CN118822175A - A dynamic integrated advanced scheduling method for steelmaking and rolling - Google Patents
A dynamic integrated advanced scheduling method for steelmaking and rolling Download PDFInfo
- Publication number
- CN118822175A CN118822175A CN202410882021.4A CN202410882021A CN118822175A CN 118822175 A CN118822175 A CN 118822175A CN 202410882021 A CN202410882021 A CN 202410882021A CN 118822175 A CN118822175 A CN 118822175A
- Authority
- CN
- China
- Prior art keywords
- production
- data
- plan
- optimization
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005096 rolling process Methods 0.000 title claims abstract description 35
- 238000009628 steelmaking Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 240
- 238000005457 optimization Methods 0.000 claims abstract description 73
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 30
- 239000010959 steel Substances 0.000 claims abstract description 30
- 230000002159 abnormal effect Effects 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 claims abstract description 15
- 238000012800 visualization Methods 0.000 claims abstract description 15
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 9
- 238000007726 management method Methods 0.000 claims abstract description 9
- 238000013480 data collection Methods 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 16
- 230000000007 visual effect Effects 0.000 claims description 13
- 238000007405 data analysis Methods 0.000 claims description 12
- 238000013439 planning Methods 0.000 claims description 11
- 230000005856 abnormality Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 7
- 238000007418 data mining Methods 0.000 claims description 6
- 238000013500 data storage Methods 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000013079 data visualisation Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 230000006872 improvement Effects 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000013468 resource allocation Methods 0.000 claims description 3
- 238000002922 simulated annealing Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 abstract description 2
- 238000011161 development Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06316—Sequencing of tasks or work
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/215—Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/258—Data format conversion from or to a database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/26—Visual data mining; Browsing structured data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
一种炼钢轧钢动态一体化高级排程方法,属于钢铁冶炼方法技术领域。其技术方案是:通过数据采集模块实时采集炼钢和轧钢生产过程中的各种数据;通过人工智能算法和大数据技术对采集的数据进行处理和分析,获取生产计划和排程的相关信息;根据处理后的数据和市场需求,制定相应的生产计划;根据生产计划和实际情况,通过排程优化算法对生产排程进行实时优化,确保生产过程的稳定性和高效性;通过异常处理模块实时监测生产过程中的异常情况,并及时进行调整和优化;通过可视化模块将生产计划和排程以图形化方式展示给用户。本发明可实现炼钢轧钢生产过程的可视化展示,方便用户对生产过程进行监控和管理,提高生产管理效率和生产过程透明度。A dynamic integrated advanced scheduling method for steelmaking and steel rolling belongs to the technical field of steel smelting methods. Its technical scheme is: various data in the steelmaking and steel rolling production process are collected in real time through a data acquisition module; the collected data are processed and analyzed through artificial intelligence algorithms and big data technology to obtain relevant information on production plans and scheduling; corresponding production plans are formulated according to the processed data and market demand; according to the production plan and actual conditions, the production schedule is optimized in real time through a scheduling optimization algorithm to ensure the stability and efficiency of the production process; the abnormal situation in the production process is monitored in real time through an abnormal handling module, and timely adjusted and optimized; the production plan and schedule are displayed to users in a graphical manner through a visualization module. The present invention can realize the visualization of the steelmaking and steel rolling production process, facilitate users to monitor and manage the production process, and improve production management efficiency and production process transparency.
Description
技术领域Technical Field
本发明涉及一种炼钢轧钢动态一体化高级排程方法,属于钢铁冶炼方法技术领域。The invention relates to a dynamic integrated advanced scheduling method for steelmaking and steel rolling, and belongs to the technical field of steel smelting methods.
背景技术Background Art
在传统的钢铁生产中,炼钢和轧钢是分开进行的过程。由于炼钢和轧钢之间的衔接不够紧密,会导致生产效率低下、资源浪费、产品质量不稳定等问题。因此,一些钢铁企业开始探索炼钢轧钢动态一体化高级排程技术,旨在将炼钢和轧钢两个环节进行有效的衔接和优化。In traditional steel production, steelmaking and steel rolling are separate processes. The lack of close connection between steelmaking and steel rolling can lead to problems such as low production efficiency, waste of resources, and unstable product quality. Therefore, some steel companies have begun to explore advanced scheduling technology for dynamic integration of steelmaking and steel rolling, aiming to effectively connect and optimize the two links of steelmaking and steel rolling.
这种技术的核心是通过先进的生产计划和排程系统,对炼钢和轧钢的生产过程进行一体化设计和管理。具体来说,这种系统可以根据订单需求、设备状况、人力资源等多种因素,对炼钢和轧钢的生产过程进行全面的分析和优化,从而制定出最合理的生产计划和排程方案。同时,这种系统还可以根据生产过程中的实时数据进行动态调整,保证生产过程的稳定性和高效性。The core of this technology is to integrate the design and management of the steelmaking and steel rolling production processes through advanced production planning and scheduling systems. Specifically, this system can comprehensively analyze and optimize the steelmaking and steel rolling production processes based on factors such as order requirements, equipment conditions, and human resources, thereby formulating the most reasonable production plan and scheduling scheme. At the same time, this system can also make dynamic adjustments based on real-time data during the production process to ensure the stability and efficiency of the production process.
炼钢轧钢动态一体化高级排程技术的应用,可以提高钢铁企业的生产效率和产品质量,降低生产成本和资源消耗。随着人工智能和大数据技术的发展,这种技术还将不断得到优化和完善,为钢铁产业的可持续发展提供更强大的技术支持。The application of dynamic integrated advanced scheduling technology for steelmaking and rolling can improve the production efficiency and product quality of steel enterprises and reduce production costs and resource consumption. With the development of artificial intelligence and big data technology, this technology will continue to be optimized and improved, providing stronger technical support for the sustainable development of the steel industry.
发明内容Summary of the invention
本发明目的是提供一种炼钢轧钢动态一体化高级排程方法,通过采用基于先进算法和人工智能的高级排程,能够实时响应生产环境中的变化,,及时调整生产计划和排程;能够整合各种生产信息,提供一个全面的生产计划和排程解决方案;能够根据历史数据和实时信息进行预测和优化,从而提供更精确和优化的生产计划和排程;提供了丰富的可视化工具,能够以图形化方式展示生产计划和排程,方便用户理解和操作,提高生产效率和降低生产成本,有效地解决了背景技术中存在的上述问题。The purpose of the present invention is to provide a dynamic integrated advanced scheduling method for steelmaking and steel rolling. By adopting advanced scheduling based on advanced algorithms and artificial intelligence, it can respond to changes in the production environment in real time and adjust production plans and schedules in time; it can integrate various production information to provide a comprehensive production plan and scheduling solution; it can predict and optimize based on historical data and real-time information, so as to provide more accurate and optimized production plans and schedules; it provides a wealth of visualization tools, which can display production plans and schedules in a graphical way, facilitate user understanding and operation, improve production efficiency and reduce production costs, and effectively solve the above-mentioned problems existing in the background technology.
本发明的技术方案是:一种炼钢轧钢动态一体化高级排程方法,包含以下步骤:The technical solution of the present invention is: a dynamic integrated advanced scheduling method for steelmaking and steel rolling, comprising the following steps:
步骤一、数据采集:通过数据采集模块实时采集炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;Step 1: Data collection: The data collection module collects various data in the steelmaking and rolling production process in real time, including order information, equipment status and production progress;
步骤二、数据处理:通过人工智能算法和大数据技术对采集的数据进行处理和分析,获取生产计划和排程的相关信息;Step 2: Data processing: Process and analyze the collected data through artificial intelligence algorithms and big data technology to obtain relevant information on production planning and scheduling;
步骤三、生产计划制定:根据处理后的数据和市场需求,制定相应的生产计划;Step 3: Production plan formulation: formulate corresponding production plan according to the processed data and market demand;
步骤四、生产排程优化:根据生产计划和实际情况,通过排程优化算法对生产排程进行实时优化,确保生产过程的稳定性和高效性;Step 4: Production schedule optimization: According to the production plan and actual situation, the production schedule is optimized in real time through the scheduling optimization algorithm to ensure the stability and efficiency of the production process;
步骤五、异常处理:通过异常处理模块实时监测生产过程中的异常情况,如设并及时进行调整和优化;Step 5. Exception handling: Use the exception handling module to monitor abnormal situations in the production process in real time, and make timely adjustments and optimizations;
步骤六、可视化展示:通过可视化模块将生产计划和排程以图形化方式展示给用户,方便用户理解和操作。Step 6. Visual display: The production plan and schedule are displayed to users in a graphical manner through the visualization module to facilitate user understanding and operation.
所述步骤一中,包含以下步骤:The step 1 includes the following steps:
1.1、确定数据采集范围:明确需要采集的数据类型和来源,包含订单信息、设备状态和生产进度;1.1. Determine the scope of data collection: clarify the type and source of data to be collected, including order information, equipment status and production progress;
1.2、选择数据采集方式:根据数据来源和类型,选择合适的数据采集方式,包含传感器、数据接口和数据库;1.2. Select data collection method: According to the data source and type, select the appropriate data collection method, including sensors, data interfaces and databases;
1.3、开发数据采集程序:根据选择的数据采集方式和数据采集范围,开发相应的数据采集程序,实现数据的实时采集和传输;1.3. Develop data collection program: According to the selected data collection method and data collection scope, develop the corresponding data collection program to realize real-time data collection and transmission;
1.4数据预处理:对采集到的数据进行清洗、转换和格式化操作,确保数据质量和一致性;1.4 Data preprocessing: clean, convert and format the collected data to ensure data quality and consistency;
1.5数据存储:将处理后的数据存储到相应的数据库或数据存储介质中,以供后续的数据分析和优化使用。1.5 Data storage: The processed data shall be stored in the corresponding database or data storage medium for subsequent data analysis and optimization.
所述步骤二中,包含以下步骤:The step 2 includes the following steps:
2.1、数据清洗:去除无效、错误和重复的数据,确保数据质量和准确性;2.1. Data cleaning: remove invalid, erroneous and duplicate data to ensure data quality and accuracy;
2.2、数据转换:将不同来源和格式的数据转换成统一的数据格式,便于后续的数据分析和处理;2.2. Data conversion: convert data from different sources and formats into a unified data format to facilitate subsequent data analysis and processing;
2.3、数据标准化:将数据转换为统一的尺度,便于数据的比较和分析;2.3. Data standardization: converting data into a unified scale to facilitate data comparison and analysis;
2.4、数据挖掘:通过数据挖掘算法,对大量的数据进行挖掘和分析,发现数据中的规律和趋势,为后续的生产计划和排程优化提供依据;2.4. Data mining: Through data mining algorithms, a large amount of data is mined and analyzed to discover the patterns and trends in the data, providing a basis for subsequent production planning and scheduling optimization;
2.5、数据可视化:将处理后的数据以图表、图像等形式展示出来,便于直观地理解和分析数据。2.5. Data visualization: Display the processed data in the form of charts, images, etc. to facilitate intuitive understanding and analysis of the data.
所述步骤三中,包含以下步骤:The step three includes the following steps:
3.1、确定生产目标:明确生产计划的目标和要求,包含生产量、产品质量和生产成本;3.1. Determine production goals: clarify the goals and requirements of the production plan, including production volume, product quality and production costs;
3.2、分析生产流程:分析炼钢和轧钢的生产流程,明确各个生产环节的工序、设备、质量、数量和进度要素;3.2. Analyze the production process: Analyze the production process of steelmaking and steel rolling, and clarify the process, equipment, quality, quantity and progress elements of each production link;
3.3、制定初步生产计划:根据分析和预测数据,制定初步的生产计划,包括各道工序的时间、设备、人员和材料安排;3.3. Develop preliminary production plan: Based on the analysis and forecast data, develop a preliminary production plan, including the time, equipment, personnel and material arrangements for each process;
3.4、优化生产计划:根据初步生产计划,通过排程优化算法进行优化,得出更合理和高效的生产计划;3.4. Optimize production plan: Based on the preliminary production plan, optimize it through scheduling optimization algorithm to obtain a more reasonable and efficient production plan;
3.5、审批生产计划:将优化后的生产计划提交给相关部门进行审批,确保生产计划的合理性和可行性;3.5. Approval of production plan: Submit the optimized production plan to relevant departments for approval to ensure the rationality and feasibility of the production plan;
3.6、执行生产计划:按照审批通过的生产计划执行生产,同时实时监测生产过程中的数据,及时调整生产计划。3.6. Execute production plan: Carry out production according to the approved production plan, monitor the data in the production process in real time, and adjust the production plan in time.
所述步骤四中,包含以下步骤:The step 4 includes the following steps:
4.1、确定优化目标:明确生产排程优化的目标和要求,包含生产效率、生产成本和生产周期;4.1. Determine the optimization goal: clarify the goals and requirements of production scheduling optimization, including production efficiency, production cost and production cycle;
4.2、分析生产数据:通过数据采集和分析,获取生产过程中的各项数据,包括设备状态、生产进度和产品质量;4.2. Analyze production data: Through data collection and analysis, obtain various data in the production process, including equipment status, production progress and product quality;
4.3选择优化算法:根据优化目标和生产数据的特征,选择合适的排程优化算法,包含遗传算法、模拟退火算法和粒子群优化算法;4.3 Select optimization algorithm: According to the optimization goal and the characteristics of production data, select the appropriate scheduling optimization algorithm, including genetic algorithm, simulated annealing algorithm and particle swarm optimization algorithm;
4.4、制定优化方案:根据初步生产计划和优化算法,制定具体的优化方案,包括工序顺序、时间安排和资源分配;4.4. Formulate optimization plan: According to the preliminary production plan and optimization algorithm, formulate a specific optimization plan, including process sequence, time arrangement and resource allocation;
4.5实施优化方案:按照制定的优化方案对生产排程进行优化,得出更合理和高效的生产排程;4.5 Implement optimization plan: optimize the production schedule according to the formulated optimization plan to obtain a more reasonable and efficient production schedule;
4.6评估优化效果:对优化后的生产排程进行评估,比较优化前后的生产效率和生产成本等指标,判断优化效果;4.6 Evaluate the optimization effect: Evaluate the optimized production schedule, compare the production efficiency and production cost before and after optimization, and judge the optimization effect;
4.7调整优化方案:根据评估结果对优化方案进行调整,不断提高优化效果。4.7 Adjust the optimization plan: Adjust the optimization plan according to the evaluation results to continuously improve the optimization effect.
所述步骤五中,包含以下步骤:The step five includes the following steps:
5.1、监测生产过程:通过数据采集模块实时监测炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;5.1. Monitoring the production process: Real-time monitoring of various data in the steelmaking and rolling production process, including order information, equipment status and production progress, through the data acquisition module;
5.2、识别异常情况:通过数据分析算法,对监测的数据进行识别和分析,发现异常情况,包含设备故障和订单变更;5.2. Identify abnormal situations: Use data analysis algorithms to identify and analyze monitored data and discover abnormal situations, including equipment failures and order changes;
5.3确定异常类型:对识别出的异常情况进行分类和诊断,确定异常类型的具体原因;5.3 Determine the abnormality type: classify and diagnose the identified abnormalities and determine the specific cause of the abnormality type;
5.4生成调整方案:根据异常情况的类型和严重程度,生成相应的调整方案,包括暂停生产、调整生产计划和维修设备;5.4 Generate adjustment plan: Generate corresponding adjustment plan according to the type and severity of abnormal situation, including suspension of production, adjustment of production plan and maintenance of equipment;
5.5、审批调整方案:将调整方案提交给相关部门进行审批,确保调整方案的合理性和可行性;5.5. Approval of adjustment plan: Submit the adjustment plan to relevant departments for approval to ensure the rationality and feasibility of the adjustment plan;
5.6执行调整方案:按照审批通过的调整方案对生产计划和排程进行调整,确保生产过程的稳定性和安全性。5.6 Implementation of adjustment plan: Adjust production plan and schedule according to the approved adjustment plan to ensure the stability and safety of the production process.
5.7记录异常信息:对异常情况进行记录和归档,作为后续优化和改进的参考。5.7 Record abnormal information: Record and archive abnormal situations as a reference for subsequent optimization and improvement.
所述步骤六中,包含以下步骤:The step six includes the following steps:
6.1、设计可视化界面:根据用户需求和操作习惯,设计相应的可视化界面,包括图表、图像和表格形式;6.1. Design visual interface: Design corresponding visual interface according to user needs and operating habits, including charts, images and tables;
6.2、采集生产数据:通过数据采集模块获取炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;6.2. Collect production data: Obtain various data in the steelmaking and rolling production process through the data collection module, including order information, equipment status and production progress;
6.3、处理生产数据:对采集到的生产数据进行处理和分析,提取关键信息和指标,为可视化展示提供数据支持;6.3. Processing production data: Process and analyze the collected production data, extract key information and indicators, and provide data support for visualization;
6.4、实现动态展示:将处理后的数据以动态的方式展示出来,包含实时更新图表和动态展示生产过程;6.4. Realize dynamic display: Display the processed data in a dynamic way, including real-time updating of charts and dynamic display of production process;
6.5提供交互功能:在可视化界面中提供交互功能,包含点击操作和拖拽,方便用户对生产过程进行监控和管理;6.5 Provide interactive functions: Provide interactive functions in the visual interface, including click operation and drag and drop, to facilitate users to monitor and manage the production process;
6.6、集成其他系统:将可视化系统与其他生产管理系统进行集成,实现数据的共享和交互,提高生产管理效率。6.6. Integrate other systems: Integrate the visualization system with other production management systems to achieve data sharing and interaction and improve production management efficiency.
本发明的有益效果是:通过采用基于先进算法和人工智能的高级排程,能够实时响应生产环境中的变化,,及时调整生产计划和排程;能够整合各种生产信息,提供一个全面的生产计划和排程解决方案;能够根据历史数据和实时信息进行预测和优化,从而提供更精确和优化的生产计划和排程;提供了丰富的可视化工具,能够以图形化方式展示生产计划和排程,方便用户理解和操作,提高生产效率和降低生产成本。The beneficial effects of the present invention are: by adopting advanced scheduling based on advanced algorithms and artificial intelligence, it can respond to changes in the production environment in real time and adjust production plans and schedules in a timely manner; it can integrate various production information to provide a comprehensive production planning and scheduling solution; it can predict and optimize based on historical data and real-time information, thereby providing more accurate and optimized production plans and schedules; it provides a wealth of visualization tools that can display production plans and schedules in a graphical way, which is convenient for users to understand and operate, improve production efficiency and reduce production costs.
具体实施方式DETAILED DESCRIPTION
为了使发明实施案例的目的、技术方案和优点更加清楚,下面将对本发明实施案例中的技术方案进行清晰的、完整的描述,显然,所表述的实施案例是本发明一小部分实施案例,而不是全部的实施案例,基于本发明中的实施案例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施案例,都属于本发明保护范围。In order to make the purpose, technical solutions and advantages of the invention implementation cases clearer, the technical solutions in the implementation cases of the present invention will be clearly and completely described below. Obviously, the implementation cases described are only a small part of the implementation cases of the present invention, rather than all the implementation cases. Based on the implementation cases in the present invention, all other implementation cases obtained by ordinary technicians in this field without making creative work are within the scope of protection of the present invention.
一种炼钢轧钢动态一体化高级排程方法,包含以下步骤:A dynamic integrated advanced scheduling method for steelmaking and steel rolling comprises the following steps:
步骤一、数据采集:通过数据采集模块实时采集炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;Step 1: Data collection: The data collection module collects various data in the steelmaking and rolling production process in real time, including order information, equipment status and production progress;
步骤二、数据处理:通过人工智能算法和大数据技术对采集的数据进行处理和分析,获取生产计划和排程的相关信息;Step 2: Data processing: Process and analyze the collected data through artificial intelligence algorithms and big data technology to obtain relevant information on production planning and scheduling;
步骤三、生产计划制定:根据处理后的数据和市场需求,制定相应的生产计划;Step 3: Production plan formulation: formulate corresponding production plan according to the processed data and market demand;
步骤四、生产排程优化:根据生产计划和实际情况,通过排程优化算法对生产排程进行实时优化,确保生产过程的稳定性和高效性;Step 4: Production schedule optimization: According to the production plan and actual situation, the production schedule is optimized in real time through the scheduling optimization algorithm to ensure the stability and efficiency of the production process;
步骤五、异常处理:通过异常处理模块实时监测生产过程中的异常情况,如设并及时进行调整和优化;Step 5. Exception handling: Use the exception handling module to monitor abnormal situations in the production process in real time, and make timely adjustments and optimizations;
步骤六、可视化展示:通过可视化模块将生产计划和排程以图形化方式展示给用户,方便用户理解和操作。Step 6. Visual display: The production plan and schedule are displayed to users in a graphical manner through the visualization module to facilitate user understanding and operation.
所述步骤一中,包含以下步骤:The step 1 includes the following steps:
1.1、确定数据采集范围:明确需要采集的数据类型和来源,包含订单信息、设备状态和生产进度;1.1. Determine the scope of data collection: clarify the type and source of data to be collected, including order information, equipment status and production progress;
1.2、选择数据采集方式:根据数据来源和类型,选择合适的数据采集方式,包含传感器、数据接口和数据库;1.2. Select data collection method: According to the data source and type, select the appropriate data collection method, including sensors, data interfaces and databases;
1.3、开发数据采集程序:根据选择的数据采集方式和数据采集范围,开发相应的数据采集程序,实现数据的实时采集和传输;1.3. Develop data collection program: According to the selected data collection method and data collection scope, develop the corresponding data collection program to realize real-time data collection and transmission;
1.4数据预处理:对采集到的数据进行清洗、转换和格式化操作,确保数据质量和一致性;1.4 Data preprocessing: clean, convert and format the collected data to ensure data quality and consistency;
1.5数据存储:将处理后的数据存储到相应的数据库或数据存储介质中,以供后续的数据分析和优化使用。1.5 Data storage: The processed data shall be stored in the corresponding database or data storage medium for subsequent data analysis and optimization.
所述步骤二中,包含以下步骤:The step 2 includes the following steps:
2.1、数据清洗:去除无效、错误和重复的数据,确保数据质量和准确性;2.1. Data cleaning: remove invalid, erroneous and duplicate data to ensure data quality and accuracy;
2.2、数据转换:将不同来源和格式的数据转换成统一的数据格式,便于后续的数据分析和处理;2.2. Data conversion: convert data from different sources and formats into a unified data format to facilitate subsequent data analysis and processing;
2.3、数据标准化:将数据转换为统一的尺度,便于数据的比较和分析;2.3. Data standardization: converting data into a unified scale to facilitate data comparison and analysis;
2.4、数据挖掘:通过数据挖掘算法,对大量的数据进行挖掘和分析,发现数据中的规律和趋势,为后续的生产计划和排程优化提供依据;2.4. Data mining: Through data mining algorithms, a large amount of data is mined and analyzed to discover the patterns and trends in the data, providing a basis for subsequent production planning and scheduling optimization;
2.5、数据可视化:将处理后的数据以图表、图像等形式展示出来,便于直观地理解和分析数据。2.5. Data visualization: Display the processed data in the form of charts, images, etc. to facilitate intuitive understanding and analysis of the data.
所述步骤三中,包含以下步骤:The step three includes the following steps:
3.1、确定生产目标:明确生产计划的目标和要求,包含生产量、产品质量和生产成本;3.1. Determine production goals: clarify the goals and requirements of the production plan, including production volume, product quality and production costs;
3.2、分析生产流程:分析炼钢和轧钢的生产流程,明确各个生产环节的工序、设备、质量、数量和进度要素;3.2. Analyze the production process: Analyze the production process of steelmaking and steel rolling, and clarify the process, equipment, quality, quantity and progress elements of each production link;
3.3、制定初步生产计划:根据分析和预测数据,制定初步的生产计划,包括各道工序的时间、设备、人员和材料安排;3.3. Develop preliminary production plan: Based on the analysis and forecast data, develop a preliminary production plan, including the time, equipment, personnel and material arrangements for each process;
3.4、优化生产计划:根据初步生产计划,通过排程优化算法进行优化,得出更合理和高效的生产计划;3.4. Optimize production plan: Based on the preliminary production plan, optimize it through scheduling optimization algorithm to obtain a more reasonable and efficient production plan;
3.5、审批生产计划:将优化后的生产计划提交给相关部门进行审批,确保生产计划的合理性和可行性;3.5. Approval of production plan: Submit the optimized production plan to relevant departments for approval to ensure the rationality and feasibility of the production plan;
3.6、执行生产计划:按照审批通过的生产计划执行生产,同时实时监测生产过程中的数据,及时调整生产计划。3.6. Execute production plan: Carry out production according to the approved production plan, monitor the data in the production process in real time, and adjust the production plan in time.
所述步骤四中,包含以下步骤:The step 4 includes the following steps:
4.1、确定优化目标:明确生产排程优化的目标和要求,包含生产效率、生产成本和生产周期;4.1. Determine the optimization goal: clarify the goals and requirements of production scheduling optimization, including production efficiency, production cost and production cycle;
4.2、分析生产数据:通过数据采集和分析,获取生产过程中的各项数据,包括设备状态、生产进度和产品质量;4.2. Analyze production data: Through data collection and analysis, obtain various data in the production process, including equipment status, production progress and product quality;
4.3选择优化算法:根据优化目标和生产数据的特征,选择合适的排程优化算法,包含遗传算法、模拟退火算法和粒子群优化算法;4.3 Select optimization algorithm: According to the optimization goal and the characteristics of production data, select the appropriate scheduling optimization algorithm, including genetic algorithm, simulated annealing algorithm and particle swarm optimization algorithm;
4.4、制定优化方案:根据初步生产计划和优化算法,制定具体的优化方案,包括工序顺序、时间安排和资源分配;4.4. Formulate optimization plan: According to the preliminary production plan and optimization algorithm, formulate a specific optimization plan, including process sequence, time arrangement and resource allocation;
4.5实施优化方案:按照制定的优化方案对生产排程进行优化,得出更合理和高效的生产排程;4.5 Implement optimization plan: optimize the production schedule according to the formulated optimization plan to obtain a more reasonable and efficient production schedule;
4.6评估优化效果:对优化后的生产排程进行评估,比较优化前后的生产效率和生产成本等指标,判断优化效果;4.6 Evaluate the optimization effect: Evaluate the optimized production schedule, compare the production efficiency and production cost before and after optimization, and judge the optimization effect;
4.7调整优化方案:根据评估结果对优化方案进行调整,不断提高优化效果。4.7 Adjust the optimization plan: Adjust the optimization plan according to the evaluation results to continuously improve the optimization effect.
所述步骤五中,包含以下步骤:The step five includes the following steps:
5.1、监测生产过程:通过数据采集模块实时监测炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;5.1. Monitoring the production process: Real-time monitoring of various data in the steelmaking and rolling production process, including order information, equipment status and production progress, through the data acquisition module;
5.2、识别异常情况:通过数据分析算法,对监测的数据进行识别和分析,发现异常情况,包含设备故障和订单变更;5.2. Identify abnormal situations: Use data analysis algorithms to identify and analyze monitored data and discover abnormal situations, including equipment failures and order changes;
5.3确定异常类型:对识别出的异常情况进行分类和诊断,确定异常类型的具体原因;5.3 Determine the abnormality type: classify and diagnose the identified abnormalities and determine the specific cause of the abnormality type;
5.4生成调整方案:根据异常情况的类型和严重程度,生成相应的调整方案,包括暂停生产、调整生产计划和维修设备;5.4 Generate adjustment plan: Generate corresponding adjustment plan according to the type and severity of abnormal situation, including suspension of production, adjustment of production plan and maintenance of equipment;
5.5、审批调整方案:将调整方案提交给相关部门进行审批,确保调整方案的合理性和可行性;5.5. Approval of adjustment plan: Submit the adjustment plan to relevant departments for approval to ensure the rationality and feasibility of the adjustment plan;
5.6执行调整方案:按照审批通过的调整方案对生产计划和排程进行调整,确保生产过程的稳定性和安全性。5.6 Implementation of adjustment plan: Adjust production plan and schedule according to the approved adjustment plan to ensure the stability and safety of the production process.
5.7记录异常信息:对异常情况进行记录和归档,作为后续优化和改进的参考。5.7 Record abnormal information: Record and archive abnormal situations as a reference for subsequent optimization and improvement.
所述步骤六中,包含以下步骤:The step six includes the following steps:
6.1、设计可视化界面:根据用户需求和操作习惯,设计相应的可视化界面,包括图表、图像和表格形式;6.1. Design visual interface: Design corresponding visual interface according to user needs and operating habits, including charts, images and tables;
6.2、采集生产数据:通过数据采集模块获取炼钢和轧钢生产过程中的各种数据,包括订单信息、设备状态和生产进度;6.2. Collect production data: Obtain various data in the steelmaking and rolling production process through the data collection module, including order information, equipment status and production progress;
6.3、处理生产数据:对采集到的生产数据进行处理和分析,提取关键信息和指标,为可视化展示提供数据支持;6.3. Processing production data: Process and analyze the collected production data, extract key information and indicators, and provide data support for visualization;
6.4、实现动态展示:将处理后的数据以动态的方式展示出来,包含实时更新图表和动态展示生产过程;6.4. Realize dynamic display: Display the processed data in a dynamic way, including real-time updating of charts and dynamic display of production process;
6.5提供交互功能:在可视化界面中提供交互功能,包含点击操作和拖拽,方便用户对生产过程进行监控和管理;6.5 Provide interactive functions: Provide interactive functions in the visual interface, including click operation and drag and drop, to facilitate users to monitor and manage the production process;
6.6、集成其他系统:将可视化系统与其他生产管理系统进行集成,实现数据的共享和交互,提高生产管理效率。6.6. Integrate other systems: Integrate the visualization system with other production management systems to achieve data sharing and interaction and improve production management efficiency.
动态一体化高级排程技术(Dynamic Integrated Advanced SchedulingTechnology,简称DIAST)是一种基于先进算法和人工智能的高级排程技术。这种技术被广泛应用于生产计划和排程领域,旨在提高生产效率和降低生产成本。Dynamic Integrated Advanced Scheduling Technology (DIAST) is an advanced scheduling technology based on advanced algorithms and artificial intelligence. This technology is widely used in the field of production planning and scheduling, aiming to improve production efficiency and reduce production costs.
DIAST技术具有以下特点:DIAST technology has the following features:
1.动态性:DIAST能够实时响应生产环境中的变化,如设备故障、订单变更等,并及时调整生产计划和排程。1. Dynamicity: DIAST can respond to changes in the production environment in real time, such as equipment failures, order changes, etc., and adjust production plans and schedules in a timely manner.
2.一体化:DIAST能够整合各种生产信息,包括订单信息、库存信息、设备信息等,从而提供一个全面的生产计划和排程解决方案。2. Integration: DIAST can integrate various production information, including order information, inventory information, equipment information, etc., to provide a comprehensive production planning and scheduling solution.
3.高级性:DIAST采用了先进的算法和人工智能技术,能够根据历史数据和实时信息进行预测和优化,从而提供更精确和优化的生产计划和排程。3. Advanced: DIAST uses advanced algorithms and artificial intelligence technology, which can predict and optimize based on historical data and real-time information, thereby providing more accurate and optimized production planning and scheduling.
4.可视化:DIAST提供了丰富的可视化工具,能够以图形化方式展示生产计划和排程,方便用户理解和操作。4. Visualization: DIAST provides a wealth of visualization tools that can display production plans and schedules in a graphical way, making it easier for users to understand and operate.
通过本发明,可以实现对炼钢轧钢生产过程的可视化展示,方便用户对生产过程进行监控和管理,提高生产管理效率和生产过程透明度。The present invention can realize the visual display of the steelmaking and steel rolling production process, facilitate users to monitor and manage the production process, and improve production management efficiency and production process transparency.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410882021.4A CN118822175A (en) | 2024-07-03 | 2024-07-03 | A dynamic integrated advanced scheduling method for steelmaking and rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410882021.4A CN118822175A (en) | 2024-07-03 | 2024-07-03 | A dynamic integrated advanced scheduling method for steelmaking and rolling |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118822175A true CN118822175A (en) | 2024-10-22 |
Family
ID=93077914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410882021.4A Pending CN118822175A (en) | 2024-07-03 | 2024-07-03 | A dynamic integrated advanced scheduling method for steelmaking and rolling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118822175A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119002439A (en) * | 2024-10-23 | 2024-11-22 | 大连华泰臣科技服务有限公司 | Control system of automatic production line |
CN119204343A (en) * | 2024-11-18 | 2024-12-27 | 北京机科国创轻量化科学研究院有限公司 | A flexible reconstruction method for component assembly lines with flexible capacity matching |
-
2024
- 2024-07-03 CN CN202410882021.4A patent/CN118822175A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119002439A (en) * | 2024-10-23 | 2024-11-22 | 大连华泰臣科技服务有限公司 | Control system of automatic production line |
CN119204343A (en) * | 2024-11-18 | 2024-12-27 | 北京机科国创轻量化科学研究院有限公司 | A flexible reconstruction method for component assembly lines with flexible capacity matching |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112085261B (en) | Diagnosis method of enterprise production status based on cloud integration and digital twin technology | |
CN118822175A (en) | A dynamic integrated advanced scheduling method for steelmaking and rolling | |
CN113420162B (en) | Equipment operation chain state monitoring method based on knowledge graph | |
CN115062478A (en) | Dynamic workshop production scheduling method, system and medium based on digital twin | |
CN105844543A (en) | Automation operation management system for power enterprise information system | |
CN107844892A (en) | Dynamic scheduling system and optimization method for equipment operation and maintenance plan | |
CN116742799A (en) | A power distribution auxiliary monitoring and early warning system based on Internet of Things technology | |
CN118568582A (en) | Intelligent decision method and system based on industrial big data | |
CN116992346A (en) | An enterprise production data processing system based on artificial intelligence big data analysis | |
CN115238959A (en) | A digital twin system and method for comprehensive utilization of user-side energy | |
CN118798526A (en) | A method for energy dynamic prediction and multi-energy flow coupling optimization and energy management and control system | |
CN104574004A (en) | Auxiliary distribution network state maintenance system | |
CN118394017B (en) | Intelligent robot for optimizing and controlling energy consumption in medicine production and operation method | |
CN105825314A (en) | Monitoring information analysis method and system based on centralized operation and maintenance mode | |
CN119204730A (en) | A chemical park intelligent management method and system | |
CN118071374A (en) | Full life cycle industrial product carbon emission accounting and carbon transaction method | |
CN118017502A (en) | Digital twinning-based power distribution calculation power prediction method, system and medium | |
CN115619164A (en) | A multi-dimensional carbon emission monitoring and analysis system based on big data processing | |
CN118840026A (en) | Electric power planning sandbox platform and information processing method thereof | |
CN114879619A (en) | Digital workshop energy optimization method and system | |
CN114676015A (en) | A method and system for automatically generating a self-inspection report for monitoring the running state of a measurement and control device | |
CN118920442A (en) | Virtual electric field support platform construction method and system | |
CN118627955A (en) | Equipment maintenance decision system and method based on equipment health status | |
CN118628122A (en) | An energy-saving and carbon-reduction management and control system based on big data technology | |
CN114596162B (en) | A smart carbon trading service management system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |