CN118759618A - Broadband absorption devices based on phase change materials - Google Patents
Broadband absorption devices based on phase change materials Download PDFInfo
- Publication number
- CN118759618A CN118759618A CN202410960747.5A CN202410960747A CN118759618A CN 118759618 A CN118759618 A CN 118759618A CN 202410960747 A CN202410960747 A CN 202410960747A CN 118759618 A CN118759618 A CN 118759618A
- Authority
- CN
- China
- Prior art keywords
- phase change
- layer
- broadband absorption
- change material
- broadband
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12045—Lithium tantalate (LiTaO3)
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及相变材料技术领域,尤其涉及一种基于相变材料的宽带吸收器件。The present invention relates to the technical field of phase change materials, and in particular to a broadband absorption device based on phase change materials.
背景技术Background Art
宽带吸收器因广泛应用于红外隐形、光学或热学检测、太阳能电池、宽带热辐射器等而受到广泛关注,还可以用于回收废热进行能源应用。其中一些方法使用碳纳米管等材料在非常广泛的频率范围内吸收光,但这涉及到微米厚的结构,并且对光谱范围的控制很少。为了在宽带范围内实现可控吸收,大多都着眼于将多个具有重叠共振的等离子体纳米结构限制在亚波长像素中。然而,尽管这些结构可以通过场的限制以及对角度的容忍性来实现非常高的吸收,但只能将有限数量的吸收结构放入一个区域,从而限制了带宽,使制造过程变得复杂,并且吸收较窄。Broadband absorbers have attracted a lot of attention due to their wide applications in infrared stealth, optical or thermal detection, solar cells, broadband thermal radiators, etc., and can also be used to recover waste heat for energy applications. Some of these approaches use materials such as carbon nanotubes to absorb light over a very wide frequency range, but this involves micron-thick structures and there is little control over the spectral range. To achieve controllable absorption over a broadband range, most of them focus on confining multiple plasmonic nanostructures with overlapping resonances into subwavelength pixels. However, although these structures can achieve very high absorption through field confinement and tolerance to angles, only a limited number of absorbing structures can be put into one area, which limits the bandwidth, complicates the manufacturing process, and has narrow absorption.
在现有的宽带吸收体结构中,宽带吸收体结构主要采用超表面或者碳纳米管等的结构,结构复杂,且随角度变化敏感。或者基于介质与金属组合构成宽带吸收结构,但是器件一旦制作便不可调。因此,设计一种兼具动态可调控的宽带吸收技术具有重大的实际意义。In the existing broadband absorber structure, the broadband absorber structure mainly adopts the structure of metasurface or carbon nanotube, which is complex and sensitive to angle changes. Or the broadband absorber structure is composed of dielectric and metal, but the device cannot be adjusted once it is made. Therefore, it is of great practical significance to design a broadband absorber technology that is both dynamically adjustable.
发明内容Summary of the invention
本发明提供一种基于相变材料的宽带吸收器件,用以解决现有技术中宽带吸收体结构复杂,对角度变化敏感,吸收范围不可调的缺陷,实现基于相变材料的动态可调节的宽带吸收结构,对角度不敏感,结构简单,易于集成。The present invention provides a broadband absorption device based on phase change material, which is used to solve the defects of the broadband absorber in the prior art, such as complex structure, sensitivity to angle change, and unadjustable absorption range, and realizes a dynamically adjustable broadband absorption structure based on phase change material, which is insensitive to angle, simple in structure, and easy to integrate.
本发明提供一种基于相变材料的宽带吸收器件,包括:The present invention provides a broadband absorption device based on phase change material, comprising:
宽带吸收腔体结构,包括防反射层、相变层和金属层,所述宽带吸收腔体结构利用相变材料的吸收特性、动态可调特性与K值大于第一预设阈值的半导体材料,共同构成一个宽带吸收器,对光进行吸收调节;A broadband absorption cavity structure, comprising an anti-reflection layer, a phase change layer and a metal layer, wherein the broadband absorption cavity structure utilizes the absorption characteristics and dynamic adjustable characteristics of the phase change material and a semiconductor material having a K value greater than a first preset threshold value to jointly form a broadband absorber to absorb and adjust light;
所述防反射层包括多个具有折射率梯度的介质材料,所述介质材料的K值小于1,而且多个介质材料的折射率呈现梯度分布,从上到下,由大到小;The anti-reflection layer includes a plurality of dielectric materials with a refractive index gradient, wherein the K value of the dielectric material is less than 1, and the refractive index of the plurality of dielectric materials presents a gradient distribution, from top to bottom, from large to small;
钽酸锂单晶片结构,位于所述宽带吸收腔体结构之下;A lithium tantalate single crystal structure, located below the broadband absorption cavity structure;
在光线射到所述宽带吸收腔体结构时,所述宽带吸收腔体结构用于将吸收的光能转化为热能,所述钽酸锂单晶片结构用于通过热释电效应将所述热能转化成电能,输出电流,以根据所述电流的大小改变所述相变层的状态,对吸收的光线进行调节。When light hits the broadband absorption cavity structure, the broadband absorption cavity structure is used to convert the absorbed light energy into thermal energy, and the lithium tantalate single crystal structure is used to convert the thermal energy into electrical energy through the pyroelectric effect and output current to change the state of the phase change layer according to the size of the current to adjust the absorbed light.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述宽带吸收腔体结构包括多层金属层,所述多层金属层的有效N和K均大于1,且越大越好;According to a broadband absorption device based on phase change material provided by the present invention, the broadband absorption cavity structure comprises multiple metal layers, and the effective N and K of the multiple metal layers are both greater than 1, and the larger the better;
所述防反射层中的介质具有折射率梯度,折射率n值具有梯度分布,从上到下,由大到小,且K值趋于0,多个K值趋于0的介质材料构成防反射层结构。。The medium in the anti-reflection layer has a refractive index gradient, and the refractive index n value has a gradient distribution from top to bottom, from large to small, and the K value tends to 0. A plurality of dielectric materials with K values tending to 0 constitute the anti-reflection layer structure.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述宽带吸收腔体结构包括由所述金属层和介质层夹着所述相变层构成的FP腔,或由所述相变层和所述金属层构成的FP腔。According to a broadband absorption device based on phase change material provided by the present invention, the broadband absorption cavity structure includes an FP cavity formed by the metal layer and the dielectric layer sandwiching the phase change layer, or an FP cavity formed by the phase change layer and the metal layer.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述宽带吸收腔体结构包括从上到下依次布设的反射层、相变层、介质层、第一半导体材料层、第二半导体材料层和金属层。According to a broadband absorption device based on phase change material provided by the present invention, the broadband absorption cavity structure includes a reflection layer, a phase change layer, a dielectric layer, a first semiconductor material layer, a second semiconductor material layer and a metal layer arranged in sequence from top to bottom.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述的第一半导体层为Ge、Si等N和K值均大于1的材料,主要作用对光进行吸收,所述的第二半导体层为Cr、W等N值大于1,K值较小的材料,所述金属层为W和Ag等具有导电得材料且性能稳定,该层主要是提供电极驱动以及产生热量驱动相变材料的状态改变。According to a broadband absorption device based on phase change material provided by the present invention, the first semiconductor layer is a material such as Ge, Si, etc., whose N and K values are both greater than 1, and whose main function is to absorb light; the second semiconductor layer is a material such as Cr, W, etc., whose N value is greater than 1 and whose K value is smaller; the metal layer is a conductive material such as W and Ag, etc., and has stable performance, and this layer mainly provides electrode drive and generates heat to drive the state change of the phase change material.
根据本发明提供的一种基于相变材料的宽带吸收器件,根据所述电流的大小调控对所述金属层施加的电压,控制所述相变层中相变材料的晶化和非晶化比例,以调控所述光线的吸收。According to a broadband absorption device based on phase change material provided by the present invention, the voltage applied to the metal layer is regulated according to the magnitude of the current, and the crystallization and amorphization ratio of the phase change material in the phase change layer is controlled to regulate the absorption of the light.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述相变层使用的相变材料的厚度少于1微米。According to a broadband absorption device based on phase change material provided by the present invention, the thickness of the phase change material used in the phase change layer is less than 1 micron.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述相变层有多个,每个相变层包括相变材料层和位于所述相变材料层两侧的电极层,相邻两个所述相变材料层之间的电极层共用。According to a broadband absorption device based on phase change material provided by the present invention, there are multiple phase change layers, each phase change layer includes a phase change material layer and electrode layers located on both sides of the phase change material layer, and the electrode layers between two adjacent phase change material layers are shared.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述相变层使用的相变材料为GeTe、SbTe、SnSb、AgSbTe、InSbTe、GeSb和GST等合金中的一种或者多种,其中各原子的百分比可调,所述相变材料的K值大于0.5;According to a broadband absorption device based on phase change material provided by the present invention, the phase change material used in the phase change layer is one or more of alloys such as GeTe, SbTe, SnSb, AgSbTe, InSbTe, GeSb and GST, wherein the percentage of each atom is adjustable, and the K value of the phase change material is greater than 0.5;
所述防反射层所用的材料为TIO2、Ta2O5、MgF2、ZnS等较低K值的介质。The material used for the anti-reflection layer is a medium with a lower K value, such as TIO2, Ta2O5, MgF2, and ZnS.
根据本发明提供的一种基于相变材料的宽带吸收器件,所述反射层的厚度小于1微米,所述相变层的厚度小于500nm,所述第一半导体材料层的厚度小于200nm且大于10nm,所述第二半导体材料层的厚度小于500nm且大于50nm,所述金属层的厚度小于1微米,所述钽酸锂单晶片结构的厚度不限为75微米。According to a broadband absorption device based on phase change material provided by the present invention, the thickness of the reflective layer is less than 1 micron, the thickness of the phase change layer is less than 500nm, the thickness of the first semiconductor material layer is less than 200nm and greater than 10nm, the thickness of the second semiconductor material layer is less than 500nm and greater than 50nm, the thickness of the metal layer is less than 1 micron, and the thickness of the lithium tantalate single crystal structure is not limited to 75 microns.
本发明提供的基于相变材料的宽带吸收器件,通过宽带吸收腔体结构将吸收的光能转化为热能,钽酸锂单晶片结构通过热释电效应将热能转化成电能,输出电流并根据电流的大小改变相变层的状态,从而实现宽波段的吸收调节,可以根据需要调节吸收范围的大小,调节方位广,对角度不敏感,结构简单,易于集成,克服了现有结构的固有局限性,具有重大的技术进步意义,为宽波段吸收技术的进一步发展提供新的可能。The broadband absorption device based on phase change material provided by the present invention converts the absorbed light energy into heat energy through a broadband absorption cavity structure, and the lithium tantalate single crystal structure converts the heat energy into electrical energy through the pyroelectric effect, outputs current and changes the state of the phase change layer according to the magnitude of the current, thereby realizing wide-band absorption adjustment, and can adjust the size of the absorption range as needed, with a wide adjustment direction, insensitive to angles, simple structure, and easy integration, thus overcoming the inherent limitations of existing structures, having great technological advancement significance, and providing new possibilities for the further development of broadband absorption technology.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的基于相变材料的宽带吸收器件结构示意图;FIG1 is a schematic structural diagram of a broadband absorption device based on phase change material provided by the present invention;
图2是本发明提供的基于相变材料的宽带吸收器件中宽带吸收腔体结构示意图;FIG2 is a schematic diagram of the structure of a broadband absorption cavity in a broadband absorption device based on phase change material provided by the present invention;
图3是本发明提供的基于相变材料的宽带吸收器件中GSST处于非晶态时的吸收光谱示意图;3 is a schematic diagram of the absorption spectrum of GSST in a broadband absorption device based on phase change materials provided by the present invention when it is in an amorphous state;
图4是本发明提供的基于相变材料的宽带吸收器件中GSST处于晶态时的吸收光谱示意图;4 is a schematic diagram of the absorption spectrum of GSST in a broadband absorption device based on phase change materials provided by the present invention when it is in a crystalline state;
图5是本发明提供的基于相变材料的宽带吸收器件中GSST处于非晶态时的吸收角度不敏感图;FIG5 is an absorption angle insensitivity diagram of GSST in an amorphous state in a broadband absorption device based on a phase change material provided by the present invention;
图6是本发明提供的基于相变材料的宽带吸收器件中GSST处于晶态时的吸收角度不敏感图。FIG. 6 is a graph showing the absorption angle insensitivity of GSST in a broadband absorption device based on phase change materials provided by the present invention when the GSST is in a crystalline state.
附图标记:Reference numerals:
101:宽带吸收腔体结构中的第一防反射层;102:宽带吸收腔体结构中的第二防反射层;103:宽带吸收腔体结构中的相变层;104:宽带吸收腔体结构中的介质层;105:宽带吸收腔体结构中的第一半导体材料层;106:宽带吸收腔体结构中的第二半导体材料层;107:宽带吸收腔体结构中金属层;201:基于相变材料的宽带吸收器件中的第一防反射层;202:基于相变材料的宽带吸收器件中的第二防反射层;203:基于相变材料的宽带吸收器件中的相变层;204:基于相变材料的宽带吸收器件中的介质层;205:基于相变材料的宽带吸收器件中的第一半导体材料层;206:基于相变材料的宽带吸收器件中的第二半导体材料层;207:基于相变材料的宽带吸收器件中的金属层;208:基于相变材料的宽带吸收器件中的钽酸锂单晶片结构。101: the first anti-reflection layer in the broadband absorption cavity structure; 102: the second anti-reflection layer in the broadband absorption cavity structure; 103: the phase change layer in the broadband absorption cavity structure; 104: the dielectric layer in the broadband absorption cavity structure; 105: the first semiconductor material layer in the broadband absorption cavity structure; 106: the second semiconductor material layer in the broadband absorption cavity structure; 107: the metal layer in the broadband absorption cavity structure; 201: the first anti-reflection layer in the broadband absorption device based on phase change material; 202: the second anti-reflection layer in the broadband absorption device based on phase change material; 203: the phase change layer in the broadband absorption device based on phase change material; 204: the dielectric layer in the broadband absorption device based on phase change material; 205: the first semiconductor material layer in the broadband absorption device based on phase change material; 206: the second semiconductor material layer in the broadband absorption device based on phase change material; 207: the metal layer in the broadband absorption device based on phase change material; 208: the lithium tantalate single crystal structure in the broadband absorption device based on phase change material.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面结合图1描述本发明的一种基于相变材料的宽带吸收器件,包括:The following describes a broadband absorption device based on phase change material of the present invention in conjunction with FIG1, comprising:
宽带吸收腔体结构,包括防反射层、相变层203和金属层207;A broadband absorption cavity structure, comprising an anti-reflection layer, a phase change layer 203 and a metal layer 207;
钽酸锂单晶片结构208,位于所述宽带吸收腔体结构之下;A lithium tantalate single crystal structure 208, located below the broadband absorption cavity structure;
在光线射到所述宽带吸收腔体结构时,所述宽带吸收腔体结构用于将吸收的光能转化为热能,所述钽酸锂单晶片结构用于通过热释电效应将所述热能转化成电能,输出电流,以根据所述电流的大小改变所述相变层的状态,对吸收的光线进行调节。When light hits the broadband absorption cavity structure, the broadband absorption cavity structure is used to convert the absorbed light energy into thermal energy, and the lithium tantalate single crystal structure is used to convert the thermal energy into electrical energy through the pyroelectric effect and output current to change the state of the phase change layer according to the size of the current to adjust the absorbed light.
相变层203包括相变材料,金属与相变材料组合的顺序不限,可在相变材料的两侧布设金属层207。该金属层既起着与相变材料构成FP(Fabry-perot,谐振腔)腔的作用,又起着控制相变材料发生相变的作用。通过对相变材料两侧的金属层施加电压,可以改变相变材料的晶体结构,从而实现调节宽带吸收体结构对光吸收的比例的大小。The phase change layer 203 includes a phase change material. The order of combining metal and phase change material is not limited. The metal layer 207 can be arranged on both sides of the phase change material. The metal layer plays the role of forming a FP (Fabry-perot, resonant cavity) cavity with the phase change material and controlling the phase change of the phase change material. By applying voltage to the metal layers on both sides of the phase change material, the crystal structure of the phase change material can be changed, thereby adjusting the proportion of light absorption by the broadband absorber structure.
宽带吸收体腔结构主要包括防反射层、相变层203和金属层207,三者相结合时宽带吸收腔体结构可以达到在可见及红外实现吸收可调的效果。金属层207具备高损耗的特性。The broadband absorber cavity structure mainly includes an anti-reflection layer, a phase change layer 203 and a metal layer 207. When the three are combined, the broadband absorber cavity structure can achieve an adjustable absorption effect in the visible and infrared. The metal layer 207 has a high loss characteristic.
在宽带吸收体腔结构下方是一片钽酸锂单晶片结构208,吸收的光能会被转化成热能并传导至热释电材料,热释电材料通过热释电效应将热能转化成电能,因此可以输出电流,用于太阳能电池、宽带热辐射器。Below the broadband absorber cavity structure is a lithium tantalate single crystal structure 208. The absorbed light energy will be converted into heat energy and transmitted to the pyroelectric material. The pyroelectric material converts the heat energy into electrical energy through the pyroelectric effect, so it can output current for use in solar cells and broadband thermal radiators.
通过这种设计,既可以使得该宽带吸收结构根据实际需求进行可调,对目标光吸收的比例进行调节,最大吸收可达百分之九十以上,可以使的吸收范围达到400nm以后,也可以使得其对角度不敏感,以满足宽带吸收器用于红外隐形、光学或热学检测、太阳能电池、宽带热辐射器等对吸收体的需求。Through this design, the broadband absorption structure can be adjusted according to actual needs and the proportion of target light absorption can be adjusted. The maximum absorption can reach more than 90%, and the absorption range can be extended to after 400nm. It can also be made insensitive to angles to meet the needs of broadband absorbers for absorbers in infrared stealth, optical or thermal detection, solar cells, broadband thermal radiators, etc.
本实施例通过宽带吸收腔体结构将吸收的光能转化为热能,钽酸锂单晶片结构通过热释电效应将热能转化成电能,输出电流并根据电流的大小改变相变层的状态,从而实现宽波段的吸收调节,可以根据需要调节吸收范围的大小,调节方位广,对角度不敏感,结构简单,易于集成,克服了现有结构的固有局限性,具有重大的技术进步意义,为宽波段吸收技术的进一步发展提供新的可能。This embodiment converts the absorbed light energy into heat energy through a broadband absorption cavity structure, and the lithium tantalate single crystal structure converts heat energy into electrical energy through the pyroelectric effect, outputs current and changes the state of the phase change layer according to the magnitude of the current, thereby realizing wide-band absorption adjustment. The size of the absorption range can be adjusted as needed, the adjustment direction is wide, it is insensitive to angles, the structure is simple, and it is easy to integrate. It overcomes the inherent limitations of the existing structure, has great technological advancement significance, and provides new possibilities for the further development of wide-band absorption technology.
在上述实施例的基础上,本实施例中所述金属层的消光系数大于第一预设阈值,且折射率大于第二预设阈值;On the basis of the above embodiment, in this embodiment, the extinction coefficient of the metal layer is greater than the first preset threshold, and the refractive index is greater than the second preset threshold;
所述防反射层中的介质具有折射率梯度,且吸收率大于第三预设阈值。The medium in the anti-reflection layer has a refractive index gradient, and an absorptivity greater than a third preset threshold.
采用防反射层、相变材料和折射率、消光系数高的吸收性金属组成的一个动态可调节的宽带吸收器。A dynamically adjustable broadband absorber is composed of an anti-reflection layer, a phase change material and an absorptive metal with a high refractive index and extinction coefficient.
防反射层由具有折射率梯度、高吸收率的介质构成,调控主要由相变层203中的相变材料实现。高折射率、消光系数的金属薄膜和相变层203一并对400nm至2500nm的光进行吸收调节。The anti-reflection layer is composed of a medium with a refractive index gradient and high absorptivity, and the regulation is mainly achieved by the phase change material in the phase change layer 203. The metal film with a high refractive index and extinction coefficient and the phase change layer 203 absorb and regulate the light from 400nm to 2500nm.
相变层203的相变材料可以包括下列硫系化合物及其合金,包括但不限于GST、GSST、IST、GeSbTe、AgInSbTe、InSbTe、AgSbTe、Ag2In4Sb76Te17(AIST)等高损耗低折射率的特性相变材料,这可以实现大范围的吸收调节。此外,上述各化学式中的原子百分比可变。相变材料中可进一步包含至少一种掺杂剂,如C、N。优选地,相变材料选择GSST,其在可见光范围内损耗大,折射率小,且GSST的热稳定性好。The phase change material of the phase change layer 203 may include the following chalcogenide compounds and their alloys, including but not limited to GST, GSST, IST, GeSbTe, AgInSbTe, InSbTe, AgSbTe, Ag 2 In 4 Sb 76 Te 17 (AIST) and other high-loss and low-refractive-index characteristic phase change materials, which can achieve a wide range of absorption adjustment. In addition, the atomic percentages in the above chemical formulas are variable. The phase change material may further include at least one dopant, such as C and N. Preferably, the phase change material is selected as GSST, which has a large loss in the visible light range, a small refractive index, and good thermal stability.
在上述实施例的基础上,本实施例中所述宽带吸收腔体结构包括由所述金属层207和介质层夹着所述相变层203构成的FP腔,或由所述相变层203和所述金属层207构成的FP腔。On the basis of the above embodiments, the broadband absorption cavity structure in this embodiment includes an FP cavity formed by the metal layer 207 and a dielectric layer sandwiching the phase change layer 203 , or an FP cavity formed by the phase change layer 203 and the metal layer 207 .
在上述实施例的基础上,如图2所示,本实施例中宽带吸收腔体结构包括从上到下依次布设的第一防反射层101、第二防反射层102、相变层103、介质层104、第一半导体材料层105、第二半导体材料层106和金属层107。On the basis of the above embodiment, as shown in FIG2 , the broadband absorption cavity structure in this embodiment includes a first anti-reflection layer 101, a second anti-reflection layer 102, a phase change layer 103, a dielectric layer 104, a first semiconductor material layer 105, a second semiconductor material layer 106 and a metal layer 107 arranged in sequence from top to bottom.
可选地,相变层103的相变材料为高损耗低折射率材料,包括但不限于GSST,金属层为Ag,其中GSST为强光学损耗的超薄相变材料。Optionally, the phase change material of the phase change layer 103 is a high-loss, low-refractive-index material, including but not limited to GSST, and the metal layer is Ag, wherein GSST is an ultra-thin phase change material with strong optical loss.
在相变材料下方是第一半导体材料层105和第二半导体材料层106,第一半导体材料层105和第二半导体材料层106可为高消光系数的金属,如Ge和Cr。相变材料上下可由介质材料TIO2包围。Below the phase change material are the first semiconductor material layer 105 and the second semiconductor material layer 106. The first semiconductor material layer 105 and the second semiconductor material layer 106 may be metals with high extinction coefficients, such as Ge and Cr. The phase change material may be surrounded by dielectric material TiO 2 above and below.
如图1所示,基于相变材料的宽带吸收器件包括从上到下依次布设的第一防反射层201、第二防反射层202、相变层203、介质层204、第一半导体材料层205、第二半导体材料层206、金属层207和钽酸锂单晶片结构208。As shown in FIG. 1 , the broadband absorption device based on phase change material includes a first anti-reflection layer 201, a second anti-reflection layer 202, a phase change layer 203, a dielectric layer 204, a first semiconductor material layer 205, a second semiconductor material layer 206, a metal layer 207 and a lithium tantalate single crystal structure 208 arranged in sequence from top to bottom.
在上述实施例的基础上,本实施例中所述第一半导体材料层205的光学损耗大于第四预设阈值且折射率大于第五预设阈值;On the basis of the above embodiment, in this embodiment, the optical loss of the first semiconductor material layer 205 is greater than the fourth preset threshold value and the refractive index is greater than the fifth preset threshold value;
所述第二半导体材料层206的光学损耗大于所述第四预设阈值且折射率大于所述第五预设阈值。The optical loss of the second semiconductor material layer 206 is greater than the fourth preset threshold and the refractive index is greater than the fifth preset threshold.
在上述实施例的基础上,本实施例中根据所述电流的大小调控对所述金属层207施加的电压,控制所述相变层203中相变材料的晶化和非晶化比例,以调控所述光线的吸收。On the basis of the above embodiment, in this embodiment, the voltage applied to the metal layer 207 is regulated according to the magnitude of the current, and the crystallization and amorphization ratio of the phase change material in the phase change layer 203 is controlled to regulate the absorption of the light.
相变层203的相变材料在电刺激或者激光刺激下可以在晶态和非晶态之间转换,从而使得相变层203的透过率和反射率发生变化。顶层的第一防反射层201沉积着透明无损材料MgF2,第二防反射层202沉积着TIO2,两者共同构成一个防反射层。相变层203可以通过在金属层207W上施加电压来控制相变材料的晶化状态。The phase change material of the phase change layer 203 can be converted between the crystalline state and the amorphous state under electrical stimulation or laser stimulation, so that the transmittance and reflectivity of the phase change layer 203 change. The first anti-reflection layer 201 of the top layer is deposited with transparent lossless material MgF 2 , and the second anti-reflection layer 202 is deposited with TiO 2 , and the two together constitute an anti-reflection layer. The phase change layer 203 can control the crystallization state of the phase change material by applying a voltage on the metal layer 207W.
具体地,对W施加一个强度中等的脉冲电压,W会产生热量,相变材料在热的作用下温度升高到结晶温度以上,熔化温度以下的温度区间,并保持一定的时间,晶格此时有序排列形成晶态,实现由非晶向晶态的转变。Specifically, when a pulse voltage of medium intensity is applied to W, W will generate heat. Under the action of heat, the temperature of the phase change material rises to a temperature range above the crystallization temperature and below the melting temperature, and is maintained for a certain period of time. At this time, the lattice is orderly arranged to form a crystalline state, realizing the transformation from amorphous to crystalline.
对W施加一个短而强的电压,一瞬间产生高的热量,使相变材料温度升高到熔化温度以上,使晶态的长程有序遭到破坏,脉冲下降沿非常短导致相变材料经快速冷却至结晶温度以下,使相变材料固定于非晶态,实现由晶态向非晶态转变。A short and strong voltage is applied to W, which generates high heat in an instant, causing the temperature of the phase change material to rise above the melting temperature, destroying the long-range order of the crystalline state. The pulse falling edge is very short, causing the phase change material to be quickly cooled to below the crystallization temperature, fixing the phase change material in the amorphous state, and realizing the transition from crystalline to amorphous state.
通过相变层203的相变材料在非晶态和晶态之间相互转化时的透射率和反射率变化来调控窄带吸收腔体结构对光吸收的比例。The ratio of light absorption by the narrow-band absorption cavity structure is regulated by the changes in transmittance and reflectivity of the phase change material of the phase change layer 203 when the phase change material transforms between the amorphous state and the crystalline state.
该相变宽带吸收腔体结构的相变层在不同状态下对光的吸收相差很大,相变材料在晶态和非晶态状态下是稳定的,所以相变材料在稳定状态下时可以移除电压或激光,所以整个吸收器件在调节过程中的功耗很低,而且是动态可调的。The phase change layer of the phase change broadband absorption cavity structure has very different absorption of light in different states. The phase change material is stable in the crystalline and amorphous states, so the voltage or laser can be removed when the phase change material is in a stable state. Therefore, the power consumption of the entire absorption device during the adjustment process is very low and it is dynamically adjustable.
在上述实施例的基础上,本实施例中所述相变层203使用的相变材料的厚度少于1微米。Based on the above embodiment, the thickness of the phase change material used in the phase change layer 203 in this embodiment is less than 1 micrometer.
相变层203使用的相变材料的厚度少于1微米,由于相变材料的厚度的增加会使相变材料晶化所需的温度也越高,较合适的厚度是1微米以内。相变层203的相变材料可以用电压驱动。电压驱动时,窄带吸收腔体结构底层金属W施加电压使相变材料发生相变。The thickness of the phase change material used in the phase change layer 203 is less than 1 micron. Since the increase in the thickness of the phase change material will increase the temperature required for the crystallization of the phase change material, the more suitable thickness is within 1 micron. The phase change material of the phase change layer 203 can be driven by voltage. When driven by voltage, the metal W at the bottom of the narrow-band absorption cavity structure applies voltage to cause the phase change material to undergo phase change.
在上述实施例的基础上,本实施例中所述相变层203有多个,每个相变层203包括相变材料层和位于所述相变材料层两侧的电极层,相邻两个所述相变材料层之间的电极层共用。Based on the above embodiment, in this embodiment, there are multiple phase change layers 203, each phase change layer 203 includes a phase change material layer and electrode layers located on both sides of the phase change material layer, and the electrode layers between two adjacent phase change material layers are shared.
在上述实施例的基础上,本实施例中所述第一防反射层201为MgF2,所述第二防反射层202为TIO2,所述相变层203为GSST,所述介质层204为TIO2,所述第一半导体材料层205为Ge,所述第二半导体材料层206为Cr,所述金属层207为W。Based on the above embodiment, in this embodiment, the first anti-reflection layer 201 is MgF 2 , the second anti-reflection layer 202 is TIO 2 , the phase change layer 203 is GSST, the dielectric layer 204 is TIO 2 , the first semiconductor material layer 205 is Ge, the second semiconductor material layer 206 is Cr, and the metal layer 207 is W.
在上述实施例的基础上,本实施例中所述第一防反射层201的厚度为90nm,所述第二防反射层202的厚度为50nm,所述相变层203的厚度为8nm,所述介质层204的厚度为36nm,所述第一半导体材料层205的厚度为25nm,所述第二半导体材料层206的厚度为200nm,所述金属层207的厚度为200nm,所述钽酸锂单晶片结构208的厚度为75微米。On the basis of the above embodiments, in this embodiment, the thickness of the first anti-reflection layer 201 is 90nm, the thickness of the second anti-reflection layer 202 is 50nm, the thickness of the phase change layer 203 is 8nm, the thickness of the dielectric layer 204 is 36nm, the thickness of the first semiconductor material layer 205 is 25nm, the thickness of the second semiconductor material layer 206 is 200nm, the thickness of the metal layer 207 is 200nm, and the thickness of the lithium tantalate single crystal structure 208 is 75 microns.
图3为图1中GSST处于非晶态时的吸收光谱示意图。图4为图1中GSST处于晶态时的吸收光谱示意图。通过在金属层207W施加不同的电压,使相变材料层由非晶态到部分晶化到完全晶化。施加电压的大小取决于实际情况的需要,根据实际需求来调节对目标光的吸收比例。FIG3 is a schematic diagram of the absorption spectrum of GSST in FIG1 when it is in an amorphous state. FIG4 is a schematic diagram of the absorption spectrum of GSST in FIG1 when it is in a crystalline state. By applying different voltages to the metal layer 207W, the phase change material layer changes from an amorphous state to partial crystallization to complete crystallization. The magnitude of the applied voltage depends on the actual needs, and the absorption ratio of the target light is adjusted according to the actual needs.
图5和图6可以看出是本发明提供的基于相变材料的宽带吸收器件中GSST处于非晶态和非晶态时的吸收角度不敏感可达70°,在60°范围以内完全没多大差别。As can be seen from FIG. 5 and FIG. 6 , in the broadband absorption device based on phase change material provided by the present invention, the absorption angle insensitivity of GSST in the amorphous state and the amorphous state can reach 70°, and there is no significant difference within the range of 60°.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410960747.5A CN118759618B (en) | 2024-07-17 | Broadband absorption devices based on phase change materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410960747.5A CN118759618B (en) | 2024-07-17 | Broadband absorption devices based on phase change materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118759618A true CN118759618A (en) | 2024-10-11 |
CN118759618B CN118759618B (en) | 2025-04-11 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118915341A (en) * | 2024-07-17 | 2024-11-08 | 华中科技大学 | Narrow band absorbing device based on phase change material |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179469A (en) * | 1992-03-24 | 1993-01-12 | Rockwell International Corporation | Broad band light absorbing film |
WO2012153340A1 (en) * | 2011-05-10 | 2012-11-15 | Technion Research And Development Foundation Ltd. | Ultrathin film solar cells |
CN105810773A (en) * | 2016-05-05 | 2016-07-27 | 电子科技大学 | Resonant reinforced pyroelectric infrared detector |
WO2017064509A1 (en) * | 2015-10-16 | 2017-04-20 | Oxford University Innovation Limited | Optical device |
CN107359234A (en) * | 2017-07-28 | 2017-11-17 | 电子科技大学 | A kind of pyroelectric detector content gradually variational alloy absorbed layer and preparation method thereof |
WO2018049675A1 (en) * | 2016-09-19 | 2018-03-22 | Xiaomei Yu | Metamaterial based electromagnetic radiation detector |
CN109095499A (en) * | 2018-06-27 | 2018-12-28 | 深圳大学 | A kind of vanadium dioxide Multilayer system and its preparation method and application |
KR20190028142A (en) * | 2017-09-08 | 2019-03-18 | 아주대학교산학협력단 | The structural color filter using multicavity resonances |
DE102018206516A1 (en) * | 2018-04-26 | 2019-10-31 | DLR-Institut für Vernetzte Energiesysteme e.V. | Switchable absorber element and photovoltaic cell |
CN110568692A (en) * | 2019-08-30 | 2019-12-13 | 华中科技大学 | A display device based on phase change materials and quantum dots |
CN112066580A (en) * | 2020-03-03 | 2020-12-11 | 河北道荣新能源科技有限公司 | Structure of Vanadium-Based Selective Absorber Coatings |
CN112490686A (en) * | 2020-11-12 | 2021-03-12 | 云南师范大学 | Based on VO2Switch type broadband terahertz wave absorber and absorbing device |
CN212783820U (en) * | 2020-10-16 | 2021-03-23 | 中国计量大学 | Broadband-adjustable terahertz wave absorber based on vanadium dioxide phase-change material |
CN115032728A (en) * | 2022-01-28 | 2022-09-09 | 昆明理工大学 | A Bandwidth/Narrow Tunable Terahertz Absorber |
US20220308264A1 (en) * | 2021-03-25 | 2022-09-29 | University Of Rochester | Fano resonant optical coating |
RU214103U1 (en) * | 2021-10-22 | 2022-10-12 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" | Multilayer structure with anti-reflective films of phase-change materials |
CN115561921A (en) * | 2021-07-02 | 2023-01-03 | 南京大学 | Electrically adjustable broadband wave plate based on vanadium dioxide composite metasurface and its preparation method |
WO2023178822A1 (en) * | 2022-03-23 | 2023-09-28 | 苏州大学 | Ultra-wideband optical absorber based on multiple transition metal layers |
CN117293559A (en) * | 2023-11-03 | 2023-12-26 | 中国科学院半导体研究所 | Terahertz super-surface absorber, device and application thereof |
CN117895242A (en) * | 2023-12-08 | 2024-04-16 | 哈尔滨工业大学 | High-light-transmission broadband microwave absorption adjustable optical window based on phase change material |
CN118244397A (en) * | 2024-03-15 | 2024-06-25 | 西安交通大学 | Super-surface light absorption device based on silver-tin-selenium and silver-tin-tellurium phase change materials |
CN118348620A (en) * | 2023-12-14 | 2024-07-16 | 华南师范大学 | A metamaterial light absorber and its structure prediction method and prediction device |
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179469A (en) * | 1992-03-24 | 1993-01-12 | Rockwell International Corporation | Broad band light absorbing film |
WO2012153340A1 (en) * | 2011-05-10 | 2012-11-15 | Technion Research And Development Foundation Ltd. | Ultrathin film solar cells |
WO2017064509A1 (en) * | 2015-10-16 | 2017-04-20 | Oxford University Innovation Limited | Optical device |
CN105810773A (en) * | 2016-05-05 | 2016-07-27 | 电子科技大学 | Resonant reinforced pyroelectric infrared detector |
WO2018049675A1 (en) * | 2016-09-19 | 2018-03-22 | Xiaomei Yu | Metamaterial based electromagnetic radiation detector |
CN107359234A (en) * | 2017-07-28 | 2017-11-17 | 电子科技大学 | A kind of pyroelectric detector content gradually variational alloy absorbed layer and preparation method thereof |
KR20190028142A (en) * | 2017-09-08 | 2019-03-18 | 아주대학교산학협력단 | The structural color filter using multicavity resonances |
DE102018206516A1 (en) * | 2018-04-26 | 2019-10-31 | DLR-Institut für Vernetzte Energiesysteme e.V. | Switchable absorber element and photovoltaic cell |
CN109095499A (en) * | 2018-06-27 | 2018-12-28 | 深圳大学 | A kind of vanadium dioxide Multilayer system and its preparation method and application |
CN110568692A (en) * | 2019-08-30 | 2019-12-13 | 华中科技大学 | A display device based on phase change materials and quantum dots |
CN112066580A (en) * | 2020-03-03 | 2020-12-11 | 河北道荣新能源科技有限公司 | Structure of Vanadium-Based Selective Absorber Coatings |
CN212783820U (en) * | 2020-10-16 | 2021-03-23 | 中国计量大学 | Broadband-adjustable terahertz wave absorber based on vanadium dioxide phase-change material |
CN112490686A (en) * | 2020-11-12 | 2021-03-12 | 云南师范大学 | Based on VO2Switch type broadband terahertz wave absorber and absorbing device |
US20220308264A1 (en) * | 2021-03-25 | 2022-09-29 | University Of Rochester | Fano resonant optical coating |
CN115561921A (en) * | 2021-07-02 | 2023-01-03 | 南京大学 | Electrically adjustable broadband wave plate based on vanadium dioxide composite metasurface and its preparation method |
RU214103U1 (en) * | 2021-10-22 | 2022-10-12 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" | Multilayer structure with anti-reflective films of phase-change materials |
CN115032728A (en) * | 2022-01-28 | 2022-09-09 | 昆明理工大学 | A Bandwidth/Narrow Tunable Terahertz Absorber |
WO2023178822A1 (en) * | 2022-03-23 | 2023-09-28 | 苏州大学 | Ultra-wideband optical absorber based on multiple transition metal layers |
CN117293559A (en) * | 2023-11-03 | 2023-12-26 | 中国科学院半导体研究所 | Terahertz super-surface absorber, device and application thereof |
CN117895242A (en) * | 2023-12-08 | 2024-04-16 | 哈尔滨工业大学 | High-light-transmission broadband microwave absorption adjustable optical window based on phase change material |
CN118348620A (en) * | 2023-12-14 | 2024-07-16 | 华南师范大学 | A metamaterial light absorber and its structure prediction method and prediction device |
CN118244397A (en) * | 2024-03-15 | 2024-06-25 | 西安交通大学 | Super-surface light absorption device based on silver-tin-selenium and silver-tin-tellurium phase change materials |
Non-Patent Citations (4)
Title |
---|
JINLONG FENG; MENG XU; XIAOJIE WANG; QI LIN; XIAOMIN CHENG; MING XU; HAO TONG; XIANGSHUI MIAO: "Gold fillings unravel the vacancy role in the phase transition of GeTe", 《APPLIED PHYSICS LETTERS》, vol. 112, no. 7, 12 February 2018 (2018-02-12), XP012226295, DOI: 10.1063/1.5006718 * |
M. A. ITSKOVSKY: "Kinetics of Ferroelectric Phase Transition: Nonlinear Pyroelectric Effect and Ferroelectric Solar Cell", 《JAPANESE JOURNAL OF APPLIED PHYSICS》, vol. 38, no. 8, 31 August 1999 (1999-08-31) * |
WEI, WJ ;GAO, HQ; YANG, Y; ETC.: "Zero-Dimensional Molecular Ferroelectrics with Significant Nonlinear Effect and Giant Entropy", 《 CHEMISTRY OF MATERIALS》, vol. 34, no. 14, 26 July 2022 (2022-07-26) * |
李毅;易新建;张天序;: "基于半导体和金属相变的热光效应光调制器", 华中科技大学学报(自然科学版), vol. 34, no. 04, 28 April 2006 (2006-04-28) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118915341A (en) * | 2024-07-17 | 2024-11-08 | 华中科技大学 | Narrow band absorbing device based on phase change material |
CN118915341B (en) * | 2024-07-17 | 2025-04-08 | 华中科技大学 | Narrow band absorbing device based on phase change material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | Dynamic metasurfaces using phase‐change chalcogenides | |
Cao et al. | Fundamentals and applications of chalcogenide phase‐change material photonics | |
Cao et al. | Photonic Ge-Sb-Te phase change metamaterials and their applications | |
CN113376870B (en) | Spatial light type electro-optic modulation device based on phase change material and manufacturing method thereof | |
Abdollahramezani et al. | Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture | |
CN113075802A (en) | Based on phase change material Sb2S3Near infrared thermal modulation zooming super-structure lens | |
Wang et al. | Non-volatile tunable optics by design: from chalcogenide phase-change materials to device structures | |
CN115047653A (en) | A Tunable Metasurface System | |
Wen et al. | A large scale perfect absorber and optical switch based on phase change material (Ge2Sb2Te5) thin film | |
Zhu et al. | Linear optical switch metasurface composed of cross-shaped nano-block and Ge2Sb2Te5 film | |
de Galarreta et al. | Phase-change metasurfaces for dyamic beam steering and beam shaping in the infrared | |
Simpson et al. | Phase change material photonics | |
CN118759618A (en) | Broadband absorption devices based on phase change materials | |
CN118759618B (en) | Broadband absorption devices based on phase change materials | |
CN106953008A (en) | Phase change thin film structure for fine tuning of optical properties | |
Tanaka et al. | Demonstration of 1000-times switching of phase-change optical gate with Si wire waveguides | |
CN118915341B (en) | Narrow band absorbing device based on phase change material | |
CN116088077A (en) | A dual-wave dynamic thermal camouflage structure and its optimization method | |
CN115993730B (en) | A Dynamic Infrared Beam Deflector | |
CN118946252B (en) | Sensing, storage and computing integrated structure based on phase change materials | |
Tao et al. | Research progress in metamaterials and metasurfaces based on the phase change material Ge2Sb2Te5 | |
CN119002098A (en) | Gray scale adjusting device based on phase change material display | |
CN118837982A (en) | Adjustable absorber | |
CN117784449B (en) | Filtering structure based on phase change material | |
CN118759739A (en) | A display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |