CN118841551A - Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device - Google Patents
Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device Download PDFInfo
- Publication number
- CN118841551A CN118841551A CN202411030519.4A CN202411030519A CN118841551A CN 118841551 A CN118841551 A CN 118841551A CN 202411030519 A CN202411030519 A CN 202411030519A CN 118841551 A CN118841551 A CN 118841551A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- electrode material
- additive
- nickel
- present application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 116
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 18
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 18
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 7
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 44
- 238000005245 sintering Methods 0.000 claims description 38
- 239000000654 additive Substances 0.000 claims description 34
- 230000000996 additive effect Effects 0.000 claims description 34
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 33
- 229910052744 lithium Inorganic materials 0.000 claims description 33
- 239000011572 manganese Substances 0.000 claims description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000002243 precursor Substances 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 6
- -1 salt compound Chemical class 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 77
- 229910052759 nickel Inorganic materials 0.000 abstract description 26
- 238000005516 engineering process Methods 0.000 abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 42
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 34
- 239000010410 layer Substances 0.000 description 24
- 239000002994 raw material Substances 0.000 description 23
- 239000012071 phase Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 229910017855 NH 4 F Inorganic materials 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 239000010406 cathode material Substances 0.000 description 9
- 230000002195 synergetic effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000009831 deintercalation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical group 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请涉及电池技术领域,提供了一种正极材料及其制备方法、正极极片、二次电池和用电装置,正极材料包括化学式为Li1‑ aNixCoyMnzXaQbZcO2‑c的材料,其中,0.80≤x<0.96,y>0,z>0,0.0005≤a≤0.05,0.0005≤b≤0.05,0.0005≤c≤0.05,x+y+z+b=1,X元素包括Na和K中的至少一种,Q元素包括Al、Zr、Sr、Sn、Sb、Si、Ba、Y、W、Mo、Nb、La、Ta和Ce中的至少一种,Z元素包括F、Cl和S中的至少一种。本申请通过X元素、Q元素和Z元素共掺杂,能够在保持超高镍单晶正极材料高容量发挥的同时,改善其循环稳定性。
The present application relates to the field of battery technology, and provides a positive electrode material and a preparation method thereof, a positive electrode plate, a secondary battery and an electric device. The positive electrode material includes a material with a chemical formula of Li 1- a Ni x Co y Mn z X a Q b Z c O 2-c , wherein 0.80≤x<0.96, y>0, z>0, 0.0005≤a≤0.05, 0.0005≤b≤0.05, 0.0005≤c≤0.05, x+y+z+b=1, the X element includes at least one of Na and K, the Q element includes at least one of Al, Zr, Sr, Sn, Sb, Si, Ba, Y, W, Mo, Nb, La, Ta and Ce, and the Z element includes at least one of F, Cl and S. The present application can improve the cycle stability of the ultra-high nickel single crystal positive electrode material while maintaining the high capacity of the material by co-doping the X element, the Q element and the Z element.
Description
技术领域Technical Field
本申请涉及电池技术领域,特别是涉及一种正极材料及其制备方法、正极极片、二次电池和用电装置。The present application relates to the field of battery technology, and in particular to a positive electrode material and a preparation method thereof, a positive electrode sheet, a secondary battery and an electrical device.
背景技术Background Art
高镍层状氧化物的比容量高,且具有优异的动力学特性,成为开发高比能量密度(≥300 Wh/Kg)锂离子电池的首选正极材料。其中,单晶高镍层状正极材料具有独特的一体化单晶结构,消除了颗粒内部随机取向的一次晶界,机械强度高且比表面积小,可以显著抑制颗粒裂纹形成和表/界面副反应,进一步缓解不可逆的表面降解。此外,单晶的无孔隙和一体化结构也使得单晶高镍层状正极材料具有较高的机械强度,可以进一步增加其压实密度,从而提高能量密度。但是,单晶高镍层状正极材料的一次颗粒尺寸较大,Li+扩散路径较长,在循环过程中会导致锂浓度分布不均匀,而且随着高镍正极材料中Ni含量和电流密度的增加,这种趋势将进一步加重,进而导致H2和H3两个相在单个粒子内共存,由此产生的非均匀应变和应力会导致结构缺陷,限制Li+扩散动力学,在长期循环过程中发生容量快速衰减,导致高镍单晶正极材料的循环稳定性欠佳。High nickel layered oxides have high specific capacity and excellent kinetic properties, making them the preferred cathode materials for the development of high specific energy density (≥300 Wh/Kg) lithium-ion batteries. Among them, single crystal high nickel layered cathode materials have a unique integrated single crystal structure, which eliminates the randomly oriented primary grain boundaries inside the particles, has high mechanical strength and a small specific surface area, and can significantly inhibit particle crack formation and surface/interface side reactions, further alleviating irreversible surface degradation. In addition, the non-porous and integrated structure of the single crystal also makes the single crystal high nickel layered cathode material have high mechanical strength, which can further increase its compaction density, thereby improving energy density. However, the primary particle size of single-crystal high-nickel layered positive electrode materials is large, and the Li + diffusion path is long, which will lead to uneven lithium concentration distribution during the cycle process. Moreover, with the increase of Ni content and current density in high-nickel positive electrode materials, this trend will be further aggravated, leading to the coexistence of H2 and H3 phases in a single particle. The resulting non-uniform strain and stress will lead to structural defects, limit Li + diffusion kinetics, and cause rapid capacity decay during long-term cycling, resulting in poor cycle stability of high-nickel single-crystal positive electrode materials.
发明内容Summary of the invention
基于此,本申请提供了一种正极材料及其制备方法、正极极片、二次电池和用电装置,该正极材料在保持高镍单晶正极材料高容量发挥的同时,能够改善其循环稳定性。Based on this, the present application provides a positive electrode material and a preparation method thereof, a positive electrode plate, a secondary battery and an electrical device. The positive electrode material can improve its cycle stability while maintaining the high capacity of a high-nickel single crystal positive electrode material.
第一方面,本申请提供了一种正极材料,所述正极材料包括化学式为Li1- aNixCoyMnzXaQbZcO2-c的材料,其中,0.80≤x<0.96,y>0,z>0,0.0005≤a≤0.05,0.0005≤b≤0.05,0.0005≤c≤0.05,x+y+z+b=1,X元素包括Na和K中的至少一种,Q元素包括Al、Zr、Sr、Sn、Sb、Si、Ba、Y、W、Mo、Nb、La、Ta和Ce中的至少一种,Z元素包括F、Cl和S中的至少一种。In a first aspect, the present application provides a positive electrode material, comprising a material with a chemical formula of Li1 - aNixCoyMnzXaQbZcO2 -c , wherein 0.80≤x<0.96, y>0, z> 0 , 0.0005≤a≤0.05, 0.0005≤b≤0.05, 0.0005≤c≤0.05, x +y+z+b=1, the X element comprises at least one of Na and K, the Q element comprises at least one of Al, Zr, Sr, Sn, Sb, Si, Ba, Y, W, Mo, Nb, La, Ta and Ce, and the Z element comprises at least one of F, Cl and S.
在一些实施方式中,所述Q元素包括Al、Zr和Sr。In some embodiments, the Q element includes Al, Zr, and Sr.
可选地,所述Q元素中Al、Zr和Sr的摩尔比为(0.25~0.5):(0.5~1.0):(0.25~0.5)。Optionally, the molar ratio of Al, Zr and Sr in the Q element is (0.25~0.5):(0.5~1.0):(0.25~0.5).
在一些实施方式中,所述正极材料包括单晶正极材料。In some embodiments, the cathode material comprises a single crystal cathode material.
第二方面,本申请提供了一种正极材料的制备方法,所述正极材料的制备方法包括:In a second aspect, the present application provides a method for preparing a positive electrode material, the method for preparing a positive electrode material comprising:
将锂源、镍钴锰前驱体、含有X元素的第一添加剂、含有Q元素的第二添加剂和含有Z元素的第三添加剂混合,得到混合物料;Mixing a lithium source, a nickel-cobalt-manganese precursor, a first additive containing an X element, a second additive containing an Q element, and a third additive containing an Z element to obtain a mixed material;
对所述混合物料进行烧结处理,得到所述正极材料,所述正极材料包括化学式为Li1-aNixCoyMnzXaQbZcO2-c的材料,其中,0.80≤x<0.96,y>0,z>0,0.0005≤a≤0.05,0.0005≤b≤0.05,0.0005≤c≤0.05,x+y+z+b=1,X元素包括Na和K中的至少一种,Q元素包括Al、Zr、Sr、Sn、Sb、Si、Ba、Y、W、Mo、Nb、La、Ta和Ce中的至少一种,Z元素包括F、Cl和S中的至少一种。The mixed material is sintered to obtain the positive electrode material, wherein the positive electrode material includes a material with a chemical formula of Li1 - aNixCoyMnzXaQbZcO2 -c , wherein 0.80≤x<0.96, y>0, z>0, 0.0005≤a≤0.05, 0.0005≤b≤0.05, 0.0005≤c≤0.05, x+y+z+b=1, the X element includes at least one of Na and K, the Q element includes at least one of Al, Zr, Sr, Sn, Sb, Si, Ba, Y, W, Mo, Nb, La, Ta and Ce, and the Z element includes at least one of F, Cl and S.
在一些实施方式中,所述镍钴锰前驱体包括化学式为NimConMn1-m-n(OH)2的材料,其中,0.80≤m<0.98,n>0,m+n<1。In some embodiments, the nickel-cobalt-manganese precursor includes a material having a chemical formula of Ni m Co n Mn 1-mn (OH) 2 , wherein 0.80≤m<0.98, n>0, and m+n<1.
在一些实施方式中,所述第一添加剂包括含有X元素的氧化物、含有X元素的碳酸盐、含有X元素的氢氧化物和含有X元素的醋酸盐中的至少一种。In some embodiments, the first additive includes at least one of an oxide containing element X, a carbonate containing element X, a hydroxide containing element X, and an acetate containing element X.
在一些实施方式中,所述第二添加剂包括含有Q元素的氧化物、含有Q元素的碳酸盐、含有Q元素的氢氧化物和含有Q元素的醋酸盐中的至少一种。In some embodiments, the second additive includes at least one of an oxide containing the Q element, a carbonate containing the Q element, a hydroxide containing the Q element, and an acetate containing the Q element.
在一些实施方式中,所述含有Z元素的第三添加剂包括含有Z元素的盐类化合物。In some embodiments, the third additive containing the Z element includes a salt compound containing the Z element.
在一些实施方式中,所述锂源中锂元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(1.01~1.06):1。In some embodiments, the ratio of the molar number of lithium element in the lithium source to the molar number of the nickel-cobalt-manganese precursor is (1.01-1.06):1.
在一些实施方式中,所述第一添加剂中X元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1。In some embodiments, the ratio of the molar number of the X element in the first additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1.
在一些实施方式中,所述第二添加剂中Q元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1。In some embodiments, the ratio of the molar number of the Q element in the second additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1.
在一些实施方式中,所述第三添加剂中Z元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1。In some embodiments, the ratio of the molar number of the Z element in the third additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1.
在一些实施方式中,所述烧结处理包括:依次对所述混合物料进行第一烧结和第二烧结。In some embodiments, the sintering process includes: sequentially performing a first sintering and a second sintering on the mixed material.
可选地,所述第一烧结的温度为450℃~650℃,时间为2h~10h,气氛为含氧气氛。Optionally, the first sintering is performed at a temperature of 450° C. to 650° C., for a time of 2 h to 10 h, in an oxygen-containing atmosphere.
可选地,所述第二烧结的温度为650℃~900℃,时间为10h~20h,气氛为含氧气氛。Optionally, the second sintering is performed at a temperature of 650° C. to 900° C., for a time of 10 h to 20 h, in an oxygen-containing atmosphere.
第三方面,本申请提供了一种正极极片,包括如第一方面所述的正极材料以及如第二方面所述的制备方法制得的正极材料中的至少一种。In a third aspect, the present application provides a positive electrode plate, comprising at least one of the positive electrode material as described in the first aspect and the positive electrode material prepared by the preparation method as described in the second aspect.
第四方面,本申请提供了一种二次电池,包括如第三方面所述的正极极片。In a fourth aspect, the present application provides a secondary battery, comprising the positive electrode plate as described in the third aspect.
第五方面,本申请提供了一种用电装置,包括如第四方面所述的二次电池。In a fifth aspect, the present application provides an electrical device comprising the secondary battery as described in the fourth aspect.
与传统技术相比,本申请至少具有如下有益效果:Compared with the traditional technology, this application has at least the following beneficial effects:
本申请利用X元素、Q元素和Z元素共掺杂,其中,X元素体相掺杂后占据Li位,Q元素体相掺杂后占据过渡金属位,Z元素体相掺杂后占据O位,通过不同位点协同掺杂,形成稳定的掺杂结构。不仅增大了高镍正极材料的锂层间距,有助于锂的脱嵌并减弱Li+/Ni2+混排和相转变,而且降低了锂层与氧层之间的相互作用力,增大了锂层与氧层的间距,加速了Li+的传输,最终在维持高镍单晶正极材料高容量发挥的同时,改善其循环稳定性。This application utilizes X element, Q element and Z element co-doping, wherein X element occupies Li position after bulk phase doping, Q element occupies transition metal position after bulk phase doping, and Z element occupies O position after bulk phase doping, and a stable doping structure is formed by synergistic doping at different sites. It not only increases the lithium interlayer spacing of high nickel positive electrode materials, helps lithium deintercalation and weakens Li + /Ni 2+ mixing and phase transition, but also reduces the interaction force between the lithium layer and the oxygen layer, increases the spacing between the lithium layer and the oxygen layer, accelerates the transmission of Li + , and ultimately improves its cycle stability while maintaining the high capacity of high nickel single crystal positive electrode materials.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例1中制备得到正极材料的SEM图;FIG1 is a SEM image of the positive electrode material prepared in Example 1 of the present application;
图2为本申请对比例1中制备得到正极材料的SEM图;FIG2 is a SEM image of the positive electrode material prepared in Comparative Example 1 of the present application;
图3为本申请实施例1和对比例1的循环保持率对比图。FIG3 is a comparison chart of the cycle retention rates of Example 1 and Comparative Example 1 of the present application.
具体实施方式DETAILED DESCRIPTION
下面结合实施方式和实施例,对本申请作进一步详细的说明这些实施方式和实施例仅用于说明本申请而不用于限制本申请的范围,提供这些实施方式和实施例的目的是使对本申请公开内容理解更加透彻全面。还应理解,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式和实施例,本领域技术人员可以在不违背本申请内涵的情况下作各种改动或修改,得到的等价形式同样落于本申请的保护范围。此外,在下文的描述中,给出了大量具体的细节以便提供对本申请更为充分地理解,应理解,本申请可以无需一个或多个这些细节而得以实施。Below in conjunction with the embodiments and examples, the present application is further described in detail. These embodiments and examples are only used to illustrate the present application and are not used to limit the scope of the present application. The purpose of providing these embodiments and examples is to make the understanding of the disclosure of the present application more thorough and comprehensive. It should also be understood that the present application can be implemented in many different forms, and is not limited to the embodiments and examples described herein. Those skilled in the art can make various changes or modifications without violating the connotation of the present application, and the equivalent form obtained also falls within the protection scope of the present application. In addition, in the description below, a large number of specific details are given in order to provide a more comprehensive understanding of the present application. It should be understood that the present application can be implemented without one or more of these details.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application.
本申请中,“可选地”、“可选的”、“可选”,指可有可无,也即指选自“有”或“无”两种并列方案中的任一种。如果一个技术方案中出现多处“可选”,如无特别说明,且无矛盾之处或相互制约关系,则每项“可选”各自独立。In this application, "optionally", "optional", and "optional" mean optional or dispensable, that is, any one of the two parallel schemes of "yes" or "no". If multiple "options" appear in a technical solution, unless otherwise specified and there is no contradiction or mutual restriction, each "optional" is independent.
本申请中,“第一方面”、“第二方面”等中,术语“第一”、“第二”等仅用于描述目的,不能理解为指示或暗示相对重要性或数量,也不能理解为隐含指明所指示的技术特征的重要性或数量。而且“第一”、“第二”等仅起到非穷举式的列举描述目的,应当理解并不构成对数量的封闭式限定。In this application, the terms "first", "second", etc. in "the first aspect", "the second aspect", etc. are used only for descriptive purposes and cannot be understood as indicating or implying relative importance or quantity, nor can they be understood as implicitly indicating the importance or quantity of the indicated technical features. Moreover, "first", "second", etc. only serve the purpose of non-exhaustive enumeration and description, and it should be understood that they do not constitute a closed limitation on quantity.
本申请中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。In the present application, the technical features described in an open manner include closed technical solutions composed of the listed features, and also include open technical solutions containing the listed features.
本申请中,涉及到数值区间(也即数值范围),如无特别说明,该数值区间内可选的数值的分布视为连续,且包括该数值区间的两个数值端点(即最小值及最大值),以及这两个数值端点之间的每一个数值。如无特别说明,当数值区间仅仅指向该数值区间内的整数时,包括该数值范围的两个端点整数,以及两个端点之间的每一个整数,相当于直接列举了每一个整数。当提供多个数值范围描述特征或特性时,可以合并这些数值范围。换言之,除非另有指明,否则本申请中所公开之数值范围应理解为包括其中所归入的任何及所有的子范围。该数值区间中的“数值”可以为任意的定量值,比如数字、百分比、比例等。“数值区间”允许广义地包括百分比区间,比例区间,比值区间等定量区间。In the present application, when it comes to a numerical interval (i.e., a numerical range), unless otherwise specified, the distribution of the optional numerical values in the numerical interval is considered to be continuous, and includes the two numerical endpoints (i.e., the minimum and maximum values) of the numerical interval, and each numerical value between the two numerical endpoints. Unless otherwise specified, when the numerical interval only refers to an integer in the numerical interval, it includes the two endpoint integers of the numerical range, and each integer between the two endpoints, which is equivalent to directly listing each integer. When multiple numerical ranges are provided to describe features or characteristics, these numerical ranges can be combined. In other words, unless otherwise specified, the numerical range disclosed in the present application should be understood to include any and all sub-ranges included therein. The "numerical value" in the numerical interval can be any quantitative value, such as a number, a percentage, a ratio, etc. "Numerical interval" allows for a broad range of quantitative intervals such as percentage intervals, ratio intervals, and ratio intervals.
在本申请提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。除非和本申请的申请目的和/或技术方案相冲突,否则,本申请涉及的引用文献以全部内容、全部目的被引用。本申请中涉及引用文献时,相关技术特征、术语、名词、短语等在引用文献中的定义也一并被引用。本申请中涉及引用文献时,被引用的相关技术特征的举例、优选方式也可作为参考纳入本申请中,但以能够实施本申请为限。应当理解,当引用内容与本申请中的描述相冲突时,以本申请为准或者适应性地根据本申请的描述进行修正。All documents mentioned in this application are cited as references in this application, just as each document is cited as reference separately. Unless they conflict with the application purpose and/or technical solution of this application, the cited documents involved in this application are cited with all contents and all purposes. When the cited documents are involved in this application, the definitions of relevant technical features, terms, nouns, phrases, etc. in the cited documents are also cited. When the cited documents are involved in this application, the examples and preferred methods of the cited relevant technical features can also be incorporated into this application as references, but are limited to the implementation of this application. It should be understood that when the cited content conflicts with the description in this application, the present application shall prevail or be modified adaptively according to the description of this application.
传统技术中,“高镍”指的是单晶镍钴锰酸锂基体中Ni元素的摩尔含量占Ni、Co和Mn三元素总摩尔量的80%以上。采用与高镍三元正极材料中过渡金属离子半径接近的掺杂剂对材料进行掺杂,例如可以是Al元素,虽然能够稳定锂离子在脱嵌过程中的晶体结构,减少材料在充放电过程中的应力变化,以改善高镍三元正极材料的循环稳定性。但这些掺杂元素大多为电化学惰性,会造成高镍三元正极材料的容量性能下降。In traditional technology, "high nickel" means that the molar content of Ni in the single crystal lithium nickel cobalt manganese oxide matrix accounts for more than 80% of the total molar amount of Ni, Co and Mn. The material is doped with a dopant that is close to the radius of the transition metal ions in the high nickel ternary positive electrode material, such as Al. Although it can stabilize the crystal structure of lithium ions during the deintercalation process and reduce the stress changes of the material during the charge and discharge process, it can improve the cycle stability of the high nickel ternary positive electrode material. However, most of these doping elements are electrochemically inert, which will cause the capacity performance of the high nickel ternary positive electrode material to decrease.
本申请第一方面提供了一种正极材料,所述正极材料包括化学式为Li1- aNixCoyMnzXaQbZcO2-c的材料,其中,0.80≤x<0.96,y>0,z>0,0.0005≤a≤0.05,0.0005≤b≤0.05,0.0005≤c≤0.05,x+y+z+b=1,X元素包括Na和K中的至少一种,Q元素包括Al、Zr、Sr、Sn、Sb、Si、Ba、Y、W、Mo、Nb、La、Ta和Ce中的至少一种,Z元素包括F、Cl和S中的至少一种。In a first aspect, the present application provides a positive electrode material, comprising a material with a chemical formula of Li1 - aNixCoyMnzXaQbZcO2 -c , wherein 0.80≤x<0.96, y>0, z> 0 , 0.0005≤a≤0.05, 0.0005≤b≤0.05 , 0.0005≤c≤0.05, x+y+z+b=1, the X element comprises at least one of Na and K, the Q element comprises at least one of Al, Zr, Sr, Sn, Sb, Si, Ba, Y, W, Mo, Nb, La, Ta and Ce, and the Z element comprises at least one of F, Cl and S.
本申请利用X元素、Q元素和Z元素共掺杂,其中,X元素体相掺杂后占据Li位,Q元素体相掺杂后占据过渡金属位,Z元素体相掺杂后占据O位,通过不同位点协同掺杂,形成稳定的掺杂结构。不仅增大了高镍正极材料的锂层间距,有助于锂的脱嵌并减弱Li+/Ni2+混排和相转变,而且降低了锂层与氧层之间的相互作用力,增大了锂层与氧层的间距,加速了Li+的传输,最终在维持高镍单晶正极材料高容量发挥的同时,改善其循环稳定性。This application utilizes X element, Q element and Z element co-doping, wherein X element occupies Li position after bulk phase doping, Q element occupies transition metal position after bulk phase doping, and Z element occupies O position after bulk phase doping, and a stable doping structure is formed by synergistic doping at different sites. It not only increases the lithium interlayer spacing of high nickel positive electrode materials, helps lithium deintercalation and weakens Li + /Ni 2+ mixing and phase transition, but also reduces the interaction force between the lithium layer and the oxygen layer, increases the spacing between the lithium layer and the oxygen layer, accelerates the transmission of Li + , and ultimately improves its cycle stability while maintaining the high capacity of high nickel single crystal positive electrode materials.
具体地,X元素的原子半径大于Li,当其掺杂进入三元层状正极材料的锂层时,能够起到一个“支柱”的作用,抑制了深度脱锂时(高电压)层状结构的坍塌,因此锂钠复合材料具有较好的结构稳定性。同时,由于X元素具有更大的离子半径,能够增大锂层间距,有助于锂的脱嵌,提高了材料的锂扩散系数和倍率性能。此外,X元素具有的更多的核外电子所形成的庞大电子云能够通过静电排斥和磁相互作用,从而有效抑制过渡金属的迁移,从而减弱Li+/Ni2+混排和相转变,对于提高三元层状正极材料的容量和倍率性能具有明显的改善效果。进一步地,X元素、Q元素和Z元素之间协同配合,提升了正极材料的离子间作用力及键能,抑制了循环过程中的表面重构,能够兼顾掺杂和表面包覆的双功能性,不仅能够稳定材料的体相结构,而且降低了锂层与氧层之间的相互作用力来增大锂层与氧层的间距,加速Li+的传输,显著提高正极材料的高压性能。本申请通过阴阳离子的共同效应,可以很好地起到协同改善的效果,不同位点的阴阳离子掺杂则可以发挥协同效应,对高镍三元单晶材料的化学、结构稳定性等方面发挥积极作用。Specifically, the atomic radius of the X element is larger than that of Li. When it is doped into the lithium layer of the ternary layered cathode material, it can play the role of a "pillar", inhibiting the collapse of the layered structure during deep lithium removal (high voltage), so the lithium-sodium composite material has good structural stability. At the same time, because the X element has a larger ionic radius, it can increase the distance between lithium layers, which is helpful for lithium deintercalation and improves the lithium diffusion coefficient and rate performance of the material. In addition, the huge electron cloud formed by the more extranuclear electrons of the X element can effectively inhibit the migration of transition metals through electrostatic repulsion and magnetic interaction, thereby weakening the Li + /Ni 2+ mixing and phase transition, which has a significant improvement effect on improving the capacity and rate performance of the ternary layered cathode material. Furthermore, the synergistic cooperation between the X element, the Q element and the Z element enhances the inter-ionic force and bond energy of the cathode material, inhibits the surface reconstruction during the cycle process, and can take into account the dual functionality of doping and surface coating, which can not only stabilize the bulk structure of the material, but also reduce the interaction between the lithium layer and the oxygen layer to increase the distance between the lithium layer and the oxygen layer, accelerate the transmission of Li + , and significantly improve the high-voltage performance of the cathode material. The present application can achieve a good synergistic improvement effect through the joint effect of anions and cations, and the anion and cation doping at different sites can exert a synergistic effect, which plays a positive role in the chemical and structural stability of high-nickel ternary single crystal materials.
其中,x包括但不限于:0.80、0.82、0.85、0.90、0.93或0.95。y包括但不限于0.005、0.010、0.015、0.020、0.025、0.030或0.035。z包括但不限于0.005、0.010、0.015、0.020、0.025、0.030或0.035。a包括但不限于:0.0005、0.0010、0.0015、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.015、0.020、0.025、0.030、0.035、0.040、0.045或0.050。b包括但不限于:0.0005、0.0010、0.0015、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.015、0.020、0.025、0.030、0.035、0.040、0.045或0.050。c包括但不限于:0.0005、0.0010、0.0015、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.015、0.020、0.025、0.030、0.035、0.040、0.045或0.050。Wherein, x includes but is not limited to: 0.80, 0.82, 0.85, 0.90, 0.93 or 0.95. y includes but is not limited to 0.005, 0.010, 0.015, 0.020, 0.025, 0.030 or 0.035. z includes but is not limited to 0.005, 0.010, 0.015, 0.020, 0.025, 0.030 or 0.035. a includes, but is not limited to, 0.0005, 0.0010, 0.0015, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, or 0.050. b includes, but is not limited to, 0.0005, 0.0010, 0.0015, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, or 0.050. c includes, but is not limited to, 0.0005, 0.0010, 0.0015, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, or 0.050.
在一些实施例中,所述Q元素包括Al、Zr和Sr。In some embodiments, the Q element includes Al, Zr, and Sr.
可选地,所述Q元素中Al、Zr和Sr的摩尔比为(0.25~0.5):(0.5~1.0):(0.25~0.5),包括但不限于0.25:0.5:0.25、0.3:0.6:0.4、0.4:0.6:0.5、0.5:0.5:0.5、0.4:1.0:0.5或0.3:0.8:0.4。Optionally, the molar ratio of Al, Zr and Sr in the Q element is (0.25~0.5):(0.5~1.0):(0.25~0.5), including but not limited to 0.25:0.5:0.25, 0.3:0.6:0.4, 0.4:0.6:0.5, 0.5:0.5:0.5, 0.4:1.0:0.5 or 0.3:0.8:0.4.
本申请如上选取Q元素,能够保证锂离子在脱嵌过程中的晶体结构稳定,能够减少材料在充放电过程中的应力变化,以改善高镍三元正极材料的循环稳定性,进一步地,与X元素和Z元素协同配合好,能够有效避免电化学惰性造成高镍三元正极材料容量性能下降的问题。The Q element is selected as above in the present application, which can ensure the stability of the crystal structure of lithium ions during the insertion and extraction process, and can reduce the stress changes of the material during the charging and discharging process, so as to improve the cycle stability of the high-nickel ternary positive electrode material. Furthermore, it cooperates well with the X element and the Z element, and can effectively avoid the problem of decreased capacity performance of the high-nickel ternary positive electrode material caused by electrochemical inertness.
在一些实施例中,所述正极材料的体积平均粒径Dv50为2μm~4μm,例如可以2.0μm、2.2μm、2.4μm、2.6μm、2.8μm、3.0μm、3.2μm、3.4μm、3.6μm、3.8μm或4.0μm。体积平均粒径Dv50可采用粒度测试仪进行测试。In some embodiments, the volume average particle size Dv50 of the positive electrode material is 2 μm to 4 μm, for example, 2.0 μm, 2.2 μm, 2.4 μm, 2.6 μm, 2.8 μm, 3.0 μm, 3.2 μm, 3.4 μm, 3.6 μm, 3.8 μm or 4.0 μm. The volume average particle size Dv50 can be tested using a particle size tester.
在一些实施例中,所述正极材料的比表面积为0.5m2/g~1.5m2/g,例如可以是0.5m2/g、0.6m2/g、0.7m2/g、0.8m2/g、0.9m2/g、1.0m2/g、1.1m2/g、1.2m2/g、1.3m2/g、1.4m2/g或1.5m2/g。比表面积可采用BET方法进行测试。In some embodiments, the specific surface area of the positive electrode material is 0.5 m 2 /g to 1.5 m 2 /g, for example, 0.5 m 2 /g, 0.6 m 2 /g, 0.7 m 2 /g, 0.8 m 2 /g, 0.9 m 2 /g, 1.0 m 2 /g, 1.1 m 2 /g, 1.2 m 2 /g, 1.3 m 2 /g, 1.4 m 2 /g or 1.5 m 2 /g. The specific surface area can be tested using the BET method.
本申请中正极材料采用X元素、Q元素和Z元素共掺杂后,正极材料的尺寸与未掺杂的高镍三元正极材料相近,不仅具有较高的放电比容量,而且具有优异的循环稳定性。In the present application, after the positive electrode material is co-doped with X element, Q element and Z element, the size of the positive electrode material is similar to that of the undoped high-nickel ternary positive electrode material, and it not only has a higher discharge specific capacity, but also has excellent cycle stability.
在一些实施例中,所述正极材料包括单晶正极材料。本申请正极材料具有单晶结构,具有消除的一次颗粒晶界、一致连续的晶格取向、有序的晶面排列和低比表面积等优点。In some embodiments, the positive electrode material comprises a single crystal positive electrode material. The positive electrode material of the present application has a single crystal structure, and has the advantages of eliminated primary grain boundaries, consistent and continuous lattice orientation, orderly crystal plane arrangement and low specific surface area.
在一些实施例中,所述正极材料中Li2CO3的质量占比≤0.15%,例如可以是0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.11%、0.12%、0.13%、0.14%或0.15%。可选为0.05%~0.15%。In some embodiments, the mass proportion of Li 2 CO 3 in the positive electrode material is ≤0.15%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14% or 0.15%. It can be selected from 0.05% to 0.15%.
在一些实施例中,所述正极材料中LiOH的质量占比≤0.40%,例如可以是0.04%、0.08%、0.12%、0.16%、0.20%、0.24%、0.28%、0.32%、0.36%或0.40%。可选为0.20%~0.40%。In some embodiments, the mass proportion of LiOH in the positive electrode material is ≤0.40%, for example, it can be 0.04%, 0.08%, 0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36% or 0.40%. It can be selected from 0.20% to 0.40%.
本申请中正极材料的表面残锂含量低,加工性能优异、安全性好且界面阻抗低,有效避免匀浆凝胶化、产气和局部过热等问题。The positive electrode material in the present application has low residual lithium content on the surface, excellent processing performance, good safety and low interface impedance, and effectively avoids problems such as slurry gelation, gas production and local overheating.
本申请第二方面提供了一种正极材料的制备方法,所述正极材料的制备方法包括:A second aspect of the present application provides a method for preparing a positive electrode material, the method for preparing a positive electrode material comprising:
将锂源、镍钴锰前驱体、含有X元素的第一添加剂、含有Q元素的第二添加剂和含有Z元素的第三添加剂混合,得到混合物料;Mixing a lithium source, a nickel-cobalt-manganese precursor, a first additive containing an X element, a second additive containing an Q element, and a third additive containing an Z element to obtain a mixed material;
对所述混合物料进行烧结处理,得到所述正极材料,所述正极材料包括化学式为Li1-aNixCoyMnzXaQbZcO2-c的材料,其中,0.80≤x<0.96,y>0,z>0,0.0005≤a≤0.05,0.0005≤b≤0.05,0.0005≤c≤0.05,x+y+z+b=1,X元素包括Na和K中的至少一种,Q元素包括Al、Zr、Sr、Sn、Sb、Si、Ba、Y、W、Mo、Nb、La、Ta和Ce中的至少一种,Z元素包括F、Cl和S中的至少一种。The mixed material is sintered to obtain the positive electrode material, wherein the positive electrode material includes a material with a chemical formula of Li1 - aNixCoyMnzXaQbZcO2 -c , wherein 0.80≤x<0.96, y>0, z>0, 0.0005≤a≤0.05, 0.0005≤b≤0.05, 0.0005≤c≤0.05, x+y+z+b=1, the X element includes at least one of Na and K, the Q element includes at least one of Al, Zr, Sr, Sn, Sb, Si, Ba, Y, W, Mo, Nb, La, Ta and Ce, and the Z element includes at least one of F, Cl and S.
本申请如上制备正极材料,采用固相法将X元素、Q元素和Z元素进行体相不同位点掺杂,制备方法工艺简单,改善效果突出,原材料成本低,适宜于规模化工业化生产。其中,X元素体相掺杂后占据Li位,Q元素体相掺杂后占据过渡金属位,Z元素体相掺杂后占据O位,通过不同位点协同掺杂,形成稳定的掺杂结构。不仅增大了高镍正极材料的锂层间距,有助于锂的脱嵌并减弱Li+/Ni2+混排和相转变,而且降低了锂层与氧层之间的相互作用力,增大了锂层与氧层的间距,加速了Li+的传输,最终在维持高镍单晶正极材料高容量发挥的同时,改善其循环稳定性。The present application prepares the positive electrode material as above, and adopts the solid phase method to dope the X element, Q element and Z element at different sites in the bulk phase. The preparation method is simple in process, the improvement effect is outstanding, the cost of raw materials is low, and it is suitable for large-scale industrial production. Among them, the X element occupies the Li position after bulk phase doping, the Q element occupies the transition metal position after bulk phase doping, and the Z element occupies the O position after bulk phase doping, and a stable doping structure is formed by synergistic doping at different sites. Not only does it increase the lithium interlayer spacing of the high-nickel positive electrode material, it helps to deintercalate lithium and weaken the Li + /Ni 2+ mixing and phase transition, but it also reduces the interaction force between the lithium layer and the oxygen layer, increases the spacing between the lithium layer and the oxygen layer, and accelerates the transmission of Li + , and finally improves its cycle stability while maintaining the high capacity of the high-nickel single crystal positive electrode material.
在一些实施例中,所述镍钴锰前驱体包括化学式为NimConMn1-m-n(OH)2的材料,其中,0.80≤m<0.98,n>0,m+n<1。其中,m包括但不限于:0.80、0.83、0.85、0.90、0.92、0.95、0.96或0.97。n包括但不限于:0.002、0.004、0.006、0.008、0.010、0.012、0.014、0.016、0.018或0.020。In some embodiments, the nickel-cobalt-manganese precursor includes a material with a chemical formula of Ni m Co n Mn 1-mn (OH) 2 , wherein 0.80≤m<0.98, n>0, and m+n<1. Wherein, m includes but is not limited to: 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.96 or 0.97. n includes but is not limited to: 0.002, 0.004, 0.006, 0.008, 0.010, 0.012, 0.014, 0.016, 0.018 or 0.020.
在一些实施例中,所述第一添加剂包括含有X元素的氧化物、含有X元素的碳酸盐、含有X元素的氢氧化物和含有X元素的醋酸盐中的至少一种。例如,X元素为Na,则第一添加剂可以是NaOH。In some embodiments, the first additive includes at least one of an oxide containing element X, a carbonate containing element X, a hydroxide containing element X, and an acetate containing element X. For example, if element X is Na, the first additive may be NaOH.
在一些实施例中,所述第二添加剂包括含有Q元素的氧化物、含有Q元素的碳酸盐、含有Q元素的氢氧化物和含有Q元素的醋酸盐中的至少一种。例如,Q元素为Zr,则第二添加剂可以是ZrO2。Q元素为Sr,则第二添加剂可以是SrCO3。In some embodiments, the second additive includes at least one of an oxide containing the Q element, a carbonate containing the Q element, a hydroxide containing the Q element, and an acetate containing the Q element. For example, if the Q element is Zr, the second additive may be ZrO 2 . If the Q element is Sr, the second additive may be SrCO 3 .
在一些实施例中,所述含有Z元素的第三添加剂包括含有Z元素的盐类化合物。例如,Z元素为F,则第三添加剂可以是NH4F和LiF中的至少一种。In some embodiments, the third additive containing the element Z includes a salt compound containing the element Z. For example, the element Z is F, and the third additive may be at least one of NH 4 F and LiF.
在一些实施例中,所述锂源中锂元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(1.01~1.06):1,例如可以是1.01:1、1.02:1、1.03:1、1.04:1、1.05:1或1.06:1。In some embodiments, the ratio of the molar number of lithium element in the lithium source to the molar number of the nickel-cobalt-manganese precursor is (1.01-1.06):1, for example, it can be 1.01:1, 1.02:1, 1.03:1, 1.04:1, 1.05:1 or 1.06:1.
在一些实施例中,所述第一添加剂中X元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1,例如可以是0.001:1、0.005:1、0.010:1、0.020:1、0.030:1、0.040:1、0.050:1、0.060:1、0.070:1、0.080:1、0.090:1或0.100:1。In some embodiments, the ratio of the molar number of the X element in the first additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1, for example, it can be 0.001:1, 0.005:1, 0.010:1, 0.020:1, 0.030:1, 0.040:1, 0.050:1, 0.060:1, 0.070:1, 0.080:1, 0.090:1 or 0.100:1.
在一些实施例中,所述第二添加剂中Q元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1,例如可以是0.001:1、0.005:1、0.010:1、0.020:1、0.030:1、0.040:1、0.050:1、0.060:1、0.070:1、0.080:1、0.090:1或0.100:1。In some embodiments, the ratio of the molar number of the Q element in the second additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1, for example, it can be 0.001:1, 0.005:1, 0.010:1, 0.020:1, 0.030:1, 0.040:1, 0.050:1, 0.060:1, 0.070:1, 0.080:1, 0.090:1 or 0.100:1.
在一些实施例中,所述第三添加剂中Z元素的摩尔数与所述镍钴锰前驱体的摩尔数之比为(0.001~0.1):1,例如可以是0.001:1、0.005:1、0.010:1、0.020:1、0.030:1、0.040:1、0.050:1、0.060:1、0.070:1、0.080:1、0.090:1或0.100:1。In some embodiments, the ratio of the molar number of the Z element in the third additive to the molar number of the nickel-cobalt-manganese precursor is (0.001-0.1):1, for example, it can be 0.001:1, 0.005:1, 0.010:1, 0.020:1, 0.030:1, 0.040:1, 0.050:1, 0.060:1, 0.070:1, 0.080:1, 0.090:1 or 0.100:1.
在一些实施例中,所述烧结处理包括:依次对所述混合物料进行第一烧结和第二烧结。In some embodiments, the sintering process includes: sequentially performing a first sintering and a second sintering on the mixed material.
可选地,所述第一烧结的温度为450℃~650℃,例如可以是450℃、460℃、480℃、500℃、520℃、540℃、560℃、580℃、600℃或650℃。本申请如上选取第一烧结的温度,具有良好的锂化反应活性,且有效避免锂盐偏析以及锂化反应不充分等问题。Optionally, the first sintering temperature is 450° C. to 650° C., for example, 450° C., 460° C., 480° C., 500° C., 520° C., 540° C., 560° C., 580° C., 600° C. or 650° C. The first sintering temperature selected in the present application has good lithiation reaction activity and effectively avoids problems such as lithium salt segregation and insufficient lithiation reaction.
可选地,所述第一烧结的时间为2h~10h,例如可以是2h、3h、4h、5h、6h、7h、8h、9h或10h。Optionally, the first sintering time is 2 h to 10 h, for example, it can be 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h or 10 h.
可选地,所述第一烧结的气氛为含氧气氛。可选地,含氧气氛中的氧气体积浓度≥97%。Optionally, the first sintering atmosphere is an oxygen-containing atmosphere. Optionally, the oxygen volume concentration in the oxygen-containing atmosphere is ≥97%.
可选地,所述第二烧结的温度为650℃~900℃,例如可以是650℃、660℃、680℃、700℃、720℃、740℃、760℃、780℃、800℃、820℃、840℃、860℃、880℃或900℃。本申请如上选取第二烧结的温度,可以使正极材料具有较高的结晶性、良好的晶格有序度,能够避免严重的阳离子混排导致的岩盐相生成以及晶格有序度下降等问题。Optionally, the second sintering temperature is 650°C to 900°C, for example, 650°C, 660°C, 680°C, 700°C, 720°C, 740°C, 760°C, 780°C, 800°C, 820°C, 840°C, 860°C, 880°C or 900°C. The second sintering temperature selected in the present application as above can make the positive electrode material have higher crystallinity and good lattice order, and can avoid the problems of rock salt phase formation caused by severe cation mixing and decreased lattice order.
可选地,所述第二烧结的时间为10h~20h,例如可以是10h、11h、12h、13h、14h、15h、16h、17h、18h、19h或20h。Optionally, the second sintering time is 10 h to 20 h, for example, it can be 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h, 19 h or 20 h.
可选地,所述第二烧结的气氛为含氧气氛。可选地,含氧气氛中的氧气体积浓度≥97%。Optionally, the second sintering atmosphere is an oxygen-containing atmosphere. Optionally, the volume concentration of oxygen in the oxygen-containing atmosphere is ≥97%.
在一些实施例中,烧结处理后对正极材料进行冷却处理、破碎处理和过筛处理。可选地,破碎处理包括依次进行的对辊破碎和超离心研磨破碎。可选地,过筛处理的目数为200目~300目。In some embodiments, after the sintering process, the positive electrode material is subjected to cooling, crushing and screening. Optionally, the crushing process includes rolling crushing and ultracentrifugal grinding crushing performed in sequence. Optionally, the mesh number of the screening process is 200 mesh to 300 mesh.
示例性地,提供一种上述正极材料的制备方法,包括如下步骤:Exemplarily, a method for preparing the above-mentioned positive electrode material is provided, comprising the following steps:
S1、按照摩尔比为1:(1.01~1.06):(0.001~0.1):(0.001~0.1):(0.001~0.1)将镍钴锰前驱体、锂源、含有X元素的第一添加剂、含有Q元素的第二添加剂和含有Z元素的第三添加剂混合,得到混合物料,其中镍钴锰前驱体包括化学式为NimConMn1-m-n(OH)2的材料,其中,0.80≤m<0.98,n>0,m+n<1;S1. Mix a nickel-cobalt-manganese precursor, a lithium source, a first additive containing an X element, a second additive containing an Q element, and a third additive containing an Z element in a molar ratio of 1: (1.01-1.06): (0.001-0.1): (0.001-0.1): (0.001-0.1) to obtain a mixed material, wherein the nickel-cobalt-manganese precursor includes a material with a chemical formula of Ni m Co n Mn 1-mn (OH) 2 , wherein 0.80≤m<0.98, n>0, and m+n<1;
S2、将步骤S1中混合物料先在含氧气氛下,450℃~650℃烧结2h~10h;然后在含氧气氛下,650℃~900℃烧结10h~20h,随炉冷却后,进行破碎处理和过筛处理,得到所述正极材料。S2. The mixed material in step S1 is first sintered at 450°C-650°C for 2h-10h in an oxygen-containing atmosphere; then sintered at 650°C-900°C for 10h-20h in an oxygen-containing atmosphere, and after cooling in the furnace, crushed and sieved to obtain the positive electrode material.
本申请第三方面提供了一种正极极片,包括如第一方面所述的正极材料以及如第二方面所述的制备方法制得的正极材料中的至少一种。A third aspect of the present application provides a positive electrode plate, comprising at least one of the positive electrode material as described in the first aspect and the positive electrode material prepared by the preparation method as described in the second aspect.
上述正极极片包含正极集流体和位于正极集流体至少一侧的正极活性材料层,该正极活性材料层包括正极活性材料、导电剂和粘结剂。正极活性材料包括上述正极材料或上述制备方法制得的正极材料中的至少一种,导电剂和粘结剂可采用本技术领域常用的导电剂和粘结剂。The positive electrode sheet comprises a positive electrode current collector and a positive electrode active material layer located on at least one side of the positive electrode current collector, wherein the positive electrode active material layer comprises a positive electrode active material, a conductive agent and a binder. The positive electrode active material comprises at least one of the positive electrode material or the positive electrode material prepared by the preparation method, and the conductive agent and the binder may be conductive agents and binders commonly used in the technical field.
本申请第四方面提供了一种二次电池,包括如第三方面所述的正极极片。A fourth aspect of the present application provides a secondary battery, comprising the positive electrode sheet as described in the third aspect.
上述二次电池例如可以包括本申请上述正极极片、负极极片、电解液和隔膜。隔膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。电解液在正极极片和负极极片之间起到传导活性离子的作用。在二次电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。本申请对负极极片、电解液和隔膜没有特别的限制,采用本技术领域常用的制备方法制得的负极极片、电解液和隔膜,或者使用本领域常用的负极极片、电解液和隔膜均可。可选地,上述二次电池包括锂离子电池。The above-mentioned secondary battery may, for example, include the above-mentioned positive electrode sheet, negative electrode sheet, electrolyte and diaphragm of the present application. The diaphragm is arranged between the positive electrode sheet and the negative electrode sheet, and mainly plays the role of preventing the positive and negative electrodes from short-circuiting, while allowing active ions to pass through. The electrolyte plays the role of conducting active ions between the positive electrode sheet and the negative electrode sheet. During the charging and discharging process of the secondary battery, the active ions are embedded and released back and forth between the positive electrode sheet and the negative electrode sheet. The present application has no special restrictions on the negative electrode sheet, electrolyte and diaphragm, and the negative electrode sheet, electrolyte and diaphragm prepared by the preparation method commonly used in the technical field, or the negative electrode sheet, electrolyte and diaphragm commonly used in the art can be used. Optionally, the above-mentioned secondary battery includes a lithium-ion battery.
本申请第五方面还提供一种用电装置,包括如第四方面所述的二次电池。The fifth aspect of the present application also provides an electrical device, comprising the secondary battery as described in the fourth aspect.
上述用电装置可以包括任何以二次电池为驱动源的设备或装置,例如手机、笔记本电脑、电动车辆、船舶、卫星、储能设备、智能家电产品等,但不限于此。The above-mentioned electrical devices may include any equipment or devices that use secondary batteries as driving sources, such as mobile phones, laptop computers, electric vehicles, ships, satellites, energy storage devices, smart home appliances, etc., but are not limited thereto.
为了进一步说明本申请,以下结合具体的实施例对本申请的技术方案进行详细描述。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。In order to further illustrate the present application, the technical scheme of the present application is described in detail below in conjunction with specific examples. If no specific technology or conditions are specified in the examples, the technology or conditions described in the literature in the field or the product instructions are used. If the manufacturer of the reagents or instruments used is not specified, they are all conventional products that can be obtained commercially.
实施例1Example 1
S1、按照摩尔比称取原料,Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:Al2O3:NH4F=1:1.04:0.001:0.005:0.005:0.0025:0.001,将上述原料置于气流混合机中混合,气流混合机的转速为1200rpm,混合时间为40min,充分混合后得到混合物料;S1. Weigh raw materials according to the molar ratio of Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : Al 2 O 3 : NH 4 F = 1: 1.04: 0.001: 0.005: 0.005: 0.0025: 0.001, mix the above raw materials in an air flow mixer, the speed of the air flow mixer is 1200 rpm, the mixing time is 40 minutes, and the mixed material is obtained after being fully mixed;
S2、将混合物料转移至箱式炉内在氧气气氛中进行烧结处理,首先以2.5℃/min的升温速率升温至630℃,进行第一烧结6h,然后以2.5℃/min的升温速率升温至780℃,进行第二烧结16h,烧结气氛中氧气的含量为99vol%,随炉冷却,将得到的物料依次进行颚式破碎、对辊破碎、气流破碎和325目过筛处理,如图1所示,得到化学式包括Li0.999Na0.001Ni0.945Co0.03Mn0.01Zr0.005Sr0.005Al0.005F0.001O1.999的单晶正极材料,体积平均粒径Dv50为2.6μm,比表面积为1.1m2/g,正极材料中Li2CO3的质量占比为0.1%,LiOH的质量占比为0.3%。S2. The mixed material is transferred to a box furnace for sintering in an oxygen atmosphere. First, the temperature is increased to 630°C at a heating rate of 2.5°C/min for the first sintering for 6 hours, and then the temperature is increased to 780°C at a heating rate of 2.5°C/min for the second sintering for 16 hours. The oxygen content in the sintering atmosphere is 99 vol%. As the furnace is cooled, the obtained material is successively subjected to jaw crushing, roller crushing, air flow crushing and 325 mesh sieving. As shown in FIG1 , a single crystal positive electrode material with a chemical formula of Li 0.999 Na 0.001 Ni 0.945 Co 0.03 Mn 0.01 Zr 0.005 Sr 0.005 Al 0.005 F 0.001 O 1.999 is obtained. The volume average particle size Dv50 is 2.6 μm, the specific surface area is 1.1 m 2 /g, and the Li 2 CO in the positive electrode material is 1.24 W/cm2. The mass proportion of 3 is 0.1%, and the mass proportion of LiOH is 0.3%.
实施例2Example 2
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料组成和摩尔比为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:KOH:ZrO2:Sb2O3:LiF=1:1.04:0.001:0.005:0.005:0.001;步骤S2中第二烧结的温度为785℃,制备得到正极材料,化学式为Li0.999K0.001Ni0.945Co0.03Mn0.01Zr0.005Sb0.01F0.001O1.999。A positive electrode material was prepared according to the method of Example 1, with the only difference that the raw material composition and molar ratio in step S1 were: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: KOH: ZrO 2 : Sb 2 O 3 : LiF = 1: 1.04: 0.001: 0.005: 0.005: 0.001; and the second sintering temperature in step S2 was 785° C. to obtain a positive electrode material with a chemical formula of Li 0.999 K 0.001 Ni 0.945 Co 0.03 Mn 0.01 Zr 0.005 Sb 0.01 F 0.001 O 1.999 .
实施例3Example 3
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料组成和摩尔比为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:NH4Cl=1:1.04:0.01:0.02:0.01;步骤S2中第二烧结的温度为790℃,制备得到正极材料,化学式为Li0.99Na0.01Ni0.94Co0.03Mn0.01Zr0.0 2Cl0.01O1.99。A positive electrode material was prepared according to the method of Example 1, with the only difference that the raw material composition and molar ratio in step S1 were: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : NH 4 Cl = 1: 1.04: 0.01: 0.02: 0.01; and the second sintering temperature in step S2 was 790° C. to obtain a positive electrode material with a chemical formula of Li 0.99 Na 0.01 Ni 0.94 Co 0.03 Mn 0.01 Zr 0.0 2 Cl 0.01 O 1.99 .
实施例4Example 4
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料组成和摩尔比为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:KOH:ZrO2:SrCO3:NH4F=1:1.04:0.0005:0.0005:0.005:0.005:0.001,制备得到正极材料,化学式为Li0.999Na0.0005K0.0005Ni0.95Co0.03Mn0.01Zr0.005 Sr0.005F0.001O1.999。A positive electrode material was prepared according to the method of Example 1, with the only difference that the raw material composition and molar ratio in step S1 were: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: KOH: ZrO 2 : SrCO 3 : NH 4 F = 1: 1.04: 0.0005: 0.0005: 0.005: 0.005: 0.001, and a positive electrode material was prepared with a chemical formula of Li 0.999 Na 0.0005 K 0.0005 Ni 0.95 Co 0.03 Mn 0.01 Zr 0.005 Sr 0.005 F 0.001 O 1.999 .
实施例5Example 5
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料组成和摩尔比为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:NH4F:NH4Cl=1:1.04:0.001:0.005:0.005:0.0005:0.0005,制备得到正极材料,化学式为Li0.999Na0.001Ni0.95Co0.03Mn0.01Zr0.005 Sr0.005F0.0005Cl0.0005O1.999。A positive electrode material was prepared according to the method of Example 1, with the only difference that the raw material composition and molar ratio in step S1 were: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : NH 4 F: NH 4 Cl = 1: 1.04: 0.001: 0.005: 0.005: 0.0005: 0.0005, to obtain a positive electrode material with a chemical formula of Li 0.999 Na 0.001 Ni 0.95 Co 0.03 Mn 0.01 Zr 0.005 Sr 0.005 F 0.0005 Cl 0.0005 O 1.999 .
实施例6Example 6
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料组成和摩尔比为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:KOH:ZrO2:Nb2O5:NH4F:NH4Cl=1:1.04:0.0005:0.0005:0.005:0.005:0.0005:0.0005,制备得到正极材料,化学式为Li0.999Na0.0005K0.0005Ni0.945Co0.03Mn0.01Zr0.005 Nb0.01F0.0005Cl0.0005O1.999。A positive electrode material is prepared according to the method of Example 1, with the only difference that in step S1, the raw material composition and molar ratio are: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: KOH: ZrO 2 : Nb 2 O 5 : NH 4 F: NH 4 Cl=1: 1.04: 0.0005: 0.0005: 0.0005: 0.005: 0.0005: 0.0005, and a positive electrode material is prepared with a chemical formula of Li 0.999 Na 0.0005 K 0.0005 Ni 0.945 Co 0.03 Mn 0.01 Zr 0.005 Nb 0.01 F 0.0005 Cl 0.0005 O 1.999 .
实施例7Example 7
按照实施例1的方法制备正极材料,其区别仅在于,步骤S2中第一烧结的温度为400℃。The positive electrode material was prepared according to the method of Example 1, except that the temperature of the first sintering in step S2 was 400°C.
实施例8Example 8
按照实施例1的方法制备正极材料,其区别仅在于,步骤S2中第一烧结的温度为680℃。The positive electrode material was prepared according to the method of Example 1, except that the temperature of the first sintering in step S2 was 680°C.
实施例9Example 9
按照实施例1的方法制备正极材料,其区别仅在于,步骤S2中第二烧结的温度为640℃。The positive electrode material was prepared according to the method of Example 1, except that the temperature of the second sintering in step S2 was 640°C.
实施例10Example 10
按照实施例1的方法制备正极材料,其区别仅在于,步骤S2中第二烧结的温度为950℃。The positive electrode material was prepared according to the method of Example 1, except that the temperature of the second sintering in step S2 was 950°C.
实施例11Embodiment 11
按照实施例1的方法制备正极材料,其区别仅在于,改变Al、Zr和Sr元素的摩尔比,按照摩尔比称取原料,Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:Al2O3:NH4F=1:1.04:0.001:0.005:0.005:0.01:0.001,化学式为Li0.999Na0.001Ni0.93Co0.03Mn0.01Zr0.005Sr0.00 5Al0.02F0.001O1.999。The positive electrode material was prepared according to the method of Example 1, with the only difference being that the molar ratio of Al, Zr and Sr elements was changed. The raw materials were weighed according to the molar ratio: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : Al 2 O 3 : NH 4 F=1: 1.04: 0.001: 0.005: 0.005: 0.01: 0.001, and the chemical formula was Li 0.999 Na 0.001 Ni 0.93 Co 0.03 Mn 0.01 Zr 0.005 Sr 0.00 5 Al 0.02 F 0.001 O 1.999 .
实施例12Example 12
按照实施例1的方法制备正极材料,其区别仅在于,改变Al、Zr和Sr元素的摩尔比,按照摩尔比称取原料,Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:Al2O3:NH4F=1:1.04:0.001:0.01:0.005:0.005:0.001,化学式为Li0.999Na0.001Ni0.935Co0.03Mn0.01Zr0.01Sr0.00 5Al0.01F0.001O1.999。The positive electrode material was prepared according to the method of Example 1, with the only difference being that the molar ratio of Al, Zr and Sr elements was changed. The raw materials were weighed according to the molar ratio: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : Al 2 O 3 : NH 4 F = 1: 1.04: 0.001: 0.01: 0.005: 0.005: 0.001, and the chemical formula was Li 0.999 Na 0.001 Ni 0.935 Co 0.03 Mn 0.01 Zr 0.01 Sr 0.00 5 Al 0.01 F 0.001 O 1.999 .
实施例13Example 13
按照实施例1的方法制备正极材料,其区别仅在于,改变Al、Zr和Sr元素的摩尔比,按照摩尔比称取原料,Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:Al2O3:NH4F=1:1.04:0.001:0.005:0.01:0.005:0.001,化学式为Li0.999Na0.001Ni0.935Co0.03Mn0.01Zr0.005Sr0.0 1Al0.01F0.001O1.999。The positive electrode material was prepared according to the method of Example 1, with the only difference being that the molar ratio of Al, Zr and Sr elements was changed. The raw materials were weighed according to the molar ratio: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : Al 2 O 3 : NH 4 F=1: 1.04: 0.001: 0.005: 0.01: 0.005: 0.001, and the chemical formula was Li 0.999 Na 0.001 Ni 0.935 Co 0.03 Mn 0.01 Zr 0.005 Sr 0.01 Al 0.01 F 0.001 O 1.999 .
对比例1Comparative Example 1
S1、按照摩尔比称取原料,Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O=1:1.04,将上述原料置于气流混合机中混合,气流混合机转速为1200rpm,混合时间为40min,充分混合后得到混合物料;S1. Weigh the raw materials according to the molar ratio of Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O = 1:1.04, mix the raw materials in an air flow mixer, the speed of the air flow mixer is 1200 rpm, the mixing time is 40 minutes, and obtain a mixed material after sufficient mixing;
S2、将混合物料转移至气氛炉内在烧结气氛中进行烧结处理,首先以2.5℃/min的升温速率升温至630℃,进行第一烧结6h,然后以2.5℃/min的升温速率升温至775℃,进行第二烧结16h,烧结气氛中氧气的含量为99vol%,随炉冷却,将得到的物料依次进行对辊破碎、气流破碎、超离心研磨破碎和325目过筛处理,得到如图2所示的正极材料。S2. The mixed material is transferred to an atmosphere furnace for sintering treatment in a sintering atmosphere. First, the temperature is increased to 630°C at a heating rate of 2.5°C/min, and the first sintering is performed for 6 hours. Then, the temperature is increased to 775°C at a heating rate of 2.5°C/min, and the second sintering is performed for 16 hours. The oxygen content in the sintering atmosphere is 99 vol%. As the furnace is cooled, the obtained material is successively subjected to roller crushing, air flow crushing, ultracentrifugal grinding and crushing, and 325 mesh sieving to obtain the positive electrode material as shown in Figure 2.
对比例2Comparative Example 2
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料不包括NaOH,即原料组成为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:ZrO2:SrCO3:Al2O3:NH4F=1:1.04:0.005:0.005:0.005:0.001。The positive electrode material was prepared according to the method of Example 1, except that the raw material in step S1 did not include NaOH, that is, the raw material composition was: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O : ZrO 2 : SrCO 3 : Al 2 O 3 : NH 4 F = 1: 1.04: 0.005: 0.005: 0.005: 0.001.
对比例3Comparative Example 3
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料不包括NH4F,即原料组成为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH:ZrO2:SrCO3:Al2O3=1:1.04:0.001:0.005:0.005:0.005。The positive electrode material was prepared according to the method of Example 1, except that the raw material in step S1 did not include NH 4 F, that is, the raw material composition was: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH: ZrO 2 : SrCO 3 : Al 2 O 3 = 1: 1.04: 0.001: 0.005: 0.005: 0.005.
对比例4Comparative Example 4
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料不包括NH4F、ZrO2、SrCO3和Al2O3,即原料组成为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NaOH=1:1.04:0.001。The positive electrode material was prepared according to the method of Example 1, except that the raw material in step S1 did not include NH 4 F, ZrO 2 , SrCO 3 and Al 2 O 3 , that is, the raw material composition was: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NaOH=1:1.04:0.001.
对比例5Comparative Example 5
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料不包括NH4F和NaOH,即原料组成为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:ZrO2:SrCO3:Al2O3=1:1.04:0.005:0.005:0.005。The positive electrode material was prepared according to the method of Example 1, except that the raw material in step S1 did not include NH 4 F and NaOH, that is, the raw material composition was: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: ZrO 2 : SrCO 3 : Al 2 O 3 = 1: 1.04: 0.005: 0.005: 0.005.
对比例6Comparative Example 6
按照实施例1的方法制备正极材料,其区别仅在于,步骤S1中原料不包括ZrO2、SrCO3、Al2O3和NaOH,即原料组成为:Ni0.96Co0.03Mn0.01(OH)2:LiOH·H2O:NH4F=1:1.04:0.001。The positive electrode material was prepared according to the method of Example 1, except that the raw material in step S1 did not include ZrO 2 , SrCO 3 , Al 2 O 3 and NaOH, that is, the raw material composition was: Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 : LiOH·H 2 O: NH 4 F = 1: 1.04: 0.001.
各实施例及各对比例制备的正极材料的组分利用ICP-AES(电感耦合等离子体原子发射光谱)测试仪测定。The components of the positive electrode materials prepared in each embodiment and each comparative example were measured using an ICP-AES (inductively coupled plasma atomic emission spectrometer).
采用上述实施例和对比例中制备得到的正极材料组装扣式锂离子半电池,包括:The positive electrode materials prepared in the above embodiments and comparative examples are used to assemble button-type lithium-ion half-cells, comprising:
将各实施例和对比例制备的正极材料制成正极极片,该正极极片按照正极材料:导电剂super炭黑:PVDF(聚偏氟乙烯)=96.5:2:1.5的质量比配料。将上述正极极片组装成型号为LR2032的扣式电池,然后测试容量性能和循环性能。The positive electrode materials prepared in each embodiment and comparative example were made into positive electrode sheets, and the positive electrode sheets were prepared according to the mass ratio of positive electrode material: conductive agent super carbon black: PVDF (polyvinylidene fluoride) = 96.5:2:1.5. The above positive electrode sheets were assembled into button batteries of model LR2032, and then the capacity performance and cycle performance were tested.
容量性能测试采用恒流恒压充放电模式,充放电倍率先0.1C再1/3C,循环性能测试采用45℃、0.5C倍率下进行充放电循环测试,容量性能测试与循环性能测试充放电电压区间均设为2.5~4.3V,测试结果如表1所示,其中,实施例1和对比例1的循环保持率对比图如图3所示。The capacity performance test adopts constant current and constant voltage charge and discharge mode, and the charge and discharge times are first 0.1C and then 1/3C. The cycle performance test adopts 45°C and 0.5C rate for charge and discharge cycle test. The charge and discharge voltage range of the capacity performance test and the cycle performance test are both set to 2.5~4.3V. The test results are shown in Table 1, among which the cycle retention rate comparison chart of Example 1 and Comparative Example 1 is shown in Figure 3.
表1Table 1
通过上表可以看出:From the above table we can see that:
(1)本申请实施例1与实施例4-6相比,可以看出,本申请Q元素采用Al、Zr和Sr,体相晶体结构稳定,且提升了循环稳定性。(1) Compared with Examples 4-6, Example 1 of the present application shows that the Q element of the present application uses Al, Zr and Sr, the bulk crystal structure is stable, and the cycle stability is improved.
(2)本申请实施例1与实施例7-10相比,可以看出,本申请控制烧结处理过程中的温度,制备得到的正极材料残碱较低、结晶性较高、离子混排度较好且容量较高,能够避免残碱引发的产气风险,以及一次颗粒尺寸过大导致的降容问题。(2) Compared with Examples 7-10, it can be seen that the present application controls the temperature during the sintering process, and the positive electrode material prepared has low residual alkali, high crystallinity, good ion mixing degree and high capacity, which can avoid the risk of gas production caused by residual alkali and the capacity reduction problem caused by excessive primary particle size.
(3)本申请实施例1与实施例11-13相比,可以看出,本申请中控制Al、Zr和Sr的比例,能够提升正极材料容量。(3) By comparing Example 1 of the present application with Examples 11-13, it can be seen that controlling the ratio of Al, Zr and Sr in the present application can improve the capacity of the positive electrode material.
(4)本申请实施例1与对比例1-6相比,结合图1、图2和图3。其中,从图1和图2中可以看出,实施例1所制得的样品为单晶样品,且其一次颗粒的尺寸约为1.3μm,实施例1制得的正极材料与对比例1制备得到的正极材料微观形貌并无明显变化,此外,由于一次颗粒之间会发生团聚,实施例1制备得到的正极材料的体积平均粒径Dv50为2.5μm。进一步地,如图3所示,本申请实施例1的正极材料相比于对比例1的正极材料,显著提升了循环稳定性。具体地,对比例4仅采用X元素掺杂,虽然具有较高的容量,但是由于体相晶体结构稳定性较差,进而导致循环稳定性降低。对比例5仅采用Q元素掺杂,虽然具有较好的循环稳定性,但是缺乏锂位掺杂,导致层间距较低和容量下降。对比例6仅采用阴离子掺杂,会引起正极材料中的Li+/Ni2+混排加剧,导致其长循环性能不稳定。进一步地,结合本申请实施例1与对比例1-6相比,可以看出本申请中X元素、Q元素和Z元素的共同效应,则可以很好地起到协同改善的效果,不同位点的阴阳离子掺杂则可以发挥协同效应,对超高镍三元单晶材料的化学、结构稳定性等方面发挥积极作用。(4) Example 1 of the present application is compared with Comparative Examples 1-6, in combination with Figures 1, 2 and 3. Among them, it can be seen from Figures 1 and 2 that the sample prepared in Example 1 is a single crystal sample, and the size of its primary particles is about 1.3μm. The positive electrode material prepared in Example 1 has no obvious change in microscopic morphology from the positive electrode material prepared in Comparative Example 1. In addition, due to agglomeration between the primary particles, the volume average particle size Dv50 of the positive electrode material prepared in Example 1 is 2.5μm. Further, as shown in Figure 3, the positive electrode material of Example 1 of the present application significantly improves the cycle stability compared with the positive electrode material of Comparative Example 1. Specifically, Comparative Example 4 only uses X element doping. Although it has a higher capacity, it has a poor stability of the bulk crystal structure, which leads to a decrease in cycle stability. Comparative Example 5 only uses Q element doping. Although it has good cycle stability, it lacks lithium site doping, resulting in a lower interlayer spacing and a decrease in capacity. Comparative Example 6 uses only anion doping, which will cause the Li + /Ni 2+ mixing in the positive electrode material to intensify, resulting in unstable long cycle performance. Further, compared with Example 1 of the present application and Comparative Examples 1-6, it can be seen that the joint effect of the X element, Q element and Z element in the present application can well play a synergistic improvement effect, and the anion and cation doping at different sites can play a synergistic effect, which plays a positive role in the chemical and structural stability of the ultra-high nickel ternary single crystal material.
综上所述,本申请利用X元素、Q元素和Z元素共掺杂,其中,X元素体相掺杂后占据Li位,Q元素体相掺杂后占据过渡金属位,Z元素体相掺杂后占据O位,通过不同位点协同掺杂,形成稳定的掺杂结构。不仅增大了超高镍正极材料的锂层间距,有助于锂的脱嵌并减弱Li+/Ni2+混排和相转变,而且降低了锂层与氧层之间的相互作用力,增大了锂层与氧层的间距,加速了Li+的传输,最终在维持超高镍单晶正极材料高容量发挥的同时,改善其循环稳定性。In summary, the present application utilizes X element, Q element and Z element co-doping, wherein X element occupies Li position after bulk phase doping, Q element occupies transition metal position after bulk phase doping, and Z element occupies O position after bulk phase doping, and a stable doping structure is formed by synergistic doping at different sites. It not only increases the lithium interlayer spacing of the ultra-high nickel positive electrode material, helps lithium deintercalation and weakens Li + /Ni 2+ mixing and phase transition, but also reduces the interaction force between the lithium layer and the oxygen layer, increases the spacing between the lithium layer and the oxygen layer, accelerates the transmission of Li + , and ultimately improves its cycle stability while maintaining the high capacity of the ultra-high nickel single crystal positive electrode material.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be construed as limiting the scope of the application. It should be noted that, for a person of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the present application shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411030519.4A CN118841551A (en) | 2024-07-30 | 2024-07-30 | Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411030519.4A CN118841551A (en) | 2024-07-30 | 2024-07-30 | Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118841551A true CN118841551A (en) | 2024-10-25 |
Family
ID=93138830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411030519.4A Pending CN118841551A (en) | 2024-07-30 | 2024-07-30 | Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118841551A (en) |
-
2024
- 2024-07-30 CN CN202411030519.4A patent/CN118841551A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109817955B (en) | High-nickel positive electrode material for nonaqueous electrolyte secondary battery and preparation method thereof | |
CN115483393A (en) | Cathode materials, secondary batteries and electrical equipment | |
CN115117316A (en) | Phosphorus-containing substance coated positive electrode material and preparation method and application thereof | |
WO2025030677A1 (en) | Sodium ion battery multi-element precursor, preparation method therefor, and use thereof | |
CN116454265A (en) | Morphology regulation-based lithium-rich manganese-based layered cathode material and preparation method thereof | |
CN116014139A (en) | High-nickel ternary positive electrode material, preparation method, positive electrode plate, secondary battery and application | |
CN117423827A (en) | Positive electrode active material, preparation method thereof and lithium ion battery | |
CN112635752A (en) | Ternary cathode material, preparation method thereof and lithium battery | |
CN116031380A (en) | Polycrystalline sodium ion-like positive electrode material, and preparation method and application thereof | |
CN114284470B (en) | Positive electrode material, its preparation method, positive electrode including same, and lithium ion battery | |
CN116053458A (en) | Doped NCM ternary positive electrode material and preparation method thereof, positive electrode and lithium ion battery | |
CN115799481A (en) | A kind of ternary co-blended lithium manganese iron phosphate material and its preparation method and application | |
CN115621458A (en) | A kind of O3 type sodium ion battery layered positive electrode material and its preparation method, positive pole piece and sodium ion battery | |
CN118099411A (en) | Preparation and application of doped nickel-manganese-based sodium ion battery single crystal positive electrode material | |
CN117154047A (en) | ZrO (ZrO-like grain) 2 Surface coating, zr 4+ Process for the preparation of doped layered oxides and use thereof | |
CN116443951A (en) | Sodium-embedded lithium ion battery positive electrode material and preparation method thereof | |
CN118841551A (en) | Positive electrode material, preparation method thereof, positive electrode plate, secondary battery and power utilization device | |
CN115275161A (en) | A kind of ternary cathode material with coating layer and preparation method thereof | |
CN118239459B (en) | Composite positive electrode material and preparation method and application thereof | |
CN117577931B (en) | Solid electrolyte, preparation method thereof and solid battery | |
CN118738331A (en) | Ternary positive electrode material and preparation method thereof, positive electrode sheet and battery | |
CN116259746A (en) | Single crystal type positive electrode material and preparation method and application thereof | |
CN118610371A (en) | Positive electrode material and preparation method and application thereof | |
WO2025123972A1 (en) | Positive electrode material, positive electrode slurry, and lithium-ion battery | |
WO2025030410A1 (en) | Lithium cobalt oxide positive electrode material, preparation method therefor and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |