[go: up one dir, main page]

CN118786342A - 传感器组件和制造方法 - Google Patents

传感器组件和制造方法 Download PDF

Info

Publication number
CN118786342A
CN118786342A CN202280081040.6A CN202280081040A CN118786342A CN 118786342 A CN118786342 A CN 118786342A CN 202280081040 A CN202280081040 A CN 202280081040A CN 118786342 A CN118786342 A CN 118786342A
Authority
CN
China
Prior art keywords
dielectric layer
hole
electrode
well
sensor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280081040.6A
Other languages
English (en)
Inventor
D·波罗格尼亚
J·吴
H·伯尼
S·戈米斯
S·凯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ama Bioscience
Analog Devices International ULC
Original Assignee
Ama Bioscience
Analog Devices International ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ama Bioscience, Analog Devices International ULC filed Critical Ama Bioscience
Publication of CN118786342A publication Critical patent/CN118786342A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Biophysics (AREA)

Abstract

本公开设置了一种用于测量样品性质的传感器组件。感测组件包括第一和第二介电层。第一介电层设置与电极相关联的阱或孔。第二介电层设置在第一介电层上,并设置流体连接到第一介电层中的阱或孔的孔。

Description

传感器组件和制造方法
技术领域
本公开涉及用于测量样品性质(例如用于感测分析物)的传感器组件,例如生物传感器或化学测定,以及制造传感器组件的方法。
背景技术
常规的电化学传感器组件通常通过提供单独的传感器结构(即电接口和功能)和封装(例如流体结构)来生产。这需要单独的制造过程,并增加了成本和复杂性。
此外,特别是在样品尺寸小的情况下(例如,在微升规模上),希望压缩传感器结构和封装尺寸,但保留大量电极。
提供一种避免这些缺点的传感器组件和制造这种组件的方法将是有利的。
发明内容
本发明提供一种用于测量样品性质的传感器组件。感测组件包括第一和第二介电层。第一介电层提供与电极相关联的阱或孔。第二介电层设置在第一介电层上,并提供流体连接到第一介电层中的阱或孔的孔。
在一个实施例中,一种用于测量样品性质的传感器组件,包括:基板,设置在所述基板上的至少一个电极,设置在所述基板上的第一介电层,所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在,和设置在所述第一介电层上的第二介电层,包括延伸穿过所述第二介电层的孔,所述孔流体连接到所述第一介电层中的阱或孔。
在另一个实施例中,一种形成传感器组件的方法,包括:设置基板;在所述基板上形成至少一个电极;在所述基板上设置第一介电层;和在所述第一介电层上设置第二介电层.所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在;和所述第二介电层包括延伸穿过所述第二介电层并且流体连接到所述第一介电层中的阱或孔的孔。
附图说明
现在将参考附图更详细地描述本发明,附图并非旨在限制:
图1A提供了根据一个实施例的传感器组件的示意性截面图;
图1B提供了根据一个实施例的传感器组件的示意性截面图;
图2提供了根据实施例的另一传感器组件的示意性截面图;
图3提供了根据实施例的另一传感器组件的示意性截面图;
图4提供了根据实施例的另一传感器组件的示意性平面图;
图5A至5E示意性地示出了根据一个实施例的传感器组件的制造。
具体实施方式
各种传感器组件是已知的。常规的传感器组件,特别是电化学传感器,通常通过提供单独的传感器结构(即电接口和官能化)和封装(例如流体结构)来生产。这需要单独的制造过程,并且制造成本可能很高。
此外,特别是在样品尺寸小的情况下(例如,在微升或更小的规模上),希望压缩传感器结构和封装尺寸,但保留大量电极。使用传统的半导体处理技术制造这种类型的布置是昂贵的。例如,至少部分由于流体结构的规模,在硅基板中形成流体的成本高得令人望而却步,并且存在其他缺点,例如当需要高密度的电极时难以电隔离单个电极。
在一个实施例中,一种用于测量样品性质的传感器组件,包括:基板,设置在所述基板上的至少一个电极,设置在所述基板上的第一介电层,所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在,和设置在所述第一介电层上的第二介电层,包括延伸穿过所述第二介电层的孔,所述孔流体连接到所述第一介电层中的阱或孔。
实施例提供了一种传感器组件,其将电极和流体结合在单个集成封装中。这种结构可以比传统的传感器组件更容易制造,特别是与传感器元件(例如电极和任何迹线)单独制造或在包装部件(例如流体)的单独部分上制造的那些相比。例如,在实施例中,第一介电层形成下部层,该下部层建立在电极的顶部上并形成下部孔或下部阱,该下部孔或下阱提供流体结构的第一部分,该流体结构用于将样品带到电极或将样品保持在电极上。第二介电层是设置在第一介电层上的上层,并且提供上孔,该上孔也形成用于将样品带到电极或将样品保持在电极上的流体结构的一部分。
在这样的实施例中,具有第一(或下)阱(即沟道或凹陷,其可以在第一介电层中具有基底)或孔(即通孔或通孔,其可以暴露相邻电极表面)的第一介电体层用作传感器表面和/或与相应电极的界面。因此,与第一孔或第一阱连通的电极可以产生指示第一孔或第一阱内的样品或分析物的性质的信号。在一些实施例中,电极或第一介电层被官能化,以便与接收在第一介电层的第一阱或孔内的样品相互作用。在一些实施方案中,电极包括被配置为选择性地与样品内的分析物相互作用的捕获物种。例如,这可以是设置在电极上的功能层。
第二介电层具有位于其中的至少一个第二或上部孔,其延伸穿过第二介电层(例如,从外表面到内表面,该内表面与(直接或间接)第一介电层接触)以与第一介电层中的第一(或下部)阱或孔接合。因此,第二或上部孔与第一介电层中的第一阱或孔流体连通,使得流体可以从第二介电层的外表面提供到第一介电层的第一阱或者孔。第二介电层因此结合了向电极提供样品所需的流体(例如流体通道),并且可以用作将样品保持在第一电介质的第一阱或孔内的手段。
这样的结构(以及相应的制造方法)还允许针对最终用途而改进的可定制性。例如,第一介电层中的第一结构(即,第一阱或孔)用作与电极的接口,并且因此部分地确定当在其中接收样品时将发生的响应。这可以根据需要进行调整,例如通过使用不同的厚度、阱/孔等。考虑到使用的材料和工艺,这一点尤其简单。然而,流体不需要改变,并且第二介电层可以保持不变。可替换地或附加地,第二介电层可以被修改以改变流体(例如,流体保持特性、流体路径等)。有用的是,在第二介电层中形成的结构可以具有比在第一介电层中的流体结构(例如,第一阱或孔)大得多的规模和复杂性,从而降低在第一介电层中形成第一阱或孔的复杂性。将认识到,第一介电层将经常需要更精确的形成并且将更昂贵地形成,因此,复杂而敏感的第一介电层与宏观流体控制特性的分离提高了可制造性。这对于小型传感器组件特别有利。流体和不同部件在微尺度(或更小)上的对准是特别复杂的,但是实施例提供了提供更小公差的布置。例如,使用一些技术制造微尺度流体可以使其对准孔(例如,当将单独的流体模块与传感器组件对准时),而使用两个单独的介电层形成流体桥接间隙并实现更精确的对准。
因此,在实施例中,第一介电层中的第一阱或孔和第二介电层中第二孔的存在提供了显著范围的可定制性,而不需要对传感器组件设计进行根本改变。例如,第一介电层中的第一阱或孔可以用作电极接口,因此只需要接收少量的流体(例如液体)样品就可以进行测量。因此,它可能只有一个小的阱或孔大小。第二介电层中的孔可以更大,并且可以用于将样品保持在第一阱或孔(或多个阱或孔)中。因此,第一介电层可以由提供功能电极表面或与相应电极的接口所需的特定材料形成(以及电极之间的间隔,在需要的情况下),并且只需要具有较小的阱或孔。第二介电层可以在更大的规模上提供,具有设计成将样品保持在传感器上的更大的孔。这也意味着可以使用不同的技术来提供层,这进一步提高了可定制性和可制造性。
介电层
第一和第二介电层包括至少一种介电材料或由至少一种介电材料形成。在实施方案中,这些可以包括聚合物、玻璃、玻璃-陶瓷、陶瓷、金属氧化物、金属氮化物、硅基材料或其组合或由其形成。
在一些实施例中,第一介电层和/或第二介电层包括聚合物或由聚合物形成。例如,这些可以各自是聚合物介电层。所谓聚合物介电层,是指这些层主要由聚合物形成(例如,大多数,例如至少50%重量,例如至少90%重量是聚合物材料),但可以包含其他组分,例如掺杂剂或捕获物种。在一个实施例中,第一介电层和/或第二介电层包括聚酰亚胺、聚对苯二甲酸乙二醇酯、聚氯乙烯(PVC)或其组合。
在一些实施例中,第一介电层和/或第二介电层包括或由光可成像材料形成。使用这样的材料使得能够使用光成像或光蚀刻来形成第一阱或孔和第二孔,这使得能够更准确地形成阱/孔,并因此实现更准确的流体结构。例如,这些可以实现第一阱/孔与第二孔的对准,否则不能通过传统的冲压和放置堆叠器来实现。示例性的可光成像材料可以选自聚酰亚胺、聚对苯二甲酸乙二醇酯、聚氯乙烯(PVC)或其组合。例如,这些可以作为液体光可成像焊料掩模(LPSM或LPI)油墨和干膜光可成像焊接掩模(DFSM)提供到基板或其他层上。
在一些实施例中,第一和第二介电层由不同的材料形成或包括不同的材料。
在一些实施例中,第一介电层的厚度为1pm至50pm。在一些实施方案中,第二介电层具有50pm至1000pm的厚度。在一些实施例中,第一介电层具有1pm至50pm的厚度,第二介电层的厚度为50pm至1000pm。在实施例中,第一介电层的厚度为1pm至50pm,例如15至25pm。在实施方案中,第二介电层厚度为50pm至1000pm,例如100pm至1000ppm,例如100ppm至500pm。
在上述实施例中,层(例如,第一和第二介电层)可以直接提供在相邻层(或基板)上,或者可以存在诸如另一层(例如粘合剂)的介入层。例如,第一介电层可以直接提供在基板上,例如与电极相邻,或者可以直接提供于电极上,或者其组合。第二介电层可以直接提供在第一介电层上。层可以是连续的(例如跨过基板、其他层和/或电极的表面),或者可以是不连续的并且在基板和/或(电极)的表面上形成为分离的区域。
上述传感器组件可以用于多个不同的传感应用领域。在一些实施方案中,这些用于小的液体样品尺寸,例如小于5pL的样品(例如小于3pL,或小于1pL)。实施例是特别有利的,因为第一介电层提供传感器接口,而第二介电层可以提供流体结构,该流体结构被设计成将小体积液体保持或保持在传感器接口(即,第一电介质的电极和/或传感器区域(阱或孔))上。例如,第二介电层的孔可以适于将液滴或液体样品保持在第一阱或孔内。在第二电介质中存在多个孔并且第一介电层中存在多阱或孔的情况下,第二介电层中的每个孔可以适于将液滴或液体样品保持在相关的第一阱或孔内。在其他实施例中,第二介电层中的孔可以将液滴或流体样品保持在第一介电层的多个第一孔或阱中。本文所述的介电层有利地使得能够在这些小样品尺寸下形成体积的流体结构,例如通过使得能够精确地形成微流体结构。
在进一步的实施例中,传感器组件包括设置在(例如堆叠在)第一和第二介电层上的至少一个另外的层,该至少一个进一步的层限定了与第二介电层的第二孔流体连通的至少一种另外的流体结构。这可以提供进一步的流体路径或保持结构。至少一个另外的层可以是另外的介电层(例如第三介电层),并且可以包括至少一个流体结构,例如与第二介电层的第二孔流体连通的通道、阱或孔。
在一个实施例中,第一和/或第二介电层可以包括多个子层。相应地,第一或第二介电层可以是由例如不同材料的多个子层组成的复合层。这对于定制介电层的功能和传感器的成本效益尤其有用。一个示例性实施例是其中第二电介质包括聚酰亚胺和PVC复合物,即至少一层包括聚酰亚胺并且至少一层包含PVC。在其他实施例中,第一和/或第二介电层可以(每个)是单个介电层。例如,第二介电层可以是单层聚酰亚胺。这样的结构可以提供相对简单和廉价的方式来生产传感器结构,该传感器结构可以是柔性的和可光成像的,并且可以适用于一次性或短寿命传感器。
在传感器组件包括多个电极的实施例中,第一介电层也可以分离多个电极,从而电分离多个电极。也就是说,多个电极可以间隔开(例如在基板上),并且在它们之间提供第一介电层的至少一部分。这提供了制造和实现高密度电极的直接方法。例如,其中这种配置是有利的特定应用包括用于血液特性的传感器,由此可以仅采集小样本(1-3pl)。在一些实施例中,第一介电层也可以在多个电极上延伸,使得电极嵌入第一介电层内。
官能化
如上所述,传感器组件可以用于获得与样品性质相关的响应。在一些实施方案中,这可以是对分析物的检测,例如确定样品中的分析物浓度。分析物例如可以选自分子种类、蛋白质、金属离子、病毒和微生物。例如,分析物可以是选自类二十烷、类固醇、氨基酸、胺、肽或蛋白质的激素。传感器组件的电极可用于获得指示样品(例如分析物)与电极和/或与电极相关联的第一介电层的孔/阱之间的相互作用的测量信号。
与分析物选择性结合的捕获物种可用于使至少一个电极和/或与所述至少一个焊条相关联的第一介电层的孔/阱官能化,使得与捕获物种相关联的焊条将提供指示分析物与捕获物种之间的相互作用的测量信号。根据要由感测组件感测的分析物,可以为此目的选择任何合适的捕获物种。例如,捕获物种可以包括对特定抗原具有特异性的抗体。在这样的例子中,分析物可以采取抗原的形式。更一般地,在一些实施方案中,捕获物种可以包括选自蛋白质、肽、碳水化合物和核酸中的至少一种。例如,蛋白质可以是酶,例如对分析物具有特异性的酶。在其他非限制性实例中,所述蛋白质是抗体。在一个实施方案中,捕获物种包括适体。适体可以定义为被配置为结合分析物的寡核苷酸或肽。例如,这样的适体可以被配置为与各种分析物类型(例如小分子,例如氨基酸或胺、蛋白质、金属离子和微生物)相互作用,例如结合。在一些非限制性实例中,适体用电活性部分(例如氧化还原活性部分)官能化,并且被配置为使得适体在选择性地与分析物相互作用(例如结合)时的构象变化导致电活性部分相对于相应电极表面的接近度变化。通过官能化,意味着捕获物种可以结合到电极和/或第一介电层的孔/阱(或多个孔/阱)的表面,例如共价结合。
在一些实施例中,第一介电层包括或设置有捕获物种,该捕获物种被配置为选择性地与样品内的分析物相互作用。在一个实施例中,第一介电层包括邻近电极表面提供的捕获物种。例如,这可以设置在阱或孔上或阱或孔中(例如,在限定阱或孔的材料的表面上或材料中)。在这样的例子中,捕获物种被配置为选择性地与样品中感兴趣的分析物相互作用。在使用阱的情况下,这可能是特别有利的。在一些实施方案中,阱的最低点可以被官能化,并且电极可以被布置为对阱中样品(或其中的分析物)的存在作出响应。
在一些实施例中,传感器组件包括至少第一官能化区域、至少一个电极和第一捕获物种,所述第一官能化区域包括在第一介电层中的阱或孔中的至少一个,所述第一捕获物种被配置为选择性地结合到第一分析物并且被提供在第一官能化区域的至少一部分上;以及第二官能化区域,其包括第一介电层中的阱或孔中的至少一个、至少一个电极和被配置为选择性地结合到第二分析物并且被提供在第二官能化区域的至少一部分上的第二捕获物种。这意味着第一和第二区域的官能化是不同的。换言之,传感器组件包括多个感测区域,每个感测区域具有不同的功能,并且每个感测区包括至少一个相关电极和第一阱/孔。这意味着在同一基板上可以有多种不同类型的传感器。通过官能化,意味着至少第一介电层的电极或第一阱/孔具有能够与分析物相互作用的功能组分。一个例子是在电极或第一孔/阱附近或其上提供的捕获物种,该捕获物种可以选择性地与分析物结合。与捕获物种相关联的电极将提供指示分析物与捕获物种之间的相互作用的测量信号。因此,不同的官能化可以通过例如使用不同的官能团来实现(例如,不同的官能化,例如不同的捕获物种,其捕获物种选择性地结合到不同的分析物)。这可以例如使用具有对应于不同官能化区域的不同区域的不连续第一介电层来实现。因此,在一些实施方案中,多个电极被独特地官能化,并且在其他实施方案中它们通常被官能化。也可以堆叠多层电介质以形成公共和非公共阱或孔。本文公开的传感器组件分层结构可以通过使用第一和第二介电层的可定制性来有利地提供这种结构。例如,第二介电层中的一个孔可以流体连接到第一和第二官能化区域,使得提供给第二介电层的孔的样品将同时提供给这些区域。此外,层状结构有利地降低了制造的复杂性,因为在第二介电层中形成更大规模的流体之前,可以使用第一介电层形成更复杂和官能化的区域。这特别适用于分析多种分析物流体,例如体液,包括血液或唾液。可以向第二介电层提供小体积的这种流体,并且这可以通过第二介电层的孔分布到用于多分析物分析的制造区域。
孔或阱
第一介电层包括至少一个孔或阱。在实施例中,可以有多个孔、阱或其组合,每个孔、阱可以与对应的电极相关联。多个阱或孔可以与同一电极相关联,并且多个电极可以与同一阱或孔相关联,尽管在一些实施例中,每个阱或孔仅与一个电极相关联。通过关联,意味着孔或阱与相应的电极流体连通或相邻,使得电极对孔或阱中流体的存在作出响应。阱可以采取第一介电层中的沟道或凹陷的形式,其基底可以设置在相关电极或孔(即,可以暴露相邻电极表面的过孔或通孔)上。因此,孔可以包括与电极流体连通(例如设置在电极上)的开口,并且阱可以包括设置在电极(例如基座或最低点)上或上方的壁。这样的壁可以具有小于或等于50pm的厚度,例如小于或等于25pm、小于或等于10pm或小于或等于5pm,使得相关电极对其中提供的流体(例如样品或分析物)作出响应。
在一些实施例中,第二介电层的孔或每个孔(在存在多个孔的情况下)的体积大于第一介电层中的阱或孔或相应阱或孔(即,第二孔流体连接到的第一介电体层中的一个或多个阱或孔)的体积。也就是说,第二层中的每个孔的体积大于其流体连接的第一介电层中的阱/孔中的每个阱/孔的体积。这可以是体积的至少1.5倍、至少2倍、至少5倍或至少10倍。第一介电层中的阱或孔的体积可以为1皮升(pl)至1微升(pl),例如1pl至500(nl),例如100pl至500nl。第二介电层中的孔的体积可以是250nl至5ml,例如250nl到2000pl。在一些实施例中,第二层中的每个孔的体积大于其流体连接到的第一介电层的阱/孔中的每个的体积。
在实施例中,第二孔(即第二介电层的孔)的最大直径为50pm至20mm,例如50pm至10mm、50pm至5mm、50pm至500pm、100pm至250pm、100pm至20mm、500pm至10mm、1000pm至5mm。最大直径是孔最宽点处的直径。这可以在孔的一个或两个开口处测量。在一些实施例中,第一孔或阱(即,第一介电层的孔/阱)具有小于或等于100pm的最大直径,例如小于或等于50pm、25pm、10pm或5pm。在一些实施例中,第一孔或阱(即第一介电层的孔/阱)的最大直径为0.1pm至100pm,例如0.1pm至50pm、0.1pm至25pm、0.1pm至10pm或0.1pm至5pm。
在包括多个第一孔/阱和第二孔的一些实施例中,第二介电层的孔和第一电极层的孔/阱可以被布置为关于中心轴线基本径向对称(例如径向对称)。换言之,第二介电层中的孔(例如孔的布置/形状)可以是径向对称的。第一介电层中的孔/阱(例如,其布置/形状)可以是径向对称的。也就是说,可以有多个阱/孔,并且这些阱/孔可以布置成径向对称的图案或配置。这允许将样品提供到中心轴并均匀地分布到第一阱/孔中的每一个。例如,在提供一滴体液(例如血液)的情况下。这也可以允许传感器组件检测液体样品是否完全覆盖传感器组件的整个表面。在一些实施例中,可以存在适于感测位于最外径向位置的样品(例如血液)的存在的电极,以确保样品覆盖所述区域。
基底
基底可以包括任何合适的材料或由任何合适的物质形成,例如聚合物、玻璃、玻璃陶瓷、陶瓷、金属氧化物、金属氮化物、硅基材料或其组合。
在一些实施方案中,基板可以包括诸如聚酰亚胺(PI)或聚对苯二甲酸乙二醇酯(PET)的聚合物或由其形成(例如由其组成)。在其他实施例中,基板可以包括玻璃、玻璃陶瓷或陶瓷基板或由玻璃、玻璃-陶瓷基板形成(例如由玻璃、陶瓷基板或陶瓷基板组成)。这些示例性基板可以是柔性基板。
在一些实施例中,基板是柔性基板。所谓柔性,是指基板能够在负载下变形出单个平面,并在移除负载时返回到该平面。实例包括聚酰亚胺(PI)或聚对苯二甲酸乙二醇酯(PET)基材。
电极
在实施例中,所述至少一个电极包括铜、镍、铂、银、氯化银、金或其他贵金属或由其形成。在一些实施例中,电极包括多个金属层,金属层包括铜、镍、铂、银、氯化银、金或其他贵金属或由其形成。电极层可以形成在基板上。
在一个实施例中,所述传感器组件包括一组电极,所述一组电极包括多个电极,并且其中所述第一介电层包括多个阱和/或孔,其中至少一个阱或孔与所述一组电极中的每个电极相关联。这使得每个电极对在相应的阱或孔内接收的样品的存在作出响应。每个电极可以与第一介电层中的第一阱或孔相关联。例如,在一些实施例中,传感器组件中可以有至少4个电极,例如至少8个电极、至少16个电极或至少24个电极。根据所需的传感器功能,在第一介电层中可以存在阱和孔的混合物。在一些实施例中第二介电层包括延伸穿过第二介电层的多个孔,每个孔对应于所述第一介电层中的多个阱或孔中的一个,并且流体连接到所述第一介电层中的多个阱或者孔。因此,每个电极可以与第一介电层中的第一阱或孔以及第二介电层的第二孔相关联。
在包括多个电极的实施方案中,这可以包括至少一个工作电极(例如官能化电极)和至少一个控制电极(例如非官能化电极),以及任选地至少一个参考电极。在一些实施例中,这些电极可以包括多个工作电极(例如官能化电极)和多个控制电极(例如非官能化电极)。还可以提供至少一个参考电极。
在一些实施例中,所述一组电极中的所述多个电极通过所述第一介电层和/或第二介电层彼此分离。
其他组件
在一些实施例中,第一介电层的第一阱或孔和/或第二介电层的第二阱被液体可渗透的盖或帽覆盖。在一些实施例中,这是多孔盖或帽,例如包括穿过其中的至少一个开口的盖或帽使得流体可以从传感器组件的上表面进入第一介电层的阱或孔中。以这种方式,与壁或孔相关联的电极可以被帽保护以免意外损坏,但是流体仍然可以进入孔/阱。该帽可以设置在第二介电层的顶部上,可以与第二介介电层共面,或者可以是第二介电层的一部分。在一些实施例中,穿过帽或盖的孔可以被配置为便于流体对感测表面(例如,第一介电层中的孔或阱)的毛细管作用。可替换地或附加地,第二介电层的孔可以被配置为防止与阱或孔(例如电极)接触。例如,介电层的高度可以降低手指与电极和/或官能化表面接触的风险。
在一些实施例中,传感器组件包括屏蔽或接地部件或层。这可以由金属层形成,或者作为与电极分离的金属层,或者可以由与电极相同的金属层形成。例如,屏蔽或接地部件可以是电隔离的金属层或区域。在一些实施例中,这可以形成在与电极相同的层中,但与电极电隔离。在一些这样的实施例中,电隔离可以通过第一介电层来实现(例如,通过在电极和屏蔽或接地区域之间设置第一介电体层)。在其他实施例中,屏蔽或接地部件或层可以是与形成电极的层分离的金属层。这些实施例可以用于从传感器获得更好的信号。金属层可以包括铜、镍、铂、银、氯化银、金或其它贵金属或由其形成。
系统
文中所述的传感器组件可以用作测量分析物性质的系统的一部分。在一个实施例中,系统可以包括传感器组件以及信号处理单元。信号处理单元可以被配置为从电极接收信号,该信号提供其上的样品的性质的指示(或特性的指示)(例如,在电极充当工作电极或控制电极的情况下)。这可以是电极的电势。该系统还可以包括特性确定单元,用于基于处理后的信号来确定正在测量的特性。例如,这些可以采取一个处理器的形式,或者可以由几个处理器组成。处理器可以用软件和/或硬件以任何合适的方式实现,以执行所需的各种功能。例如,一个或所有单元可以采用一个或多个微处理器,该微处理器使用软件(例如,微码)编程以执行所需的功能。可以在本公开的各种实施例中使用的处理器组件的示例包括但不限于常规微处理器、专用集成电路(ASIC)和现场可编程门阵列(FPGA)。
在各种实施方式中,信号处理单元、特性确定单元和/或处理器可以与一个或多个非瞬态存储介质相关联,所述一个或更多个非瞬态存储介质诸如易失性和非易失性计算机存储器,诸如RAM、PROM、EPROM和EEPROM。非瞬态存储介质可以用一个或多个程序编码,当在一个或更多个处理器和/或控制器上执行时,该一个或更少个程序执行所需的功能。各种存储介质可以固定在处理器或控制器内,或者可以是可运输的,使得存储在其上的一个或多个程序可以加载到信号处理单元、特性确定单元和/或处理器中。
在一些非限制性示例中,该系统包括用户界面,例如显示器,用于传达由性质确定单元确定的分析物性质。可替换地或附加地,该系统可以包括通信接口设备,例如无线发射器,该通信接口设备被配置为将由性质确定单元确定的分析物浓度发送到外部设备,例如个人计算机、平板电脑、智能手机、远程服务器等。
方法
在一个方面,提供了一种一种形成传感器组件的方法,该方法包括:设置基板;在所述基板上形成至少一个电极;在所述基板上设置第一介电层;和在所述第一介电层上设置第二介电层,其中所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在;和其中所述第二介电层包括延伸穿过所述第二介电层并且流体连接到所述第一介电层中的阱或孔的孔。
提供第一介电层和/或第二介电层可以包括将膜(例如固体或液体膜)施加到基板(可选地在电极上)以形成第一层。在使用固体膜的情况下,该膜可以设置有在其中形成的孔或阱。在使用固体或液体膜来形成层的情况下,一旦在基板上形成层,就可以提供在其中形成的孔或阱。
在一些实施例中,第一和/或第二介电层可以通过诸如旋涂或丝网印刷的涂覆方法来提供。在其他实施例中,这些可以通过将预形成的层施加到基底上来施加,例如使用卷对卷涂覆。
在一些实施例中,该方法还包括在第一介电层中形成阱或孔,该阱或孔与电极相关联,使得电极响应于在阱或孔内接收的样品的存在。在一些实施例中,在第一介电层上提供第二介电层之前,在第一介电层中形成阱或孔。例如,这可以在基板上提供第一介电层之后提供。例如,在基板上形成的层上使用蚀刻工艺或钻孔工艺(例如激光钻孔)。这也可以例如使用光成像来提供,其中施加并选择性地去除焊料掩模。或者,可以在膜或层中预先形成阱或孔,并且可以将膜或层施加到基板以形成第一介电层。例如,该层可以是预先冲压的。
在一些实施例中,该方法还包括在第二介电层中形成孔,该孔延伸穿过第二介介电层以与第一介电层的阱或孔流体连接。这可以在例如在第一介电层上提供第二介电层之后提供。例如,在基板上形成的层上使用蚀刻工艺或钻孔工艺(例如激光钻孔)。这可以是,例如,使用焊料掩模或光刻。这可以有利地避免与对准预先形成的孔相关联的困难。或者,可以在膜或层中预先形成阱或孔,并且可以将膜或层施加到第一介电层以形成第二介电层。一些实施例中,在第一介电层上提供第二介电层之后,在第二介电层中形成孔。
在一些实施例中,形成第一介电材料的阱或孔和第二介电材料的孔可以分别进行。通过这种方式,可以更容易地控制每一层中的特征(例如阱或孔)的大小。
在一个实施例中,该方法包括:在所述基板上设置第一介电层;在所述第一介电层上设置第二介电层,以及随后在所述第二介电层中形成至少一个孔。已经发现,以这种顺序实施该方法,即通过形成第二介电层的第二孔,可以提高第二孔与第一介电层中的相应第一孔/阱的对准精度。例如,本发明人已经发现,与预先形成孔然后在基板上组装层的方法相比,使用在基板上形成孔的方法可以将对准误差降低到远低于25pm。在实施例中,第一和第二介电层可以是可蚀刻层,例如可光成像材料,并且该方法包括蚀刻或光蚀刻,以形成第二孔。
此外,在该方法的进一步实施例中,该方法包括在将第一介电层提供给基板之后在第一介电膜中形成第一孔和/或阱。这可以实现第一孔/阱与电极的精确对准,以提供改进的且更可靠的传感器响应。在一些实施例中,在第一介电层中形成第一孔和/或阱的步骤可以在基板上提供第二介电层之前,或者在提供第二介电层之后但在第二介电层中形成第二孔之前。在后者的实施例中,在将第一和第二介电层提供给基板之后,可以分别在第一介电层和第二介电层中形成第一孔/阱和第二孔。在一个特定实施例中,在将第一和第二介电层提供给基板之后,可以分别在第一介电层和第二介电层中形成第一孔/阱和第二孔,该方法包括:在第二电介质中形成至少一个第二孔;以及随后在第一介电层中以及在第二介电层中形成的至少一个第二孔内形成至少一个第一阱/孔。这样可以确保孔精确对齐。
图1A显示了用于测量样品性质的传感器组件100的示意性截面图。传感器组件100包括基板110,在基板110上形成有电极、功能层106、第一介电层120、第二介电层130和加强层140。
具体地,电极105以金属层的形式设置在基板110上,该金属层在基板110的横截面的宽度上延伸。尽管未示出,但电极105可以电连接到信号处理单元,用于测量提供给传感器组件100的样品的性质。
在电极105的顶部上形成第一介电层120。第一介电层120延伸跨过电极105的整个表面,以便将电极105与传感器组件100的上表面电隔离,除了形成在第一介电层120中的第一孔125之外,第一孔125从第一介电层120的上表面延伸到第一介电层120的下表面,并且因此暴露出电极105的一部分。在该实施例中,在电极105的该暴露区域中提供功能层106,在这种情况下,功能层106是形成在电极105表面上的捕获物种的单层。也就是说,电极105包括横跨电极105的与第一孔125流体连通的区域的功能层106。以这种方式,在第一孔125内接收的样品可以与功能层106相互作用,并引起来自电极105的输出的变化。
第二介电层130设置在第一介电层120上。第二介电层130包括第二孔135,该第二孔135延伸穿过第二介电层130,该第二孔135与第一介电层120中的第一孔125对准,使得第二介电层130的上表面流体连接到第一介电层120中的第一孔125,因此连接到电极105和功能层106。在该实施例中,第二孔135具有大于第一孔125的最大直径的最大直径,从而提供用于接收样品流体的更大的表面积,从而使得采样更加直接。此外,这也有助于第二孔135具有比第一孔125更大的体积,提供更大的采样能力,但同时确保第一介电层120可用于提供与电极105相邻并结合功能层106的更复杂的结构。
在该实施例中,传感器组件100还包括在第二介电层130的顶部上的加强层140。加强层140还设置有孔145,孔145也与第二介电层130中的第二孔135和第一介电层120中的第一孔125对准。以这种方式,包含在孔125、135、145内的液体样品保持与电极105上的功能层106接触。在基板110是柔性的实施例中,加强层140可用于提供机械支撑。也就是说,尽管基板110的柔性性质在基板110的一些区域中是有用的,但在结合第一孔125和第二孔135的区域中,用加强层140来加强这一点可能是有利的。示例性的加强层140材料包括聚合物,例如聚酰亚胺。
图1B显示了用于测量样品性质的传感器组件100’的另一个实施例的截面示意图。传感器组件100’的结构与图1A所示的传感器组件100的结构相同,不同之处在于第一介电层120’的结构和没有功能层106。
因此,图1B所示的传感器组件100’包括基板110’、设置在基板110’上的电极105’;设置在基板110’上的第一介电层120’以及设置在第一介电层120’上的第二介电层130’。在本实施例中,传感器组件100’还包括位于第二介电层130’顶部的加强层140’。这些以与上面针对图1A的实施例所述相同的方式进行布置。
本实施例的传感器组件100’与图1A的传感器组件100的不同之处在于,第一介电层120’包括位于其中的阱125’,而不是图1A所示的第一孔125。阱125’不是提供从第一介电层125的上表面延伸到第一介电层120的底表面的第一孔125,而是具有基底,因此是在第一介电层120’的上表面中具有开口的凹部,但不完全延伸穿过。因此,在本实施例中,阱125’不通过第一介电层120’暴露电极105’,而是提供了一个区域,在该区域中,第一介电层120’的厚度比第一介电层120’的其余部分薄。在该区域,电极105’(在本实施例中位于减薄部分下方)对接收在阱125’内的样品的存在作出响应。应当理解,尽管在该实施例中电极105’和阱125’没有被官能化,但是可以在阱125’的内表面上提供官能层,例如在阱125’的底部或最低点。
其余结构与图1A相同。例如,第二介电层130’包括延伸穿过第二介电层130’的第二孔135’,该第二孔与阱125’对准,使得第二介电层130’的上表面与第一介电层120’中的阱125’流体连接。
在一些实施例中,所描述的布置可以在基板上重复几次,使得存在多个阱125’(未示出)。多个阱125’中的一个阱可以用作控制装置。在其它实施例中,阱125’可以设置有孔,以便形成气体传感阱。
图2显示了传感器组件200的示意性横截面图。与图1A的传感器组件100一样,该传感器组件200包括基板210、设置在基板210上的第一和第二对电极205、205’;设置在基板210上的第一介电层220;以及设置在第一介电层220上的第二介电层230。
具体地说,多个电极205、205’以离散金属层的形式设置在基板210上。第一对电极205设置在基板210的相对侧上。第二对电极205’设置在基板210的中心,在第一对电极205的电极之间。尽管未示出,第一和第二对电极205、205’可以电连接到信号处理单元,用于测量提供给传感器组件200的样品的性质。在该实施方案中,第一对电极205用第一捕获物种官能化,以便选择性地结合到第一分析物。第二对电极205’用第二(不同的)捕获物种官能化,并选择性地与第二(不相同的)分析物结合。
第一介电层220形成在基板210之上,并直接提供在基板210上第一和第二对电极205、205’不存在的区域中。第一介电层220相应地设置在第一和第二对电极205、205’中的多个电极中的每一个电极之间;以便将多个电极彼此电隔离。第一介电层220比第一和第二对电极205、205’的多个电极中的每一个都厚,使得当在形成期间提供在基板210上时,它形成在第一和第二两对电极205和205’之上。然而,第一介电层220也设有多个孔225、225’,这些孔暴露出第一和第二对电极205、205’。特别地,有两个相同尺寸的外孔225和第三内孔225’,该第三孔大于另外两个孔225,并位于两个较小的孔225之间。两个较小的外孔225各自与第一对电极205中的单个电隔离电极相关联,第三内孔225’暴露出第二对电极205’中的两个电隔离电极。第一和第二对电极205、205’相应地嵌入第一介电层220中,使得它们彼此电隔离,但通过两个外孔225和第三内孔225’暴露。如上所述,位于第三内孔225’中的第二对电极205’通常被官能化,但被第一介电层220电隔离。
第二介电层230设置在第一介电层220上,包括三个孔235、235’,其延伸穿过第二介电层230,其中每个孔与第一介电层220中的相应孔225、225’对齐,使得第二介电层230的上表面流体连接到第一介电层220中的相应孔225、225’。具体地,第二介电层230设置有两个相同尺寸的外孔235,它们对应于第一介电层220的两个外孔225并与其流体连通。第二介电层230还包括第三内孔235’,其对应于第一介电层220的第三内孔225’并与之流体连通。第二介电层230中的每个孔235、235’的直径和体积都大于第一介电层220中的相应孔225、225’。
在第一介电层220和第二介电层230之间提供粘合剂。
图3显示了传感器组件300的示意性横截面图。与图2的传感器组件300一样,该传感器组件300包括基板310、设置在基板310上的第一和第二对电极305、305’;设置在基板310上的第一介电层320;以及设置在第一介电层320上的第二介电层330。
在本实施例中,电极305、305’和第一介电层320的配置与图2的传感器组件200的相应部件相同。在该实施例中,差异出现在第二介电层330的配置中。因此,本实施例的传感器组件300包括第一对电极305、305”,该第一对电极由设置在基板310的一侧上的第一电极305和设置在基板310的相对侧上的第二电极205”组成。第二对电极305’设置在基板310的中心,在第一对电极305的电极之间。第一介电层320形成在基板310和第一和第二对电极305、305’、305”上。第一介电层320还设有多个孔325、325’,这些孔暴露出第一和第二对电极305、305’、305”。特别地,有两个相同尺寸的外孔325、325”和第三内孔325’,该内孔大于两个外孔325和325”,并位于两个较小的外孔325、325”之间。两个较小的外孔325、325”各自与第一对电极305、305”中的单个电隔离电极相关联,第三内孔325’暴露出第二对电极305’中的两个电隔离电极。第一和第二对电极305、305’、305”相应地嵌入第一介电层320中,使得它们彼此电隔离,但通过两个外孔325、325”和第三内孔325’暴露。
第二介电层330设置在第一介电层320上,并包括两个上部孔335、335’(上部表示它们是第二介介电层330的一部分),其延伸穿过第二介电层330。这些孔被布置成使得第一上部孔335与第一介电层320中的两个外部孔325中的第一个对准,并且第二介电层330中的第二上部孔335’与第一介介电层320中另一外孔325”以及第一介电体层320中两个内孔325’对准(即包围并提供流体连通)。
因此,第一介电层320中的每个孔325、325’、325”与第一和第二对电极305、305’、305”中的一个电极相关联。
因此,如果需要的话,这种布置确保了接触第二介电层330的样品可以被提供给两个不同的电极布置,并且第二上部孔335’提供了一个大体积孔,该大体积孔可以将样品分配给三个不同的电极。这在传感器组件300的使用中提供了多功能性。
图4描绘了另一个实施例中的传感器组件400的示意性平面图。传感器组件400包括基板(不可见)、多组电极405、405’、405”;设置在所述基板上的第一介电层420;以及设置在第一介电层420上的第二介电层430。
在该实施例中,传感器组件400被布置为圆形结构,以对应于设置在传感器组件400顶部上的液滴的形状,并限定中心轴线。提供了三组电极405、405’、405”,它们围绕圆形结构的中心轴排列成同心圆。
第一组电极包括位于传感器组件400中心的中心轴上的单个电极405。它通过第一介电层420中的第一孔425和第二介电层430中的第二孔435暴露于传感器组件400的上表面。第二组电极包括16个分开的电极405’,它们围绕中心电极405’排列成同心圆。所述电极405’中的每一个通过第一介电层420中相应的第一孔425’暴露于传感器组件400的上表面,使得在该同心圆中有16个分离的孔425’第一介电层420,以及在第二介电层430中有相应的第二孔435’。对于该组电极405,在第二介电层430中有8个第二孔435’,其中每一个第二孔435’连接到第一介电层420中的两个第一孔425’,因此在该同心圆中的每一个第二孔435’暴露两个电极405’。第二组电极的电极405’在该实施例中均为圆形(但设想了其他形状)。第三组电极包括四个电极405”,每个电极都具有弧形,并以径向对称的方式围绕中心轴布置,以形成最外面的同心圆。每个电极405”通过穿过第一介电层420的第一孔425”和穿过第二介电层430的相应的第二孔435”暴露。因此,第一介电层420中的三组电极405、405’、405”、第一孔425、425’、425”和第二介电层430中的第二孔435、435’、435”被布置成径向对称。此外,第二介电层430中的第二孔435、435’、435”中的每一个的体积都大于第一介电层420中相应的第一孔425、425’、425”(即,第二孔435、435’、435”流体连接到的第一介电体层420中的第一孔425、425’、425”)。
在本实施例中,第一、第二和第三组电极405、405’、405”中的每一个都被设置成检测不同的性质。例如,第三组电极的电极405”可以被配置为感测诸如导电性之类的特性,该特性可以用于确认液滴已经被接收在传感器组件400的上表面上并且已经扩散到传感器组件400边缘,从而可以假设它与第一组电极405和第二组电极405’接触。第二组电极405’和第一组的中心电极405可以各自被官能化(例如通过粘附到电极405、405’的表面的捕获物种)。或者,第一组的中心电极405可以是参考电极或对电极。因此,第一组电极、第二组电极和第三组电极中的每一个都可以提供不同的感测功能并限定不同的功能区域。
图5A至5E示意性地示出了根据一个实施例的传感器组件500的制造。
该方法首先包括提供基板510并在基板510上形成至少一个电极505,如图5A所示。在该实施例中,在基板510的上表面上提供三个电极505作为三个不同的金属层。
该方法还包括在基板510上提供第一介电层520,如图5B所示。在该实施例中,第一介电层520是在基板510和三个电极505上形成的可光成像聚合物层。第一介电层520被提供在三个电极505之间,使得这些电极被第一介电层520电隔离,并且在该初始步骤中,被第一介电层520完全覆盖。
在本实施例中,该方法还包括在第一介电层520中形成三个第一孔525,如图5C所示。在该实施例中,这是在提供任何后续层之前,但在基板上提供第一介电层520之后。三个第一孔各自形成在三个电极505中的一个上,并且具有与电极505相同的形状和尺寸(从平面图来看)。以这种方式,三个电极505中的每一个的上表面通过第一介电层520暴露。因此,电极505可以对接收在第一孔525内的样品的存在作出响应。应当理解,第一孔525的形成可以使用本领域中使用的任何手段,例如使用在基板上形成的层上的蚀刻工艺或钻孔工艺(例如激光钻孔)。一种有利的方法包括对用于形成第一介电层520的可光成像聚合物进行光成像。
该方法还包括在第一介电层520上提供第二介电层530,如图5D所示。这覆盖了第一介电层520中的三个第一孔525。
该方法还包括形成穿过第二介电层530的第二孔535,如图5E所示。在该实施例中,形成单个第二孔535,其在所有三个第一孔525和相应的电极505上延伸。三个电极505和第一孔525中的每一个相应地流体连接到第二介电层中的第二孔535。该第二孔535可以使用关于第一孔525所讨论的技术来形成。以这种方式形成第一孔525和第二孔535可以有利地避免与对准预先形成的孔相关联的困难。
该实施例中的第二介电层530明显比第一介电层520厚,从而为第二孔535提供了用于液体样品的相当大的容量。这允许用户容易地将样品提供给传感器组件500(例如,点),但是随后流体可以经由第一孔525分配到电极505,电极505都在小得多的规模上。与用户试图在没有第二孔535的情况下向电极505中的每一个提供样品相比,这确保了向电极505提供足够的样品。
尽管未示出,但在图5A至5E所示方法的一些进一步实施例中,电极505可以被官能化。这可以在例如施加第一介电层520之前,或者可以在施加第一和/或第二介电层520、530之后。这可能取决于官能化的性质,因为捕获物种在加工过程中容易受到损害。本文所述的方法有利地允许在制造工艺结束时形成,因为第一孔可用于产生必要的结构以在官能化期间保持捕获物种或在其上可形成捕获物种。
应当理解,在指示设备、系统和方法的示例性实施例的同时,详细描述和具体示例仅用于说明的目的,而不用于限制范围。本发明的设备、系统和方法的这些和其他特征、方面和优点可以从说明书、所附权利要求或方面以及附图中更好地理解。应该理解的是,这些图仅仅是示意图,并不是按比例绘制的。还应当理解,在附图中使用相同的附图标记来表示相同或相似的部件。
通过对附图、本公开和所附方面或权利要求的研究,本领域技术人员在实践本公开时可以理解并实现对所公开的实施例的其他变化。在各方面或权利要求中,“包括”一词不排除其他元素或步骤,“一个”或“一”不排除复数。仅在相互不同的从属方面或权利要求中列举某些措施这一事实并不表明这些措施的组合不能用于有利的目的。权利要求中的任何附图标记都不应被解释为限制该范围。

Claims (20)

1.一种用于测量样品性质的传感器组件,包括:
基板;
设置在所述基板上的至少一个电极;
设置在所述基板上的第一介电层,所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在;和
设置在所述第一介电层上的第二介电层,包括延伸穿过所述第二介电层的孔,所述孔流体连接到所述第一介电层中的阱或孔。
2.根据权利要求1所述的传感器组件,其中所述至少一个电极被官能化,以便与在所述第一介电层的阱或孔内容纳的样品相互作用。
3.根据权利要求2所述的传感器组件,其中所述至少一个电极包括捕获物种,所述捕获物种被配置为选择性地与样品内的分析物相互作用。
4.根据任一前述权利要求所述的传感器组件,其中所述传感器组件包括包括多个电极的一组电极,并且其中所述第一介电层包括多个阱和/或孔,其中至少一个阱或孔与所述一组电极中的每个电极相关联。
5.根据权利要求4所述的传感器组件,其中所述第二介电层包括延伸穿过所述第二介电层的多个孔,每个孔对应于所述第一介电层中的多个阱或孔中的一个,并且流体连接到所述第一介电层中的多个阱或者孔。
6.根据权利要求4或权利要求5所述的传感器组件,其中所述一组电极中的所述多个电极通过所述第一介电层彼此分离。
7.根据权利要求4至6中任一项所述的传感器组件,其中所述传感器组件包括:第一官能化区域,包括所述第一介电层中的阱或孔中的至少一个、至少一个电极和第一捕获物种,所述第一捕获物种被配置为选择性地结合到第一分析物并且被设置在所述第一官能化区域的至少一部分上;和第二官能化区域,包括所述第一介电层中的阱或孔中的至少一个、至少一个电极和第二捕获物种,所述第二捕获物种被配置为选择性地结合到第二分析物并且被设置在所述第二官能化区域的至少一部分上。
8.根据前述权利要求中任一项所述的传感器组件,其中所述第二介电层的所述孔或每个孔的体积大于所述阱或孔或者所述第一介电层的每个阱或孔的体积。
9.根据任一前述权利要求所述的传感器组件,其中所述第一介电层和/或所述第二介电层包括聚合物。
10.根据权利要求9所述的传感器组件,其中所述第一介电层和/或所述第二介电层包括聚酰亚胺、聚对苯二甲酸乙二醇酯或其组合。
11.根据任一前述权利要求所述的传感器组件,其中所述第一介电层的厚度为1pm至50pm;和/或其中所述第二介电层的厚度为50pm至1000pm。
12.根据任一前述权利要求所述的传感器组件,其中所述基板是柔性基板。
13.根据前述权利要求中任一项所述的传感器组件,其中所述电极包括多个金属层,所述金属层包括铜、镍、铂、银、氯化银、金或其它贵金属或由其形成。
14.一种形成传感器组件的方法,该方法包括:
设置基板;
在所述基板上形成至少一个电极;
在所述基板上设置第一介电层;和
在所述第一介电层上设置第二介电层,
其中所述第一介电层包括与所述电极相关联的阱或孔,使得所述电极响应于在所述阱或孔内容纳的样品的存在;和
其中所述第二介电层包括延伸穿过所述第二介电层并且流体连接到所述第一介电层中的阱或孔的孔。
15.根据权利要求14所述的方法,其中所述方法还包括在所述第一介电层中形成阱或孔,所述阱或孔与所述电极相关联,使得所述电极响应于在所述阱或者孔内容纳的样品的存在。
16.根据权利要求15所述的方法,其中在所述第一介电层中形成阱或孔是在将所述第二介电层设置在所述第一介电层上之前进行的。
17.根据权利要求14至16中任一项所述的方法,其中所述方法还包括在所述第二介电层中形成孔,所述孔延伸穿过所述第二介电层以与所述第一介电层的阱或孔流体连接。
18.根据权利要求17所述的方法,其中在所述第一介电层上设置所述第二介电层之后,在所述第二介电层中形成所述孔。
19.根据权利要求18所述的方法,其中在所述第一介电层中形成所述阱或孔是在将所述第一介电层设置给所述基板之后进行的。
20.根据权利要求19所述的方法,其中在所述基板上设置所述第二介电层之前,在所述第一介电层中形成所述第一阱或孔。
CN202280081040.6A 2021-12-07 2022-12-07 传感器组件和制造方法 Pending CN118786342A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163287020P 2021-12-07 2021-12-07
US63/287,020 2021-12-07
PCT/EP2022/084871 WO2023104927A1 (en) 2021-12-07 2022-12-07 Sensor assembly and method of manufacture

Publications (1)

Publication Number Publication Date
CN118786342A true CN118786342A (zh) 2024-10-15

Family

ID=84767198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280081040.6A Pending CN118786342A (zh) 2021-12-07 2022-12-07 传感器组件和制造方法

Country Status (4)

Country Link
US (1) US20250052712A1 (zh)
EP (1) EP4445129A1 (zh)
CN (1) CN118786342A (zh)
WO (1) WO2023104927A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129823A (en) * 1997-09-05 2000-10-10 Abbott Laboratories Low volume electrochemical sensor
WO2004061418A2 (en) * 2002-12-26 2004-07-22 Meso Scale Technologies, Llc. Assay cartridges and methods of using the same
GB0322832D0 (en) * 2003-09-30 2003-10-29 Epigem Ltd Sensor platforms utilising nanoporous membranes
CA2650949C (en) * 2006-05-08 2018-06-12 Bayer Healthcare Llc Electrochemical test sensor with reduced sample volume
WO2009158006A2 (en) * 2008-06-26 2009-12-30 Ion Torrent Systems Incorporated Methods and apparatus for detecting molecular interactions using fet arrays
CN102317773B (zh) * 2009-01-23 2015-03-11 聚合物技术系统公司 具有一体生物传感器的诊断式多层干相测试条
US8747748B2 (en) * 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US20180328877A1 (en) * 2017-05-11 2018-11-15 Medtronic Minimed, Inc. Analyte sensors and methods for fabricating analyte sensors
US20190204293A1 (en) * 2017-12-28 2019-07-04 Life Technologies Corporation Sensor for chemical analysis and methods for manufacturing the same

Also Published As

Publication number Publication date
WO2023104927A1 (en) 2023-06-15
US20250052712A1 (en) 2025-02-13
EP4445129A1 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
KR101709762B1 (ko) 생체분자 농축 기능 일체형 센서 및 그 제조방법
US6849168B2 (en) Electrochemical microsensor package
EP3210009B1 (en) Paper substrate diagnostic apparatus and related methods and systems
JP4216712B2 (ja) マイクロ流体式化学検定装置および方法
KR101648383B1 (ko) 교차전극 바이오센서
US20060141469A1 (en) Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
US20050023155A1 (en) Protein and peptide sensors using electrical detection methods
EP2803999A1 (en) Sensor cartridge for detecting component of at least one sample
KR101754239B1 (ko) 수용체와 표적 생체물질의 반응을 이용한 교차 전극 바이오센서
Li et al. Fast, sensitive, and quantitative point-of-care platform for the assessment of drugs of abuse in urine, serum, and whole blood
De Oliveira et al. Low-cost and rapid-production microfluidic electrochemical double-layer capacitors for fast and sensitive breast cancer diagnosis
JP2012242366A (ja) バイオセンサとこれを用いた分析方法
Xie et al. A ten-minute, single step, label-free, sample-to-answer assay for qualitative detection of cytokines in serum at femtomolar levels
KR20110126942A (ko) 바이오칩 및 그 제조 방법, 이를 이용한 분석 대상 물질 검출 방법
US20220291211A1 (en) Microfluidic microparticle-labeled impedance sensor array for enhancing bioassay sensitivity
JP4372790B2 (ja) 縁取りされた作用区域を備える作用装置、オンチップラボ及びマイクロシステム
CN118786342A (zh) 传感器组件和制造方法
EP3341128B1 (en) Device and method for analysing liquid samples
US7547381B2 (en) Sensor array integrated electrochemical chip, method of forming same, and electrode coating
CN109668949B (zh) 具有分配化学品和微流体盖件的分析物传感器封装体
US11351540B2 (en) Covert codes based on electrical sensing of patterned materials in microfluidic devices
KR101647346B1 (ko) 타겟물질 분석용 금속 전극, 이를 포함하는 타겟물질 분석용 센서 및 면역 크로마토그래피 분석 센서
JP4933657B1 (ja) 電気化学計測チップ用電極装置
CN116613197A (zh) 用于生物芯片的结构
US11406299B2 (en) Biosensors with programmable sensing cavities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination