CN118804945A - Method for preparing porous material - Google Patents
Method for preparing porous material Download PDFInfo
- Publication number
- CN118804945A CN118804945A CN202380024347.7A CN202380024347A CN118804945A CN 118804945 A CN118804945 A CN 118804945A CN 202380024347 A CN202380024347 A CN 202380024347A CN 118804945 A CN118804945 A CN 118804945A
- Authority
- CN
- China
- Prior art keywords
- applications
- lignin
- gel
- porous material
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 188
- 239000011148 porous material Substances 0.000 title claims abstract description 159
- 239000000203 mixture Substances 0.000 claims abstract description 129
- 229920005610 lignin Polymers 0.000 claims abstract description 101
- 150000001875 compounds Chemical class 0.000 claims abstract description 78
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 74
- 239000002904 solvent Substances 0.000 claims abstract description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229920000642 polymer Polymers 0.000 claims abstract description 50
- 238000001035 drying Methods 0.000 claims abstract description 49
- 239000007864 aqueous solution Substances 0.000 claims abstract description 31
- 229920001864 tannin Polymers 0.000 claims abstract description 30
- 235000018553 tannin Nutrition 0.000 claims abstract description 30
- 239000001648 tannin Substances 0.000 claims abstract description 30
- 229920001222 biopolymer Polymers 0.000 claims abstract description 29
- 239000002537 cosmetic Substances 0.000 claims abstract description 14
- 238000009413 insulation Methods 0.000 claims abstract description 14
- 239000013543 active substance Substances 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims abstract description 12
- 239000012876 carrier material Substances 0.000 claims abstract description 12
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 12
- 238000010276 construction Methods 0.000 claims abstract description 12
- 239000007772 electrode material Substances 0.000 claims abstract description 12
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 239000000446 fuel Substances 0.000 claims abstract description 12
- 235000013305 food Nutrition 0.000 claims abstract description 11
- 238000011068 loading method Methods 0.000 claims abstract description 11
- 238000004806 packaging method and process Methods 0.000 claims abstract description 11
- 239000012855 volatile organic compound Substances 0.000 claims description 35
- -1 aluminum ions Chemical class 0.000 claims description 32
- 229920005611 kraft lignin Polymers 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 230000004048 modification Effects 0.000 claims description 16
- 238000012986 modification Methods 0.000 claims description 16
- 239000000835 fiber Substances 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- 150000001298 alcohols Chemical class 0.000 claims description 12
- 150000002576 ketones Chemical class 0.000 claims description 12
- 229920001282 polysaccharide Polymers 0.000 claims description 12
- 239000005017 polysaccharide Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 12
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 11
- 150000004676 glycans Chemical class 0.000 claims description 11
- 229920001732 Lignosulfonate Polymers 0.000 claims description 10
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 10
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 9
- 150000001247 metal acetylides Chemical class 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 238000003763 carbonization Methods 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000003063 flame retardant Substances 0.000 claims description 8
- 239000012621 metal-organic framework Substances 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 8
- 239000002210 silicon-based material Substances 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 7
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 6
- 239000001263 FEMA 3042 Substances 0.000 claims description 6
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 6
- 150000007942 carboxylates Chemical class 0.000 claims description 6
- 229920002258 tannic acid Polymers 0.000 claims description 6
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 claims description 6
- 229940033123 tannic acid Drugs 0.000 claims description 6
- 235000015523 tannic acid Nutrition 0.000 claims description 6
- 230000002787 reinforcement Effects 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims 1
- 239000003605 opacifier Substances 0.000 claims 1
- 235000013824 polyphenols Nutrition 0.000 abstract description 37
- 150000008442 polyphenolic compounds Chemical class 0.000 abstract description 31
- 239000012774 insulation material Substances 0.000 abstract description 15
- 239000000499 gel Substances 0.000 description 106
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 78
- 239000000243 solution Substances 0.000 description 70
- 239000002245 particle Substances 0.000 description 67
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 63
- 239000004964 aerogel Substances 0.000 description 60
- 239000000017 hydrogel Substances 0.000 description 31
- 239000007863 gel particle Substances 0.000 description 28
- 235000010443 alginic acid Nutrition 0.000 description 24
- 229920000615 alginic acid Polymers 0.000 description 24
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 22
- 229940072056 alginate Drugs 0.000 description 22
- 239000007788 liquid Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 229920001285 xanthan gum Polymers 0.000 description 14
- 239000000230 xanthan gum Substances 0.000 description 14
- 235000010493 xanthan gum Nutrition 0.000 description 14
- 229940082509 xanthan gum Drugs 0.000 description 14
- 239000001569 carbon dioxide Substances 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 11
- 229920002678 cellulose Polymers 0.000 description 11
- 235000010980 cellulose Nutrition 0.000 description 11
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 10
- 239000001110 calcium chloride Substances 0.000 description 10
- 229910001628 calcium chloride Inorganic materials 0.000 description 10
- 235000011148 calcium chloride Nutrition 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 230000000475 sunscreen effect Effects 0.000 description 7
- 239000000516 sunscreening agent Substances 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 235000010413 sodium alginate Nutrition 0.000 description 6
- 239000000661 sodium alginate Substances 0.000 description 6
- 229940005550 sodium alginate Drugs 0.000 description 6
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 5
- 229920000881 Modified starch Polymers 0.000 description 5
- 239000004368 Modified starch Substances 0.000 description 5
- 229920013724 bio-based polymer Polymers 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 5
- 229920002674 hyaluronan Polymers 0.000 description 5
- 229960003160 hyaluronic acid Drugs 0.000 description 5
- 235000019426 modified starch Nutrition 0.000 description 5
- 235000010987 pectin Nutrition 0.000 description 5
- 239000001814 pectin Substances 0.000 description 5
- 229920001277 pectin Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 229910021389 graphene Inorganic materials 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 102000011632 Caseins Human genes 0.000 description 3
- 108010076119 Caseins Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108010046377 Whey Proteins Proteins 0.000 description 3
- 102000007544 Whey Proteins Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 235000021119 whey protein Nutrition 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002749 Bacterial cellulose Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 101150082840 SM30 gene Proteins 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000005016 bacterial cellulose Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- JMFRWRFFLBVWSI-NSCUHMNNSA-N coniferol Chemical compound COC1=CC(\C=C\CO)=CC=C1O JMFRWRFFLBVWSI-NSCUHMNNSA-N 0.000 description 2
- 239000000495 cryogel Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- LZFOPEXOUVTGJS-ONEGZZNKSA-N trans-sinapyl alcohol Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O LZFOPEXOUVTGJS-ONEGZZNKSA-N 0.000 description 2
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- LZFOPEXOUVTGJS-UHFFFAOYSA-N cis-sinapyl alcohol Natural products COC1=CC(C=CCO)=CC(OC)=C1O LZFOPEXOUVTGJS-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229940119526 coniferyl alcohol Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011881 graphite nanoparticle Substances 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/05—Elimination by evaporation or heat degradation of a liquid phase
- C08J2201/0502—Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/05—Elimination by evaporation or heat degradation of a liquid phase
- C08J2201/0504—Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/026—Aerogel, i.e. a supercritically dried gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/14—Water soluble or water swellable polymers, e.g. aqueous gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/16—Biodegradable polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2397/00—Characterised by the use of lignin-containing materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2489/00—Characterised by the use of proteins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2497/00—Characterised by the use of lignin-containing materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2499/00—Characterised by the use of natural macromolecular compounds or of derivatives thereof not provided for in groups C08J2401/00 - C08J2407/00 or C08J2489/00 - C08J2497/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及一种制备多孔材料的方法,其至少包括以下步骤:提供混合物(M1),其包含作为化合物(C1)的选自木质素生物聚合物和单宁生物聚合物的水溶性生物基多酚聚合物以及水;将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A);将所得凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B);和干燥凝胶(B)。本发明还涉及可以此方式获得的多孔材料和所述多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家庭和商业电器应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。The present invention relates to a method for preparing a porous material, which comprises at least the following steps: providing a mixture (M1) comprising a water-soluble bio-based polyphenol polymer selected from lignin biopolymers and tannin biopolymers as a compound (C1) and water; contacting the mixture (M1) with an aqueous solution of at least one multivalent metal ion to prepare a gel (A); exposing the obtained gel (A) to a water-miscible solvent (L) to obtain a gel (B); and drying the gel (B). The present invention also relates to the porous material obtainable in this way and the following uses of the porous material: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home and commercial appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
Description
本发明涉及一种制备多孔材料的方法,其至少包括以下步骤:提供混合物(M1),所述混合物(M1)包含作为化合物(C1)的水溶性生物基多酚聚合物以及水,所述水溶性生物基多酚聚合物选自木质素生物聚合物和单宁生物聚合物;将混合物(M1)与至少一种多价金属离子的水溶液进行接触以制备凝胶(A);将所得凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B);干燥凝胶(B)。本发明还涉及以此方式可获得的多孔材料和所述多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家用和商用电器应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。The present invention relates to a method for preparing a porous material, comprising at least the following steps: providing a mixture (M1) comprising a water-soluble bio-based polyphenol polymer as a compound (C1) and water, the water-soluble bio-based polyphenol polymer being selected from lignin biopolymers and tannin biopolymers; contacting the mixture (M1) with an aqueous solution of at least one multivalent metal ion to prepare a gel (A); exposing the obtained gel (A) to a water-miscible solvent (L) to obtain a gel (B); and drying the gel (B). The present invention also relates to the porous material obtainable in this way and the following uses of the porous material: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for household and commercial appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
具有尺寸范围为几微米或远低于几微米的孔和至少70%的高孔隙率的基于生物基聚合物的多孔材料(例如聚合物泡沫)特别适合各种应用。Porous materials based on bio-based polymers, such as polymer foams, having pores in the size range of a few microns or well below a few microns and a high porosity of at least 70% are particularly suitable for various applications.
这种具有小的平均孔径的多孔材料可以是例如通过溶胶-凝胶法以及随后干燥制备的有机气凝胶或干凝胶的形式。在溶胶-凝胶法中,首先制备基于有机凝胶前体的溶胶,然后通过交联步骤使该溶胶胶凝以形成凝胶。为了由凝胶获得多孔材料(例如气凝胶),必须除去液体。为了简要起见,该步骤在下文中称为干燥。Such porous materials with a small average pore size may be in the form of organic aerogels or xerogels prepared, for example, by a sol-gel process and subsequent drying. In the sol-gel process, a sol based on an organogel precursor is first prepared, which is then gelled to form a gel by a crosslinking step. In order to obtain a porous material (e.g., an aerogel) from the gel, the liquid must be removed. For the sake of simplicity, this step is referred to hereinafter as drying.
本发明涉及一种制备含生物基酚类聚合物的多孔材料的方法,以及多孔材料本身及其用途。特别地,本发明涉及一种制备含木质素的多孔材料的方法。木质素是一种非均质生物聚合物。根据其来源(例如木材和/或植物的来源)以及提取方法,其性质(例如摩尔质量或缩合度)以及化学成分可能会有所不同。通常,木质素是一种无序生物聚合物,其具有三个主要结构单元,即香豆醇、松柏醇和芥子醇。其他合适的生物基酚类聚合物为例如单宁。单宁可为在树皮和其他生物来源中发现的天然产物,其是含有羟基和其他官能团的高分子多酚化合物。单宁有若干类型,其通常在基本单元或单体单元上有所不同。The present invention relates to a method for preparing a porous material containing bio-based phenolic polymers, as well as the porous material itself and its use. In particular, the present invention relates to a method for preparing a porous material containing lignin. Lignin is a heterogeneous biopolymer. Depending on its source (e.g. wood and/or plant source) and the extraction method, its properties (e.g. molar mass or degree of condensation) and chemical composition may vary. Generally, lignin is a disordered biopolymer with three main structural units, namely coumarin, coniferyl alcohol and sinapyl alcohol. Other suitable bio-based phenolic polymers are, for example, tannins. Tannins can be natural products found in bark and other biological sources, which are high molecular weight polyphenolic compounds containing hydroxyl groups and other functional groups. There are several types of tannins, which usually differ in the basic unit or monomer unit.
原则上,基于生物基酚类聚合物的多孔材料是现有技术中已知的,例如基于木质素和/或单宁或木质素与其他聚合物的混合物。木质素基气凝胶的制备方法也是现有技术已知的。In principle, porous materials based on bio-based phenolic polymers are known in the prior art, for example based on lignin and/or tannin or mixtures of lignin with other polymers. Methods for the preparation of lignin-based aerogels are also known in the prior art.
科学文献中公开了几种方法。例如,Journal of Supercritical Fluids2015,105,1-8中的一篇文章公开了一种利用加压二氧化碳进行凝胶化来制备混合藻酸盐-木质素气凝胶的方法。将含有碳酸钙的藻酸盐和木质素碱性水溶液暴露于CO2会形成水凝胶。Several methods are disclosed in the scientific literature. For example, an article in Journal of Supercritical Fluids 2015, 105, 1-8 discloses a method for preparing mixed alginate-lignin aerogels by gelation using pressurized carbon dioxide. Exposing alginates and lignin alkaline aqueous solutions containing calcium carbonate to CO 2 will form hydrogels.
US020190329208A1公开了制备高纯度木质素基碳气凝胶的方法。US020190329208A1 discloses a method for preparing high-purity lignin-based carbon aerogel.
“New Tannin-Lignin Aerogels”,Grishechko,L.等人,Industrial Crops andProducts 2013,41 347-355中公开了基于单宁和木质素的高度多孔有机气凝胶。所述水凝胶在恒定的固体重量分数和恒定的pH值下制备,但其具有不同的单宁/木质素和(单宁+木质素)/甲醛重量比。Highly porous organic aerogels based on tannin and lignin are disclosed in "New Tannin-Lignin Aerogels", Grishechko, L. et al., Industrial Crops and Products 2013, 41 347-355. The hydrogels are prepared at a constant solid weight fraction and a constant pH value, but with different tannin/lignin and (tannin+lignin)/formaldehyde weight ratios.
一般而言,使用有机分子如异氰酸酯或醛作为交联剂。对于许多应用而言,这些化合物是不利的,因为它们常常是有害的并且痕量可能残留在所得材料中。Generally speaking, organic molecules such as isocyanates or aldehydes are used as crosslinking agents. For many applications, these compounds are disadvantageous because they are often harmful and trace amounts may remain in the resulting material.
因此本发明的目的是避免上述缺点。本发明的一个目的是提供一种制备基于多酚聚合物的多孔材料的方法,所述方法避免了有害材料。本发明的另一个目的是提供多孔材料,其适合作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。It is therefore an object of the present invention to avoid the above-mentioned disadvantages. It is an object of the present invention to provide a method for preparing a porous material based on polyphenol polymers, which method avoids harmful materials. It is another object of the present invention to provide a porous material which is suitable as thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for household appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
多孔材料应优选具有高表面积。此外,本发明的目的是提供一种由生物基多酚聚合物(例如木质素或单宁或其混合物)制备均质凝胶并由此制备均质多孔材料的方法。The porous material should preferably have a high surface area. Furthermore, it is an object of the present invention to provide a method for preparing a homogeneous gel and thereby a homogeneous porous material from bio-based polyphenolic polymers, such as lignin or tannin or mixtures thereof.
根据本发明,该目的通过一种制备多孔材料的方法而解决,所述方法至少包括以下步骤:According to the present invention, this object is solved by a method for preparing a porous material, said method comprising at least the following steps:
a)提供混合物(M1),其包含作为化合物(C1)的水溶性生物基多酚聚合物以及水,所述水溶性生物基多酚聚合物选自木质素生物聚合物和单宁生物聚合物,a) providing a mixture (M1) comprising as compound (C1) a water-soluble bio-based polyphenol polymer selected from the group consisting of lignin biopolymers and tannin biopolymers and water,
b)将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A)b) contacting the mixture (M1) with an aqueous solution of at least one multivalent metal ion to produce a gel (A)
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B),c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L) to obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
根据另一实施方案,本发明还涉及一种制备多孔材料的方法,所述方法至少包括以下步骤:According to another embodiment, the present invention also relates to a method for preparing a porous material, the method comprising at least the following steps:
a)提供混合物(M1),其包含作为化合物(C1)的水溶性生物基多酚聚合物以及水,所述水溶性生物基多酚聚合物选自木质素生物聚合物和单宁生物聚合物,a) providing a mixture (M1) comprising as compound (C1) a water-soluble bio-based polyphenol polymer selected from the group consisting of lignin biopolymers and tannin biopolymers and water,
b)将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A)b) contacting the mixture (M1) with an aqueous solution of at least one multivalent metal ion to produce a gel (A)
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B),c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L) to obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
其中所述混合物(M1)还包含至少一种作为化合物(C2)的具有羧酸基团的水溶性多糖。The mixture (M1) further comprises at least one water-soluble polysaccharide having carboxylic acid groups as compound (C2).
根据本发明,采用水溶性生物基多酚聚合物来形成凝胶。合适的酚类聚合物原则上是现有技术已知的。在本发明的上下文中,由于起始材料的良好可获得性,优选使用木质素和单宁作为生物基聚合物。木质素、单宁和/或它们的衍生物和/或其混合物的使用由于它们的稳定性、可获得性、可再生性和低毒性而特别具有吸引力。According to the invention, water-soluble bio-based polyphenol polymers are used to form the gel. Suitable phenolic polymers are known in principle from the prior art. In the context of the present invention, lignin and tannins are preferably used as bio-based polymers due to the good availability of the starting materials. The use of lignin, tannins and/or their derivatives and/or mixtures thereof is particularly attractive due to their stability, availability, renewability and low toxicity.
此外,根据本发明的另一方面,使用生物基聚合物、无机前体和具有羧酸基团的多糖来形成凝胶。原则上,合适的生物基聚合物、无机前体和具有羧酸基团的多糖是现有技术已知的。具有羧酸基团的合适多糖为例如藻酸盐、果胶、改性纤维素、黄原胶、透明质酸或改性淀粉。这些生物基聚合物和多糖及其衍生物的使用由于其稳定性、可获得性、可再生性和低毒性而特别有吸引力。在本发明的上下文中,合适的无机前体必须可溶解或至少部分溶解于混合物(M1)中,并且必须在凝胶化步骤中固化。In addition, according to another aspect of the present invention, bio-based polymers, inorganic precursors and polysaccharides with carboxylic acid groups are used to form gel. In principle, suitable bio-based polymers, inorganic precursors and polysaccharides with carboxylic acid groups are known in the prior art. Suitable polysaccharides with carboxylic acid groups are, for example, alginate, pectin, modified cellulose, xanthan gum, hyaluronic acid or modified starch. The use of these bio-based polymers and polysaccharides and derivatives thereof is particularly attractive due to their stability, availability, reproducibility and low toxicity. In the context of the present invention, suitable inorganic precursors must be soluble or at least partially dissolved in the mixture (M1), and must solidify in the gelling step.
为了本发明的目的,凝胶是基于聚合物的交联体系,所述聚合物以与液体(称为溶剂凝胶(solvogel)或液凝胶)或与水接触作为液体(水凝胶(aquagel)或水凝胶(hydrogel))的形式存在。在这里,聚合物相形成连续的三维网络。For the purposes of the present invention, gels are crosslinked systems based on polymers which exist as liquids in contact with a liquid (known as solvogel or lyogel) or in contact with water (aquagel or hydrogel). Here, the polymer phase forms a continuous three-dimensional network.
在本发明的上下文中,水溶性意指在水中的溶解度足以形成可用于制备凝胶的溶液。In the context of the present invention, water-soluble means sufficient solubility in water to form a solution that can be used to prepare a gel.
根据本发明,凝胶由水溶性生物基多酚聚合物和至少一种多价金属离子形成。特别地,凝胶由混合物(M1)的组分和至少一种多价金属离子形成。用于本发明方法的组分(C1)和(C2)必须适于与多价金属离子形成凝胶,特别是必须具有合适的官能团。特别地,用于本发明方法的多酚聚合物必须适于与多价金属离子形成凝胶,特别是必须具有合适的官能团。According to the present invention, the gel is formed from the water-soluble bio-based polyphenol polymer and at least one polyvalent metal ion. In particular, the gel is formed from the components of the mixture (M1) and at least one polyvalent metal ion. The components (C1) and (C2) used in the process according to the present invention must be suitable for forming a gel with polyvalent metal ions, in particular must have suitable functional groups. In particular, the polyphenol polymer used in the process according to the present invention must be suitable for forming a gel with polyvalent metal ions, in particular must have suitable functional groups.
令人惊奇地发现,要求保护的方法允许制备气凝胶,即,基于水溶性生物基多酚聚合物的气凝胶,其具有低的固含量和大的表面积,优选还具有大的孔体积和小的孔径。可以通过调节混合物(M1)的组成、水凝胶(凝胶(A))形成阶段或溶剂交换过程中和干燥步骤中的反应条件来定制气凝胶的性质。根据本发明,可以通过改变组分的比例,以及通过控制步骤a)和/或步骤b)的参数(例如调节步骤a)中的pH值)以及通过在凝胶基质中引入各种各样的有机和无机材料来影响水凝胶和/或气凝胶的性质。Surprisingly it has been found that the claimed process allows the preparation of aerogels, i.e. aerogels based on water-soluble bio-based polyphenol polymers, having a low solid content and a large surface area, preferably also a large pore volume and a small pore size. The properties of the aerogel can be tailored by adjusting the composition of the mixture (M1), the reaction conditions during the hydrogel (gel (A)) formation phase or during the solvent exchange and in the drying step. According to the invention, the properties of the hydrogel and/or aerogel can be influenced by varying the proportions of the components, as well as by controlling the parameters of step a) and/or step b), such as adjusting the pH value in step a) and by introducing a wide variety of organic and inorganic materials into the gel matrix.
根据本发明,水溶性生物基多酚聚合物优选选自木质素生物聚合物和单宁生物聚合物,特别是选自碱木质素、硫酸盐木质素(Kraft lignin)、水解木质素、苏打木质素、水溶性固体木质素(aquasolv solid lignin)、酶解木质素、木质素磺酸盐、木质素羧酸盐、木质素衍生物、生物精炼木质素、单宁酸或单宁和单宁衍生物。According to the present invention, the water-soluble bio-based polyphenol polymer is preferably selected from lignin biopolymers and tannin biopolymers, in particular selected from alkali lignin, kraft lignin, hydrolyzed lignin, soda lignin, aquasolv solid lignin, enzymatic lignin, lignin sulfonate, lignin carboxylate, lignin derivatives, biorefined lignin, tannic acid or tannin and tannin derivatives.
混合物(M1)可包括选自水溶性生物基多酚聚合物和二氧化硅的其它组分。The mixture (M1) may comprise further components selected from water-soluble bio-based polyphenol polymers and silicon dioxide.
根据另一实施方案,本发明还涉及如上文所述的方法,其中水溶性生物基多酚聚合物选自木质素生物聚合物和单宁生物聚合物,特别是选自碱木质素、硫酸盐木质素、水解木质素、苏打木质素、水溶性固体木质素、酶解木质素、木质素磺酸盐、木质素羧酸盐、木质素衍生物、生物精炼木质素、单宁酸或单宁和单宁衍生物。According to another embodiment, the present invention also relates to a method as described above, wherein the water-soluble bio-based polyphenol polymer is selected from lignin biopolymers and tannin biopolymers, in particular selected from alkali lignin, kraft lignin, hydrolyzed lignin, soda lignin, water-soluble solid lignin, enzymatic lignin, lignin sulfonate, lignin carboxylate, lignin derivatives, biorefined lignin, tannic acid or tannin and tannin derivatives.
化合物(C2)可以选自藻酸盐、果胶、改性纤维素、黄原胶、透明质酸或改性淀粉。因此,根据另一实施方案,本发明还涉及如上文所述的方法,其中化合物(C2)可以选自藻酸盐、果胶、改性纤维素、黄原胶、透明质酸或改性淀粉,特别是选自改性纤维素和藻酸盐或选自藻酸盐。Compound (C2) can be selected from alginate, pectin, modified cellulose, xanthan gum, hyaluronic acid or modified starch. Therefore, according to another embodiment, the present invention also relates to the method as described above, wherein compound (C2) can be selected from alginate, pectin, modified cellulose, xanthan gum, hyaluronic acid or modified starch, in particular selected from modified cellulose and alginate or selected from alginate.
根据本发明,化合物(C1)可以例如选自木质素和单宁。此外,还可以在混合物(M1)中使用纤维素、细菌纤维素、改性纤维素、淀粉、糖、壳聚糖、聚羟基脂肪酸酯、乳清蛋白分离物、马铃薯蛋白分离物、淀粉蛋白分离物、明胶、胶原蛋白、酪蛋白或其衍生物、以及硅酸盐、钛酸盐、钒酸盐、锆酸盐、铝酸盐、硼酸盐、铁酸盐、铬酸盐、钼酸盐、钨酸盐、锰酸盐、钴酸盐以及金属硫化物、金属氧化物和金属碳化物。根据另一实施方案,化合物(C1)可以例如是包含选自以下化合物的化合物的混合物:木质素和单宁、纤维素、细菌纤维素、改性纤维素、淀粉、糖、壳聚糖、聚羟基脂肪酸酯、乳清蛋白分离物、马铃薯蛋白分离物、淀粉蛋白分离物、明胶、胶原蛋白、酪蛋白或其衍生物,以及硅酸盐、钛酸盐、钒酸盐、锆酸盐、铝酸盐、硼酸盐、铁酸盐、铬酸盐、钼酸盐、钨酸盐、锰酸盐、钴酸盐和金属硫化物、金属氧化物或金属碳化物,并且化合物(C2)可以是藻酸盐或改性纤维素。According to the invention, compound (C1) can be selected, for example, from lignin and tannin. In addition, cellulose, bacterial cellulose, modified cellulose, starch, sugar, chitosan, polyhydroxyalkanoates, whey protein isolate, potato protein isolate, starch protein isolate, gelatin, collagen, casein or derivatives thereof, as well as silicates, titanates, vanadates, zirconates, aluminates, borates, ferrites, chromates, molybdates, tungstates, manganates, cobaltates and metal sulfides, metal oxides and metal carbides can also be used in mixture (M1). According to another embodiment, compound (C1) can be, for example, a mixture of compounds selected from the group consisting of lignin and tannins, cellulose, bacterial cellulose, modified cellulose, starch, sugars, chitosan, polyhydroxyalkanoates, whey protein isolate, potato protein isolate, starch protein isolate, gelatin, collagen, casein or derivatives thereof, as well as silicates, titanates, vanadates, zirconates, aluminates, borates, ferrites, chromates, molybdates, tungstates, manganates, cobaltates and metal sulfides, metal oxides or metal carbides, and compound (C2) can be an alginate or a modified cellulose.
根据本发明,该方法中使用的化合物(C1)和(C2)的量可以变化,例如取决于要实现的材料性质。特别地,该方法中使用的生物基多酚聚合物的量可以变化,例如取决于要实现的材料性质。According to the invention, the amount of compounds (C1) and (C2) used in the process may vary, for example depending on the material properties to be achieved. In particular, the amount of bio-based polyphenol polymer used in the process may vary, for example depending on the material properties to be achieved.
化合物(C1)的合适的量例如为基于混合物(M1)的重量计的0.1重量%至50重量%,优选为基于混合物(M1)的重量计的1.0至40重量%,特别是基于混合物(M1)的重量计的5.0至30重量%。Suitable amounts of compound (C1) are, for example, 0.1 to 50% by weight, based on the weight of the mixture (M1), preferably 1.0 to 40% by weight, based on the weight of the mixture (M1), in particular 5.0 to 30% by weight, based on the weight of the mixture (M1).
根据另一实施方案,本发明因此还涉及如上文所述的方法,其中混合物(M1)包含0.1重量%至50重量%的化合物(C1),基于混合物(M1)的重量计。According to a further embodiment, the present invention therefore also relates to a process as described above, wherein the mixture (M1) comprises from 0.1% to 50% by weight of compound (C1), based on the weight of the mixture (M1).
如果混合物(M1)包含化合物(C2),则化合物(C1)和化合物(C2)的比例也可能变化,这取决于所用的化合物。通常,混合物(M1)包含比例为55:45至98:2、优选60:40至95:5的化合物(C1)和化合物(C2)。If the mixture (M1) contains compound (C2), the ratio of compound (C1) to compound (C2) may also vary, depending on the compounds used. Typically, the mixture (M1) contains compound (C1) and compound (C2) in a ratio of 55:45 to 98:2, preferably 60:40 to 95:5.
根据另一实施方案,本发明因此还涉及如上文所述的方法,其中混合物(M1)包含比例为55:45至98:2的化合物(C1)和化合物(C2)。According to another embodiment, the present invention therefore also relates to a process as described above, wherein the mixture (M1) comprises compound (C1) and compound (C2) in a ratio of 55:45 to 98:2.
此外,各种各样的有机和无机材料可被包埋(即以物理方式或共胶凝方式)在酚类聚合物的基质中,例如在木质素基质中,以实现特定的性质。此外,优选不存在与所述方法相关的有机副产物。Furthermore, a wide variety of organic and inorganic materials can be embedded (ie, physically or co-gelled) in a matrix of a phenolic polymer, such as a lignin matrix, to achieve specific properties. Furthermore, preferably there are no organic by-products associated with the process.
在本发明的上下文中,混合物(M1)的pH值也可根据所用的化合物而变化。已发现,当混合物(M1)的pH值为8至14、特别是10至14、更优选11至14时,获得有利的结果。In the context of the present invention, the pH of the mixture (M1) may also vary depending on the compounds used. It has been found that advantageous results are obtained when the pH of the mixture (M1) is from 8 to 14, in particular from 10 to 14, more preferably from 11 to 14.
根据另一实施方案,本发明还涉及如上文所述的方法,其中混合物(M1)的pH值为8至14。According to another embodiment, the present invention also relates to a process as described above, wherein the pH value of the mixture (M1) is from 8 to 14.
在根据本发明的方法中,根据步骤a)提供混合物(M1)。该混合物可以通过将所需量的化合物(C1)和任选的(C2)溶解在例如蒸馏水中来制备。在本发明的上下文中,还可以调节混合物的pH值以提高溶解度。In the method according to the invention, a mixture (M1) is provided according to step a). The mixture can be prepared by dissolving the desired amount of compound (C1) and optionally (C2) in, for example, distilled water. In the context of the present invention, the pH value of the mixture can also be adjusted to increase solubility.
根据步骤b),将混合物(M1)与多价金属离子的水溶液进行接触以制备凝胶(A)。According to step b), the mixture (M1) is contacted with an aqueous solution of polyvalent metal ions to prepare a gel (A).
多价金属离子的水溶液可以例如使用多价金属离子的盐来制备。The aqueous solution of polyvalent metal ions can be prepared, for example, using a salt of the polyvalent metal ions.
根据本发明,这样的多价金属离子是合适的:其与所使用的生物基多酚聚合物(特别是木质素)形成难溶性化合物,即,其充当交联金属离子。特别地,这样的多价金属离子是适合的:其与具有羧酸基团的多糖化合物(C2)形成难溶性化合物,并且能够与所用的化合物(C1)形成难溶性化合物。此类多价金属离子包括例如碱土金属离子和过渡金属离子,其与生物基多酚聚合物形成难溶性化合物。优选碱土金属离子,例如镁或钙。特别优选钙。三价金属离子如铝或铁(III)也是特别合适的。根据本发明,钙盐是特别优选的,因为它们在生理学上以及特别地在化妆品上是可接受的并且与木质素相比具有强的交联和/或胶凝效果。根据本发明,也可使用两种或更多种多价离子的混合物,例如包含二价和三价离子的混合物,如包含钙和铝的混合物或包含钙和铁(III)的混合物。此外,还可以使用例如铍、钡、锶、锌、钴、镍、铜、锰、铁、铬、钒、钛、锆、镉、钼、钨、钌、铑、铱、钯、铂、铝。According to the present invention, such multivalent metal ions are suitable: they form poorly soluble compounds with the bio-based polyphenol polymer (especially lignin) used, that is, they act as cross-linking metal ions. In particular, such multivalent metal ions are suitable: they form poorly soluble compounds with the polysaccharide compound (C2) having a carboxylic acid group, and can form poorly soluble compounds with the compound (C1) used. Such multivalent metal ions include, for example, alkaline earth metal ions and transition metal ions, which form poorly soluble compounds with bio-based polyphenol polymers. Alkaline earth metal ions are preferred, such as magnesium or calcium. Calcium is particularly preferred. Trivalent metal ions such as aluminum or iron (III) are also particularly suitable. According to the present invention, calcium salts are particularly preferred because they are physiologically and particularly cosmetically acceptable and have strong crosslinking and/or gelling effects compared to lignin. According to the present invention, mixtures of two or more multivalent ions can also be used, for example mixtures comprising divalent and trivalent ions, such as mixtures comprising calcium and aluminum or mixtures comprising calcium and iron (III). In addition, for example, beryllium, barium, strontium, zinc, cobalt, nickel, copper, manganese, iron, chromium, vanadium, titanium, zirconium, cadmium, molybdenum, tungsten, ruthenium, rhodium, iridium, palladium, platinum, and aluminum can also be used.
多价金属离子优选以其盐的形式添加。原则上,可以任意选择相应的阴离子,只要其本身或通过改变pH可溶于水即可。优选地,可使用氯离子、乙酸根、硝酸根,优选氯化钙或三价金属盐,例如氯化铁(III)、氯化铝或硝酸铁(III)或其混合物。The polyvalent metal ions are preferably added in the form of their salts. In principle, the corresponding anions can be selected arbitrarily, as long as they are soluble in water either by themselves or by changing the pH. Preferably, chloride, acetate, nitrate, preferably calcium chloride or trivalent metal salts, such as iron (III) chloride, aluminum chloride or iron (III) nitrate or mixtures thereof, can be used.
选择多价金属离子的盐的量,使得盐在所得溶液中的浓度优选为约1至20重量%,优选1至10重量%,更优选1至5重量%,特别是2至3重量%。The amount of salt of polyvalent metal ions is chosen so that the concentration of the salt in the resulting solution is preferably about 1 to 20% by weight, preferably 1 to 10% by weight, more preferably 1 to 5% by weight and in particular 2 to 3% by weight.
根据进一步的实施方案,本发明还涉及如上文所述的方法,其中多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子。According to a further embodiment, the present invention also relates to a method as described above, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion selected from alkaline earth metal ions.
根据本发明,还可以使用多价金属离子的混合物。According to the invention, it is also possible to use mixtures of polyvalent metal ions.
步骤(a)中提供的混合物(M1)还可以包括其他盐、特别是不形成凝胶的盐以及本领域技术人员已知的作为其他成分的常规助剂。The mixture (M1) provided in step (a) may also comprise other salts, in particular non-gel-forming salts, and customary auxiliaries known to the person skilled in the art as further ingredients.
此外,混合物(M1)可包含化妆用的或医学活性物质。Furthermore, the mixture (M1) may comprise cosmetically or medicinally active substances.
根据另一实施方案,本发明还涉及如上文所述的方法,其中在步骤a)中将化合物(C)添加到适合形成凝胶的混合物(M1)中。化合物(C)可以溶解或部分溶解于混合物(M1)。在本发明的上下文中,化合物(C)也可能不溶于混合物(I)。According to another embodiment, the present invention also relates to a process as described above, wherein in step a) compound (C) is added to a mixture (M1) suitable for forming a gel. Compound (C) may be dissolved or partially dissolved in mixture (M1). In the context of the present invention, compound (C) may also be insoluble in mixture (I).
根据另一实施方案,本发明还涉及如上文所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、金属、金属颗粒、金属纳米颗粒、金属纤维、金属网、金属氧化物、金属氧化物颗粒、金属氧化物纳米颗粒、金属氧化物纤维、金属盐、催化用金属、催化材料、金属碳化物或金属硫化物颗粒或纳米颗粒、硅基材料、硅颗粒、硅纳米颗粒、半导体基材料、半导体颗粒、半导体纳米颗粒、半导体纤维、半导体网、碳材料、炭黑、石墨纳米颗粒、石墨纤维、石墨片、石墨网、石墨烯纳米颗粒、石墨烯纤维、石墨烯片、石墨烯网、金属有机骨架、硫、无机和/或有机填料、成核剂、稳定剂、热控制剂、表面活性物质、纤维和泡沫增强材料。According to another embodiment, the present invention also relates to a process as described above, wherein a compound (C) is added to the mixture (M1), and the compound (C) is selected from the group consisting of pigments, sunscreens, flame retardants, metals, metal particles, metal nanoparticles, metal fibers, metal meshes, metal oxides, metal oxide particles, metal oxide nanoparticles, metal oxide fibers, metal salts, catalytic metals, catalytic materials, metal carbide or metal sulfide particles or nanoparticles, silicon-based materials, silicon particles, silicon nanoparticles, semiconductor-based materials, semiconductor particles, semiconductor nanoparticles, semiconductor fibers, semiconductor meshes, carbon materials, carbon black, graphite nanoparticles, graphite fibers, graphite flakes, graphite meshes, graphene nanoparticles, graphene fibers, graphene flakes, graphene meshes, metal organic frameworks, sulfur, inorganic and/or organic fillers, nucleating agents, stabilizers, thermal control agents, surfactants, fibers and foam reinforcing materials.
根据另一实施方案,本发明还涉及如上文所述的方法,其中将水不溶性固体(S)添加到混合物(M1)中。According to another embodiment, the present invention also relates to a process as described above, wherein a water-insoluble solid (S) is added to the mixture (M1).
固体(S)可以例如为多孔材料或泡沫、载体或纤维材料。根据本发明,混合物(M1)也可存在于固体(S)的孔中。The solid (S) may be, for example, a porous material or a foam, a carrier or a fibrous material. According to the invention, the mixture (M1) may also be present in the pores of the solid (S).
根据本发明的步骤b),将混合物(M1)与多价金属离子的水溶液接触以制备凝胶(A)。合适的混合步骤原则上是本领域技术人员已知的。例如可以将混合物(M1)逐滴加入多价金属离子的水溶液中。也可以将混合物(M1)置于载体材料的孔中,或与纤维混合,然后将其与多价金属离子的水溶液接触以制备凝胶(A)。此外,混合物(M1)可在乳液中或在喷雾过程中与多价金属离子接触。According to step b) of the present invention, the mixture (M1) is contacted with an aqueous solution of polyvalent metal ions to prepare the gel (A). Suitable mixing steps are known in principle to the person skilled in the art. For example, the mixture (M1) can be added dropwise to the aqueous solution of polyvalent metal ions. The mixture (M1) can also be placed in the pores of the carrier material or mixed with fibers and then contacted with the aqueous solution of polyvalent metal ions to prepare the gel (A). In addition, the mixture (M1) can be contacted with the polyvalent metal ions in an emulsion or during a spraying process.
胶凝本身是本领域技术人员已知的并且记载于例如WO 2009/027310中的第21页第19行至第23页第13行。Gelation itself is known to the person skilled in the art and is described, for example, in WO 2009/027310, page 21, line 19 to page 23, line 13.
优选地,将步骤b)中的温度和压力调节至形成凝胶的状态。合适的温度可为10至40℃,优选为15至35℃。根据另一实施方案,本发明还涉及如上文所述的方法,其中步骤b)在10至40℃的温度下进行。Preferably, the temperature and pressure in step b) are adjusted to a state where a gel is formed. A suitable temperature may be 10 to 40° C., preferably 15 to 35° C. According to another embodiment, the present invention also relates to the method as described above, wherein step b) is carried out at a temperature of 10 to 40° C.
通过选择步骤b)的适当条件,可以非常精确且容易地控制不溶性凝胶的形成速率。By choosing appropriate conditions for step b), the rate of formation of the insoluble gel can be controlled very accurately and easily.
步骤b)中获得的凝胶(A)是包含水的凝胶,即水凝胶。根据本发明,在本发明方法的步骤c)中,将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B)。The gel (A) obtained in step b) is a gel comprising water, ie a hydrogel. According to the invention, in step c) of the process of the invention, the gel (A) obtained in step b) is exposed to a water-miscible solvent (L) to obtain a gel (B).
然而,也可以使用作为如上所公开的方法的中间体获得的水凝胶(A)。已知水凝胶有很多应用。水凝胶(A)是特别均匀的,并且可以根据本发明制备颗粒,其可以进行进一步的处理步骤。However, it is also possible to use a hydrogel (A) obtained as an intermediate in a process as disclosed above. Hydrogels are known to have many applications. The hydrogel (A) is particularly homogeneous and particles can be prepared according to the invention which can be subjected to further processing steps.
根据本发明,在步骤c)中使用水混溶性溶剂(L)。在本发明的上下文中,水混溶性是指溶剂至少部分地与水混溶以允许交换凝胶中的溶剂。According to the invention, a water-miscible solvent (L) is used in step c). In the context of the present invention, water-miscible means that the solvent is at least partially miscible with water to allow exchange of the solvent in the gel.
溶剂交换通过将凝胶直接浸泡在新溶剂中(一步)进行,或通过在上一浸泡步骤中在一定时间(交换频率)之后连续浸泡(多步)在不同的具有增加的新溶剂含量的水至新溶剂混合物(water-to-new solvent mixture)中来进行(Robitzer等人,Langmuir2008,24,12547-12552)。用于水置换所选择的溶剂必须满足以下要求:不溶解凝胶结构、与它们之前的溶剂(水)能完全溶解且优选对于药物制备而言是可接受的。此外,如果该方法包括超临界干燥步骤,则溶剂(L)优选至少部分与超临界介质混溶。The solvent exchange is performed by soaking the gel directly in the new solvent (one step) or by soaking it successively (multiple steps) in different water-to-new solvent mixtures with increasing new solvent content after a certain time (exchange frequency) in the previous soaking step (Robitzer et al., Langmuir 2008, 24, 12547-12552). The solvents selected for the water exchange must meet the following requirements: do not dissolve the gel structure, are completely soluble in their previous solvent (water) and are preferably acceptable for drug preparation. In addition, if the method includes a supercritical drying step, the solvent (L) is preferably at least partially miscible with the supercritical medium.
溶剂(L)原则上可以是任何合适的化合物或多种化合物的混合物,其满足溶剂(L)在步骤c)的温度和压力条件下为液体的上述要求。The solvent (L) can in principle be any suitable compound or mixture of compounds which meets the above-mentioned requirement that the solvent (L) is liquid under the temperature and pressure conditions of step c).
可能的溶剂(L)为例如醇、酮、醛、烷基链烷酸酯、有机碳酸酯、酰胺如甲酰胺和N-甲基吡咯烷酮、亚砜如二甲基亚砜、脂族和脂环族卤代或非卤代烃、卤代或非卤代芳族化合物和含氟醚。两种或更多种上述化合物的混合物同样也是可能的。Possible solvents (L) are, for example, alcohols, ketones, aldehydes, alkyl alkanoates, organic carbonates, amides such as formamide and N-methylpyrrolidone, sulfoxides such as dimethyl sulfoxide, aliphatic and alicyclic halogenated or non-halogenated hydrocarbons, halogenated or non-halogenated aromatic compounds and fluorinated ethers. Mixtures of two or more of the abovementioned compounds are likewise possible.
在许多情况下,特别合适的溶剂(L)是通过使用两种或更多种选自上述溶剂的完全混溶的化合物来获得的。In many cases, particularly suitable solvents (L) are obtained by using two or more completely miscible compounds selected from the abovementioned solvents.
合适的溶剂特别是醇和酮,例如C1至C6醇和C1至C6酮及其混合物。Suitable solvents are, in particular, alcohols and ketones, for example C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
根据另一实施方案,本发明还涉及如上文所述的方法,其中步骤c)中使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。According to another embodiment, the present invention also relates to a process as described above, wherein the solvent (L) used in step c) is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
特别合适的是醇类,例如甲醇、乙醇和异丙醇,以及酮类,例如丙酮和甲基乙基酮。Particularly suitable are alcohols, such as methanol, ethanol and isopropanol, and ketones, such as acetone and methyl ethyl ketone.
根据步骤b)的溶剂交换可以一步、2步、3步或以不同溶剂浓度的多步进行。根据一个优选的实施方案,将凝胶(A)依次浸入浓度为例如30、60、90和100重量%的乙醇/水混合物中,每次持续时间为5min至12h,这取决于粒度和孔隙率。例如可以使用乙醇/水混合物分2步或3步进行步骤b),其中第一步中的乙醇浓度大于60%,最后一步中的乙醇浓度大于90%,例如最后一步中的乙醇浓度大于95%或大于98%。The solvent exchange according to step b) can be carried out in one step, in two steps, in three steps or in multiple steps with different solvent concentrations. According to a preferred embodiment, the gel (A) is immersed in an ethanol/water mixture with a concentration of, for example, 30, 60, 90 and 100% by weight, each time for a duration of 5 min to 12 h, depending on the particle size and porosity. For example, step b) can be carried out in two or three steps using an ethanol/water mixture, wherein the ethanol concentration in the first step is greater than 60% and the ethanol concentration in the last step is greater than 90%, for example the ethanol concentration in the last step is greater than 95% or greater than 98%.
在步骤c)中,得到凝胶(B)。根据本发明方法的步骤d),将步骤c)中获得的凝胶(B)进行干燥。In step c), a gel (B) is obtained. According to step d) of the process of the present invention, the gel (B) obtained in step c) is dried.
步骤(d)中的干燥以已知方式进行。优选在超临界条件下进行干燥,优选在用CO2或其他适合超临界干燥目的的溶剂置换所述溶剂后进行。这种干燥本身是本领域技术人员已知的。超临界条件是指CO2或用于去除凝胶化溶剂的任何溶剂以超临界状态存在时的温度和压力。这样,可以减少溶剂去除时凝胶体的收缩。The drying in step (d) is carried out in a known manner. Preferably, the drying is carried out under supercritical conditions, preferably after replacing the solvent with CO 2 or another solvent suitable for the purpose of supercritical drying. Such drying itself is known to the person skilled in the art. Supercritical conditions refer to the temperature and pressure at which CO 2 or any solvent used to remove the gelling solvent is present in a supercritical state. In this way, the shrinkage of the gel during the removal of the solvent can be reduced.
在本发明的上下文中,还可以对凝胶进行干燥,所述凝胶通过将凝胶中所含液体在低于凝胶中所含液体的临界温度和临界压力的温度和压力下转化成气态而获得。In the context of the present invention, it is also possible to dry a gel which is obtained by converting the liquid contained in the gel into the gaseous state at a temperature and a pressure below the critical temperature and the critical pressure of the liquid contained in the gel.
根据一个实施方案,所得凝胶的干燥优选通过将溶剂(L)在低于溶剂(L)的临界温度和临界压力的温度和压力下转化成气态来进行。因此,干燥优选通过除去反应中存在的溶剂(L)来进行,而无需事先用其它溶剂置换。According to one embodiment, the drying of the obtained gel is preferably carried out by converting the solvent (L) into the gaseous state at a temperature and pressure below the critical temperature and critical pressure of the solvent (L). Therefore, the drying is preferably carried out by removing the solvent (L) present in the reaction without previously replacing it with another solvent.
此类方法同样是本领域技术人员已知的且记载于WO 2009/027310中的第26页第22行至第28页第36行。Such methods are likewise known to the person skilled in the art and are described in WO 2009/027310, page 26, line 22 to page 28, line 36.
根据另一实施方案,本发明还涉及如上文所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。According to another embodiment, the invention also relates to a process as described above, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and a pressure below the critical temperature and the critical pressure of the liquid contained in the gel.
根据另一实施方案,本发明还涉及如上文所述的方法,其中根据步骤d)的干燥是在超临界条件下进行的。According to another embodiment, the present invention also relates to a process as described above, wherein the drying according to step d) is carried out under supercritical conditions.
本方法还可包含一个或多个进一步改性步骤,例如可包括纤维和/或粘合剂和/或热塑性材料的成型步骤;压缩步骤;层压步骤;后干燥;疏水化步骤或碳化步骤。例如,可以将这些步骤中的一个或多个步骤进行结合,例如后干燥和疏水化步骤。The method may also include one or more further modification steps, such as a shaping step of the fibers and/or binder and/or thermoplastic material; a compression step; a lamination step; a post-drying step; a hydrophobizing step or a carbonizing step. For example, one or more of these steps may be combined, such as a post-drying step and a hydrophobizing step.
根据另一实施方案,本发明还涉及如上文所述的方法,其中该方法包括对干凝胶进行一个或多个进一步改性步骤。According to another embodiment, the present invention also relates to a method as described above, wherein the method comprises subjecting the xerogel to one or more further modification steps.
根据另一实施方案,本发明还涉及如上文所述的方法,其中改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。According to another embodiment, the present invention also relates to a method as described above, wherein the modification step is selected from a shaping step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
本发明还涉及一种多孔材料,其通过上述方法获得或可获得。本发明的多孔材料优选为气凝胶、冷冻凝胶(cryogel)或干凝胶。The present invention also relates to a porous material obtained or obtainable by the above method. The porous material of the present invention is preferably an aerogel, a cryogel or a xerogel.
就本发明目的而言,干凝胶是一种通过溶胶-凝胶方法制备的多孔材料,在所述方法中,通过在低于液相的临界温度且低于临界压力下(“亚临界条件”)进行干燥,将液相从凝胶中去除。冷冻凝胶是这样一种多孔材料,其通过冷冻凝胶中的溶剂并在环境条件下通过升华过程去除固体溶剂而制备。气凝胶是这样一种多孔材料,其通过溶胶-凝胶方法制备,其中液相在超临界条件下从凝胶中去除。For the purposes of the present invention, a xerogel is a porous material prepared by a sol-gel process in which the liquid phase is removed from the gel by drying at a temperature below the critical temperature of the liquid phase and below the critical pressure ("subcritical conditions"). A cryogel is a porous material prepared by freezing the solvent in the gel and removing the solid solvent by a sublimation process under ambient conditions. An aerogel is a porous material prepared by a sol-gel process in which the liquid phase is removed from the gel under supercritical conditions.
上文公开的方法得到具有改善性质的多孔材料。根据本发明的方法制备的气凝胶优选具有低的密度,并且优选具有大的比表面积,例如120至800m2/g或200至800m2/g。此外,对于孔径<150nm,可优选获得2.1至9.5cm2/g的孔体积。此外,对于孔径<100nm,可优选获得2.1至9.5cm2/g的孔体积。The method disclosed above results in a porous material with improved properties. The aerogel prepared according to the method of the present invention preferably has a low density and preferably has a large specific surface area, for example 120 to 800 m 2 /g or 200 to 800 m 2 /g. In addition, for pore diameters <150 nm, a pore volume of 2.1 to 9.5 cm 2 /g can be preferably obtained. In addition, for pore diameters <100 nm, a pore volume of 2.1 to 9.5 cm 2 /g can be preferably obtained.
此外,本发明因此涉及一种多孔材料,该多孔材料通过上文公开的制备多孔材料的方法获得或可通过上文公开的制备多孔材料的方法获得。特别地,本发明涉及通过上文公开的制备多孔材料的方法获得的或可通过上文公开的制备多孔材料的方法获得的多孔材料,所述方法中根据步骤d)的干燥在超临界条件下进行。Furthermore, the present invention therefore relates to a porous material obtained or obtainable by the method for preparing a porous material disclosed above. In particular, the present invention relates to a porous material obtained or obtainable by the method for preparing a porous material disclosed above, wherein the drying according to step d) is carried out under supercritical conditions.
根据本发明的多孔材料优选具有0.005至1g/cm3、优选0.01至0.5g/cm3的密度(根据DIN 53420测定)。The porous material according to the invention preferably has a density of 0.005 to 1 g/cm 3 , preferably 0.01 to 0.5 g/cm 3 (determined in accordance with DIN 53420).
平均孔径是通过扫描电子显微镜和随后使用具有统计意义数量的孔进行图像分析来测定的。相应的方法是本领域技术人员已知的。为了表征气凝胶的多孔结构,使用了来自Quantachrome Instruments的Nova3000表面积分析仪。该分析仪利用了在77K的恒温下氮气的吸附和解吸。The average pore size is determined by scanning electron microscopy and subsequent image analysis using a statistically significant number of pores. Corresponding methods are known to the person skilled in the art. In order to characterize the porous structure of the aerogel, a Nova3000 surface area analyzer from Quantachrome Instruments was used. The analyzer utilizes the adsorption and desorption of nitrogen at a constant temperature of 77K.
多孔材料的体积平均孔径优选不大于1微米。多孔材料的体积平均孔径特别优选不超过750nm,非常特别优选不超过500nm并且特别是不超过250nm。多孔材料的体积平均孔径可以例如为1至1000nm,优选为2至500nm,特别为3至250nm,更优选为5至100nm或特别优选为10至50nm。The volume average pore size of the porous material is preferably not greater than 1 micrometer. The volume average pore size of the porous material is particularly preferably not more than 750 nm, very particularly preferably not more than 500 nm and in particular not more than 250 nm. The volume average pore size of the porous material can be, for example, 1 to 1000 nm, preferably 2 to 500 nm, in particular 3 to 250 nm, more preferably 5 to 100 nm or particularly preferably 10 to 50 nm.
根据本发明可获得的多孔材料的孔隙率优选为至少70体积%,特别是70至99体积%,特别优选至少80体积%,非常特别优选至少85体积%,特别是85至95体积%。以体积%表示的孔隙率意指总体积的特定比例的多孔材料包含孔。虽然从最小热导率的角度来看,通常期望非常高的孔隙率,但多孔材料的机械性能和可加工性限制了孔隙率的上限。The porosity of the porous material obtainable according to the invention is preferably at least 70% by volume, in particular 70 to 99% by volume, particularly preferably at least 80% by volume, very particularly preferably at least 85% by volume, in particular 85 to 95% by volume. The porosity expressed in % by volume means that a certain proportion of the total volume of the porous material contains pores. Although very high porosities are generally desired from the perspective of minimum thermal conductivity, the mechanical properties and processability of the porous material limit the upper limit of the porosity.
根据另一实施方案,本发明还涉及如上文所公开的多孔材料,其中多孔材料的比表面积为120至800m2/g,根据DIN 66134:1998-0使用BET理论测定。According to another embodiment, the present invention also relates to a porous material as disclosed above, wherein the specific surface area of the porous material is from 120 to 800 m 2 /g, determined using the BET theory according to DIN 66134:1998-0.
根据另一实施方案,本发明还涉及如上文所公开的多孔材料,其中多孔材料的比表面积为120至800m2/g,根据DIN 66134:1998-0使用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。According to another embodiment, the present invention also relates to a porous material as disclosed above, wherein the porous material has a specific surface area of 120 to 800 m 2 /g, determined using BET theory according to DIN 66134:1998-0 and a pore volume with pore diameters <150 nm of 2.1 to 9.5 cm 3 /g.
令人惊奇地发现,根据本发明,即使所用的起始材料可能含有较高量的挥发性有机化合物,也可获得具有非常低含量的挥发性有机化合物的材料。例如,木质素由于其制备方法而常常含有挥发性有机化合物,例如愈创木酚。Surprisingly, it has been found that according to the invention, even if the starting materials used may contain relatively high amounts of volatile organic compounds, materials with very low contents of volatile organic compounds can be obtained. For example, lignin often contains volatile organic compounds, such as guaiacol, due to its preparation process.
根据另一实施方案,本发明因此还涉及如上文所公开的多孔材料,其中多孔材料中的挥发性有机化合物(VOC)含量小于该方法中使用的生物基多酚聚合物中的挥发性有机化合物(VOC)的含量的50%。According to another embodiment, the present invention therefore also relates to a porous material as disclosed above, wherein the volatile organic compound (VOC) content in the porous material is less than 50% of the volatile organic compound (VOC) content in the bio-based polyphenol polymer used in the method.
根据本发明可获得的多孔材料优选具有高的孔隙率和低的密度。此外,多孔材料优选具有较小的平均孔径。上述特性的结合允许该材料用作隔热领域中的隔热材料,特别是在通风状态下作为建筑材料的应用或用于冰箱、服装或电池中。The porous material obtainable according to the invention preferably has a high porosity and a low density. In addition, the porous material preferably has a small average pore size. The combination of the above-mentioned properties allows the material to be used as a thermal insulation material in the field of thermal insulation, in particular as an application as a building material in a ventilated state or in refrigerators, clothing or batteries.
本发明还涉及如上文所公开的多孔材料或者根据如上文所公开的方法获得的或可通过上文公开的制备多孔材料的方法获得的多孔材料作为隔热材料或用于真空隔热板的用途。隔热材料为例如用于建筑物内部或外部隔热的隔热材料。根据本发明的多孔材料可有利地用于隔热系统,例如复合材料。The present invention also relates to the use of a porous material as disclosed above or a porous material obtained according to a method as disclosed above or obtainable by a method for preparing a porous material as disclosed above as a thermal insulation material or for a vacuum insulation panel. The thermal insulation material is, for example, a thermal insulation material for the interior or exterior of a building. The porous material according to the present invention can be advantageously used in thermal insulation systems, such as composite materials.
此外,本发明涉及根据本发明的多孔材料的以下用途:用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于化妆品应用;用于生物医学应用;用于药物应用;用于农业应用以及用于制造医疗产品。这样的化妆品应用包括例如面部护理的产品(如皮肤擦洗或清洁)或保护性产品(如UV防护产品或包括抗氧化剂的产品)。Furthermore, the present invention relates to the following uses of the porous material according to the invention: for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for cosmetic applications; for biomedical applications; for pharmaceutical applications; for agricultural applications and for the manufacture of medical products. Such cosmetic applications include, for example, products for facial care (such as skin scrubbing or cleaning) or protective products (such as UV protection products or products comprising antioxidants).
根据另一方面,本发明涉及如上文所公开的多孔材料或通过如上文所公开的方法获得的或可通过如上文所公开的方法获得的多孔材料的以下用途:作为隔热材料、用于化妆品应用、用于生物医学应用或用于药物应用。根据另一优选方面,本发明涉及上文所公开的多孔材料或通过上文所公开的方法获得的或可通过上文所公开的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家用和商用电器应用;用于温控物流应用;用于真空隔热应用;用于电池应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。According to another aspect, the present invention relates to the following uses of the porous material as disclosed above or obtained by the method as disclosed above or obtainable by the method as disclosed above: as a thermal insulation material, for cosmetic applications, for biomedical applications or for pharmaceutical applications. According to another preferred aspect, the present invention relates to the following uses of the porous material as disclosed above or obtained by the method as disclosed above or obtainable by the method as disclosed above: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for household and commercial appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for battery applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
优选实施方案可以在权利要求书和说明书中找到。优选实施方案的组合没有超出本发明的范围。下文记载了所用组分的优选实施方案。Preferred embodiments can be found in the claims and the description. Combinations of preferred embodiments do not go beyond the scope of the invention. Preferred embodiments of the components used are described below.
本发明包括以下实施方案,其中它们包括由本文限定的由各相互引用关系所示的实施方案的特定组合。The present invention includes the following embodiments, wherein they include specific combinations of the embodiments defined herein as indicated by the respective inter-reference relationships.
1.一种制备多孔材料的方法,其至少包括以下步骤:1. A method for preparing a porous material, comprising at least the following steps:
a)提供包含水溶性生物基多酚聚合物和水的混合物(M1),a) providing a mixture (M1) comprising a water-soluble bio-based polyphenol polymer and water,
b)将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of at least one polyvalent metal ion to produce a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
2.根据实施方案1的方法,其中水溶性生物基多酚聚合物选自木质素生物聚合物和单宁生物聚合物,特别选自碱木质素、硫酸盐木质素、水解木质素、苏打木质素、水溶性固体木质素、酶解木质素、木质素磺酸盐、木质素羧酸盐、木质素衍生物、生物精炼木质素、单宁酸或单宁和单宁衍生物。2. A method according to embodiment 1, wherein the water-soluble bio-based polyphenol polymer is selected from lignin biopolymers and tannin biopolymers, in particular selected from alkali lignin, kraft lignin, hydrolyzed lignin, soda lignin, water-soluble solid lignin, enzymatic lignin, lignin sulfonate, lignin carboxylate, lignin derivatives, biorefined lignin, tannic acid or tannin and tannin derivatives.
3.根据实施方案1或2所述的方法,其中混合物(M1)包含0.1重量%至50重量%的生物基多酚聚合物,基于混合物(M1)3. The method according to embodiment 1 or 2, wherein the mixture (M1) comprises 0.1% to 50% by weight of bio-based polyphenol polymer, based on the mixture (M1).
重量计。Weight scale.
4.根据实施方案1至3中任一项所述的方法,其中混合物(M1)的pH值为8至14。4. The method according to any one of embodiments 1 to 3, wherein the pH value of the mixture (M1) is 8 to 14.
5.根据实施方案1至4中任一项所述的方法,其中所述多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。5. The method according to any one of embodiments 1 to 4, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion selected from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion selected from aluminum ions and iron (III) ions.
6.根据实施方案1至5中任一项所述的方法,其中所述方法包含干凝胶的进一步改性步骤。6. The method according to any one of embodiments 1 to 5, wherein the method comprises a further modification step of the xerogel.
7.根据实施方案6所述的方法,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。7. The method according to embodiment 6, wherein the modification step is selected from a molding step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
8.根据实施方案1至7中任一项所述的方法,其中步骤c)中使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。8. The process according to any one of embodiments 1 to 7, wherein the solvent (L) used in step c) is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
9.根据实施方案1至8中任一项所述的方法,其中将水不溶性固体(S)添加到混合物(M1)中。9. The process according to any one of embodiments 1 to 8, wherein a water-insoluble solid (S) is added to the mixture (M1).
10.根据实施方案1至9中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂(heat control member)、纤维和泡沫增强材料。10. A method according to any one of embodiments 1 to 9, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, heat control agents, fibers and foam reinforcements.
11.根据实施方案1至10中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。11. The method according to any one of embodiments 1 to 10, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and a pressure below the critical temperature and the critical pressure of the liquid contained in the gel.
12.根据实施方案1至10中任一项所述的方法,其中根据步骤d)12. The method according to any one of embodiments 1 to 10, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
13.一种多孔材料,其通过根据实施方案1至12中任一项所述的方法获得或可通过根据实施方案1至12中任一项所述的方法获得。13. A porous material obtained or obtainable by the method according to any one of embodiments 1 to 12.
14.根据实施方案13所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使14. The porous material according to embodiment 13, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
15.根据实施方案13或14所述的多孔材料,其中所述多孔材料中的挥发性有机化合物(VOC)的含量小于所述方法中使用的生15. The porous material according to embodiment 13 or 14, wherein the content of volatile organic compounds (VOC) in the porous material is less than that of the raw material used in the method.
物基多酚聚合物中挥发性有机化合物(VOC)的含量的50%。50% of the volatile organic compound (VOC) content in the bio-based polyphenol polymer.
16.根据实施方案13至15中任一项所述的多孔材料或通过实施方案1至12中任一项所述的方法获得的或可通过实施方案1至12中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。16. The following uses of the porous material according to any one of embodiments 13 to 15 or the porous material obtained by the method according to any one of embodiments 1 to 12 or obtainable by the method according to any one of embodiments 1 to 12: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
17.制备多孔材料的方法,其至少包括以下步骤:17. A method for preparing a porous material, comprising at least the following steps:
a)提供包含水溶性生物基(多)酚聚合物和水的混合物(M1),所述聚合物选自木质素生物聚合物,a) providing a mixture (M1) comprising a water-soluble bio-based (poly)phenolic polymer and water, said polymer being selected from lignin biopolymers,
b)将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of at least one polyvalent metal ion to produce a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
18.根据实施方案17所述的方法,其中所述水溶性生物基多酚聚合物选自碱木质素、硫酸盐木质素、水解木质素、苏打木质素、水溶性固体木质素、酶解木质素、木质素磺酸盐、木质素羧酸盐、木质素衍生物、生物精炼木质素。18. A method according to embodiment 17, wherein the water-soluble bio-based polyphenol polymer is selected from alkali lignin, sulfate lignin, hydrolyzed lignin, soda lignin, water-soluble solid lignin, enzymatic lignin, lignin sulfonate, lignin carboxylate, lignin derivatives, and biorefined lignin.
19.根据实施方案17或18所述的方法,其中混合物(M1)包含0.1重量%至50重量%的生物基多酚聚合物,基于混合物(M1)19. The method according to embodiment 17 or 18, wherein the mixture (M1) comprises from 0.1% to 50% by weight of bio-based polyphenol polymers, based on the mixture (M1).
的重量计。Weight scale.
20.根据实施方案17至19中任一项所述的方法,其中混合物(M1)20. The method according to any one of embodiments 17 to 19, wherein the mixture (M1)
的pH值为8至14。The pH value is 8 to 14.
21.根据实施方案17至20中任一项所述的方法,其中所述多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。21. The method according to any one of embodiments 17 to 20, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion selected from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion selected from aluminum ions and iron (III) ions.
22.根据实施方案17至21中任一项所述的方法,其中所述方法包括干凝胶的进一步改性步骤。22. The method according to any one of embodiments 17 to 21, wherein the method comprises a further modification step of the xerogel.
23.根据实施方案22所述的方法,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。23. A method according to embodiment 22, wherein the modification step is selected from a molding step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
24.根据实施方案17至23中任一项所述的方法,其中步骤c)中24. The method according to any one of embodiments 17 to 23, wherein in step c)
使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。The solvent (L) used is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
25.根据实施方案17至24中任一项所述的方法,其中将水不溶性固体(S)添加到混合物(M1)中。25. The process according to any one of embodiments 17 to 24, wherein a water-insoluble solid (S) is added to the mixture (M1).
26.根据实施方案17至25中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂、纤维和泡沫增强材料。26. A method according to any one of embodiments 17 to 25, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, thermal control agents, fibers and foam reinforcing materials.
27.根据实施方案17至26中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。27. The method according to any one of embodiments 17 to 26, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and pressure below the critical temperature and critical pressure of the liquid contained in the gel.
28.根据实施方案17至26中任一项所述的方法,其中根据步骤d)28. The method according to any one of embodiments 17 to 26, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
29.一种多孔材料,其通过根据实施方案17至28中任一项所述的方法获得或可通过根据实施方案17至28中任一项所述的方法获得。29. A porous material obtained or obtainable by the method according to any one of embodiments 17 to 28.
30.根据实施方案29所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使30. The porous material according to embodiment 29, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
31.根据实施方案29或30所述的多孔材料,其中所述多孔材料中挥发性有机化合物(VOC)的含量小于所述方法中使用的生物基多酚聚合物中挥发性有机化合物(VOC)的含量的50%。31. The porous material according to embodiment 29 or 30, wherein the content of volatile organic compounds (VOC) in the porous material is less than 50% of the content of volatile organic compounds (VOC) in the bio-based polyphenol polymer used in the method.
32.根据实施方案29至31中任一项所述的多孔材料或通过实施方案17至28中任一项所述的方法获得的或可通过实施方案17至28中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料、作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用32. The following uses of the porous material according to any one of embodiments 29 to 31 or the porous material obtained by the method according to any one of embodiments 17 to 28 or obtainable by the method according to any one of embodiments 17 to 28: as a thermal insulation material, as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications;
于农业应用;用于消费者应用;用于包装应用或用于药物应用。for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
33.制备多孔材料的方法,其至少包括以下步骤:33. A method for preparing a porous material, comprising at least the following steps:
a)提供包含水溶性生物基(多)酚聚合物和水的混合物(M1),所述聚合物选自木质素生物聚合物,a) providing a mixture (M1) comprising a water-soluble bio-based (poly)phenolic polymer and water, said polymer being selected from lignin biopolymers,
b)将混合物(M1)与至少一种多价金属离子的水溶液接触以制备凝胶(A),其中所述多价金属离子为二价金属离子,b) contacting the mixture (M1) with an aqueous solution of at least one polyvalent metal ion to produce the gel (A), wherein the polyvalent metal ion is a divalent metal ion,
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
34.根据实施方案33所述的方法,其中所述水溶性生物基多酚聚合物选自碱木质素、硫酸盐木质素、水解木质素、苏打木质素、水溶性固体木质素、酶解木质素、木质素磺酸盐、木质素羧酸盐、木质素衍生物、生物精炼木质素。34. A method according to embodiment 33, wherein the water-soluble bio-based polyphenol polymer is selected from alkali lignin, sulfate lignin, hydrolyzed lignin, soda lignin, water-soluble solid lignin, enzymatic lignin, lignin sulfonate, lignin carboxylate, lignin derivatives, and biorefined lignin.
35.根据实施方案33或34所述的方法,其中混合物(M1)包含0.1重量%至50重量%的生物基多酚聚合物,基于混合物(M1)35. The method according to embodiment 33 or 34, wherein the mixture (M1) comprises 0.1% to 50% by weight of bio-based polyphenol polymer, based on the mixture (M1).
的重量计。Weight scale.
36.根据实施方案33至35中任一项所述的方法,其中混合物(M1)36. The method according to any one of embodiments 33 to 35, wherein the mixture (M1)
的pH值为8至14。The pH value is 8 to 14.
37.根据实施方案33至36中任一项所述的方法,其中所述多价金属离子是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。37. The method according to any one of embodiments 33 to 36, wherein the polyvalent metal ion is a divalent metal ion selected from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion selected from aluminum ions and iron (III) ions.
38.根据实施方案33至37中任一项所述的方法,其中所述方法包括干凝胶的进一步改性步骤。38. The method according to any one of embodiments 33 to 37, wherein the method comprises a further modification step of the xerogel.
39.根据实施方案38所述的方法,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。39. A method according to embodiment 38, wherein the modification step is selected from a molding step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
40.根据实施方案33至39中任一项所述的方法,其中步骤c)中40. The method according to any one of embodiments 33 to 39, wherein in step c)
使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。The solvent (L) used is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
41.根据实施方案33至40中任一项所述的方法,其中将水不溶性固体(S)添加到混合物(M1)中。41. The method according to any one of embodiments 33 to 40, wherein a water-insoluble solid (S) is added to the mixture (M1).
42.根据实施方案33至41中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂、纤维和泡沫增强材料。42. A method according to any one of embodiments 33 to 41, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, thermal control agents, fibers and foam reinforcing materials.
43.根据实施方案33至42中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。43. The method according to any one of embodiments 33 to 42, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and pressure below the critical temperature and critical pressure of the liquid contained in the gel.
44.根据实施方案33至42中任一项所述的方法,其中根据步骤d)44. The method according to any one of embodiments 33 to 42, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
45.一种多孔材料,其通过根据实施方案33至44中任一项所述的方法获得或可通过根据实施方案33至44中任一项所述的方法获得。45. A porous material obtained or obtainable by the method according to any one of embodiments 33 to 44.
46.根据实施方案45所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使46. The porous material according to embodiment 45, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
47.根据实施方案45或46所述的多孔材料,其中所述多孔材料中挥发性有机化合物(VOC)的含量小于所述方法中使用的生物基多酚聚合物中挥发性有机化合物(VOC)的含量的50%。47. The porous material according to embodiment 45 or 46, wherein the content of volatile organic compounds (VOC) in the porous material is less than 50% of the content of volatile organic compounds (VOC) in the bio-based polyphenol polymer used in the method.
48.根据实施方案45至47中任一项所述的多孔材料或通过实施方案33至44中任一项所述的方法获得的或可通过实施方案33至44中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用48. The following uses of the porous material according to any one of embodiments 45 to 47 or the porous material obtained by the method according to any one of embodiments 33 to 44 or obtainable by the method according to any one of embodiments 33 to 44: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications;
于农业应用;用于消费者应用;用于包装应用或用于药物应用。for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
49.制备多孔材料的方法,其至少包括以下步骤:49. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含作为化合物(C1)的水溶性生物基多酚聚合物以及水,所述聚合物选自木质素生物聚合物和单宁生物聚合物,a) providing a mixture (M1) comprising as compound (C1) a water-soluble bio-based polyphenolic polymer selected from the group consisting of lignin biopolymers and tannin biopolymers and water,
b)将混合物(M1)与至少一种二价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of at least one divalent metal ion to produce a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
50.制备多孔材料的方法,其至少包括以下步骤:50. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含作为化合物(C1)的水溶性生物基多酚聚合物以及水,所述聚合物选自木质素生物聚合物和单宁生物聚合物,a) providing a mixture (M1) comprising as compound (C1) a water-soluble bio-based polyphenolic polymer selected from the group consisting of lignin biopolymers and tannin biopolymers and water,
b)将混合物(M1)与至少一种二价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of at least one divalent metal ion to produce a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B),d) drying the gel (B) obtained in step c),
其中所述混合物(M1)还包含至少一种作为化合物(C2)的具有羧酸基团的水溶性多糖。The mixture (M1) further comprises at least one water-soluble polysaccharide having carboxylic acid groups as compound (C2).
51.制备多孔材料的方法,其至少包括以下步骤:51. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含至少一种选自水溶性生物基多酚聚合物和无机前体的化合物(C1)和至少一种作为组分(C2)的具有羧酸基团的水溶性多糖以及水,a) providing a mixture (M1) comprising at least one compound (C1) selected from water-soluble bio-based polyphenol polymers and inorganic precursors and at least one water-soluble polysaccharide having carboxylic acid groups as component (C2) and water,
b)将混合物(M1)与多价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of polyvalent metal ions to prepare a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
52.根据实施方案51所述的方法,其中化合物(C1)选自水溶性生物基多酚聚合物和二氧化硅。52. The method according to embodiment 51, wherein compound (C1) is selected from water-soluble bio-based polyphenol polymers and silicon dioxide.
53.根据实施方案51或52所述的方法,其中混合物(M1)包含0.1重量%至50重量%的化合物(C1),基于混合物(M1)的重量计。53. The method according to embodiment 51 or 52, wherein the mixture (M1) comprises 0.1% to 50% by weight of compound (C1), based on the weight of the mixture (M1).
54.根据实施方案51至53中任一项所述的方法,其中混合物(M1)54. The method according to any one of embodiments 51 to 53, wherein the mixture (M1)
包含比例为55:45至98:2的化合物(C1)和化合物(C2)。The compound (C1) and the compound (C2) are contained in a ratio of 55:45 to 98:2.
55.根据实施方案51至54中任一项所述的方法,其中混合物(M1)55. The method according to any one of embodiments 51 to 54, wherein the mixture (M1)
的pH值为8至14。The pH value is 8 to 14.
56.根据实施方案51至55中任一项所述的方法,其中所述多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。56. The method according to any one of embodiments 51 to 55, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion selected from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion selected from aluminum ions and iron (III) ions.
57.根据实施方案51至56中任一项所述的方法,其中所述方法包含一个或多个干凝胶的进一步改性步骤,特别地,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。57. The method according to any one of embodiments 51 to 56, wherein the method comprises one or more further modification steps of the xerogel, in particular, wherein the modification step is selected from a forming step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
58.根据实施方案51至57中任一项所述的方法,其中步骤c)中58. The method according to any one of embodiments 51 to 57, wherein in step c)
使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。The solvent (L) used is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
59.根据实施方案51至58中任一项所述的方法,其中将水不溶性固体(S)与混合物(M1)接触。59. The method according to any one of embodiments 51 to 58, wherein a water-insoluble solid (S) is contacted with the mixture (M1).
60.根据实施方案51至59中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂、纤维和泡沫增强材料。60. A method according to any one of embodiments 51 to 59, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, thermal control agents, fibers and foam reinforcements.
61.根据实施方案51至60中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。61. The method according to any one of embodiments 51 to 60, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and a pressure below the critical temperature and the critical pressure of the liquid contained in the gel.
62.根据实施方案51至60中任一项所述的方法,其中根据步骤d)62. The method according to any one of embodiments 51 to 60, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
63.一种多孔材料,其通过根据实施方案51至62中任一项所述的方法获得或可通过根据实施方案51至62中任一项所述的方法获的。63. A porous material obtained or obtainable by the method according to any one of embodiments 51 to 62.
64.根据实施方案63所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使64. The porous material according to embodiment 63, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
65.根据实施方案63或64所述的多孔材料,其中所述多孔材料中挥发性有机化合物(VOC)的含量小于所述方法中使用的起始材料中挥发性有机化合物(VOC)的含量的50%。65. The porous material according to embodiment 63 or 64, wherein the content of volatile organic compounds (VOC) in the porous material is less than 50% of the content of volatile organic compounds (VOC) in the starting material used in the method.
66.根据实施方案63至65中任一项所述的多孔材料或通过实施方案51至62中任一项所述的方法获得的或可通过实施方案51至62中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。66. The following uses of the porous material according to any one of embodiments 63 to 65 or the porous material obtained by the method according to any one of embodiments 51 to 62 or obtainable by the method according to any one of embodiments 51 to 62: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
67.制备多孔材料的方法,其至少包括以下步骤:67. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含至少一种选自水溶性生物基多酚聚合物和二氧化硅的化合物(C1)和至少一种作为组分(C2)的具有羧酸基团的水溶性多糖以及水,a) providing a mixture (M1) comprising at least one compound (C1) selected from water-soluble bio-based polyphenol polymers and silicon dioxide and at least one water-soluble polysaccharide having carboxylic acid groups as component (C2) and water,
b)将混合物(M1)与多价金属离子的水溶液接触以制备凝胶(A)b) contacting the mixture (M1) with an aqueous solution of polyvalent metal ions to prepare a gel (A)
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
68.根据实施方案67所述的方法,其中化合物(C1)选自木质素生物聚合物和二氧化硅。68. The method according to embodiment 67, wherein compound (C1) is selected from lignin biopolymers and silica.
69.根据实施方案67或68所述的方法,其中混合物(M1)包含0.1重量%至50重量%的化合物(C1),基于混合物(M1)69. The method according to embodiment 67 or 68, wherein the mixture (M1) comprises from 0.1% to 50% by weight of compound (C1), based on the mixture (M1).
的重量计。Weight scale.
70.根据实施方案67至69中任一项所述的方法,其中混合物(M1)70. The method according to any one of embodiments 67 to 69, wherein the mixture (M1)
包含比例为55:45至98:2的化合物(C1)和化合物(C2)。The compound (C1) and the compound (C2) are contained in a ratio of 55:45 to 98:2.
71.根据实施方案67至70中任一项所述的方法,其中混合物(M1)71. The method according to any one of embodiments 67 to 70, wherein the mixture (M1)
的pH值为8至14。The pH value is 8 to 14.
72.根据实施方案67至71中任一项所述的方法,其中所述多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。72. The method according to any one of embodiments 67 to 71, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion chosen from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion chosen from aluminum ions and iron (III) ions.
73.根据实施方案67至722中任一项所述的方法,其中所述方法包含一个或多个干凝胶的进一步改性步骤,特别地,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。73. The method according to any one of embodiments 67 to 722, wherein the method comprises one or more further modification steps of the xerogel, in particular, wherein the modification step is selected from a forming step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
74.根据实施方案67至73中任一项所述的方法,其中步骤c)中74. The method according to any one of embodiments 67 to 73, wherein in step c)
使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。The solvent (L) used is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
75.根据实施方案67至74中任一项所述的方法,其中将水不溶性固体(S)与混合物(M1)接触。75. The method according to any one of embodiments 67 to 74, wherein a water-insoluble solid (S) is contacted with the mixture (M1).
76.根据实施方案67至75中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂、纤维和泡沫增强材料。76. A method according to any one of embodiments 67 to 75, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, thermal control agents, fibers and foam reinforcements.
77.根据实施方案27至76中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含的液体在低于凝胶中所包含的液体的临界温度和临界压力的温度和压力下转化成气态来进行的。77. The method according to any one of embodiments 27 to 76, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and pressure below the critical temperature and critical pressure of the liquid contained in the gel.
78.根据实施方案27至76中任一项所述的方法,其中根据步骤d)78. The method according to any one of embodiments 27 to 76, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
79.一种多孔材料,其通过根据实施方案27至78中任一项所述的方法获得或可通过根据实施方案27至78中任一项所述的方法获得。79. A porous material obtained or obtainable by the method according to any one of embodiments 27 to 78.
80.根据实施方案79所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使80. The porous material according to embodiment 79, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
81.根据实施方案79或80所述的多孔材料,其中所述多孔材料中挥发性有机化合物(VOC)的含量小于所述方法中使用的起始材料中挥发性有机化合物(VOC)的含量的50%。81. The porous material according to embodiment 79 or 80, wherein the content of volatile organic compounds (VOC) in the porous material is less than 50% of the content of volatile organic compounds (VOC) in the starting material used in the method.
82.根据实施方案79至81中任一项所述的多孔材料或通过实施方案67至78中任一项所述的方法获得的或可通过实施方案67至78中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用82. The following uses of the porous material according to any one of embodiments 79 to 81 or the porous material obtained by the method of any one of embodiments 67 to 78 or obtainable by the method of any one of embodiments 67 to 78: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications;
于农业应用;用于消费者应用;用于包装应用或用于药物应用。for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
83.制备多孔材料的方法,其至少包括以下步骤:83. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含至少一种选自水溶性木质素生物聚合物和二氧化硅的化合物(C1)和至少一种作为组分(C2)的具有羧酸基团的水溶性多糖以及水,a) providing a mixture (M1) comprising at least one compound (C1) selected from water-soluble lignin biopolymers and silicon dioxide and at least one water-soluble polysaccharide having carboxylic acid groups as component (C2) and water,
b)将混合物(M1)与多价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of polyvalent metal ions to prepare a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L)
以获得凝胶(B),To obtain gel (B),
d)干燥步骤c)中获得的凝胶(B),d) drying the gel (B) obtained in step c),
其中化合物(C2)选自藻酸盐、果胶、改性纤维素、黄原胶、透明质酸或改性淀粉。Wherein compound (C2) is selected from alginate, pectin, modified cellulose, xanthan gum, hyaluronic acid or modified starch.
84.根据实施方案83所述的方法,其中化合物(C2)选自藻酸盐。84. A method according to embodiment 83, wherein compound (C2) is selected from alginate.
85.根据实施方案83或84所述的方法,其中混合物(M1)包含0.1重量%至50重量%的化合物(C1),基于混合物(M1)的重量计。85. The method according to embodiment 83 or 84, wherein the mixture (M1) comprises 0.1% to 50% by weight of compound (C1), based on the weight of the mixture (M1).
86.根据实施方案83至85中任一项所述的方法,其中混合物(M1)86. The method according to any one of embodiments 83 to 85, wherein the mixture (M1)
包含比例为55:45至98:2的化合物(C1)和化合物(C2)。The compound (C1) and the compound (C2) are contained in a ratio of 55:45 to 98:2.
87.根据实施方案83至86中任一项所述的方法,其中混合物(M1)87. The method according to any one of embodiments 83 to 86, wherein the mixture (M1)
的pH值为8至14。The pH value is 8 to 14.
88.根据实施方案83至87中任一项所述的方法,其中所述多价金属离子为二价金属离子,特别是选自碱土金属离子的二价金属离子,或者其中所述多价金属离子为选自铝离子和铁(III)离子的三价金属离子。88. The method according to any one of embodiments 83 to 87, wherein the polyvalent metal ion is a divalent metal ion, in particular a divalent metal ion chosen from alkaline earth metal ions, or wherein the polyvalent metal ion is a trivalent metal ion chosen from aluminum ions and iron (III) ions.
89.根据实施方案83至88中任一项所述的方法,其中所述方法包括一个或多个干凝胶的进一步改性步骤,特别地,其中所述改性步骤选自成型步骤、压缩步骤、层压步骤、后干燥步骤、疏水化步骤和碳化步骤。89. The method according to any one of embodiments 83 to 88, wherein the method comprises one or more further modification steps of the xerogel, in particular, wherein the modification step is selected from a forming step, a compression step, a lamination step, a post-drying step, a hydrophobization step and a carbonization step.
90.根据实施方案83至89中任一项所述的方法,其中步骤c)中90. The method according to any one of embodiments 83 to 89, wherein in step c)
使用的溶剂(L)选自C1至C6醇和C1至C6酮及其混合物。The solvent (L) used is selected from C1 to C6 alcohols and C1 to C6 ketones and mixtures thereof.
91.根据实施方案83至90中任一项所述的方法,其中将水不溶性固体(S)与混合物(M1)进行接触。91. The method according to any one of embodiments 83 to 90, wherein a water-insoluble solid (S) is contacted with the mixture (M1).
92.根据实施方案83至91中任一项所述的方法,其中将化合物(C)添加到混合物(M1)中,所述化合物(C)选自颜料、遮光剂、阻燃剂、催化材料、金属、金属氧化物、金属硫化物、金属碳化物、金属盐、硅基材料、碳基材料、金属有机骨架、半导体、硫、填料、表面活性物质、热控制剂、纤维和泡沫增强材料。92. A method according to any one of embodiments 83 to 91, wherein a compound (C) is added to the mixture (M1), wherein the compound (C) is selected from pigments, sunscreens, flame retardants, catalytic materials, metals, metal oxides, metal sulfides, metal carbides, metal salts, silicon-based materials, carbon-based materials, metal organic frameworks, semiconductors, sulfur, fillers, surfactants, thermal control agents, fibers and foam reinforcing materials.
93.根据实施方案83至92中任一项所述的方法,其中根据步骤d)的干燥是通过将凝胶中所包含液体在低于凝胶中所包含液体的临界温度和临界压力的温度和压力下转化成气态来进行的。93. The method according to any one of embodiments 83 to 92, wherein the drying according to step d) is carried out by converting the liquid contained in the gel into the gaseous state at a temperature and pressure below the critical temperature and critical pressure of the liquid contained in the gel.
94.根据实施方案83至92中任一项所述的方法,其中根据步骤d)94. The method according to any one of embodiments 83 to 92, wherein according to step d)
的干燥是在超临界条件下进行的。The drying is carried out under supercritical conditions.
95.一种多孔材料,其通过根据实施方案83至94中任一项所述的方法获得或可通过根据实施方案83至94中任一项所述的方法获得。95. A porous material obtained or obtainable by the method according to any one of embodiments 83 to 94.
96.根据实施方案95所述的多孔材料,其中多孔材料的比表面积为120至800m2/g或200至800m2/g,根据DIN 66134:1998-0使96. The porous material according to embodiment 95, wherein the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g, and the specific surface area of the porous material is 120 to 800 m 2 /g or 200 to 800 m 2 /g according to DIN 66134:1998-0.
用BET理论测定并且孔径<150nm的孔体积为2.1至9.5cm3/g。The pore volume determined using the BET theory and having a pore diameter of <150 nm is between 2.1 and 9.5 cm 3 /g.
97.根据实施方案95或96所述的多孔材料,其中所述多孔材料中挥发性有机化合物(VOC)的含量小于所述方法中使用的起始材料中挥发性有机化合物(VOC)的含量的50%。97. A porous material according to embodiment 95 or 96, wherein the content of volatile organic compounds (VOC) in the porous material is less than 50% of the content of volatile organic compounds (VOC) in the starting material used in the method.
98.根据实施方案95至97中任一项所述的多孔材料或通过实施方案83至94中任一项所述的方法获得的或可通过实施方案83至94中任一项所述的方法获得的多孔材料的以下用途:作为隔热材料;作为用于负载和释放活性物质的载体材料;用于电池应用;用于电池、燃料电池或电解中的电极材料;用于催化;用于电容器;用于消费电子产品;用于建筑和施工应用;用于家电应用;用于温控物流应用;用于真空隔热应用;用于服装应用;用于食品应用;用于化妆品应用;用于生物医学应用;用于农业应用;用于消费者应用;用于包装应用或用于药物应用。98. The following uses of the porous material according to any one of embodiments 95 to 97 or the porous material obtained by the method of any one of embodiments 83 to 94 or obtainable by the method of any one of embodiments 83 to 94: as a thermal insulation material; as a carrier material for loading and releasing active substances; for battery applications; for electrode materials in batteries, fuel cells or electrolysis; for catalysis; for capacitors; for consumer electronics; for building and construction applications; for home appliance applications; for temperature-controlled logistics applications; for vacuum insulation applications; for clothing applications; for food applications; for cosmetic applications; for biomedical applications; for agricultural applications; for consumer applications; for packaging applications or for pharmaceutical applications.
99.制备多孔材料的方法,其至少包括以下步骤:99. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含至少一种选自木质素生物聚合物和二氧化硅的化合物(C1)和至少一种作为组分(C2)的具有羧酸基团的水溶性多糖以及水,a) providing a mixture (M1) comprising at least one compound (C1) selected from the group consisting of lignin biopolymers and silicon dioxide and at least one water-soluble polysaccharide having carboxylic acid groups as component (C2) and water,
b)将混合物(M1)与二价金属离子或三价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of divalent metal ions or trivalent metal ions to prepare a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B),c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L) to obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B),d) drying the gel (B) obtained in step c),
其中化合物(C2)选自藻酸盐、果胶、改性纤维素、黄原胶、透明质酸或改性淀粉。Wherein compound (C2) is selected from alginate, pectin, modified cellulose, xanthan gum, hyaluronic acid or modified starch.
100.制备多孔材料的方法,其至少包括以下步骤:100. A method for preparing a porous material, comprising at least the following steps:
a)提供混合物(M1),其包含水、至少一种选自木质素生物聚合物和二氧化硅的化合物(C1)和至少一种选自藻酸盐的组分(C2),a) providing a mixture (M1) comprising water, at least one compound (C1) selected from the group consisting of lignin biopolymers and silicon dioxide and at least one component (C2) selected from the group consisting of alginates,
b)将混合物(M1)与二价或三价金属离子的水溶液接触以制备凝胶(A),b) contacting the mixture (M1) with an aqueous solution of divalent or trivalent metal ions to prepare a gel (A),
c)将步骤b)中获得的凝胶(A)暴露于水混溶性溶剂(L)以获得凝胶(B),c) exposing the gel (A) obtained in step b) to a water-miscible solvent (L) to obtain a gel (B),
d)干燥步骤c)中获得的凝胶(B)。d) drying the gel (B) obtained in step c).
下面将通过实施例来阐述本发明。The present invention will be described below by way of examples.
实施例Example
1.使用的材料1. Materials used
材料:硫酸盐木质素(UPM)、氢氧化钠(NaOH,Sigma Aldrich)、氯化钙(CaCl2,Sigma Aldrich)、纯乙醇(Carl Roth)、藻酸钠(Hydagen,BASF)、六甲基二硅氮烷(HMDZ,Sigma Aldrich)、Ludox SM30(Sigma Aldrich)、乳清蛋白(Agropure Ingredients)、黄原胶(Sigma Aldrich)、微晶纤维素(MCC,Sigma Aldrich)、酪蛋白酸钠(Sigma Aldrich)、单宁酸(Sigma Aldrich)、马铃薯淀粉(Sigma Aldrich)、明胶(Sigma Aldrich)。Materials: kraft lignin (UPM), sodium hydroxide (NaOH, Sigma Aldrich), calcium chloride (CaCl 2 , Sigma Aldrich), pure ethanol (Carl Roth), sodium alginate (Hydagen, BASF), hexamethyldisilazane (HMDZ, Sigma Aldrich), Ludox SM30 (Sigma Aldrich), whey protein (Agropure Ingredients), xanthan gum (Sigma Aldrich), microcrystalline cellulose (MCC, Sigma Aldrich), sodium caseinate (Sigma Aldrich), tannic acid (Sigma Aldrich), potato starch (Sigma Aldrich), gelatin (Sigma Aldrich).
2.制备实施例2. Preparation Example
2.1由硫酸盐木质素-钙凝胶法制备亲水性木质素气凝胶2.1 Preparation of hydrophilic lignin aerogels by kraft lignin-calcium gel method
溶液1:将硫酸盐木质素粉末(~6000g/mol,UPM)在室温下分散在去离子水(20重量%)中,并加入5重量%NaOH直至pH达到11.5。一天后,测量pH值,并进一步加入5重量Solution 1: Kraft lignin powder (~6000 g/mol, UPM) was dispersed in deionized water (20 wt%) at room temperature, and 5 wt% NaOH was added until the pH reached 11.5. After one day, the pH was measured and a further 5 wt% NaOH was added.
%NaOH直至pH达到11.5。% NaOH until the pH reaches 11.5.
溶液2:室温下配制CaCl2水溶液(20g/L)。Solution 2: Prepare CaCl2 aqueous solution (20 g/L) at room temperature.
用移液管将溶液1滴入溶液2(10×体积)中。小的水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Small hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒通过125μm的筛网过滤。The hydrogel particles were filtered through a 125 μm mesh.
将水凝胶颗粒浸入乙醇(93%)中5min。最后的溶剂交换步骤是将来自上一步的水凝胶颗粒浸入纯乙醇中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%) for 5 min. The final solvent exchange step was to immerse the hydrogel particles from the previous step in pure ethanol for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到木质素气凝胶颗粒。气凝胶颗粒没有原始硫酸盐木质素原料的气味。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 hour to obtain lignin aerogel particles. The aerogel particles did not have the smell of the original kraft lignin raw material.
表面积:297m2/gSurface area: 297m2 /g
孔体积:2.4cm3/gPore volume: 2.4 cm 3 /g
BJH孔直径:12nmBJH pore diameter: 12nm
气凝胶密度:200-300g/LAerogel density: 200-300g/L
接触角:0°Contact angle: 0°
2.2由硫酸盐木质素-锌凝胶法制备亲水性木质素气凝胶2.2 Preparation of hydrophilic lignin aerogels by the kraft lignin-zinc gel method
溶液1:将硫酸盐木质素粉末(~6000g/mol,UPM)在室温下分散在去离子水(10重量%)中,并加入5重量%NaOH直至pH达到11。一天后,测量pH值,并进一步加入5重量%Solution 1: Kraft lignin powder (~6000 g/mol, UPM) was dispersed in deionized water (10 wt%) at room temperature, and 5 wt% NaOH was added until pH reached 11. After one day, the pH was measured and a further 5 wt%
NaOH直至pH达到11。NaOH until pH reaches 11.
溶液2:室温下配制ZnCl2水溶液(10g/L)。Solution 2: Prepare ZnCl2 aqueous solution (10 g/L) at room temperature.
用移液管将溶液1滴入溶液2(10×体积)中。小的水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Small hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到木质素气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain lignin aerogel particles.
木质素气凝胶颗粒5的堆积密度为80~120g/l。The bulk density of the lignin aerogel particles 5 is 80 to 120 g/l.
木质素气凝胶颗粒的表面积和孔体积测定为308m2/g。The surface area and pore volume of the lignin aerogel particles were determined to be 308 m 2 /g.
2.3由硫酸盐木质素-锶凝胶法制备亲水性木质素气凝胶2.3 Preparation of hydrophilic lignin aerogels by the kraft lignin-strontium gel method
溶液1:将硫酸盐木质素粉末(~6000g/mol,UPM)在室温下分散在去离子水(20重量%)中,并加入5重量%NaOH直至pH达到11。一天后,测量pH值,并进一步加入5重量%Solution 1: Kraft lignin powder (~6000 g/mol, UPM) was dispersed in deionized water (20 wt%) at room temperature, and 5 wt% NaOH was added until the pH reached 11. After one day, the pH was measured and a further 5 wt%
NaOH直至pH达到10.5。NaOH until the pH reaches 10.5.
溶液2:室温下配制SrCl2水溶液(10g/L)(pH 7.8)。Solution 2: Prepare SrCl2 aqueous solution (10 g/L) (pH 7.8) at room temperature.
用移液管将溶液1滴入溶液2(10×体积)中。小的水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Small hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到木质素气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain lignin aerogel particles.
气凝胶颗粒的堆积密度为160~200g/l。The bulk density of the aerogel particles is 160-200 g/l.
气凝胶颗粒的表面积测定为273m2/g。The surface area of the aerogel particles was determined to be 273 m2 /g.
2.4由生物精炼木质素制备亲水性木质素气凝胶2.4 Preparation of hydrophilic lignin aerogels from biorefined lignin
溶液1:将生物精炼木质素粉末在室温下分散在去离子水(20重量Solution 1: Biorefined lignin powder was dispersed in deionized water (20 wt.
%)中,并加入5重量%NaOH直至pH达到10.4。一天后,测量pH值,并进一步加入5重量%NaOH直至pH达到10.5。%), and 5 wt % NaOH was added until the pH reached 10.4. One day later, the pH was measured, and further 5 wt % NaOH was added until the pH reached 10.5.
溶液2:室温下配制CaCl2水溶液(10g/L)。Solution 2: Prepare CaCl2 aqueous solution (10 g/L) at room temperature.
用移液管将溶液1滴入溶液2(10×体积)中。水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到木质素气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain lignin aerogel particles.
气凝胶颗粒的表面积测定为151m2/g。The surface area of the aerogel particles was measured to be 151 m2 /g.
3.制备实施例——混合材料3. Preparation Example - Mixed Materials
3.1亲水性硫酸盐木质素/藻酸盐混合气凝胶3.1 Hydrophilic kraft lignin/alginate hybrid aerogel
溶液1:将硫酸盐木质素粉末在室温下分散在去离子水(14重量%)Solution 1: Kraft lignin powder was dispersed in deionized water (14 wt%) at room temperature.
中,并加入5重量%NaOH直至pH达到10。添加藻酸钠并使之溶解,获得重量比为92:8的硫酸盐木质素和藻酸盐。溶液2:室温下配制CaCl2水溶液(10g/L)并用1M NaOH调节至pH为10。5 wt% NaOH was added until the pH reached 10. Sodium alginate was added and dissolved to obtain a kraft lignin and alginate weight ratio of 92:8. Solution 2: A CaCl2 aqueous solution (10 g/L) was prepared at room temperature and adjusted to pH 10 with 1 M NaOH.
用移液管将溶液1滴入溶液2(10×体积)中。水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到硫酸盐木质素/藻酸盐混合气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain kraft lignin/alginate mixed aerogel particles.
气凝胶颗粒的堆积密度为~120g/l。The bulk density of the aerogel particles is -120 g/l.
气凝胶颗粒的表面积和孔体积测定为255m2/g和1.88cm3/g。The surface area and pore volume of the aerogel particles were determined to be 255 m2 /g and 1.88 cm3 /g.
3.2亲水性硫酸盐木质素/藻酸盐混合气凝胶——不同比例3.2 Hydrophilic kraft lignin/alginate hybrid aerogels—different ratios
溶液1:将硫酸盐木质素粉末在室温下分散在去离子水(10重量%)Solution 1: Kraft lignin powder was dispersed in deionized water (10 wt%) at room temperature.
中,并加入5重量%NaOH直至pH达到11。一天后,测量pH值,并进一步加入5重量%NaOH直至pH达到11。5 wt % NaOH was added until the pH reached 11. One day later, the pH was measured, and further 5 wt % NaOH was added until the pH reached 11.
溶液2:室温下将藻酸钠以2重量%的浓度溶解在水中。Solution 2: Sodium alginate was dissolved in water at room temperature at a concentration of 2 wt%.
溶液3:室温下配制CaCl2水溶液(20g/L)。Solution 3: Prepare CaCl2 aqueous solution (20 g/L) at room temperature.
将溶液1和2按不同的重量比混合,并通过添加水来调节硫酸盐木质素和藻酸盐的总浓度,得到溶液4a-e:Solutions 1 and 2 were mixed in different weight ratios, and the total concentration of kraft lignin and alginate was adjusted by adding water to obtain solutions 4a-e:
·溶液4a:硫酸盐木质素/藻酸盐1:2(2.7重量%,pH 10.2)Solution 4a: Kraft lignin/alginate 1:2 (2.7 wt%, pH 10.2)
·溶液4b:硫酸盐木质素/藻酸盐1:1(2.7重量%,pH 10.6)Solution 4b: Kraft lignin/alginate 1:1 (2.7 wt%, pH 10.6)
·溶液4c:硫酸盐木质素/藻酸盐2:1(2.7重量%,pH 10.7)Solution 4c: Kraft lignin/alginate 2:1 (2.7 wt%, pH 10.7)
·溶液4d:硫酸盐木质素/藻酸盐4:1(2.7重量%,pH 10.7)Solution 4d: Kraft lignin/alginate 4:1 (2.7 wt%, pH 10.7)
·溶液4e:硫酸盐木质素/藻酸盐9:1(2.7重量%,pH 10.7)Solution 4e: Kraft lignin/alginate 9:1 (2.7 wt%, pH 10.7)
用移液管将50ml溶液4a-e滴入溶液3(10×体积)中。形成基于4a-e的水凝胶颗粒5a-e并沉降至溶液3的底部。50 ml of solution 4a-e was dropped into solution 3 (10×volume) using a pipette. Hydrogel particles 5a-e based on 4a-e were formed and settled to the bottom of solution 3.
将水凝胶颗粒5a-e浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒5a-e浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒6a-e(最终溶剂浓度为94-98%)。The hydrogel particles 5a-e were immersed in ethanol (93%, 10×vol) for 5 min. The final solvent exchange step was to immerse the gel particles 5a-e from the previous step in pure ethanol (10×vol) for 5 min to obtain alcohol gel particles 6a-e (final solvent concentration 94-98%).
将醇凝胶颗粒6a-e用超临界二氧化碳在60℃、120bar下干燥1h,得到硫酸盐木质素/藻酸盐混合气凝胶颗粒7a-e。气凝胶颗粒7a-e没有硫酸盐木质素的气味。将气凝胶颗粒7a-e直接用于疏水化。Alcogel particles 6a-e were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 hour to obtain kraft lignin/alginate mixed aerogel particles 7a-e. Aerogel particles 7a-e had no kraft lignin odor. Aerogel particles 7a-e were directly used for hydrophobization.
3.3疏水性硫酸盐木质素/藻酸盐混合气凝胶——不同比例3.3 Hydrophobic kraft lignin/alginate hybrid aerogels—different ratios
将来自上述实施例3.2的50ml亲水性木质素气凝胶颗粒7a-e置于2L反应器中的过滤袋中。此外,将50ml HMDZ放置在反应器中小的开口容器中。关闭反应器,将反应器加热至115℃。20小时后,将反应器冷却至室温,从反应器中取出疏水性气凝胶颗粒8a-e。50 ml of hydrophilic lignin aerogel particles 7a-e from Example 3.2 above were placed in a filter bag in a 2 L reactor. In addition, 50 ml of HMDZ was placed in a small open container in the reactor. The reactor was closed and heated to 115° C. After 20 hours, the reactor was cooled to room temperature and the hydrophobic aerogel particles 8a-e were removed from the reactor.
气凝胶颗粒8a-e的密度为45g/l。The density of the aerogel particles 8a-e is 45 g/l.
测量了气凝胶颗粒8a-e的表面积(描述)。通过将气凝胶颗粒8a-e放在容器中的水面上并观察颜色变化(吸收水时,颜色从浅棕色变为深棕色)和收缩来测试疏水性。The surface area of the aerogel particles 8a-e was measured (depicted). The hydrophobicity was tested by placing the aerogel particles 8a-e on water in a container and observing the color change (from light brown to dark brown when absorbing water) and shrinkage.
8a:表面积429m2/g。气凝胶颗粒放在水上(吸水)时颜色立即从浅棕色变为深棕色,在~10s内收缩~50%。8a: Surface area 429 m2 /g. When the aerogel particles were placed on water (absorbed water), the color immediately changed from light brown to dark brown and they shrank by -50% in -10 s.
8b:表面积394m2/g。气凝胶颗粒放在水上(吸水)时颜色立即从浅棕色变为深棕色,在~30s内收缩~50%。8b: Surface area 394 m2 /g. When the aerogel particles were placed on water (absorbed water), the color immediately changed from light brown to dark brown and they shrank by -50% in -30 s.
8c:表面积372m2/g。气凝胶颗粒放在水上时在~10min内收缩~50%,颗粒颜色在1h内从浅棕色变为深棕色(吸水)。8c: Surface area 372 m2 /g. Aerogel particles shrank by -50% in -10 min when placed on water, and the color of the particles changed from light brown to dark brown (water absorption) in 1 h.
8d:表面积330m2/g。气凝胶颗粒放在水上时在~2h内收缩~50%,颗粒颜色在~4h内从浅棕色变为深棕色(吸水)。8d: Surface area 330 m2 /g. Aerogel particles shrank by -50% in -2 hours when placed on water, and the color of the particles changed from light brown to dark brown (water absorption) in -4 hours.
8e:表面积318m2/g。气凝胶颗粒放在水上时在~4h内收缩~50%,颗粒颜色在~8h内从浅棕色变为深棕色(吸水)。8e: Surface area 318 m2 /g. Aerogel particles shrank by -50% in -4 h when placed on water, and the color of the particles changed from light brown to dark brown (water absorption) in -8 h.
3.4亲水性木质素磺酸盐/黄原胶混合气凝胶3.4 Hydrophilic lignin sulfonate/xanthan gum hybrid aerogel
溶液1:将木质素磺酸盐粉末在室温下分散在去离子水(40重量%)Solution 1: Disperse lignin sulfonate powder in deionized water (40 wt%) at room temperature
中,并加入5重量%NaOH直至pH达到13。and added 5 wt% NaOH until the pH reached 13.
溶液2:将黄原胶分散在相同体积的乙醇中,然后在室温下以0.7重量%的浓度溶解在水中。Solution 2: Xanthan gum was dispersed in an equal volume of ethanol and then dissolved in water at room temperature at a concentration of 0.7 wt%.
溶液3:室温下配制CaCl2水溶液(10g/L)。Solution 3: Prepare CaCl2 aqueous solution (10 g/L) at room temperature.
将溶液1和2以木质素磺酸盐和黄原胶的重量比为95:5进行混合,得到溶液4。Solution 4 was obtained by mixing solutions 1 and 2 at a weight ratio of lignin sulfonate to xanthan gum of 95:5.
用移液管将溶液4滴入溶液3(10×体积)中。形成水凝胶颗粒并沉降至溶液3的底部。Solution 4 was added dropwise into solution 3 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 3.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到木质素磺酸盐/黄原胶混合气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain lignin sulfonate/xanthan gum mixed aerogel particles.
气凝胶颗粒的密度为~200g/l。The density of the aerogel particles is ~200 g/l.
气凝胶颗粒的表面积测定为290m2/g。The surface area of the aerogel particles was measured to be 290 m2 /g.
3.5亲水性硫酸盐木质素/黄原胶混合气凝胶3.5 Hydrophilic kraft lignin/xanthan gum hybrid aerogel
溶液1:将硫酸盐木质素粉末在室温下分散在去离子水(20重量%)Solution 1: Kraft lignin powder was dispersed in deionized water (20 wt%) at room temperature.
中,并加入5重量%NaOH直至pH达到13.5。5 wt% NaOH was added until the pH reached 13.5.
溶液2:将黄原胶分散在相同体积的乙醇中,然后在室温下以0.7重量%的浓度溶解在水中。Solution 2: Xanthan gum was dispersed in an equal volume of ethanol and then dissolved in water at room temperature at a concentration of 0.7 wt%.
溶液3:室温下配制CaCl2水溶液(10g/L)。Solution 3: Prepare CaCl2 aqueous solution (10 g/L) at room temperature.
将溶液1和2以硫酸盐木质素和黄原胶的重量比为97:3进行混合,得到溶液4。Solutions 1 and 2 were mixed at a weight ratio of kraft lignin to xanthan gum of 97:3 to obtain solution 4.
用移液管将溶液4滴入溶液3(10×体积)中。形成水凝胶颗粒并沉降至溶液3的底部。Solution 4 was added dropwise into solution 3 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 3.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到硫酸盐木质素/黄原胶混合气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain kraft lignin/xanthan gum mixed aerogel particles.
气凝胶颗粒的密度为~200g/l。The density of the aerogel particles is -200 g/l.
气凝胶颗粒的表面积测定为416m2/g。The surface area of the aerogel particles was determined to be 416 m2 /g.
3.6含有两种以上组分的混合气凝胶3.6 Hybrid aerogels containing more than two components
溶液1:将硫酸盐木质素粉末在室温下分散在去离子水(14重量%)Solution 1: Kraft lignin powder was dispersed in deionized water (14 wt%) at room temperature.
中,并加入5重量%NaOH直至pH达到10。加入LudoxSM30(胶体二氧化硅)并按不同比例加入藻酸钠并溶解,5 wt% NaOH was added until the pH reached 10. Ludox SM30 (colloidal silica) was added and sodium alginate was added in different proportions and dissolved.
用水调节浓度,得到如表1所示的各种溶液1。The concentration was adjusted with water to obtain various solutions 1 as shown in Table 1.
溶液2:室温下配制CaCl2水溶液(10g/L)并用1M NaOH调节pH值至10。Solution 2: Prepare CaCl2 aqueous solution (10 g/L) at room temperature and adjust the pH to 10 with 1 M NaOH.
用移液管将溶液1滴入溶液2(10×体积)中。形成水凝胶颗粒并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到如表1所示的胶体二氧化硅/硫酸盐木质素/藻酸盐混合气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60°C and 120 bar for 1 h to obtain colloidal silica/kraft lignin/alginate mixed aerogel particles as shown in Table 1.
表1Table 1
3.7含有各种生物聚合物的混合气凝胶3.7 Hybrid aerogels containing various biopolymers
溶液1:单宁酸与2重量%藻酸钠溶液共混,得到具有如表2所示的浓度和重量比的各种溶液。向不同溶液中添加40重量%Solution 1: Tannic acid was blended with 2 wt% sodium alginate solution to obtain various solutions having concentrations and weight ratios as shown in Table 2. 40 wt% sodium alginate was added to the different solutions.
NaOH直至获得如表2所示的pH值。NaOH until the pH values shown in Table 2 are obtained.
溶液2:室温下配制CaCl2水溶液(10g/L)并用1M NaOH调节pH值至10。Solution 2: Prepare CaCl2 aqueous solution (10 g/L) at room temperature and adjust the pH to 10 with 1 M NaOH.
用移液管将溶液1滴入溶液2(10×体积)中。水凝胶颗粒形成并沉降至溶液2的底部。Solution 1 was added dropwise into solution 2 (10× volume) using a pipette. Hydrogel particles formed and settled to the bottom of solution 2.
将水凝胶颗粒浸入乙醇(93%,10×体积)中5min。最后的溶剂交换步骤是将来自上一步的凝胶颗粒浸入纯乙醇(10×体积)中5min,以获得醇凝胶颗粒(最终溶剂浓度为94-98%)。The hydrogel particles were immersed in ethanol (93%, 10× volume) for 5 min. The final solvent exchange step was to immerse the gel particles from the previous step in pure ethanol (10× volume) for 5 min to obtain alcohol gel particles (final solvent concentration was 94-98%).
将醇凝胶颗粒用超临界二氧化碳在60℃、120bar下干燥1h,得到具有如表2所示的堆积密度和表面积的亲水性混合气凝胶颗粒。The alcohol gel particles were dried with supercritical carbon dioxide at 60° C. and 120 bar for 1 h to obtain hydrophilic hybrid aerogel particles having a bulk density and surface area as shown in Table 2.
为了疏水化,将50ml亲水性气凝胶颗粒置于2L反应器中的过滤袋中。此外,将50mlHMDZ置于反应器中小的开口容器中。关闭反应器,将反应器加热至115℃。20小时后,将反应器冷却至室温,从反应器中取出具有如表2所示的表面积的疏水性气凝胶颗粒。For hydrophobization, 50 ml of hydrophilic aerogel particles were placed in a filter bag in a 2 L reactor. In addition, 50 ml of HMDZ were placed in a small open container in the reactor. The reactor was closed and heated to 115° C. After 20 hours, the reactor was cooled to room temperature and hydrophobic aerogel particles having a surface area as shown in Table 2 were taken out of the reactor.
表2Table 2
4.使用的方法4. Method of use
4.1孔体积根据DIN 66134:1998-02使用来自QuantachromeInstruments的Nova4000e孔径分析仪进行测量。从原始样品中分离出约15-20mg的样品并放置在测量玻璃池(measuring glasscell)中。将样品在50mm Hg真空和60℃下脱气15h,以去除样品上的任何吸附组分。在进行表面积和孔径分析之前,再次对样品进行称重。4.1 Pore volume was measured according to DIN 66134:1998-02 using a Nova4000e pore size analyzer from Quantachrome Instruments. About 15-20 mg of sample was separated from the original sample and placed in a measuring glass cell. The sample was degassed at 50 mm Hg vacuum and 60 ° C for 15 h to remove any adsorbed components on the sample. Before performing surface area and pore size analysis, the sample was weighed again.
4.2表面积测量:比表面积通过Brunauer-Emmet-Teller(BET)方法使用低温氮吸附分析(在氮的沸点下,77K)在IUPAC推荐的P/P0范围(0.05-0.30)之间测定。1/((w.(P0/P-1))vs P/P0图产生线性图,相关系数(r)超过0.999。4.2 Surface area measurement: The specific surface area was determined by the Brunauer-Emmet-Teller (BET) method using low temperature nitrogen adsorption analysis (at the boiling point of nitrogen, 77 K) within the IUPAC recommended P/P0 range (0.05-0.30). The 1/((w.(P0/P-1)) vs P/P0 plot produced a linear plot with a correlation coefficient (r) exceeding 0.999.
引用文献:References:
US020190329208A1US020190329208A1
Grishechko,L.等人,Industrial Crops and Products 2013,41 347-355WO2009/027310Grishechko,L. et al., Industrial Crops and Products 2013,41 347-355WO2009/027310
Robitzer等人,Langmuir 2008,24,12547-12552WO 2009/027310Robitzer et al., Langmuir 2008, 24, 12547-12552 WO 2009/027310
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22160782 | 2022-03-08 | ||
EP22160782.3 | 2022-03-08 | ||
EP22160784.9 | 2022-03-08 | ||
PCT/EP2023/055872 WO2023170135A1 (en) | 2022-03-08 | 2023-03-08 | Process for producing porous materials |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118804945A true CN118804945A (en) | 2024-10-18 |
Family
ID=80683961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380024347.7A Pending CN118804945A (en) | 2022-03-08 | 2023-03-08 | Method for preparing porous material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118804945A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119350854A (en) * | 2024-11-25 | 2025-01-24 | 广东鑫昌顺新材科技有限公司 | A production process of environmentally friendly aerogel insulation pad |
-
2023
- 2023-03-08 CN CN202380024347.7A patent/CN118804945A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119350854A (en) * | 2024-11-25 | 2025-01-24 | 广东鑫昌顺新材科技有限公司 | A production process of environmentally friendly aerogel insulation pad |
CN119350854B (en) * | 2024-11-25 | 2025-06-06 | 广东鑫昌顺新材科技有限公司 | Production process of environment-friendly aerogel heat insulation pad |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raman et al. | Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications | |
JP6570548B2 (en) | Method for producing porous alginate airgel | |
Kaya | Super absorbent, light, and highly flame retardant cellulose‐based aerogel crosslinked with citric acid | |
Wu et al. | Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging | |
Chartier et al. | Tuning the properties of porous chitosan: Aerogels and cryogels | |
CN107922203B (en) | Preparation method of spherical silica aerogel particles and spherical silica aerogel particles prepared therefrom | |
US20130018112A1 (en) | Cellulose nanoparticle aerogels, hydrogels and organogels | |
Braghiroli et al. | High surface–highly N-doped carbons from hydrothermally treated tannin | |
KR101498562B1 (en) | Manufacturing method of silica aerogel powders | |
CN118804945A (en) | Method for preparing porous material | |
Beaumont et al. | Cellulose nanofibrils: From hydrogels to aerogels | |
Kloster et al. | Microcrystalline cellulose modified chitosan aerogels to enhance Congo Red dye adsorption | |
CN113526513A (en) | Blocky lignin-silicon dioxide composite aerogel | |
US20250188240A1 (en) | Process for producing porous materials | |
Mottola et al. | Pectin/alginate aerogel containing ZnO produced from beetroot extract mediated green synthesis for potential applications in food packaging | |
CN109046190B (en) | Pectin composite silicon dioxide aerogel and preparation method and application thereof | |
CN118786170A (en) | Method for preparing porous material | |
Boury | Biopolymers for biomimetic processing of metal oxides | |
KR102329008B1 (en) | Polysaccharide of porous structure and method for manufacturing thereof | |
JPH10279693A (en) | Production of water-absorbing gel particle | |
Nguyet | Cellulose nanocrystals: Synthesis, characteristics and effect on hydroxypropyl methylcellulose-based composite films and coatings | |
Arshad et al. | Graphene Oxide and Iron Sulfide Nanoparticle–Enhanced Chitosan/PVA Hydrogel for pH‐Responsive Cefadroxil Monohydrate Delivery System | |
Bamgbose et al. | Interactions of cross-linked and uncross-linked chitosan hydrogels with surfactants for biomedical applications | |
Yu et al. | Cellulose-Based Aerogels | |
Cai et al. | Aerogels of Cellulose and Chitin Crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |