CN118866675A - Optimization method of dry etching process - Google Patents
Optimization method of dry etching process Download PDFInfo
- Publication number
- CN118866675A CN118866675A CN202411339262.0A CN202411339262A CN118866675A CN 118866675 A CN118866675 A CN 118866675A CN 202411339262 A CN202411339262 A CN 202411339262A CN 118866675 A CN118866675 A CN 118866675A
- Authority
- CN
- China
- Prior art keywords
- layer
- protective layer
- etching
- thickness
- structural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000001312 dry etching Methods 0.000 title claims abstract description 46
- 238000005457 optimization Methods 0.000 title abstract description 5
- 239000010410 layer Substances 0.000 claims abstract description 239
- 238000005530 etching Methods 0.000 claims abstract description 178
- 239000011241 protective layer Substances 0.000 claims abstract description 154
- 238000012937 correction Methods 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims description 59
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000001020 plasma etching Methods 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000003989 dielectric material Substances 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 238000009616 inductively coupled plasma Methods 0.000 claims description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 description 26
- 239000000523 sample Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 239000002699 waste material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/26—Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体器件制造技术领域,具体涉及一种干法刻蚀工艺的优化方法。The invention relates to the technical field of semiconductor device manufacturing, and in particular to a method for optimizing a dry etching process.
背景技术Background Art
半导体器件的制备工艺中,常需在外延结构材料上刻蚀到特定的深度,以实现绝缘结构或电极的制作,比如成型特定高度的脊形结构,从而保证半导体器件的性能。干法刻蚀是在半导体工艺里常见的刻蚀工艺,相较于湿法刻蚀,干法刻蚀由于使用诸如氩气进行物理轰击,因此能成型准直性更好的侧壁,在波导(Waveguide)或单模激光器等小线宽器件的制备上应用广泛。In the preparation process of semiconductor devices, it is often necessary to etch to a specific depth on the epitaxial structural material to realize the production of insulating structures or electrodes, such as forming a ridge structure of a specific height, so as to ensure the performance of semiconductor devices. Dry etching is a common etching process in semiconductor technology. Compared with wet etching, dry etching uses physical bombardment such as argon gas, so it can form side walls with better collimation. It is widely used in the preparation of small line width devices such as waveguides or single-mode lasers.
干法刻蚀一般需设置保护层,以保护不需被刻蚀的部分。但由于干法刻蚀物理轰击的特性,保护层在刻蚀的过程亦会被减薄,因此会导致无法在刻蚀后直接量出“实际”刻蚀深度,需去掉保护层后才能量测出实际的刻蚀深度;但若刻蚀深度未到预期目标,又会因已无保护层无法接续进行,亦无法重新再通过光刻重新补上保护层,因对位误差只能重新采用新的测试样品,反复来回上述步骤直至完成半导体器件层目标深度的精准刻蚀,但是这种刻蚀校准方式不仅效率低,而且会造成样品材料的浪费,经济效益低。Dry etching generally requires a protective layer to protect the parts that do not need to be etched. However, due to the physical bombardment characteristics of dry etching, the protective layer will also be thinned during the etching process, so it will be impossible to directly measure the "actual" etching depth after etching. The actual etching depth can only be measured after removing the protective layer; but if the etching depth does not reach the expected target, it will not be able to continue because there is no protective layer, and it is impossible to re-apply the protective layer through photolithography. Due to the alignment error, new test samples can only be used again, and the above steps are repeated back and forth until the semiconductor device layer is accurately etched to the target depth. However, this etching calibration method is not only inefficient, but also causes waste of sample materials and low economic benefits.
发明内容Summary of the invention
有鉴于此,本发明提供了一种干法刻蚀工艺的优化方法,以解决现有完成半导体器件目标深度精准刻蚀时,刻蚀校准方式效率低,容易造成样品材料的浪费,经济效益低的问题。In view of this, the present invention provides a method for optimizing a dry etching process to solve the problem that the existing etching calibration method is inefficient, easily causes waste of sample materials, and has low economic benefits when completing precise etching of a target depth of a semiconductor device.
第一方面,本发明提供了一种干法刻蚀工艺的优化方法,包括:In a first aspect, the present invention provides a method for optimizing a dry etching process, comprising:
步骤S101,预先获取保护层在干法刻蚀时单位时间内的减薄量;Step S101, pre-obtaining the thinning amount of the protective layer per unit time during dry etching;
步骤S102,提供待刻蚀样品,待刻蚀样品包括第一结构层和位于第一结构层一侧表面上的第二结构层;Step S102, providing a sample to be etched, wherein the sample to be etched includes a first structure layer and a second structure layer located on a surface of one side of the first structure layer;
步骤S103,在第二结构层背离第一结构层的一侧制备保护层,保护层遮挡第二结构层的第一目标区域,并露出第二结构层的第二目标区域;Step S103, preparing a protective layer on a side of the second structural layer away from the first structural layer, wherein the protective layer shields the first target area of the second structural layer and exposes the second target area of the second structural layer;
步骤S104,在保护层背离第一结构层的一侧进行刻蚀处理,以在第二结构层的第二目标区域上形成凹槽,以及在第二结构层的第一目标区域上形成脊形结构;Step S104, performing an etching process on a side of the protective layer away from the first structural layer to form a groove on the second target area of the second structural layer and a ridge structure on the first target area of the second structural layer;
步骤S105,根据刻蚀处理的时间以及保护层在干法刻蚀时单位时间内的减薄量,得到刻蚀处理中的保护层的实际减薄量;并根据保护层的初始厚度以及刻蚀处理中保护层的实际减薄量,得到保护层的剩余厚度;Step S105, obtaining the actual thinning amount of the protective layer during the etching process according to the etching process time and the thinning amount of the protective layer per unit time during dry etching; and obtaining the remaining thickness of the protective layer according to the initial thickness of the protective layer and the actual thinning amount of the protective layer during the etching process;
步骤S106,测量保护层和脊形结构的厚度总和,并根据保护层的剩余厚度,得到脊形结构的实际厚度;Step S106, measuring the total thickness of the protective layer and the ridge structure, and obtaining the actual thickness of the ridge structure according to the remaining thickness of the protective layer;
步骤S107,对比脊形结构的实际厚度与预设目标厚度,得到厚度差值;Step S107, comparing the actual thickness of the ridge structure with the preset target thickness to obtain a thickness difference;
步骤S108,基于厚度差值,在保护层背离第一结构层的一侧进行刻蚀修正,直至脊形结构的实际厚度与预设目标厚度相等。Step S108 , based on the thickness difference, performing etching correction on the side of the protection layer away from the first structural layer until the actual thickness of the ridge structure is equal to the preset target thickness.
本发明中,通过在正式进行刻蚀处理之前首先进行测试步骤,获取保护层在与正式干法刻蚀相同条件下的单位时间减薄量;之后在进行正式刻蚀处理的过程中根据刻蚀时间获取实际减薄量,再根据保护层的初始厚度得到保护层在经过刻蚀后的剩余厚度,最终通过测量保护层实际厚度和脊形结构厚度的厚度总和,将测得的厚度总和减去保护层的剩余厚度得到精准的脊形结构的厚度,也即对第二结构层进行刻蚀的精准刻蚀深度;之后根据对比脊形结构实际厚度和预设目标厚度得到厚度差值,在厚度差值不为零的前提下,对第二结构层进行刻蚀修正,刻蚀修正时保护层依旧能够作为遮挡,直至脊形结构的实际厚度与预设目标厚度相等。In the present invention, a test step is first performed before the formal etching process to obtain the thinning amount of the protective layer per unit time under the same conditions as the formal dry etching; then, during the formal etching process, the actual thinning amount is obtained according to the etching time, and then the remaining thickness of the protective layer after etching is obtained according to the initial thickness of the protective layer, and finally, the actual thickness of the protective layer and the thickness of the ridge structure are measured, and the remaining thickness of the protective layer is subtracted from the measured thickness to obtain the precise thickness of the ridge structure, that is, the precise etching depth for etching the second structural layer; then, the thickness difference is obtained by comparing the actual thickness of the ridge structure with the preset target thickness, and on the premise that the thickness difference is not zero, the second structural layer is etched and corrected, and the protective layer can still be used as a shield during the etching correction until the actual thickness of the ridge structure is equal to the preset target thickness.
可在同一半导体器件上进行刻蚀处理和重复的刻蚀修正,直至得到实现脊形结构刻蚀的精准厚度,避免常规刻蚀修正由于无法接续刻蚀修正而造成材料浪费和刻蚀过量的问题,且在前述刻蚀处理之后能够得到刻蚀速率,以作为刻蚀修正的参考,提高刻蚀效率;此外,由于得到上述精准刻蚀深度的过程中,能够得到保护层的实际减薄量,因此在后续进行产品加工时可以根据该减薄量确定适当厚度的保护层,无需盲目为求保险而加厚保护层,有助于降低物料成本,提高生产效率。Etching treatment and repeated etching correction can be performed on the same semiconductor device until the precise thickness of the ridge structure etching is achieved, thereby avoiding the problems of material waste and excessive etching caused by the inability to continue the etching correction due to conventional etching correction. After the aforementioned etching treatment, the etching rate can be obtained as a reference for etching correction to improve etching efficiency. In addition, since the actual thinning amount of the protective layer can be obtained in the process of obtaining the above-mentioned precise etching depth, the appropriate thickness of the protective layer can be determined according to the thinning amount during subsequent product processing, and there is no need to blindly thicken the protective layer for safety reasons, which helps to reduce material costs and improve production efficiency.
在一种可选的实施方式中,测量保护层和脊形结构的厚度总和的步骤S106中,采用台阶仪进行保护层和脊形结构的厚度总和的测量。In an optional implementation, in the step S106 of measuring the total thickness of the protective layer and the ridge structure, a step meter is used to measure the total thickness of the protective layer and the ridge structure.
本发明中,采用台阶仪进行厚度测量,能够获得高精度的测量结果,而且同时具备快速、多功能和易于操作的特点。操作者只需将探针放置在台阶状的结构上,也即本实施例中的凹槽中,台阶仪便会自动计算出凸起的脊形结构和保护层的厚度总和,无需复杂的校准过程。In the present invention, the step meter is used to measure the thickness, which can obtain high-precision measurement results and has the characteristics of being fast, multifunctional and easy to operate. The operator only needs to place the probe on the step-shaped structure, that is, the groove in this embodiment, and the step meter will automatically calculate the total thickness of the raised ridge structure and the protective layer without the need for a complicated calibration process.
在一种可选的实施方式中,基于厚度差值,在保护层背离第一结构层的一侧进行刻蚀修正的步骤S108中,包括多次重复步骤S104~步骤S108。In an optional implementation, based on the thickness difference, step S108 of performing etching correction on the side of the protective layer away from the first structural layer includes repeating steps S104 to S108 multiple times.
本发明中,在一个待刻蚀样品上进行刻蚀处理-台阶仪测量-修正刻蚀时间的多次反复,实现对刻蚀深度的精准修正,得到精确的脊形结构;多次修正在同一待刻蚀样品上进行,避免成本浪费的同时保证刻蚀精度,提高刻蚀修正效率。In the present invention, etching treatment-step profiler measurement-correction of etching time is repeated multiple times on a sample to be etched, so as to achieve accurate correction of etching depth and obtain an accurate ridge structure; multiple corrections are performed on the same sample to be etched, so as to avoid cost waste while ensuring etching accuracy and improving etching correction efficiency.
在一种可选的实施方式中,预先获取保护层在干法刻蚀时单位时间内的减薄量的步骤S101包括:In an optional implementation, the step S101 of pre-obtaining the thinning amount of the protective layer per unit time during dry etching includes:
提供测试结构层;Provides test structure layer;
在测试结构层的一侧表面上设置保护层;Disposing a protective layer on one side surface of the test structure layer;
测量获取保护层和测试结构层的初始厚度总和;Measure and obtain the sum of the initial thickness of the protective layer and the test structure layer;
在保护层背离测试结构层的一侧进行1min的刻蚀处理;Perform etching treatment for 1 min on the side of the protective layer away from the test structure layer;
测量刻蚀处理后的保护层与测试结构层的厚度总和;Measuring the total thickness of the protective layer and the test structure layer after etching;
对比保护层和测试结构层的初始厚度总和与刻蚀处理后的保护层与测试结构层的厚度总和,得到保护层在单位时间内的刻蚀减薄量。The total initial thickness of the protective layer and the test structure layer is compared with the total thickness of the protective layer and the test structure layer after etching, so as to obtain the etching thinning amount of the protective layer per unit time.
本发明中,采用预先导入测试步骤的方式获取保护层单位时间内的减薄量,且刻蚀时间选择1min,得到的厚度差值即为保护层在单位时间内的刻蚀减薄量,提高测试效率,避免了在实际刻蚀中进行测试,待刻蚀样品大小不同影响刻蚀负载效应,从而导致测试结果不准确的问题。In the present invention, the thinning amount of the protective layer per unit time is obtained by pre-introducing the test steps, and the etching time is selected as 1 minute. The obtained thickness difference is the etching thinning amount of the protective layer per unit time, which improves the test efficiency and avoids the problem of inaccurate test results caused by the different sizes of the samples to be etched affecting the etching load effect during the actual etching.
在一种可选的实施方式中,第一结构层包括硅、砷化镓、磷化铟、氮化镓、碳化硅中的一种或多种。In an optional embodiment, the first structural layer includes one or more of silicon, gallium arsenide, indium phosphide, gallium nitride, and silicon carbide.
本发明中,干法刻蚀工艺的优化方法能够选用多种材料的第一结构层作为衬底来进行精准干法刻蚀,每种材料的第一结构层对于其上形成的作为刻蚀处理对象的第二结构层都具有普适性,不存在针对某种材料的第二结构层而无法适用的情况,也即第一结构层作为衬底时,第一结构层上适于形成任何材料的外延结构作为待刻蚀的第二结构层,适用范围广。In the present invention, the optimization method of the dry etching process can select the first structural layer of a variety of materials as the substrate for precise dry etching. The first structural layer of each material is universal for the second structural layer formed thereon as the etching treatment object, and there is no situation where it cannot be applied to the second structural layer of a certain material. That is, when the first structural layer is used as the substrate, the first structural layer is suitable for forming an epitaxial structure of any material as the second structural layer to be etched, and has a wide range of applications.
在一种可选的实施方式中,测试结构层与第一结构层的大小相同;测试结构层与第一结构层的结构相同,或测试结构层与第一结构层的结构不相同。In an optional implementation, the test structure layer and the first structure layer have the same size; the test structure layer and the first structure layer have the same structure; or the test structure layer and the first structure layer have different structures.
本发明中,在测试步骤中可以采用与正式刻蚀时相同大小的第一结构层,但是第一结构层的结构可以有所差异,具体来说,本发明中测试步骤中的测试结构层可以选用与正式刻蚀时的第一结构层相比成本更低的便宜材料,也可以选择表面有所损伤的破片,以节省成本。In the present invention, a first structural layer of the same size as that used in formal etching can be used in the test step, but the structure of the first structural layer may be different. Specifically, the test structural layer in the test step of the present invention can be made of cheaper materials than the first structural layer used in formal etching, or broken pieces with damaged surfaces can be selected to save costs.
在一种可选的实施方式中,在第二结构层背离第一结构层的一侧制备保护层的步骤S103,包括:In an optional embodiment, the step S103 of preparing a protective layer on a side of the second structural layer away from the first structural layer includes:
在第二结构层背离第一结构层的一侧表面覆盖初始保护层;Covering the initial protective layer on the surface of the second structural layer on the side facing away from the first structural layer;
在初始保护层背离第一结构层的一侧表面设置掩模层,掩模层包括露出部分保护层的图案区域,图案区域与第二结构层的第二目标区域相对应;A mask layer is disposed on a surface of the initial protective layer facing away from the first structural layer, wherein the mask layer includes a pattern region exposing a portion of the protective layer, and the pattern region corresponds to a second target region of the second structural layer;
在掩模层一侧对初始保护层进行刻蚀,以形成与第二结构层的第一目标区域相对应的保护层。The initial protection layer is etched on one side of the mask layer to form a protection layer corresponding to the first target area of the second structure layer.
本发明中,在去除掩模层之后,能够以保护层为遮罩对第二结构层进行刻蚀处理,再通过获取保护层的实际减薄量获取精准的脊形结构厚度,之后在同一待刻蚀样品上保护层接续作为遮罩对脊形结构进行精准刻蚀修正,校准效率高,有助于节约成本。In the present invention, after removing the mask layer, the second structural layer can be etched using the protective layer as a mask, and the precise thickness of the ridge structure can be obtained by obtaining the actual thinning amount of the protective layer. Thereafter, the protective layer on the same sample to be etched continues to be used as a mask to perform precise etching correction on the ridge structure. The calibration efficiency is high, which helps to save costs.
在一种可选的实施方式中,保护层包括:光刻胶、或介电材料,或硬金属材料;介电材料包括二氧化硅或氮化硅,硬金属材料包括铬、钛、镍中的一种或多种。In an optional embodiment, the protective layer includes: photoresist, or dielectric material, or hard metal material; the dielectric material includes silicon dioxide or silicon nitride, and the hard metal material includes one or more of chromium, titanium, and nickel.
本发明中,保护层适用于任何刻蚀用遮罩材料,选择范围广,有助于被广泛应用。In the present invention, the protective layer is applicable to any etching mask material, has a wide selection range, and is conducive to wide application.
在一种可选的实施方式中,在保护层背离第一结构层的一侧进行刻蚀处理步骤S104中,干法刻蚀的方式包括电感耦合等离子体刻蚀法、或反应离子刻蚀法、或原子层刻蚀法。In an optional implementation, in the step S104 of performing the etching process on the side of the protective layer away from the first structural layer, the dry etching method includes inductively coupled plasma etching, reactive ion etching, or atomic layer etching.
本发明中,干法刻蚀可适用于多种设备。电感耦合等离子体刻蚀法产生的离子密度高、蚀刻均匀性好、蚀刻侧壁垂直度高以及光洁度好;反应离子刻蚀法具有良好的形貌控制能力(各向异性)、较高的选择比以及较高的刻蚀速率;原子层刻蚀法具有精确的刻蚀控制、良好的均匀性、小的负载效应等优点。In the present invention, dry etching can be applied to a variety of equipment. Inductively coupled plasma etching produces high ion density, good etching uniformity, high etching sidewall verticality and good finish; reactive ion etching has good morphology control ability (anisotropy), high selectivity and high etching rate; atomic layer etching has the advantages of precise etching control, good uniformity, small load effect, etc.
在一种可选的实施方式中,在保护层背离第一结构层的一侧进行刻蚀处理步骤S104中,刻蚀处理的时间小于等于1min。In an optional implementation, in the step S104 of performing etching on the side of the protective layer away from the first structural layer, the etching time is less than or equal to 1 minute.
本发明中,初次刻蚀时间采用较短的时间,以保证刻蚀速率,避免刻蚀过深造成浪费。In the present invention, the initial etching time is relatively short to ensure the etching rate and avoid waste caused by excessive etching.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation methods of the present invention or the technical solutions in the prior art, the drawings required for use in the specific implementation methods or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some implementation methods of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明实施例的干法刻蚀工艺的优化方法的流程图;FIG1 is a flow chart of a method for optimizing a dry etching process according to an embodiment of the present invention;
图2是本发明实施例的待刻蚀样品的结构示意图;FIG2 is a schematic diagram of the structure of a sample to be etched according to an embodiment of the present invention;
图3是本发明实施例的在待刻蚀样品上设置第二结构层后的结构示意图;3 is a schematic diagram of the structure after a second structural layer is provided on a sample to be etched according to an embodiment of the present invention;
图4是本发明实施例的对第二结构层进行刻蚀处理后的结构示意图;FIG4 is a schematic diagram of the structure of the second structural layer after etching according to an embodiment of the present invention;
图5是本发明实施例的去除保护层后的结构示意图;FIG5 is a schematic diagram of the structure of an embodiment of the present invention after removing the protective layer;
图6是本发明实施例的测试步骤中测试结构层的结构示意图;6 is a schematic diagram of the structure of the test structure layer in the test step of an embodiment of the present invention;
图7是本发明实施例的在测试结构层上设置保护层后的结构示意图;7 is a schematic structural diagram of an embodiment of the present invention after a protective layer is provided on the test structure layer;
图8是本发明实施例的对测试结构层上保护层进行刻蚀处理后的结构示意图;8 is a schematic structural diagram of an embodiment of the present invention after etching the protective layer on the test structure layer;
图9是本发明实施例的在待刻蚀样品上设置初始保护层的结构示意图;9 is a schematic structural diagram of providing an initial protective layer on a sample to be etched according to an embodiment of the present invention;
图10是本发明实施例的在初始保护层上设置掩模层后的结构示意图;10 is a schematic structural diagram of an embodiment of the present invention after a mask layer is provided on the initial protective layer;
图11是本发明实施例的对初始保护层进行刻蚀处理后的结构示意图。FIG. 11 is a schematic diagram of the structure after the initial protective layer is etched according to an embodiment of the present invention.
附图标记说明:Description of reference numerals:
1、第一结构层、2、第二结构层;3、保护层;4、掩模层;10、测试结构层。1. First structural layer; 2. Second structural layer; 3. Protection layer; 4. Mask layer; 10. Test structural layer.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明作进一步的详细说明。可理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。在附图中示出了根据本发明实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。在本发明的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。The present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are only used to explain the present invention, rather than to limit the present invention. It should also be noted that, for ease of description, only some structures related to the present invention are shown in the accompanying drawings, rather than all structures. In the following description, the description of known structures and technologies is omitted to avoid unnecessary confusion of the concept of the present invention. Various structural schematic diagrams according to embodiments of the present invention are shown in the accompanying drawings. These figures are not drawn to scale, and some details are magnified for the purpose of clear expression, and some details may be omitted. The shapes of various regions and layers shown in the figures and the relative sizes and positional relationships between them are only exemplary, and may be deviated due to manufacturing tolerances or technical limitations in practice, and those skilled in the art may additionally design regions/layers with different shapes, sizes, and relative positions according to actual needs. In the context of the present invention, when a layer/element is referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. In addition, if one layer/element is "on" another layer/element in one orientation, then when the orientation is reversed, the layer/element may be "below" the other layer/element.
如图1至图11所示,本实施例提供一种干法刻蚀工艺的优化方法,图1为干法刻蚀工艺的优化方法的流程图,包括如下步骤:As shown in FIGS. 1 to 11 , this embodiment provides a method for optimizing a dry etching process. FIG. 1 is a flow chart of the method for optimizing a dry etching process, which includes the following steps:
步骤S101,预先获取保护层3在干法刻蚀时单位时间内的减薄量。Step S101, pre-obtaining the thinning amount of the protective layer 3 per unit time during dry etching.
在正式进行刻蚀工艺之前首先导入测试步骤,采用与正式刻蚀时相同的机台和工艺配方,得到作为待刻蚀样品的保护层3在正式刻蚀过程中单位时间内的减薄量。Before the formal etching process is carried out, a test step is first introduced, and the same machine and process formula as those used in the formal etching are used to obtain the thinning amount of the protective layer 3 as the sample to be etched per unit time during the formal etching process.
工艺配方是机台加工不同产品时的对应程式,由制造工程师提前在机台上设置,并且生产时会自动根据待刻蚀样品类型,选择并控制机台按照事先设置的方式进行加工。The process recipe is the corresponding program for the machine to process different products. It is set in advance on the machine by the manufacturing engineer. During production, it will automatically select and control the machine to process in the pre-set manner according to the type of sample to be etched.
步骤S102,提供待刻蚀样品,待刻蚀样品包括第一结构层1和位于第一结构层1一侧表面上的第二结构层2。Step S102 , providing a sample to be etched, wherein the sample to be etched includes a first structure layer 1 and a second structure layer 2 located on one side surface of the first structure layer 1 .
如图2所示,提供待刻蚀样品为进入正式刻蚀工艺的第一步,本实施例的待刻蚀样品以简单的第一结构层1和第二结构层2的组合为例,第一结构层1和第二结构层2的材料不作限定,示例性地,第一结构层1可以是衬底层,第二结构层2为位于衬底层上的外延层,当然,第一结构层1和第二结构层2可以是半导体器件加工中任一需要干法刻蚀工艺的器件层。相较传统刻蚀在无需刻蚀的高度上设计蚀刻阻挡层,或需要搭配湿法刻蚀进行选择性刻蚀,本实施例的校准方法可用于任何结构、材料的精准干法刻蚀,适用范围广,结构简单,操作便捷。As shown in Figure 2, providing a sample to be etched is the first step in entering the formal etching process. The sample to be etched in this embodiment takes a simple combination of the first structure layer 1 and the second structure layer 2 as an example. The materials of the first structure layer 1 and the second structure layer 2 are not limited. For example, the first structure layer 1 can be a substrate layer, and the second structure layer 2 is an epitaxial layer located on the substrate layer. Of course, the first structure layer 1 and the second structure layer 2 can be any device layer that requires a dry etching process in the processing of semiconductor devices. Compared with traditional etching, which designs an etching stop layer at a height that does not require etching, or requires selective etching with wet etching, the calibration method of this embodiment can be used for precise dry etching of any structure and material, with a wide range of applications, simple structure, and convenient operation.
步骤S103,在第二结构层2背离第一结构层1的一侧制备保护层3,保护层3遮挡第二结构层2的第一目标区域,并露出第二结构层2的第二目标区域。Step S103 , preparing a protective layer 3 on a side of the second structural layer 2 facing away from the first structural layer 1 , wherein the protective layer 3 shields the first target area of the second structural layer 2 and exposes the second target area of the second structural layer 2 .
如图3所示,在第二结构层2的上表面形成部分覆盖的保护层3,将第二结构层2被保护层3遮挡的区域称为第一目标区域,将第二结构层2未被保护层3遮挡的区域称为第一目标区域,保护层3保护第二结构层2的第一目标区域,以便于对第二结构层2进行精准刻蚀。As shown in Figure 3, a partially covering protective layer 3 is formed on the upper surface of the second structural layer 2, and the area of the second structural layer 2 blocked by the protective layer 3 is called the first target area, and the area of the second structural layer 2 not blocked by the protective layer 3 is called the first target area. The protective layer 3 protects the first target area of the second structural layer 2 to facilitate precise etching of the second structural layer 2.
步骤S104,在保护层3背离第一结构层1的一侧进行刻蚀处理,以在第二结构层2的第二目标区域上形成凹槽,以及在第二结构层2的第一目标区域上形成脊形结构。Step S104 , performing etching on the side of the protection layer 3 facing away from the first structure layer 1 to form a groove on the second target area of the second structure layer 2 and a ridge structure on the first target area of the second structure layer 2 .
如图4所示,在保护层3的上表面一侧进行刻蚀处理,由于第二结构层2的第一目标区域被保护层3覆盖,第二目标区域裸露出来,因此,在第二目标区域的第二结构层2材料被刻蚀掉,从而形成第一目标区域相对凸出的脊形结构,保护层3覆盖在脊形结构上。As shown in Figure 4, etching is performed on one side of the upper surface of the protective layer 3. Since the first target area of the second structural layer 2 is covered by the protective layer 3 and the second target area is exposed, the material of the second structural layer 2 in the second target area is etched away, thereby forming a relatively protruding ridge structure in the first target area, and the protective layer 3 covers the ridge structure.
步骤S105,根据刻蚀处理的时间以及保护层3在干法刻蚀时单位时间内的减薄量,得到刻蚀处理中的保护层3的实际减薄量;并根据保护层3的初始厚度以及刻蚀处理中保护层3的实际减薄量,得到保护层3的剩余厚度。Step S105, obtaining the actual thinning amount of the protective layer 3 during the etching process according to the etching process time and the thinning amount of the protective layer 3 per unit time during dry etching; and obtaining the remaining thickness of the protective layer 3 according to the initial thickness of the protective layer 3 and the actual thinning amount of the protective layer 3 during the etching process.
由于在步骤S101中已知保护层3在相同刻蚀机台和配方下单位时间内的减薄量,故根据刻蚀时间可得到刻蚀过程中保护层3的实际减薄量;再通过对比保护层3的初始厚度和得到的实际减薄量,两者的差值即为保护层3在经过刻蚀处理后的实际剩余厚度。Since the thinning amount of the protective layer 3 per unit time under the same etching machine and recipe is known in step S101, the actual thinning amount of the protective layer 3 during the etching process can be obtained according to the etching time; and then by comparing the initial thickness of the protective layer 3 and the actual thinning amount obtained, the difference between the two is the actual remaining thickness of the protective layer 3 after the etching process.
步骤S106,测量保护层3和脊形结构的厚度总和,并根据保护层3的剩余厚度,得到脊形结构的实际厚度。Step S106 , measuring the total thickness of the protective layer 3 and the ridge structure, and obtaining the actual thickness of the ridge structure according to the remaining thickness of the protective layer 3 .
在不剥离保护层3的前提下,测量凸起的保护层3和脊形结构的实际厚度总和,并根据上述得到的保护层3的剩余厚度,两者相减得到的差值即为脊形结构的实际厚度。Without peeling off the protective layer 3, the actual thickness sum of the raised protective layer 3 and the ridge structure is measured, and based on the residual thickness of the protective layer 3 obtained above, the difference obtained by subtracting the two is the actual thickness of the ridge structure.
步骤S107,对比脊形结构的实际厚度与预设目标厚度,得到厚度差值。Step S107, comparing the actual thickness of the ridge structure with the preset target thickness to obtain a thickness difference.
预设目标厚度即在生产过程中设定的刻蚀深度,通过对比上述得到的脊形结构的实际厚度与预设目标厚度,得到厚度差值,可以判断上述刻蚀处理是否精准到位。The preset target thickness is the etching depth set during the production process. By comparing the actual thickness of the ridge structure obtained above with the preset target thickness, the thickness difference is obtained, and it can be judged whether the above etching process is accurate or not.
步骤S108,基于厚度差值,在保护层3背离第一结构层1的一侧进行刻蚀修正,直至脊形结构的实际厚度与预设目标厚度相等。Step S108 , based on the thickness difference, performing etching correction on the side of the protection layer 3 away from the first structure layer 1 until the actual thickness of the ridge structure is equal to the preset target thickness.
在刻蚀处理未到位的情况下,继续在保护层3所在一侧进行刻蚀修正,此时的刻蚀与上述首次的刻蚀处理在同样的机台上进行,刻蚀修正时间可根据前述刻蚀处理得到的刻蚀速率作对应的等比例修正,提高刻蚀修效率,作为优选的方式,还可以略减些时长,以避免蚀刻过头。When the etching process is not in place, continue to perform etching correction on the side where the protective layer 3 is located. The etching at this time is carried out on the same machine as the above-mentioned first etching process. The etching correction time can be proportionally corrected according to the etching rate obtained by the above-mentioned etching process to improve the etching correction efficiency. As a preferred method, the time can be slightly reduced to avoid over-etching.
本实施例的干法刻蚀工艺的优化方法,通过在正式进行刻蚀处理之前首先进行测试步骤,获取保护层3在与正式干法刻蚀相同条件下的单位时间减薄量;之后在进行正式刻蚀处理的过程中根据刻蚀时间获取实际减薄量,再根据保护层3的初始厚度得到保护层3在经过刻蚀后的剩余厚度,最终通过测量保护层3实际厚度和脊形结构厚度的厚度总和,将测得的厚度总和减去保护层3的剩余厚度得到精准的脊形结构的厚度,也即对第二结构层2进行刻蚀的精准刻蚀深度;之后根据对比脊形结构实际厚度和预设目标厚度得到厚度差值,在厚度差值不为零的前提下,对第二结构层2进行刻蚀修正,刻蚀修正时保护层3依旧能够作为遮挡,直至脊形结构的实际厚度与预设目标厚度相等。The optimization method of the dry etching process of the present embodiment first performs a test step before the formal etching process to obtain the thinning amount of the protective layer 3 per unit time under the same conditions as the formal dry etching; then, during the formal etching process, the actual thinning amount is obtained according to the etching time, and then the remaining thickness of the protective layer 3 after etching is obtained according to the initial thickness of the protective layer 3; finally, the actual thickness of the protective layer 3 and the thickness of the ridge structure are measured, and the remaining thickness of the protective layer 3 is subtracted from the measured thickness to obtain the precise thickness of the ridge structure, that is, the precise etching depth of the second structural layer 2; then, the thickness difference is obtained by comparing the actual thickness of the ridge structure with the preset target thickness, and the second structural layer 2 is etched and corrected on the premise that the thickness difference is not zero, and the protective layer 3 can still be used as a shield during the etching correction until the actual thickness of the ridge structure is equal to the preset target thickness.
本实施例中可在同一半导体器件上进行刻蚀处理和重复的刻蚀修正,直至得到实现脊形结构刻蚀的精准厚度,避免常规刻蚀修正由于无法接续刻蚀修正而造成材料浪费和刻蚀过量的问题,且在前述刻蚀处理之后能够得到刻蚀速率,以作为刻蚀修正的参考,提高刻蚀效率;此外,由于得到上述精准刻蚀深度的过程中,能够得到保护层3的实际减薄量,因此在后续进行产品加工时可以根据该减薄量确定适当厚度的保护层3,无需盲目为求保险而加厚保护层3,有助于降低物料成本,提高生产效率。In this embodiment, etching treatment and repeated etching correction can be performed on the same semiconductor device until the precise thickness of the ridge structure etching is achieved, thereby avoiding the problem of material waste and excessive etching caused by the inability to continue the etching correction due to conventional etching correction, and the etching rate can be obtained after the aforementioned etching treatment, which can be used as a reference for etching correction to improve etching efficiency. In addition, since the actual thinning amount of the protective layer 3 can be obtained in the process of obtaining the above-mentioned precise etching depth, the appropriate thickness of the protective layer 3 can be determined according to the thinning amount during subsequent product processing, and there is no need to blindly thicken the protective layer 3 for safety reasons, which helps to reduce material costs and improve production efficiency.
在一种可选的实施方式中,在步骤S108,基于厚度差值,在保护层3背离第一结构层1的一侧进行刻蚀修正,直至脊形结构的实际厚度与预设目标厚度相等之后,还包括:步骤S109,去除保护层3。In an optional embodiment, in step S108, based on the thickness difference, etching correction is performed on the side of the protective layer 3 away from the first structural layer 1 until the actual thickness of the ridge structure is equal to the preset target thickness, and further includes: step S109, removing the protective layer 3.
在进行刻蚀修正后脊形结构的实际厚度与预设目标厚度相等的情况下,去除保护层3,得到刻蚀深度精准的半导体器件,如图5所示。When the actual thickness of the ridge structure after etching correction is equal to the preset target thickness, the protective layer 3 is removed to obtain a semiconductor device with a precise etching depth, as shown in FIG5 .
在一种可选的实施方式中,上述测量保护层3和脊形结构的厚度总和的步骤S106中,采用台阶仪进行保护层3和脊形结构的厚度总和的测量。In an optional implementation, in the step S106 of measuring the sum of the thicknesses of the protective layer 3 and the ridge structure, a step meter is used to measure the sum of the thicknesses of the protective layer 3 and the ridge structure.
采用台阶仪进行厚度测量,能够获得高精度的测量结果,而且同时具备快速、多功能和易于操作的特点。操作者只需将探针放置在台阶状的结构上,也即本实施例中的凹槽中,台阶仪便会自动计算出凸起的脊形结构和保护层3的厚度总和,无需复杂的校准过程。The step profiler can be used to measure the thickness, and can obtain high-precision measurement results, and is also fast, versatile and easy to operate. The operator only needs to place the probe on the step-shaped structure, that is, the groove in this embodiment, and the step profiler will automatically calculate the total thickness of the raised ridge structure and the protective layer 3, without the need for a complicated calibration process.
在一种可选的实施方式中,上述基于厚度差值,在保护层3背离第一结构层1的一侧进行刻蚀修正的步骤S108中,包括多次重复步骤S104~步骤S108。In an optional implementation, the step S108 of performing etching correction on the side of the protective layer 3 away from the first structural layer 1 based on the thickness difference includes repeating steps S104 to S108 for multiple times.
在本实施例中,在一个待刻蚀样品上进行刻蚀处理-台阶仪测量-修正刻蚀时间的多次反复,实现对刻蚀深度的精准修正,得到精确的脊形结构;多次修正在同一待刻蚀样品上进行,避免成本浪费的同时保证刻蚀精度,提高刻蚀修正效率。In this embodiment, etching treatment - step profiler measurement - correction of etching time are repeated multiple times on a sample to be etched to achieve accurate correction of etching depth and obtain a precise ridge structure; multiple corrections are performed on the same sample to be etched to avoid cost waste while ensuring etching accuracy and improving etching correction efficiency.
如图6至图8所示,上述预先获取保护层3在干法刻蚀时单位时间内的减薄量的步骤S101包括:As shown in FIG. 6 to FIG. 8 , the step S101 of pre-obtaining the thinning amount of the protective layer 3 per unit time during dry etching includes:
步骤S1011,提供测试结构层10。Step S1011 , providing a test structure layer 10 .
如图6所示,示例性地,测试结构层10可以与所述第一结构层1采用相同的材料和大小,但是可以是碎片或者破片,既不影响对于保护层3减薄量的测试准确性,也能够节省成本。As shown in FIG. 6 , illustratively, the test structure layer 10 can be made of the same material and size as the first structure layer 1 , but can be fragments or broken pieces, which does not affect the test accuracy of the thinning amount of the protective layer 3 and can also save costs.
步骤S1012,在测试结构层10的一侧表面上设置保护层3。Step S1012 , providing a protection layer 3 on one side surface of the test structure layer 10 .
如图7所示,测试步骤中的保护层3与正式刻蚀处理过冲中的保护层3采用相同材料,以便于实现本实施例中同样的保护层3的减薄量测试。As shown in FIG. 7 , the protective layer 3 in the test step and the protective layer 3 in the overshoot of the formal etching process are made of the same material, so as to realize the same test of the thinning amount of the protective layer 3 in this embodiment.
步骤S1013,测量获取保护层3和测试结构层10的初始厚度总和。Step S1013 , measuring and obtaining the sum of the initial thicknesses of the protection layer 3 and the test structure layer 10 .
同样地,本实施例中采用台阶仪在测试步骤中实现对保护层3和测试结构层10的初始厚度总和的精准测量。当然,不排除采用其它设备进行测量。Similarly, in this embodiment, a step profiler is used in the test step to accurately measure the sum of the initial thicknesses of the protective layer 3 and the test structure layer 10. Of course, it is not excluded to use other equipment for measurement.
步骤S1014,在保护层3背离测试结构层10的一侧进行1min的刻蚀处理。Step S1014 , performing an etching process for 1 min on the side of the protection layer 3 facing away from the test structure layer 10 .
直接采用单位分钟的刻蚀时间进行测试,便于节省计算时间,刻蚀后得到如图8所示的减薄后的保护层3和测试结构层10的示意图。The etching time in units of minutes is directly used for testing, which is convenient for saving calculation time. After etching, a schematic diagram of the thinned protection layer 3 and the test structure layer 10 as shown in FIG. 8 is obtained.
步骤S1015,测量刻蚀处理后的保护层3与测试结构层10的厚度总和。Step S1015 , measuring the total thickness of the protection layer 3 and the test structure layer 10 after the etching process.
同理,可采用台阶仪进行可是处理后的保护层3与测试结构层10的厚度综合的精准测量。Similarly, a step profiler can be used to accurately measure the combined thickness of the treated protection layer 3 and the test structure layer 10 .
步骤S1016,对比保护层3和测试结构层10的初始厚度总和与刻蚀处理后的保护层3与测试结构层10的厚度总和,得到保护层3在单位时间内的刻蚀减薄量。Step S1016, comparing the total initial thickness of the protection layer 3 and the test structure layer 10 with the total thickness of the protection layer 3 and the test structure layer 10 after etching, to obtain the etching thinning amount of the protection layer 3 per unit time.
由于上述刻蚀时间选择1min,则得到的厚度差值即为保护层3在单位时间内的刻蚀减薄量。Since the etching time is selected as 1 min, the obtained thickness difference is the etching thinning amount of the protective layer 3 per unit time.
采用预先导入测试步骤的方式获取保护层3单位时间内的减薄量,避免了在实际刻蚀中进行测试,待刻蚀样品大小不同影响刻蚀负载效应,从而导致测试不准确的问题。刻蚀负载效应(Load Effect)是指局部刻蚀气体的消耗大于供给引起的刻蚀速率下降或分布不均的效应。The thinning amount of the protective layer 3 per unit time is obtained by pre-importing the test steps, which avoids the problem of inaccurate testing caused by the different sizes of the samples to be etched affecting the etching load effect. The etching load effect refers to the effect of a decrease in etching rate or uneven distribution caused by the consumption of local etching gas being greater than the supply.
本实施例中,上述第一结构层1包括硅、砷化镓、磷化铟、氮化镓、碳化硅中的一种或多种。In this embodiment, the first structural layer 1 includes one or more of silicon, gallium arsenide, indium phosphide, gallium nitride, and silicon carbide.
本实施例干法刻蚀工艺的优化方法中,能够选用多种材料的第一结构层1作为衬底来进行精准干法刻蚀,每种材料的第一结构层1对于其上形成的作为刻蚀处理对象的第二结构层2都具有普适性,不存在针对某种材料的第二结构层2而无法适用的情况,也即第一结构层1作为衬底时,第一结构层1上适于形成任何材料的外延结构作为待刻蚀的第二结构层2,适用范围广。In the optimization method of the dry etching process of this embodiment, a first structure layer 1 of a variety of materials can be selected as a substrate for precise dry etching. The first structure layer 1 of each material is universally applicable to the second structure layer 2 formed thereon as the etching treatment object, and there is no situation where the second structure layer 2 of a certain material cannot be applied. That is, when the first structure layer 1 is used as a substrate, the first structure layer 1 is suitable for forming an epitaxial structure of any material as the second structure layer 2 to be etched, and has a wide range of applications.
在一种可选的实施方式中,测试结构层10与第一结构层1的大小相同;测试结构层10与第一结构层1的结构相同,或测试结构层10与第一结构层1的结构不相同。In an optional implementation, the test structure layer 10 is the same size as the first structure layer 1 ; the test structure layer 10 is the same structure as the first structure layer 1 ; or the test structure layer 10 is different from the first structure layer 1 .
也就是说,在测试步骤中可以采用与正式刻蚀时相同大小的第一结构层1,但是第一结构层1的结构可以有所差异,这里的结构可以包括材料或者表面特征或者性能特征,具体来说,本实施例中测试步骤中的测试结构层10可以选用与正式刻蚀时的第一结构层1相比成本更低的便宜材料,也可以选择表面有所损伤的破片,以节省成本。That is to say, in the test step, a first structural layer 1 of the same size as that used in the formal etching can be used, but the structure of the first structural layer 1 may be different. The structure here may include material or surface characteristics or performance characteristics. Specifically, the test structural layer 10 in the test step of this embodiment can be made of cheaper materials than the first structural layer 1 used in the formal etching, or fragments with damaged surfaces can be selected to save costs.
在一种可选的实施方式中,在第二结构层2背离第一结构层1的一侧制备保护层3的步骤S103,包括:In an optional embodiment, step S103 of preparing the protective layer 3 on the side of the second structural layer 2 facing away from the first structural layer 1 includes:
S1031,在第二结构层2背离第一结构层1的一侧表面覆盖初始保护层3。S1031 , covering the initial protective layer 3 on the surface of the second structural layer 2 which is away from the first structural layer 1 .
如图9所示,初始保护层3整面覆盖所述第一结构层1。As shown in FIG. 9 , the initial protective layer 3 covers the entire surface of the first structural layer 1 .
S1032,在初始保护层3背离第一结构层1的一侧表面设置掩模层4,掩模层4包括露出部分保护层3的图案区域,图案区域与第二结构层2的第二目标区域相对应。S1032 , disposing a mask layer 4 on a surface of the initial protection layer 3 facing away from the first structure layer 1 , wherein the mask layer 4 includes a pattern region exposing a portion of the protection layer 3 , and the pattern region corresponds to a second target region of the second structure layer 2 .
如图10所示,掩模层4部分覆盖所述初始保护层3,掩模层4露出需要刻蚀处理掉的部分初始保护层3,将不需要刻蚀的部分进行保护。初始保护层3需要刻蚀处理的区域与第二结构层2需要刻蚀处理的部分上下相对应。As shown in Fig. 10, the mask layer 4 partially covers the initial protection layer 3, and the mask layer 4 exposes the initial protection layer 3 that needs to be etched, and protects the part that does not need to be etched. The area of the initial protection layer 3 that needs to be etched corresponds to the part of the second structural layer 2 that needs to be etched.
S1033,在掩模层4一侧对初始保护层3进行刻蚀,以形成与第二结构层2的第一目标区域相对应的保护层3。S1033 , etching the initial protection layer 3 on one side of the mask layer 4 to form a protection layer 3 corresponding to the first target area of the second structure layer 2 .
如图11所示,掩模层4作遮罩进行光刻形成部分覆盖第二结构层2的保护层3。As shown in FIG. 11 , the mask layer 4 is used as a mask to perform photolithography to form a protection layer 3 that partially covers the second structure layer 2 .
之后,在去除掩模层4之后,以保护层3为遮罩对第二结构层2进行刻蚀处理,再通过获取保护层3的实际减薄量获取精准的脊形结构厚度,之后在同一待刻蚀样品上保护层3接续作为遮罩对脊形结构进行精准刻蚀修正,校准效率高,有助于节约成本。Afterwards, after removing the mask layer 4, the second structural layer 2 is etched using the protective layer 3 as a mask, and the precise thickness of the ridge structure is obtained by obtaining the actual thinning amount of the protective layer 3. Then, on the same sample to be etched, the protective layer 3 continues to be used as a mask to perform precise etching correction on the ridge structure. The calibration efficiency is high, which helps to save costs.
本实施例中,上述保护层3包括:光刻胶、或介电材料、或硬金属材料;其中,介电材料包括二氧化硅或氮化硅,硬金属材料包括铬、钛、镍中的一种或多种。也即本实施例的保护层3适用于任何刻蚀用遮罩材料,选择范围广,有助于被广泛应用。In this embodiment, the protective layer 3 includes: photoresist, or dielectric material, or hard metal material; wherein the dielectric material includes silicon dioxide or silicon nitride, and the hard metal material includes one or more of chromium, titanium, and nickel. That is, the protective layer 3 of this embodiment is suitable for any etching mask material, and has a wide range of selection, which is conducive to wide application.
本实施例中,在保护层3背离第一结构层1的一侧进行刻蚀处理的步骤S104中,干法刻蚀的方式包括电感耦合等离子体刻蚀法、或反应离子刻蚀法、或原子层刻蚀法。In this embodiment, in step S104 of performing etching on the side of the protection layer 3 facing away from the first structure layer 1 , the dry etching method includes inductively coupled plasma etching, reactive ion etching, or atomic layer etching.
本实施例中对于干法刻蚀的设备以及方式不作限定,可适用于多种设备。电感耦合等离子体(Inductively Coupled Plasma,简称ICP)刻蚀法产生的离子密度高、蚀刻均匀性好、蚀刻侧壁垂直度高以及光洁度好,半导体工艺技术中应用广泛;反应离子刻蚀法(Reaction Ionetching Etching,简称RIE)是利用反应性气体的离子束,切断物质的化学键,使之产生低分子物质,挥发或游离出板面实现去除,反应离子刻蚀法具有良好的形貌控制能力(各向异性)、较高的选择比以及较高的刻蚀速率;原子层刻蚀法(Atomic LayerEtching,简称ALE)通过循环使用形成自限制的表面改性层并将其选择性去除的方式在原子尺度逐层去除材料,ALE技术具有精确的刻蚀控制、良好的均匀性、小的负载效应等优点。In this embodiment, there is no limitation on the equipment and method of dry etching, and it can be applied to a variety of equipment. Inductively coupled plasma (ICP) etching method produces high ion density, good etching uniformity, high etching sidewall verticality and good finish, and is widely used in semiconductor process technology; Reactive ion etching (RIE) uses an ion beam of reactive gas to cut the chemical bonds of the substance, so that it produces low molecular weight substances, which are volatilized or released from the board surface for removal. Reactive ion etching has good morphology control ability (anisotropy), high selectivity and high etching rate; Atomic layer etching (ALE) removes materials layer by layer at the atomic scale by recycling to form a self-limiting surface modification layer and selectively remove it. ALE technology has the advantages of precise etching control, good uniformity, and small load effect.
进一步地,在保护层3背离第一结构层1的一侧进行刻蚀处理的步骤S104中,刻蚀处理的时间小于等于1min。初次刻蚀时间通常采用较短的时间,以保证刻蚀速率,避免刻蚀过深造成浪费。Furthermore, in step S104 of etching the side of the protective layer 3 away from the first structural layer 1, the etching time is less than or equal to 1 minute. The initial etching time is usually shorter to ensure the etching rate and avoid excessive etching resulting in waste.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, the technical details of the patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design methods that are not completely the same as the methods described above. In addition, although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage.
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art may make various modifications and variations without departing from the spirit and scope of the present invention, and such modifications and variations are all within the scope defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411339262.0A CN118866675A (en) | 2024-09-25 | 2024-09-25 | Optimization method of dry etching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411339262.0A CN118866675A (en) | 2024-09-25 | 2024-09-25 | Optimization method of dry etching process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118866675A true CN118866675A (en) | 2024-10-29 |
Family
ID=93179632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411339262.0A Pending CN118866675A (en) | 2024-09-25 | 2024-09-25 | Optimization method of dry etching process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118866675A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040087152A1 (en) * | 2002-11-01 | 2004-05-06 | Applied Materials, Inc. | Interferometric endpoint determination in a substrate etching process |
CN1574243A (en) * | 2003-06-05 | 2005-02-02 | 东京毅力科创株式会社 | Etch amount detection method, etching method, and etching system |
CN101943768A (en) * | 2010-08-02 | 2011-01-12 | 山东大学 | Method for preparing KTP rib optical waveguide by combining ion implantation with ion beam etching |
US20160284610A1 (en) * | 2015-03-26 | 2016-09-29 | Hitachi High-Technologies Corporation | Plasma processing apparatus and plasma processing method |
CN114360993A (en) * | 2020-09-30 | 2022-04-15 | 株式会社日立高新技术 | Plasma processing apparatus and plasma processing method |
CN115980917A (en) * | 2023-02-13 | 2023-04-18 | 上海交通大学 | A micron lithium niobate ridge waveguide and its preparation method |
-
2024
- 2024-09-25 CN CN202411339262.0A patent/CN118866675A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040087152A1 (en) * | 2002-11-01 | 2004-05-06 | Applied Materials, Inc. | Interferometric endpoint determination in a substrate etching process |
CN1574243A (en) * | 2003-06-05 | 2005-02-02 | 东京毅力科创株式会社 | Etch amount detection method, etching method, and etching system |
CN101943768A (en) * | 2010-08-02 | 2011-01-12 | 山东大学 | Method for preparing KTP rib optical waveguide by combining ion implantation with ion beam etching |
US20160284610A1 (en) * | 2015-03-26 | 2016-09-29 | Hitachi High-Technologies Corporation | Plasma processing apparatus and plasma processing method |
CN114360993A (en) * | 2020-09-30 | 2022-04-15 | 株式会社日立高新技术 | Plasma processing apparatus and plasma processing method |
CN115980917A (en) * | 2023-02-13 | 2023-04-18 | 上海交通大学 | A micron lithium niobate ridge waveguide and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100299635B1 (en) | Systems and Methods for Monitoring and Evaluating Semiconductor Wafer Manufacturing | |
TWI324356B (en) | Method for etching an aspect having an aspect depth in a layer of wafer | |
KR20010075467A (en) | Method and apparatus for improving accuracy of plasma etching process | |
CN101361073B (en) | Method and system for line size control of etch process | |
CN118866675A (en) | Optimization method of dry etching process | |
JP3713426B2 (en) | Etching depth measuring method and apparatus, etching method | |
KR100190178B1 (en) | Dry etching method and dry etching equipment | |
CN109560002A (en) | The monitoring method of silicon wafer warpage degree | |
CN114447763A (en) | Ridge waveguide electrode window manufacturing method based on self-aligned etching process | |
KR100945889B1 (en) | Determination Method of Plasma Treatment | |
US6872630B1 (en) | Using V-groove etching method to reduce alignment mark asymmetric damage in integrated circuit process | |
JPH09326382A (en) | Etching method | |
JPH0590216A (en) | Manufacture of semiconductor device | |
CN107924803B (en) | Single wafer real-time etch rate and uniformity predictor for plasma etch processes | |
US6521138B2 (en) | Method for measuring width of bottom under cut during etching process | |
KR0179835B1 (en) | Etch end point detection method in semiconductor manufacturing process | |
KR100519675B1 (en) | Etching method capable of obtaining high photoresist selectivity with using inductively coupled plasma apparatus. | |
US12278114B2 (en) | Manufacturing method of semiconductor structure | |
CN117497442B (en) | Method for controlling size of semiconductor etching pattern | |
CN119653912B (en) | A method for manufacturing a superlattice infrared detector chip | |
US9048011B2 (en) | Method of obtaining patters in an antireflective layer | |
US7029593B2 (en) | Method for controlling CD during an etch process | |
KR100478503B1 (en) | Method for forming the end of point detection in semiconductor device | |
KR100192433B1 (en) | Focus measurement method in semiconductor device manufacturing | |
JPH05121312A (en) | Pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |