating diffusion area FD, a reset transistor RST, a source follower transistor SF, and a selection transistor SEL. The photoelectric conversion layer PD may generate a charge proportional to the amount of light incident from the outside. The photoelectric conversion layer PD may be coupled to a transfer transistor TG that transfers the generated and accumulated charge to the floating diffusion area FD. The floating diffusion area FD is a region that converts the charge into a voltage and can accumulatively store the charge due to its parasitic capacitance. One end of the transfer transistor TG may be connected to the photoelectric conversion layer PD, and the other end of the transfer transistor TG may be connected to the floating diffusion area FD. The transfer transistor TG may be a transistor driven by a predetermined bias, for example, a transfer signal TX. The transfer transistor TG may transfer the charge generated by the photoelectric conversion layer PD to the floating diffusion area FD according to the transfer signal TX. The source follower transistor SF may amplify the potential change of the floating diffusion area FD that receives the charge from the photoelectric conversion layer PD, and may output the amplified change to the output line Vout. When the source follower transistor SF is turned on, a predetermined potential provided to the drain of the source follower transistor SF, for example, the power supply voltage VDD, can be transferred to the drain region of the selection transistor SEL. The selection transistor SEL can select the unit pixel to be read row by row. The selection transistor SEL can be a transistor driven by a selection line to which a predetermined bias is applied, for example, a row selection signal RS. The reset transistor RST can periodically reset the floating diffusion area FD. The reset transistor RST can be driven by a reset line to which a predetermined bias is applied, for example, a reset signal RX. When the reset transistor RST is turned on by the reset signal RX, a predetermined potential provided to the drain of the reset transistor RST, for example, the power supply voltage VDD, can be transferred to the floating diffusion area FD.
参考图1,多个像素单元102可以沿第一方向X和第二方向Y阵列排布于基底101中。在一些实施例中,以3x3的阵列为例,多个像素单元102可以包括设置于位于基底101上的栅格结构GD之间的P1、P2、P3、P4、P5、P6、P7、P8和P9,即第二栅格结构107沿第一方向X和第二方向Y延伸,多个像素单元102位于相互交叉的栅格结构GD之间,栅格结构GD还设置于多个像素单元102阵列的周围。1 , a plurality of pixel units 102 may be arranged in an array in a substrate 101 along a first direction X and a second direction Y. In some embodiments, taking a 3×3 array as an example, the plurality of pixel units 102 may include P1, P2, P3, P4, P5, P6, P7, P8, and P9 disposed between grid structures GD disposed on the substrate 101, that is, the second grid structure 107 extends along the first direction X and the second direction Y, the plurality of pixel units 102 are disposed between the grid structures GD that intersect each other, and the grid structure GD is also disposed around the plurality of pixel units 102 arrays.
继续参考图3(a)-3(b),多个像素单元102之间还设置有隔离结构103,示例性地,隔离结构103可以是深沟槽隔离(Deep Trench Isolation, DTI),可以从基底101的表面延伸到基底内以将相邻的像素单元102隔离,在一些实施例中,隔离结构103的宽度可以沿朝向基底101的方向逐渐减小。隔离结构103可以填充有第一介电层104和第二介电层105,其中,第一介电层104和第二介电层105的材料可以均为氧化硅或其他高介电常数材料,例如,氧化硅(SiO2)、氧化铪(HfO2)、氧化钽(Ta2O5)、氧化钛(TiO2)、氧化锆(ZrO2)、氧化铝(Al2O3)等材料,在其他实施例中,隔离结构103也可以为单层结构,即可以仅包括第一介电层104或第二介电层105,示例性地,第一介电层104可以为氧化铝(Al2O3),第二介电层105可以为(SiO2),或者为三层或多层堆叠结构,即可以包括第一介电层104和第二介电层105,还可以设置有其他介电层,示例性地,第一介电层104可以为氧化铝(Al2O3),第二介电层105可以为(SiO2),其他介电层可以包括氧化钽(Ta2O5),或者在上述实施方式的基础上,在第二介电层105内还可以设置有气隙。第一介电层104和第二介电层105填充隔离结构103并且还可以延伸至基底101的表面。Continuing to refer to FIGS. 3( a)-3( b ), an isolation structure 103 is further disposed between the plurality of pixel units 102 . Exemplarily, the isolation structure 103 may be a deep trench isolation (DTI), which may extend from the surface of the substrate 101 into the substrate to isolate adjacent pixel units 102 . In some embodiments, the width of the isolation structure 103 may gradually decrease in a direction toward the substrate 101 . The isolation structure 103 may be filled with a first dielectric layer 104 and a second dielectric layer 105, wherein the materials of the first dielectric layer 104 and the second dielectric layer 105 may both be silicon oxide or other high dielectric constant materials, for example, silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ) and the like. In other embodiments, the isolation structure 103 may also be a single-layer structure, that is, it may only include the first dielectric layer 104 or the second dielectric layer 105. For example, the first dielectric layer 104 may be aluminum oxide (Al 2 O 3 ), and the second dielectric layer 105 may be (SiO 2 ). Alternatively, the isolation structure 103 may be a three-layer or multi-layer stacked structure, that is, it may include the first dielectric layer 104 and the second dielectric layer 105, and other dielectric layers may also be provided. For example, the first dielectric layer 104 may be aluminum oxide (Al 2 O 3 ) . ), the second dielectric layer 105 may be (SiO 2 ), other dielectric layers may include tantalum oxide (Ta 2 O 5 ), or based on the above embodiment, an air gap may be further provided in the second dielectric layer 105. The first dielectric layer 104 and the second dielectric layer 105 fill the isolation structure 103 and may also extend to the surface of the substrate 101.
多个滤色器108,位于基底101上,并与多个像素单元102对应设置。在一些实施例中,滤色器108可以包括红色滤色器、绿色滤色器、蓝色滤色器、红外(IR)滤色器、透明滤色器或其他颜色的滤色器。示例性地,滤色器还可以布置成拜耳图案(Bayer pattern)或任何其他合适的图案。在滤色器108上方还可以设置微透镜109,微透镜109可以为半椭圆形,以将入射到滤色器108的光线引导至相对应的像素单元102上。其中,微透镜109可以为光学透明材料,例如,基于聚苯乙烯的树脂、基于聚酰亚胺的树脂、基于聚硅氧烷的树脂、基于丙烯酸的树脂、基于环氧树脂的树脂或其共聚物树脂的透明聚合物材料,或者基于氧化硅或基于氮化硅的无机材料。A plurality of color filters 108 are disposed on the substrate 101 and are arranged corresponding to the plurality of pixel units 102. In some embodiments, the color filter 108 may include a red filter, a green filter, a blue filter, an infrared (IR) filter, a transparent filter, or a color filter of other colors. Exemplarily, the color filter may also be arranged in a Bayer pattern or any other suitable pattern. A microlens 109 may also be disposed above the color filter 108, and the microlens 109 may be semi-elliptical to guide the light incident on the color filter 108 to the corresponding pixel unit 102. Among them, the microlens 109 may be an optically transparent material, for example, a transparent polymer material based on a polystyrene-based resin, a polyimide-based resin, a polysiloxane-based resin, an acrylic-based resin, an epoxy-based resin, or a copolymer resin thereof, or an inorganic material based on silicon oxide or silicon nitride.
在一些实施例中,微透镜109上还设置有保护层110,保护层110可随型设置于微透镜109上表面,例如可以设置为半球型的曲面,以在保护微透镜109的同时,还可以与微透镜109相互配合增大或减小焦距,以改善图像的分辨率。示例性地,保护层110的材料可以为无机氧化物层,包括但不限于氧化硅、氧化钛、氧化锆、氧化铪中的至少一种或多种。In some embodiments, a protective layer 110 is further provided on the microlens 109. The protective layer 110 can be arranged on the upper surface of the microlens 109 in a random manner, for example, it can be arranged as a hemispherical curved surface, so as to protect the microlens 109 and cooperate with the microlens 109 to increase or decrease the focal length to improve the resolution of the image. Exemplarily, the material of the protective layer 110 can be an inorganic oxide layer, including but not limited to at least one or more of silicon oxide, titanium oxide, zirconium oxide, and hafnium oxide.
参考图2和3(a)-3(b),栅格结构GD,位于多个滤色器108之间,并且分别沿第一方向X和第二方向Y延伸,栅格结构GD还可以位于滤色器108阵列的周围,栅格结构GD包括第一栅格层106和第二栅格层107,第二栅格层107覆盖第一栅格层106的侧壁和顶部,其中,第二栅格层107的折射率大于第一栅格层106的折射率,通过设置第二栅格层107的折射率大于第一栅格层106的折射率,从滤色器108入射到第二栅格层107的光线可以在第二栅格层107与第一栅格层106的界面处发生全反射,将光线反射回相应的像素单元,使光线偏离其它像素单元,从而有效避免了相邻像素单元之间的光学串扰。Referring to Figures 2 and 3(a)-3(b), the grid structure GD is located between the multiple color filters 108 and extends along the first direction X and the second direction Y respectively. The grid structure GD can also be located around the color filter 108 array. The grid structure GD includes a first grid layer 106 and a second grid layer 107. The second grid layer 107 covers the side wall and the top of the first grid layer 106, wherein the refractive index of the second grid layer 107 is greater than the refractive index of the first grid layer 106. By setting the refractive index of the second grid layer 107 to be greater than the refractive index of the first grid layer 106, the light incident from the color filter 108 to the second grid layer 107 can be totally reflected at the interface between the second grid layer 107 and the first grid layer 106, and the light is reflected back to the corresponding pixel unit, so that the light deviates from other pixel units, thereby effectively avoiding optical crosstalk between adjacent pixel units.
在一些实施例中,参考图3(a),第一栅格层106可以是堆叠的多层结构,在垂直于基底101的方向上依次堆叠有第一氧化层1062、导电层1063和第二氧化层1064,第二栅格层107覆盖导电层1063和第一氧化层1062的侧壁以及第二氧化层1064的顶部和侧壁。示例性的,第一氧化层1062和第二氧化层1063的材料可以包括但不限于氧化硅、氧化铝、氧化钽以及它们的组合中的至少一种,导电层1063的材料可以为钨、钛或钽,其中,第一氧化层1062和第二氧化层1064可用于改善导电层1063与第二栅格层107或第二介电层105的界面接触性能。In some embodiments, referring to FIG. 3( a ), the first grid layer 106 may be a stacked multilayer structure, wherein a first oxide layer 1062, a conductive layer 1063, and a second oxide layer 1064 are sequentially stacked in a direction perpendicular to the substrate 101, and the second grid layer 107 covers the conductive layer 1063 and the sidewalls of the first oxide layer 1062, and the top and sidewalls of the second oxide layer 1064. Exemplarily, the materials of the first oxide layer 1062 and the second oxide layer 1063 may include, but are not limited to, at least one of silicon oxide, aluminum oxide, tantalum oxide, and combinations thereof, and the material of the conductive layer 1063 may be tungsten, titanium, or tantalum, wherein the first oxide layer 1062 and the second oxide layer 1064 may be used to improve the interface contact performance between the conductive layer 1063 and the second grid layer 107 or the second dielectric layer 105.
在一些实施例中,第一氧化层1062与第二氧化层1064的折射率可以均小于导电层1063的折射率,且导电层的折射率小于第二栅格层107的折射率,其中,第一氧化层1062的折射率与第二氧化层1064的折射率也可以相等且均小于导电层1063的折射率,示例性地,第一氧化层1062和第二氧化层1064的材料可以均为氧化硅,折射率约为1.45,导电层1063可以为钨,折射率约为1.91。In some embodiments, the refractive index of the first oxide layer 1062 and the second oxide layer 1064 may both be smaller than the refractive index of the conductive layer 1063, and the refractive index of the conductive layer is smaller than the refractive index of the second grid layer 107, wherein the refractive index of the first oxide layer 1062 and the refractive index of the second oxide layer 1064 may also be equal and both smaller than the refractive index of the conductive layer 1063. Exemplarily, the materials of the first oxide layer 1062 and the second oxide layer 1064 may both be silicon oxide with a refractive index of approximately 1.45, and the conductive layer 1063 may be tungsten with a refractive index of approximately 1.91.
在一些实施例中,第二栅格层107的顶面小于滤色器108的顶面的高度且第二栅格层107的材料可以为含氮化合物,例如可以为氮化硅,折射率约为2.0。因此,当光线从滤色器108入射到第二栅格层107时,可以在第二栅格层107与第一栅格层106的界面处发生全反射,将光线反射回相应的像素单元,使光线偏离其它像素单元,从而可以有效避免相邻像素单元之间的光学串扰。In some embodiments, the top surface of the second grid layer 107 is less than the top surface height of the color filter 108 and the material of the second grid layer 107 may be a nitrogen-containing compound, for example, silicon nitride, with a refractive index of about 2.0. Therefore, when light is incident from the color filter 108 to the second grid layer 107, total reflection may occur at the interface between the second grid layer 107 and the first grid layer 106, and the light may be reflected back to the corresponding pixel unit, so that the light deviates from other pixel units, thereby effectively avoiding optical crosstalk between adjacent pixel units.
在一些实施例中,第一氧化层1062、导电层1063和第二氧化层1064的厚度可以沿背离基底101的方向依次增加,即导电层1063的厚度大于第一氧化层1062的厚度且小于第二氧化层1064的厚度。示例性地,第一氧化层1062的厚度范围可以为150nm~200nm,导电层的厚度范围可以为200nm~250nm,第二氧化层1064厚度范围可以为300nm ~350nm。如此设置可以提高第一栅格层106的结构稳定性。In some embodiments, the thickness of the first oxide layer 1062, the conductive layer 1063, and the second oxide layer 1064 may increase in sequence in a direction away from the substrate 101, that is, the thickness of the conductive layer 1063 is greater than the thickness of the first oxide layer 1062 and less than the thickness of the second oxide layer 1064. Exemplarily, the thickness of the first oxide layer 1062 may range from 150 nm to 200 nm, the thickness of the conductive layer may range from 200 nm to 250 nm, and the thickness of the second oxide layer 1064 may range from 300 nm to 350 nm. Such a configuration may improve the structural stability of the first grid layer 106.
在其他实施例中,参考图3(b),第一栅格层106还可以包括氮化物层1061,第一氧化层1062、导电层1063和第二氧化层1064依次堆叠于氮化物层1061上,第二栅格层107覆盖氮化物层1061、导电层1063和第一氧化层1062的侧壁以及第二氧化层1064的顶部和侧壁。由于氮化物层106具有较高的硬度和强度,并且热膨胀系数较低,因此,通过在第一栅格层106的底部设置氮化物层1061能够有效避免基底101以及第一介电层104和第二介电层105发生翘曲,从而有助于改善图像传感器10的产品良率。In other embodiments, referring to FIG. 3( b ), the first grid layer 106 may further include a nitride layer 1061, a first oxide layer 1062, a conductive layer 1063, and a second oxide layer 1064 are sequentially stacked on the nitride layer 1061, and the second grid layer 107 covers the nitride layer 1061, the conductive layer 1063, and the sidewalls of the first oxide layer 1062, and the top and sidewalls of the second oxide layer 1064. Since the nitride layer 106 has high hardness and strength, and a low thermal expansion coefficient, the substrate 101 and the first dielectric layer 104 and the second dielectric layer 105 can be effectively prevented from warping by disposing the nitride layer 1061 at the bottom of the first grid layer 106, thereby helping to improve the product yield of the image sensor 10.
在一些实施例中,氮化物层1061与第二栅格层107的材料可以相同,例如可以均为含氮材料,例如氮化硅,氮碳化硅。氮化物层1061的折射率与第二栅格层107的折射率相等,示例性的,当氮化物层1061与第二栅格层107的材料均为氮碳化硅时,折射率约为2.0。In some embodiments, the material of the nitride layer 1061 and the second grid layer 107 may be the same, for example, both may be nitrogen-containing materials, such as silicon nitride and silicon carbide nitride. The refractive index of the nitride layer 1061 is equal to the refractive index of the second grid layer 107. Exemplarily, when the material of the nitride layer 1061 and the second grid layer 107 is both silicon carbide nitride, the refractive index is about 2.0.
在一些实施例中,氮化物层1061的厚度可以大于第一氧化层1062的厚度且小于导电层1063的厚度以及第二氧化层1064的厚度,示例性地,氮化物层1061的厚度范围可以为100-150nm,第一氧化层1062的厚度范围可以为20nm~50nm,导电层的厚度范围可以为200nm~250nm,第二氧化层1064厚度范围可以为300nm ~350nm,如此设置可以在避免基底101以及第一介电层104和第二介电层105发生翘曲的同时,有效提高第一栅格层106的结构稳定性。In some embodiments, the thickness of the nitride layer 1061 can be greater than the thickness of the first oxide layer 1062 and less than the thickness of the conductive layer 1063 and the thickness of the second oxide layer 1064. Exemplarily, the thickness range of the nitride layer 1061 can be 100-150nm, the thickness range of the first oxide layer 1062 can be 20nm~50nm, the thickness range of the conductive layer can be 200nm~250nm, and the thickness range of the second oxide layer 1064 can be 300nm~350nm. Such a configuration can effectively improve the structural stability of the first grid layer 106 while avoiding warping of the substrate 101 and the first dielectric layer 104 and the second dielectric layer 105.
相应地,本公开又一实施例提供一种图像传感器的制备方法,可用于形成上述图像传感器。Correspondingly, another embodiment of the present disclosure provides a method for preparing an image sensor, which can be used to form the above-mentioned image sensor.
图4为本公开一实施例提供的一种图像传感器制备方法的步骤流程图,图5-图11为本公开又一实施例提供的图像传感器的制备方法中各步骤对应的沿图1中A-A’方向的结构示意图,以下将结合附图对本实施例提供的图像传感器的制备方法进行详细说明,与上述实施例相同或相应的部分,以下将不做详细赘述。FIG4 is a flow chart of the steps of a method for preparing an image sensor provided by one embodiment of the present disclosure, and FIGS. 5 to 11 are schematic structural diagrams along the A-A’ direction in FIG1 corresponding to each step in a method for preparing an image sensor provided by another embodiment of the present disclosure. The method for preparing the image sensor provided by the present embodiment will be described in detail below in conjunction with the accompanying drawings, and the parts that are the same or corresponding to the above-mentioned embodiments will not be described in detail below.
步骤S100 提供基底101,基底101内形成有多个像素单元102和分离多个像素单元102的隔离结构103。Step S100 : providing a substrate 101 , in which a plurality of pixel units 102 and an isolation structure 103 for separating the plurality of pixel units 102 are formed.
在一些实施例中,参考图5,基底101可以是绝缘体上硅(SOI) 、锗或金刚石的其他元素的半导体材料,也可以由诸如硅锗、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓等材料制备而成。基底101还可以为掺杂的硅基底,例如,基底101可以是用诸如磷或砷的N型掺杂剂掺杂的硅基底。In some embodiments, referring to FIG5 , the substrate 101 may be a semiconductor material of other elements such as silicon on insulator (SOI), germanium or diamond, or may be made of materials such as silicon germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide. The substrate 101 may also be a doped silicon substrate, for example, the substrate 101 may be a silicon substrate doped with an N-type dopant such as phosphorus or arsenic.
参考图2,每个像素单元102可以包括光电转换层PD、转移晶体管TG、浮置扩散区FD、复位晶体管RST、源极跟随器晶体管SF和选择晶体管SEL。光线通过光电转换层PD转换成电信号,其中,入射光线可以是可见光,例如,入射光线可以是红外线(IR)、紫外线(UV)、X射线、微波、其他合适类型的光线或它们的组合。2 , each pixel unit 102 may include a photoelectric conversion layer PD, a transfer transistor TG, a floating diffusion region FD, a reset transistor RST, a source follower transistor SF, and a selection transistor SEL. Light is converted into an electrical signal by the photoelectric conversion layer PD, wherein the incident light may be visible light, for example, infrared light (IR), ultraviolet light (UV), X-rays, microwaves, other suitable types of light, or a combination thereof.
对基底101进行离子注入,以形成像素单元102。像素单元102包括光电转换层PD,可将光信号转换为电信号,像素单元102与基底101相接触。本实施例对于形成像素单元102,向基底101内植入的离子类型不作限定,可以形成所需的光电转换层PD、转移晶体管TG、浮置扩散区FD、复位晶体管RST、源极跟随器晶体管SF和选择晶体管SEL器件即可。示例性地,基底101为P型掺杂,则在基底101内注入N型离子,注入的离子具体可为具有五个价电子的离子,例如可以为磷离子或砷离子。当磷离子替换硅原子时,向晶体的价带提供一个带负电的电子,从而形成N型的光电二极管的像素单元102。在其他实施例中,当基底101为N型掺杂时,还可以向基底101内注入P型离子,形成P型光电二极管的像素单元102。在形成像素单元102的过程中,为保证离子注入后形成的像素单元102的良率,可进行多次不同角度的离子注入,以形成符合预设图案的像素单元102。Ions are implanted into the substrate 101 to form a pixel unit 102. The pixel unit 102 includes a photoelectric conversion layer PD, which can convert an optical signal into an electrical signal, and the pixel unit 102 is in contact with the substrate 101. In this embodiment, the type of ions implanted into the substrate 101 for forming the pixel unit 102 is not limited, and the required photoelectric conversion layer PD, transfer transistor TG, floating diffusion region FD, reset transistor RST, source follower transistor SF and selection transistor SEL devices can be formed. Exemplarily, if the substrate 101 is P-type doped, N-type ions are implanted into the substrate 101, and the implanted ions can specifically be ions with five valence electrons, such as phosphorus ions or arsenic ions. When the phosphorus ions replace silicon atoms, a negatively charged electron is provided to the valence band of the crystal, thereby forming a pixel unit 102 of an N-type photodiode. In other embodiments, when the substrate 101 is N-type doped, P-type ions can also be implanted into the substrate 101 to form a pixel unit 102 of a P-type photodiode. In the process of forming the pixel unit 102 , in order to ensure the yield of the pixel unit 102 formed after ion implantation, multiple ion implantations at different angles may be performed to form the pixel unit 102 conforming to a preset pattern.
刻蚀基底101,形成沟槽,在沟槽内填充第一介电层104和第二介电层105,以形成隔离结构130。第一介电层104和第二介电层105的材料可以均为氧化硅或其他高介电常数材料,例如,氧化硅(SiO2)、氧化铪(HfO2)、氧化钽(Ta2O5)、氧化钛(TiO2)、氧化锆(ZrO2)、氧化铝(Al2O3)等材料。填充第一介电层104和第二介电层105沉积工艺可以包括化学气相沉积(Chemical Vapor Deposition, CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、原子层沉积(Atomic Layer Deposition, ALD)或其他沉积工艺,其中,第一介电层104和第二介电层105的沉积工艺可以重复或交替进行,以形成单层或多层的介电层,第一介电层104和第二介电层105填充隔离结构103并且还可以延伸至基底101的表面。The substrate 101 is etched to form a trench, and the first dielectric layer 104 and the second dielectric layer 105 are filled in the trench to form an isolation structure 130. The materials of the first dielectric layer 104 and the second dielectric layer 105 can both be silicon oxide or other high dielectric constant materials, such as silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ) and the like. The deposition process for filling the first dielectric layer 104 and the second dielectric layer 105 may include chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD) or other deposition processes, wherein the deposition processes of the first dielectric layer 104 and the second dielectric layer 105 may be repeated or alternately performed to form a single-layer or multi-layer dielectric layer, and the first dielectric layer 104 and the second dielectric layer 105 fill the isolation structure 103 and may also extend to the surface of the substrate 101.
步骤S200形成栅格结构GD,栅格结构GD形成于基底101上,且分别沿第一方向X和第二方向Y延伸,栅格结构GD包括第一栅格层106和第二栅格层107,第二栅格层107覆盖第一栅格层106的侧壁和顶部,其中,第二栅格层107的折射率大于第一栅格层106的折射率。Step S200 forms a grid structure GD, which is formed on the substrate 101 and extends along the first direction X and the second direction Y respectively. The grid structure GD includes a first grid layer 106 and a second grid layer 107. The second grid layer 107 covers the side wall and the top of the first grid layer 106, wherein the refractive index of the second grid layer 107 is greater than the refractive index of the first grid layer 106.
在一些实施例中,参考图6-图10,在基底101上依次堆叠沉积第一氧化层1062、导电层1063和第二氧化层1064,示例性地,第一氧化层1062、导电层1063和第二氧化层1064依次层叠沉积于基底101上的第二介电层105上,示例性地,第一氧化层1062的厚度范围可以为150nm~200nm,导电层的厚度范围可以为200nm~250nm,第二氧化层1064厚度范围可以为300nm ~350nm,以保证形成的第一栅格层106的结构稳定性。在一些实施例中,第一氧化层1062和第二氧化层1063的材料可以包括但不限于氧化硅、氧化铝、氧化钽以及它们的组合中的至少一种,导电层1063的材料可以为钨、钛或钽,其中,第一氧化层1062和第二氧化层1064可用于改善导电层1063与第二栅格层107或第二介电层105的界面接触性能。In some embodiments, referring to Figures 6-10, a first oxide layer 1062, a conductive layer 1063, and a second oxide layer 1064 are stacked and deposited in sequence on a substrate 101. Exemplarily, the first oxide layer 1062, the conductive layer 1063, and the second oxide layer 1064 are stacked and deposited in sequence on a second dielectric layer 105 on the substrate 101. Exemplarily, the thickness of the first oxide layer 1062 can range from 150nm to 200nm, the thickness of the conductive layer can range from 200nm to 250nm, and the thickness of the second oxide layer 1064 can range from 300nm to 350nm, so as to ensure the structural stability of the formed first grid layer 106. In some embodiments, the material of the first oxide layer 1062 and the second oxide layer 1063 may include but is not limited to at least one of silicon oxide, aluminum oxide, tantalum oxide and a combination thereof, and the material of the conductive layer 1063 may be tungsten, titanium or tantalum, wherein the first oxide layer 1062 and the second oxide layer 1064 can be used to improve the interface contact performance between the conductive layer 1063 and the second grid layer 107 or the second dielectric layer 105.
在其他实施例中,在基底101上沉积第一氧化层1062之前还包括沉积氮化物层1061,示例性地,氮化物层1061、第一氧化层1062、导电层1063和第二氧化层1064依次层叠沉积于基底101上的第二介电层105上。其中,氮化物层1061可以与第二栅格层107的材料相同,例如可以均为含氮材料,例如氮化硅,氮碳化硅。沉积的氮化物层1061的厚度可以大于第一氧化层1062的厚度且小于导电层1063的厚度以及第二氧化层1064的厚度,例如,氮化物层1061的厚度范围可以为100-150nm,第一氧化层1062的厚度范围可以为20nm~50nm,导电层的厚度范围可以为200nm~250nm,第二氧化层1064厚度范围可以为300nm ~350nm,如此设置可以在避免基底101以及第一介电层104和第二介电层105发生翘曲的同时,有效提高第一栅格层106的结构稳定性。氮化物层1061、第一氧化层1062、导电层1063和第二氧化层1064的沉积工艺可以包括电镀、溅射、CVD、PVD、或其他沉积工艺,其中,CVD工艺可以是包括PECVD、LPCVD、或者ALD。In other embodiments, before depositing the first oxide layer 1062 on the substrate 101, the method further includes depositing a nitride layer 1061. For example, the nitride layer 1061, the first oxide layer 1062, the conductive layer 1063, and the second oxide layer 1064 are sequentially stacked and deposited on the second dielectric layer 105 on the substrate 101. The nitride layer 1061 may be made of the same material as the second grid layer 107, for example, both may be nitrogen-containing materials, such as silicon nitride or silicon carbide. The thickness of the deposited nitride layer 1061 may be greater than the thickness of the first oxide layer 1062 and less than the thickness of the conductive layer 1063 and the thickness of the second oxide layer 1064. For example, the thickness of the nitride layer 1061 may be in the range of 100-150 nm, the thickness of the first oxide layer 1062 may be in the range of 20 nm to 50 nm, the thickness of the conductive layer may be in the range of 200 nm to 250 nm, and the thickness of the second oxide layer 1064 may be in the range of 300 nm to 350 nm. Such a configuration can effectively improve the structural stability of the first grid layer 106 while preventing the substrate 101 and the first dielectric layer 104 and the second dielectric layer 105 from warping. The deposition process of the nitride layer 1061, the first oxide layer 1062, the conductive layer 1063 and the second oxide layer 1064 may include electroplating, sputtering, CVD, PVD, or other deposition processes, wherein the CVD process may include PECVD, LPCVD, or ALD.
图案化堆叠的第一氧化层1062、导电层1063和第二氧化层1064,或者图案化堆叠的氮化物层1061、第一氧化层1062、导电层1063和第二氧化层1064,以形成第一栅格层106。刻蚀工艺可以是干法刻蚀或湿法刻蚀。The stacked first oxide layer 1062, conductive layer 1063 and second oxide layer 1064 are patterned, or the stacked nitride layer 1061, first oxide layer 1062, conductive layer 1063 and second oxide layer 1064 are patterned to form the first grid layer 106. The etching process may be dry etching or wet etching.
参考图9-图10,在第一栅格层106上沉积第二栅格层107,图案化第二栅格层107,剩余的第二栅格层107覆盖第一栅格层106的侧壁和顶部,第一栅格层106和第二栅格层107构成栅格结构GD。沉积第二栅格层107的工艺可以包括CVD、PVD、ALD或其他沉积工艺,沉积的第二栅格层107的厚度范围可以为10nm-50nm,第二栅格层107的顶面小于滤色器108的顶面的高度且第二栅格层107的材料可以为含氮化合物,例如可以为氮化硅,折射率约为2.0。9-10, the second grid layer 107 is deposited on the first grid layer 106, and the second grid layer 107 is patterned. The remaining second grid layer 107 covers the sidewall and the top of the first grid layer 106, and the first grid layer 106 and the second grid layer 107 constitute a grid structure GD. The process of depositing the second grid layer 107 may include CVD, PVD, ALD or other deposition processes, and the thickness of the deposited second grid layer 107 may range from 10nm to 50nm. The top surface of the second grid layer 107 is less than the height of the top surface of the color filter 108, and the material of the second grid layer 107 may be a nitrogen-containing compound, such as silicon nitride, with a refractive index of about 2.0.
在一些实施例中,第一氧化层1062与第二氧化层1064的折射率可以均小于导电层1063的折射率,且导电层的折射率小于第二栅格层107的折射率,其中,第一氧化层1062的折射率与第二氧化层1064的折射率也可以相等且均小于导电层1063的折射率,示例性地,第一氧化层1062和第二氧化层1064的材料可以均为氧化硅,折射率约为1.45,导电层1063可以为钨,折射率约为1.91。因此,当光线从滤色器108入射到第二栅格层107时,可以在第二栅格层107与第一栅格层106的界面处发生全反射,将光线反射回相应的像素单元,使光线偏离其它像素单元,从而可以有效避免相邻像素单元之间的光学串扰。In some embodiments, the refractive index of the first oxide layer 1062 and the second oxide layer 1064 may be both smaller than the refractive index of the conductive layer 1063, and the refractive index of the conductive layer is smaller than the refractive index of the second grid layer 107, wherein the refractive index of the first oxide layer 1062 and the refractive index of the second oxide layer 1064 may also be equal and smaller than the refractive index of the conductive layer 1063, and illustratively, the materials of the first oxide layer 1062 and the second oxide layer 1064 may both be silicon oxide, with a refractive index of about 1.45, and the conductive layer 1063 may be tungsten, with a refractive index of about 1.91. Therefore, when light is incident from the color filter 108 to the second grid layer 107, total reflection may occur at the interface between the second grid layer 107 and the first grid layer 106, and the light may be reflected back to the corresponding pixel unit, so that the light deviates from other pixel units, thereby effectively avoiding optical crosstalk between adjacent pixel units.
在一些实施例中,栅格结构GD的宽度范围可以在20nm至300nm的范围内,基本等于或大于隔离结构130的宽度,以覆盖隔离结构130。因此,栅格结构GD可以有效阻挡接近垂直的入射光线传播至隔离结构130内,从而可以将传输至隔离结构130内的接近垂直的入射光线折射到邻近的像素单元102,进一步避免了光学串扰。In some embodiments, the width of the grid structure GD may be in the range of 20 nm to 300 nm, which is substantially equal to or greater than the width of the isolation structure 130, so as to cover the isolation structure 130. Therefore, the grid structure GD may effectively block nearly vertical incident light from propagating into the isolation structure 130, thereby refracting nearly vertical incident light transmitted into the isolation structure 130 to the adjacent pixel unit 102, further avoiding optical crosstalk.
S300 形成多个滤色器108,滤色器形成于基底101上,并与多个像素单元102分别对应,栅格结构GD位于多个滤色器108之间。S300 : forming a plurality of color filters 108 . The color filters are formed on the substrate 101 and correspond to the plurality of pixel units 102 , respectively. The grid structure GD is located between the plurality of color filters 108 .
在一些实施例中,参考图11,在形成栅格结构GD后,在基底101和栅格结构GD上沉积滤色器材料层,图案化滤色器材料层,以形成被栅格结构GD间隔开的多个滤色器108。示例性地,在栅格结构GD之间的第二介质层105上形成滤色器108,每一滤色器108对应设置于相应的像素单元102上。滤色器108的材料可以包括但不限于着色或染色的材料,诸如丙烯酸。例如,聚甲基丙烯酸甲酯(“PMMA”)或丙二醇单硬脂酸酯(“PGMS”),可利用它们增加颜料或染料来形成滤色器,还可以包括由氧化硅、氮化硅或其他合适的聚合物,并且可以通过CVD、PVD、或它们的组合的工艺形成。滤色器108的厚度可以大于栅格结构GD的厚度,滤色器108可以覆盖栅格结构GD。In some embodiments, referring to FIG. 11 , after forming the grid structure GD, a color filter material layer is deposited on the substrate 101 and the grid structure GD, and the color filter material layer is patterned to form a plurality of color filters 108 separated by the grid structure GD. Exemplarily, the color filter 108 is formed on the second dielectric layer 105 between the grid structures GD, and each color filter 108 is correspondingly arranged on the corresponding pixel unit 102. The material of the color filter 108 may include, but is not limited to, a colored or dyed material, such as acrylic acid. For example, polymethyl methacrylate ("PMMA") or propylene glycol monostearate ("PGMS"), which can be used to add pigments or dyes to form a color filter, can also include silicon oxide, silicon nitride or other suitable polymers, and can be formed by CVD, PVD, or a combination thereof. The thickness of the color filter 108 may be greater than the thickness of the grid structure GD, and the color filter 108 may cover the grid structure GD.
在一些实施例中,滤色器108可以包括红色滤色器、绿色滤色器、蓝色滤色器、红外(IR)滤色器、透明滤色器或其他颜色的滤色器。示例性地,滤色器还可以布置成拜耳图案(Bayer pattern)或任何其他合适的图案,例如,滤色器108可以包括在红色、绿色和蓝色光谱范围内传输光的红色(R)、绿色(G)和蓝色(B)滤色器中的一种或多种,R、G和B型滤色器108在图像传感器10的每个像素行中以重复的RGB图案来布置。此外,滤色器108还可以被配置成具有不同类型的滤色器108,例如红色、绿色、蓝色和红外线。In some embodiments, the color filter 108 may include a red filter, a green filter, a blue filter, an infrared (IR) filter, a transparent filter, or a filter of another color. Exemplarily, the color filter may also be arranged in a Bayer pattern or any other suitable pattern, for example, the color filter 108 may include one or more of red (R), green (G), and blue (B) filters that transmit light in the red, green, and blue spectral ranges, and the R, G, and B type color filters 108 are arranged in a repeated RGB pattern in each pixel row of the image sensor 10. In addition, the color filter 108 may also be configured to have different types of color filters 108, such as red, green, blue, and infrared.
在一些实施例中,在滤色器108上方还可以形成有微透镜109,微透镜109可以为半椭圆形,以将入射到滤色器108的光线引导至相对应的像素单元102上。其中,微透镜109可以由透明的有机材料、无机化合物材料制成,例如,基于聚苯乙烯的树脂、基于聚酰亚胺的树脂、基于聚硅氧烷的树脂、基于丙烯酸的树脂、基于环氧树脂的树脂或其共聚物树脂的透明聚合物材料,或者基于氧化硅或基于氮化硅的无机材料。在一些实施例中,微透镜109上还可以形成有保护层110,保护层110可随型形成于微透镜109上表面,例如可以设置为半球型的曲面,以在保护微透镜109的同时,还可以与微透镜109相互配合增大或减小焦距,以改善图像的分辨率。示例性地,保护层110的材料可以为无机氧化物层,包括但不限于氧化硅、氧化钛、氧化锆、氧化铪中的至少一种或多种。In some embodiments, a microlens 109 may be formed above the color filter 108, and the microlens 109 may be semi-elliptical to guide the light incident on the color filter 108 to the corresponding pixel unit 102. The microlens 109 may be made of a transparent organic material or an inorganic compound material, for example, a transparent polymer material based on a polystyrene resin, a polyimide resin, a polysiloxane resin, an acrylic resin, an epoxy resin, or a copolymer resin thereof, or an inorganic material based on silicon oxide or silicon nitride. In some embodiments, a protective layer 110 may be formed on the microlens 109, and the protective layer 110 may be formed on the upper surface of the microlens 109, for example, it may be set to a hemispherical curved surface, so as to protect the microlens 109 while cooperating with the microlens 109 to increase or decrease the focal length to improve the resolution of the image. Exemplarily, the material of the protective layer 110 may be an inorganic oxide layer, including but not limited to at least one or more of silicon oxide, titanium oxide, zirconium oxide, and hafnium oxide.
本公开实施例还提供一种成像系统50,参考图12,该成像系统50使用上述图像传感器10捕获图像。图12的成像系统50可为便捷式电子设备,诸如相机、移动电话、平板计算机、网络相机、摄像机、视频监控系统、汽车成像系统、具有成像能力的视频游戏系统或者捕获数字图像数据的任何其他所需成像系统或设备。相机模块30可用于将入射光转换成数字图像数据。相机模块30可以包括镜头20以及对应的图像传感器10。镜头20可包括固定镜头和/或可调镜头,并且可包括形成于图像传感器10的成像表面上的微透镜。在图像捕获操作期间,可通过镜头20将来自场景的光聚焦到图像传感器10上。图像传感器10可包括用于将模拟像素数据转换成要提供给存储和处理电路40的对应数字图像数据的电路。如果需要,相机模块30可设置有镜头20的阵列和对应图像传感器10的阵列。The present disclosure also provides an imaging system 50, with reference to FIG. 12, which uses the above-mentioned image sensor 10 to capture images. The imaging system 50 of FIG. 12 may be a portable electronic device, such as a camera, a mobile phone, a tablet computer, a webcam, a video camera, a video surveillance system, an automotive imaging system, a video game system with imaging capabilities, or any other desired imaging system or device that captures digital image data. The camera module 30 may be used to convert incident light into digital image data. The camera module 30 may include a lens 20 and a corresponding image sensor 10. The lens 20 may include a fixed lens and/or an adjustable lens, and may include a microlens formed on an imaging surface of the image sensor 10. During an image capture operation, light from a scene may be focused onto the image sensor 10 through the lens 20. The image sensor 10 may include a circuit for converting analog pixel data into corresponding digital image data to be provided to the storage and processing circuit 40. If desired, the camera module 30 may be provided with an array of lenses 20 and an array of corresponding image sensors 10.
存储和处理电路40可包括一个或多个集成电路,例如存储器和处理器(如,图像处理电路、微处理器、诸如随机存取存储器和非易失性存储器的存储设备等),并且可使用与相机模块30分开和/或形成相机模块30的一部分的组件(如,形成包括图像传感器10的集成电路或者与图像传感器10相关的模块内的集成电路的一部分的电路)来实施。可使用处理电路40处理和存储已被相机模块30捕获的图像数据(如,使用处理电路40上的图像处理引擎、使用处理电路40上的成像模式选择引擎等)。可根据需要使用耦接到处理电路40的有线和/或无线通信路径将经过处理的图像数据提供给外部设备(如,计算机、外部显示器或其他设备)。The storage and processing circuit 40 may include one or more integrated circuits, such as memory and processors (e.g., image processing circuits, microprocessors, storage devices such as random access memory and non-volatile memory, etc.), and may be implemented using components that are separate from the camera module 30 and/or form part of the camera module 30 (e.g., circuits that form part of an integrated circuit that includes the image sensor 10 or within a module associated with the image sensor 10). Image data that has been captured by the camera module 30 may be processed and stored using the processing circuit 40 (e.g., using an image processing engine on the processing circuit 40, using an imaging mode selection engine on the processing circuit 40, etc.). The processed image data may be provided to an external device (e.g., a computer, an external display, or other device) using a wired and/or wireless communication path coupled to the processing circuit 40 as desired.
综上所述,本公开提供一种图像传感器及其制备方法,通过设置第二栅格层的折射率大于第一栅格层的折射率,从滤色器入射到第二栅格层的光可以在第二栅格层与第一栅格层的界面处发生全反射,将光线反射回相应的像素单元,使光线偏离其它相邻的像素单元,从而有效避免了相邻像素单元之间的光学串扰。In summary, the present disclosure provides an image sensor and a method for preparing the same. By setting the refractive index of the second grid layer to be greater than the refractive index of the first grid layer, light incident from the color filter to the second grid layer can be totally reflected at the interface between the second grid layer and the first grid layer, and the light is reflected back to the corresponding pixel unit, causing the light to deviate from other adjacent pixel units, thereby effectively avoiding optical crosstalk between adjacent pixel units.
本领域的普通技术人员可以理解,上述各实施方式是实现本公开的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本公开实施例的精神和范围。任何本领域技术人员,在不脱离本公开实施例的精神和范围内,均可作各种改动与修改,因此本公开实施例的保护范围应当以权利要求限定的范围为准。Those skilled in the art can understand that the above-mentioned embodiments are specific examples for implementing the present disclosure, and in practical applications, various changes can be made to them in form and detail without departing from the spirit and scope of the embodiments of the present disclosure. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the embodiments of the present disclosure, so the protection scope of the embodiments of the present disclosure shall be based on the scope defined in the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410868816.XA CN118866920A (en) | 2024-06-28 | 2024-06-28 | Imaging system, image sensor and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410868816.XA CN118866920A (en) | 2024-06-28 | 2024-06-28 | Imaging system, image sensor and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118866920A true CN118866920A (en) | 2024-10-29 |
Family
ID=93165887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410868816.XA Pending CN118866920A (en) | 2024-06-28 | 2024-06-28 | Imaging system, image sensor and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118866920A (en) |
-
2024
- 2024-06-28 CN CN202410868816.XA patent/CN118866920A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11735620B2 (en) | Solid-state imaging device having optical black region, method of manufacturing the same, and electronic apparatus | |
KR101861964B1 (en) | Solid-state imaging device, method of manufacturing the same, and electronic equipment | |
CN106463517B (en) | Solid-state imaging device, method for manufacturing the same, and electronic device | |
US7955764B2 (en) | Methods to make sidewall light shields for color filter array | |
KR20160051687A (en) | Solid-state imaging element, production method thereof, and electronic device | |
CN112397534B (en) | Image sensor for infrared sensing and method of making the same | |
CN111435667A (en) | Image Sensor | |
CN101740589A (en) | Image sensor and method for manufacturing thereof | |
JP6663887B2 (en) | Solid-state imaging device, manufacturing method thereof, and electronic device | |
CN118866920A (en) | Imaging system, image sensor and method for manufacturing the same | |
CN119230568A (en) | Image Sensor | |
TW202429699A (en) | Image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |