CN118741610A - Multi-link device and operation method thereof - Google Patents
Multi-link device and operation method thereof Download PDFInfo
- Publication number
- CN118741610A CN118741610A CN202310327704.9A CN202310327704A CN118741610A CN 118741610 A CN118741610 A CN 118741610A CN 202310327704 A CN202310327704 A CN 202310327704A CN 118741610 A CN118741610 A CN 118741610A
- Authority
- CN
- China
- Prior art keywords
- transmission module
- transmission
- module
- packet
- link
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
- H04W28/22—Negotiating communication rate
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明涉及一种多链路装置以及其操作方法,该装置包含第一传输模块、第二传输模块、分析模块及多链路控制模块。第一传输模块用以经由第一链路对第一传输模块中的一组分组进行分组传输,及针对第一传输模块的每次分组传输传送第一传输状况。第二传输模块经由第二链路对第二传输模块中的一组分组进行分组传输,及针对第二传输模块的每次分组传输传送第二传输状况。分析模块用以依据第一传输状况及第二传输状况计算第一传输模块对第二传输模块的分组消耗率之比。多链路控制模块依据至少分组消耗率之比将待分配分组分配至第一传输模块或第二传输模块。
The present invention relates to a multi-link device and an operation method thereof, wherein the device comprises a first transmission module, a second transmission module, an analysis module and a multi-link control module. The first transmission module is used to perform packet transmission on a group of packets in the first transmission module via a first link, and transmit a first transmission status for each packet transmission of the first transmission module. The second transmission module is used to perform packet transmission on a group of packets in the second transmission module via a second link, and transmit a second transmission status for each packet transmission of the second transmission module. The analysis module is used to calculate the ratio of the packet consumption rate of the first transmission module to the second transmission module according to the first transmission status and the second transmission status. The multi-link control module allocates the to-be-allocated packets to the first transmission module or the second transmission module according to at least the ratio of the packet consumption rates.
Description
【技术领域】[Technical field]
本发明关于无线通信,特别是一种多链路装置及其操作方法。The present invention relates to wireless communication, and more particularly to a multi-link device and an operating method thereof.
【背景技术】[Background technology]
IEEE 802.11be通讯协议规范Wi-Fi 7技术,支持多链路操作(multi-linkoperation,MLO)及区块确认(block acknowledgement,BA)机制。多链路操作可同时聚合不同频段上的多个频道,即使某些频段受到干扰或出现壅塞,数据仍可无缝传输,让连网可以更快、更可靠,对于需要稳定、持续、实时信号传输质量的影像串流与游戏等应用至关重要。区块确认可采用BA讯框确认是否成功收到一组分组。多链路操作及区块确认可用以达成高传输速率、高吞吐量(throughput)、及低延迟(low latency)的效果。The IEEE 802.11be communication protocol standardizes Wi-Fi 7 technology and supports multi-link operation (MLO) and block acknowledgement (BA) mechanisms. Multi-link operation can aggregate multiple channels on different frequency bands at the same time. Even if some frequency bands are interfered or congested, data can still be transmitted seamlessly, making the network faster and more reliable. This is crucial for applications such as video streaming and gaming that require stable, continuous, and real-time signal transmission quality. Block acknowledgement can use BA frames to confirm whether a group of packets has been successfully received. Multi-link operation and block acknowledgement can be used to achieve high transmission rates, high throughput, and low latency.
在相关技术中,当进行数据传输时,多链路装置使用软件控制各链路的数据流。然而各链路之间互相独立,无法于传输过程中交换信息,控制信息传送至软件端会产生大量传输延迟及占用大量系统资源,无法满足控制信息的时效性需求,且于某些数据系统例如通用串行总线(universal serial bus,USB),无线环境报告无法上传至上层软件端,上层软件端无法获得所需控制信息,因此无法正确控制各链路的数据流。此外,在取得控制信息后,上层软件仍需花费运算资源进行传输资源调度,且调整完毕至进行分组传输之间的过程中无线环境可能产生变化,致使链路资源分配无法达成最佳效率。In the related art, when data is transmitted, the multi-link device uses software to control the data flow of each link. However, each link is independent of each other and cannot exchange information during the transmission process. The transmission of control information to the software side will cause a lot of transmission delays and occupy a lot of system resources, which cannot meet the timeliness requirements of the control information. In some data systems such as the universal serial bus (USB), the wireless environment report cannot be uploaded to the upper-layer software side, and the upper-layer software side cannot obtain the required control information, so it cannot correctly control the data flow of each link. In addition, after obtaining the control information, the upper-layer software still needs to spend computing resources to schedule transmission resources, and the wireless environment may change during the process between the adjustment and the packet transmission, resulting in the link resource allocation failing to achieve optimal efficiency.
【发明内容】[Summary of the invention]
本发明实施例提供一种多链路装置,包含第一传输模块、第二传输模块、分析模块及多链路控制模块。第一传输模块用以经由第一链路对第一传输模块中的一组分组进行分组传输,及针对第一传输模块的每次分组传输传送第一传输状况。第二传输模块用以经由第二链路对第二传输模块中的一组分组进行分组传输,及针对第二传输模块的每次分组传输传送第二传输状况。分析模块耦接于第一传输模块及第二传输模块,用以依据第一传输状况及第二传输状况计算第一传输模块对第二传输模块的分组消耗率之比。多链路控制模块耦接于第一传输模块、第二传输模块及分析模块,用以计算第一传输模块对第二传输模块的分组分配率之比,若分组消耗率之比不同于分组分配率之比,依据至少分组消耗率之比调整第一传输模块的第一最小临界值及第一最大临界值,及/或调整第二传输模块的第二最小临界值及第二最大临界值,及依据第一最小临界值、第一最大临界值、第二最小临界值、及/或第二最大临界值将待分配分组分配至第一传输模块或第二传输模块。An embodiment of the present invention provides a multi-link device, comprising a first transmission module, a second transmission module, an analysis module, and a multi-link control module. The first transmission module is used to perform packet transmission on a group of packets in the first transmission module via a first link, and transmit a first transmission status for each packet transmission of the first transmission module. The second transmission module is used to perform packet transmission on a group of packets in the second transmission module via a second link, and transmit a second transmission status for each packet transmission of the second transmission module. The analysis module is coupled to the first transmission module and the second transmission module, and is used to calculate the ratio of the packet consumption rate of the first transmission module to the second transmission module according to the first transmission status and the second transmission status. The multi-link control module is coupled to the first transmission module, the second transmission module and the analysis module, and is used to calculate the ratio of the packet allocation rate of the first transmission module to the second transmission module. If the ratio of the packet consumption rate is different from the ratio of the packet allocation rate, the first minimum threshold value and the first maximum threshold value of the first transmission module are adjusted according to at least the ratio of the packet consumption rate, and/or the second minimum threshold value and the second maximum threshold value of the second transmission module are adjusted, and the to-be-allocated packets are allocated to the first transmission module or the second transmission module according to the first minimum threshold value, the first maximum threshold value, the second minimum threshold value, and/or the second maximum threshold value.
本发明实施例另提供一种多链路装置多链路装置的控制方法,多链路装置包含第一传输模块、第二传输模块、分析模块及多链路控制模块,分析模块耦接于第一传输模块及第二传输模块,多链路控制模块耦接于第一传输模块、第二传输模块及分析模块。控制方法包含第一传输模块经由第一链路对第一传输模块中的一组分组进行分组传输,及针对第一传输模块的每次分组传输传送第一传输状况,第二传输模块经由第二链路对第二传输模块中的一组分组进行分组传输,及针对第二传输模块的每次分组传输传送第二传输状况,及分析模块依据第一传输状况及第二传输状况计算第一传输模块对第二传输模块的分组消耗率之比。控制方法另包含多链路控制模块计算第一传输模块对第二传输模块的分组分配率之比,若分组消耗率之比不同于分组分配率之比,多链路控制模块依据至少分组消耗率之比调整第一传输模块的第一最小临界值及第一最大临界值,及/或调整第二传输模块的第二最小临界值及第二最大临界值;及多链路控制模块依据第一最小临界值、第一最大临界值、第二最小临界值、及/或第二最大临界值将待分配分组分配至第一传输模块或第二传输模块。The embodiment of the present invention further provides a control method of a multi-link device, wherein the multi-link device comprises a first transmission module, a second transmission module, an analysis module and a multi-link control module, wherein the analysis module is coupled to the first transmission module and the second transmission module, and the multi-link control module is coupled to the first transmission module, the second transmission module and the analysis module. The control method comprises the first transmission module performing packet transmission on a group of packets in the first transmission module via a first link, and transmitting a first transmission status for each packet transmission of the first transmission module, the second transmission module performing packet transmission on a group of packets in the second transmission module via a second link, and transmitting a second transmission status for each packet transmission of the second transmission module, and the analysis module calculating the ratio of the packet consumption rate of the first transmission module to the second transmission module according to the first transmission status and the second transmission status. The control method further includes the following steps: the multi-link control module calculates the ratio of the packet allocation rate of the first transmission module to the second transmission module; if the ratio of the packet consumption rate is different from the ratio of the packet allocation rate, the multi-link control module adjusts the first minimum critical value and the first maximum critical value of the first transmission module according to at least the ratio of the packet consumption rate, and/or adjusts the second minimum critical value and the second maximum critical value of the second transmission module; and the multi-link control module allocates the to-be-allocated packets to the first transmission module or the second transmission module according to the first minimum critical value, the first maximum critical value, the second minimum critical value, and/or the second maximum critical value.
【附图说明】【Brief Description of the Drawings】
图1为本发明实施例中的一种多链路通讯系统的示意图。FIG. 1 is a schematic diagram of a multi-link communication system according to an embodiment of the present invention.
图2为本发明实施例中的一种存取点多链路装置的方块图。FIG. 2 is a block diagram of an access point multi-link device according to an embodiment of the present invention.
图3为图2中的存取点多链路装置的控制方法的流程图。FIG. 3 is a flow chart of a control method of the access point multi-link device in FIG. 2 .
图4为图3中的控制方法中步骤S318的流程图。FIG. 4 is a flow chart of step S318 in the control method in FIG. 3 .
图5为图4的步骤S318中分配分组的示意图。FIG. 5 is a schematic diagram of allocating groups in step S318 of FIG. 4 .
图6为图2中的链路重设模块改传MAC分组的示意图。FIG. 6 is a schematic diagram of the link resetting module in FIG. 2 retransmitting a MAC packet.
【具体实施方式】[Specific implementation method]
图1为本发明实施例中的一种多链路通讯系统1的示意图。多链路通讯系统1包含存取点多链路装置(access point multi-link device,AP MLD)10及非存取点多链路装置(non-access point multi-link device,non-AP MLD)12。多链路通讯系统1符合IEEE802.11标准,例如符合IEEE 802.11be标准。1 is a schematic diagram of a multi-link communication system 1 according to an embodiment of the present invention. The multi-link communication system 1 includes an access point multi-link device (AP MLD) 10 and a non-access point multi-link device (non-AP MLD) 12. The multi-link communication system 1 complies with the IEEE 802.11 standard, for example, complies with the IEEE 802.11be standard.
AP MLD 10可包含存取点(access point,AP)101及102,且非AP MLD(non-AP MLD)12可包含站点(station,STA)121及122。存取点101及102,及站点121及122可为逻辑设备,及可由硬件、软件、韧体或其结合实现。AP MLD 10及非AP MLD 12之间可在2.4G、5G及6G频谱的不同频段建立链路141及链路142。例如,链路141可在2.4GHz的频段运行,链路142可在5GHz的频段运行。在另一例子中,链路141可在高频5GHz的频段运行,链路142可在低频2.4GHz的频段运行。存取点101及存取点102可分别通过链路141及链路142与站点121及站点122同时进行通讯。The AP MLD 10 may include access points (APs) 101 and 102, and the non-AP MLD 12 may include stations (STAs) 121 and 122. The access points 101 and 102, and the stations 121 and 122 may be logical devices, and may be implemented by hardware, software, firmware, or a combination thereof. The AP MLD 10 and the non-AP MLD 12 may establish links 141 and 142 in different frequency bands of 2.4G, 5G, and 6G spectrum. For example, the link 141 may operate in a frequency band of 2.4 GHz, and the link 142 may operate in a frequency band of 5 GHz. In another example, the link 141 may operate in a high frequency band of 5 GHz, and the link 142 may operate in a low frequency band of 2.4 GHz. The access points 101 and 102 may communicate with the stations 121 and 122 simultaneously through the links 141 and 142, respectively.
AP MLD 10及非AP MLD 12可采用区块确认(block acknowledgement,BA)机制进行通讯。AP MLD 10及非AP MLD 12可针对两者之间的多链路操作(multi-link operation,MLO)建立BA协议(agreement),BA协议包含BA窗口的BA窗口大小(window size),以在BA期间(session)维持BA窗口(window)。BA窗口大小可为64、128、256、1024个或其他数量的媒体访问控制协议(media access control,MAC)分组。每个MAC分组可具有序号(sequencenumber,SN)并可依据其序号进行索引。例如,AP MLD 10的驱动程序可将单一档案分为2048个MAC分组,并依序附上1到2048的序号。在每次分组传输中,非AP MLD 12或AP MLD 10会将传送的MAC分组的序号范围维持在BA窗口大小之内,藉以避免序号溢位(sequence numberoverflow)。例如,若BA窗口大小为1024个MAC分组,在每次分组传输中,AP MLD 10会将传送至非AP MLD 12的MAC分组的序号范围维持在1024之内。在一个例子中,AP MLD 10通过链路141及/或142传送序号为1到1024的1024个MAC分组至非AP MLD 12之后,非AP MLD 12可回传BA讯框以确认是否成功收到1024个MAC分组,藉以减少多链路通讯系统1的负担(overhead)及提高吞吐量(throughput)。The AP MLD 10 and the non-AP MLD 12 may communicate using a block acknowledgement (BA) mechanism. The AP MLD 10 and the non-AP MLD 12 may establish a BA agreement for a multi-link operation (MLO) between the two. The BA agreement includes a BA window size for a BA window to maintain the BA window during a BA session. The BA window size may be 64, 128, 256, 1024, or other number of media access control (MAC) packets. Each MAC packet may have a sequence number (SN) and may be indexed according to its sequence number. For example, the driver of the AP MLD 10 may divide a single file into 2048 MAC packets and sequentially attach sequence numbers from 1 to 2048. In each packet transmission, the non-AP MLD 12 or the AP MLD 10 maintains the sequence number range of the transmitted MAC packets within the BA window size to avoid sequence number overflow. For example, if the BA window size is 1024 MAC packets, in each packet transmission, the AP MLD 10 will maintain the sequence number range of the MAC packets transmitted to the non-AP MLD 12 within 1024. In one example, after the AP MLD 10 transmits 1024 MAC packets with sequence numbers 1 to 1024 to the non-AP MLD 12 via the links 141 and/or 142, the non-AP MLD 12 may return a BA frame to confirm whether the 1024 MAC packets are successfully received, thereby reducing the overhead of the multi-link communication system 1 and improving the throughput.
AP MLD 10及/或非AP MLD 12可依据链路141及链路142的分组传输状况及/或通道使用状况调整链路141及链路142的分组分配,藉以提高传输可靠度,降低数据延迟,及减低信号干扰的影响。The AP MLD 10 and/or the non-AP MLD 12 may adjust the packet allocation of the link 141 and the link 142 according to the packet transmission status and/or channel usage status of the link 141 and the link 142 to improve transmission reliability, reduce data delay, and mitigate the impact of signal interference.
虽然第1图仅显示AP MLD 10及非AP MLD 12之间具有2条链路,然而本发明不限于此,在一些实施例中,AP MLD 10及非AP MLD 12之间亦可具有其他数量的链路。Although FIG. 1 only shows that there are two links between the AP MLD 10 and the non-AP MLD 12 , the present invention is not limited thereto. In some embodiments, there may be other numbers of links between the AP MLD 10 and the non-AP MLD 12 .
图2为本发明实施例中的一种多链路装置的方块图,多链路装置可为AP MLD 10或非AP MLD 12。以AP MLD 10为例,AP MLD 10可包含驱动程序20、多链路控制模块22、分析模块24、传输模块261、传输模块262、链路重设模块28、基频(baseband,BB)/射频(radiofrequency,RF)模块291、及BB/RF模块292。分析模块24可耦接于传输模块261及传输模块262。多链路控制模块22可耦接于传输模块261、传输模块262及分析模块24。链路重设模块28可耦接于传输模块261、传输模块262及分析模块24。BB/RF模块291可耦接于传输模块261,且BB/RF模块292可耦接于传输模块262。多链路控制模块22、分析模块24、传输模块261及传输模块262可由硬件、韧体或其结合实现。多链路控制模块22、传输模块261及传输模块262可各自包含队列。FIG2 is a block diagram of a multi-link device according to an embodiment of the present invention. The multi-link device may be an AP MLD 10 or a non-AP MLD 12. Taking the AP MLD 10 as an example, the AP MLD 10 may include a driver 20, a multi-link control module 22, an analysis module 24, a transmission module 261, a transmission module 262, a link resetting module 28, a baseband (BB)/radio frequency (RF) module 291, and a BB/RF module 292. The analysis module 24 may be coupled to the transmission module 261 and the transmission module 262. The multi-link control module 22 may be coupled to the transmission module 261, the transmission module 262, and the analysis module 24. The link resetting module 28 may be coupled to the transmission module 261, the transmission module 262, and the analysis module 24. The BB/RF module 291 may be coupled to the transmission module 261, and the BB/RF module 292 may be coupled to the transmission module 262. The multi-link control module 22, the analysis module 24, the transmission module 261 and the transmission module 262 may be implemented by hardware, firmware or a combination thereof. The multi-link control module 22, the transmission module 261 and the transmission module 262 may each include a queue.
驱动程序20可进行上层信号处理,多链路控制模块22、分析模块24、传输模块261、传输模块262及链路重设模块28可进行MAC层信号处理,BB/RF模块291及BB/RF模块292可进行物理层信号处理。The driver 20 may perform upper layer signal processing, the multi-link control module 22, the analysis module 24, the transmission module 261, the transmission module 262 and the link resetting module 28 may perform MAC layer signal processing, and the BB/RF module 291 and the BB/RF module 292 may perform physical layer signal processing.
多链路控制模块22可从驱动程序20或其他上层应用程序获得复数个待分配MAC分组,及暂存该些待分配MAC分组。多链路控制模块22可控制分组流。在一些实施例中,多链路控制模块22可依据BA窗口大小判断是否要分配该些待分配MAC分组,例如BA窗口大小可为1024。若该些待分配MAC分组的编号无法满足BA窗口大小,多链路控制模块22可暂存该些MAC分组而不予分配。若该些待分配MAC分组的编号满足BA窗口大小,多链路控制模块22可将该些待分配MAC分组分配至传输模块261及/或传输模块262。在一些实施例中,在初始状态,传输模块261及传输模块262皆未储存有MAC分组,多链路控制模块22可将该些待分配MAC分组依据传输模块261及传输模块262的默认优先级分配至传输模块261及/或传输模块262。例如,多链路控制模块22可默认传输模块261具有第一优先级,传输模块262具有第二优先级,第一优先级高于第二优先级,多链路控制模块22可将该些待分配MAC分组先分配至传输模块261,在传输模块261填满后再将剩余的待分配MAC分组分配至传输模块262。The multi-link control module 22 may obtain a plurality of MAC packets to be allocated from the driver 20 or other upper layer applications, and temporarily store the MAC packets to be allocated. The multi-link control module 22 may control the packet flow. In some embodiments, the multi-link control module 22 may determine whether to allocate the MAC packets to be allocated based on the BA window size, for example, the BA window size may be 1024. If the numbers of the MAC packets to be allocated cannot meet the BA window size, the multi-link control module 22 may temporarily store the MAC packets without allocating them. If the numbers of the MAC packets to be allocated meet the BA window size, the multi-link control module 22 may allocate the MAC packets to be allocated to the transmission module 261 and/or the transmission module 262. In some embodiments, in the initial state, the transmission module 261 and the transmission module 262 do not store MAC packets, and the multi-link control module 22 may allocate the MAC packets to be allocated to the transmission module 261 and/or the transmission module 262 based on the default priorities of the transmission module 261 and the transmission module 262. For example, the multi-link control module 22 may default that the transmission module 261 has a first priority and the transmission module 262 has a second priority, and the first priority is higher than the second priority. The multi-link control module 22 may first allocate the MAC packets to be allocated to the transmission module 261, and then allocate the remaining MAC packets to be allocated to the transmission module 262 after the transmission module 261 is filled.
传输模块261可暂存一或多个MAC分组,及透过载波检测多重存取/碰撞避免(carrier-sense multiple access with collision avoidance,CSMA/CA)方式竞争链路141的传送机会,传输模块261中的MAC分组的序号顺序可为连续或不连续。一旦获得链路141的传送机会,传输模块261可将传输模块261中的一组MAC分组传送至BB/RF模块291,BB/RF模块291可对传输模块261中的该组MAC分组进行基频及射频信号处理,及经由链路141对传输模块261中的该组MAC分组进行分组传输。该组MAC分组可称为聚合MAC协议数据单元(aggregate MAC protocol data unit,AMPDU),例如传输模块261的AMPDU可包含128个MAC分组。接着,BB/RF模块291可将传输模块261的AMPDU中每个MAC分组是否成功传输的信息回传给传输模块261,且传输模块261可针对传输模块261的每次分组传输,传送第一传输状况至分析模块24,第一传输状况包含传输模块261的AMPDU中成功传输的MAC分组的分组数量、传输率、及/或重试率(retry rate)。The transmission module 261 can temporarily store one or more MAC packets, and compete for the transmission opportunity of the link 141 through a carrier-sense multiple access with collision avoidance (CSMA/CA) method. The sequence number order of the MAC packets in the transmission module 261 can be continuous or discontinuous. Once the transmission opportunity of the link 141 is obtained, the transmission module 261 can transmit a group of MAC packets in the transmission module 261 to the BB/RF module 291. The BB/RF module 291 can perform baseband and radio frequency signal processing on the group of MAC packets in the transmission module 261, and transmit the group of MAC packets in the transmission module 261 via the link 141. The group of MAC packets can be called an aggregate MAC protocol data unit (AMPDU). For example, the AMPDU of the transmission module 261 can include 128 MAC packets. Next, the BB/RF module 291 may transmit back to the transmission module 261 information on whether each MAC packet in the AMPDU of the transmission module 261 is successfully transmitted, and the transmission module 261 may transmit a first transmission status to the analysis module 24 for each packet transmission of the transmission module 261, wherein the first transmission status includes the number of MAC packets successfully transmitted in the AMPDU of the transmission module 261, the transmission rate, and/or the retry rate.
相似地,传输模块262可暂存一或多个MAC分组,及透过CSMA/CA方式竞争链路142的传送机会,传输模块262中的MAC分组的序号顺序可为连续或不连续。一旦获得链路142的传送机会,传输模块262可将传输模块262中的一组MAC分组(AMPDU)传送至BB/RF模块292,BB/RF模块292可对传输模块262中的该组MAC分组进行基频及射频信号处理,及经由链路142对传输模块262中的该组MAC分组进行分组传输。例如,传输模块262的AMPDU可包含64个MAC分组。接着,BB/RF模块292可将传输模块262的AMPDU中每个MAC分组是否成功传输的信息回传给传输模块262,且传输模块262可针对传输模块262的每次分组传输,传送第二传输状况至分析模块24,第二传输状况包含传输模块262的AMPDU中成功传输的MAC分组的分组数量、传输率、及/或重试率。Similarly, the transmission module 262 can temporarily store one or more MAC packets and compete for the transmission opportunity of the link 142 through the CSMA/CA method. The sequence number order of the MAC packets in the transmission module 262 can be continuous or discontinuous. Once the transmission opportunity of the link 142 is obtained, the transmission module 262 can transmit a group of MAC packets (AMPDU) in the transmission module 262 to the BB/RF module 292. The BB/RF module 292 can perform baseband and radio frequency signal processing on the group of MAC packets in the transmission module 262, and transmit the group of MAC packets in the transmission module 262 via the link 142. For example, the AMPDU of the transmission module 262 can include 64 MAC packets. Next, the BB/RF module 292 may transmit back to the transmission module 262 information on whether each MAC packet in the AMPDU of the transmission module 262 is successfully transmitted, and the transmission module 262 may send a second transmission status to the analysis module 24 for each packet transmission of the transmission module 262, wherein the second transmission status includes the number of MAC packets successfully transmitted in the AMPDU of the transmission module 262, the transmission rate, and/or the retry rate.
分析模块24可在预定时段中依据第一传输状况及第二传输状况计算传输模块261对传输模块262的分组消耗率之比RC1∶RC2,其中RC1为传输模块261的分组消耗率,RC2为传输模块262的分组消耗率。预定时段可为目标信标传送时间(target beacon transmissiontime,TBTT)。例如,若在2个相邻TBTT之间分析模块24收到1个第一传输状况及1个第二传输状况,第一传输状况中成功传输的MAC分组的分组数量为128,第二传输状况中成功传输的MAC分组的分组数量为64,则分析模块24可在第2个TBTT计算传输模块261对传输模块262的分组消耗率之比为2∶1(=128∶64)。由于在TBTT所有站点都在等待信标,因此若分析模块24在TBTT计算分组消耗率之比以调整传输模块261对传输模块262的分组分配率之比RD1∶RD2,其中RD1为传输模块261的分组分配率,RD2为传输模块262的分组分配率,如此则可降低对链路141及链路142的数据传输的影响。多链路控制模块22可从分析模块24接收分组消耗率之比,及计算传输模块261对传输模块262的分组分配率之比。例如,若在2个TBTT之间多链路控制模块22分配至传输模块261的分组数量为128,分配至传输模块262的分组数量亦为128,多链路控制模块22可计算传输模块261对传输模块262的分组分配率之比为1∶1(=128∶128)。The analysis module 24 may calculate the ratio RC1:RC2 of the packet consumption rate of the transmission module 261 to the transmission module 262 according to the first transmission status and the second transmission status in a predetermined period, wherein RC1 is the packet consumption rate of the transmission module 261, and RC2 is the packet consumption rate of the transmission module 262. The predetermined period may be a target beacon transmission time (TBTT). For example, if the analysis module 24 receives one first transmission status and one second transmission status between two adjacent TBTTs, the number of MAC packets successfully transmitted in the first transmission status is 128, and the number of MAC packets successfully transmitted in the second transmission status is 64, then the analysis module 24 may calculate the ratio of the packet consumption rate of the transmission module 261 to the transmission module 262 as 2:1 (=128:64) in the second TBTT. Since all stations are waiting for the beacon at TBTT, if the analysis module 24 calculates the ratio of packet consumption rates at TBTT to adjust the ratio of packet allocation rates of the transmission module 261 to the transmission module 262, RD1:RD2, where RD1 is the packet allocation rate of the transmission module 261 and RD2 is the packet allocation rate of the transmission module 262, the impact on the data transmission of the link 141 and the link 142 can be reduced. The multi-link control module 22 can receive the ratio of packet consumption rates from the analysis module 24 and calculate the ratio of packet allocation rates of the transmission module 261 to the transmission module 262. For example, if the number of packets allocated to the transmission module 261 by the multi-link control module 22 between two TBTTs is 128, and the number of packets allocated to the transmission module 262 is also 128, the multi-link control module 22 can calculate the ratio of packet allocation rates of the transmission module 261 to the transmission module 262 as 1:1 (=128:128).
在初始状态,传输模块261可设定第一最小临界值及第一最大临界值,且传输模块266可设定第二最小临界值及第二最大临界值。第一最大临界值可大于第一最小临界值及可为第一最小临界值的正整数倍数,例如2倍,且第二最大临界值可大于第二最小临界值及可为第二最小临界值的正整数倍数,例如2倍。在一些实施例中,第一最小临界值、第一最大临界值、第二最小临界值及第二最大临界值可为默认值。举例而言,第一最小临界值可预设为128,第一最大临界值可预设为256,第二最小临界值可预设为128,及第二最大临界值可预设为256。In the initial state, the transmission module 261 may set a first minimum critical value and a first maximum critical value, and the transmission module 266 may set a second minimum critical value and a second maximum critical value. The first maximum critical value may be greater than the first minimum critical value and may be a positive integer multiple of the first minimum critical value, such as 2 times, and the second maximum critical value may be greater than the second minimum critical value and may be a positive integer multiple of the second minimum critical value, such as 2 times. In some embodiments, the first minimum critical value, the first maximum critical value, the second minimum critical value, and the second maximum critical value may be default values. For example, the first minimum critical value may be preset to 128, the first maximum critical value may be preset to 256, the second minimum critical value may be preset to 128, and the second maximum critical value may be preset to 256.
若分组消耗率之比不同于分组分配率之比,多链路控制模块22可依据至少分组消耗率之比调整传输模块261的第一最小临界值及第一最大临界值,及/或调整传输模块262的第二最小临界值及第二最大临界值,及依据第一最小临界值、第一最大临界值、第二最小临界值、及/或第二最大临界值将待分配MAC分组分配至传输模块261或传输模块262。在一些实施例中,若分组消耗率之比不同于分组分配率之比,多链路控制模块22可将第一最小临界值及第二最小临界值的比率调整为等于分组消耗率之比,及/或将第一最大临界值及第二最大临界值的比率调整为等于分组消耗率之比。举例而言,若分组消耗率之比为2:1且分组分配率之比为1∶1,由于分组消耗率之比不同于分组分配率之比,多链路控制模块22可依据分组消耗率之比(=2∶1)将第一最小临界值调整为128,第一最大临界值调整为256,第二最小临界值调整为64,第二最大临界值调整为128,以使第一最小临界值及第二最小临界值的比率(=2∶1)及第一最大临界值及第二最大临界值的比率(=2∶1)皆等于分组消耗率之比(=2∶1)。If the ratio of the packet consumption rates is different from the ratio of the packet allocation rates, the multi-link control module 22 may adjust the first minimum threshold and the first maximum threshold of the transmission module 261 according to at least the ratio of the packet consumption rates, and/or adjust the second minimum threshold and the second maximum threshold of the transmission module 262, and allocate the MAC packets to be allocated to the transmission module 261 or the transmission module 262 according to the first minimum threshold, the first maximum threshold, the second minimum threshold, and/or the second maximum threshold. In some embodiments, if the ratio of the packet consumption rates is different from the ratio of the packet allocation rates, the multi-link control module 22 may adjust the ratio of the first minimum threshold and the second minimum threshold to be equal to the ratio of the packet consumption rates, and/or adjust the ratio of the first maximum threshold and the second maximum threshold to be equal to the ratio of the packet consumption rates. For example, if the ratio of the packet consumption rate is 2:1 and the ratio of the packet allocation rate is 1:1, since the ratio of the packet consumption rate is different from the ratio of the packet allocation rate, the multi-link control module 22 can adjust the first minimum threshold value to 128, the first maximum threshold value to 256, the second minimum threshold value to 64, and the second maximum threshold value to 128 according to the ratio of the packet consumption rate (=2:1), so that the ratio of the first minimum threshold value to the second minimum threshold value (=2:1) and the ratio of the first maximum threshold value to the second maximum threshold value (=2:1) are both equal to the ratio of the packet consumption rate (=2:1).
在一些实施例中,多链路控制模块22可另依据链路141可支持的第一最大聚合大小(maximum aggregation number)设定调整传输模块261的第一最小临界值及第一最大临界值,及/或依据链路142可支持的第二最大聚合大小调整传输模块262的第二最小临界值及第二最大临界值。第一最大聚合大小可由第一传输状况及相关于链路141的软件或硬件设置决定,第二最大聚合大小可由第二传输状况及相关于链路142的软件或硬件设置决定。第一最大聚合大小及第二最大聚合大小可相同或相异。例如,若第一最大聚合大小为128,第二最大聚合大小为64,则第一最小临界值可设为128(等于第一最大聚合大小),第一最大临界值可设为256(等于第一最大聚合大小的2倍),第二最小临界值可设为64(等于第二最大聚合大小),及第二最大临界值可设为128(等于第二最大聚合大小的2倍)。In some embodiments, the multi-link control module 22 may further set and adjust the first minimum threshold and the first maximum threshold of the transmission module 261 according to the first maximum aggregation number that the link 141 can support, and/or adjust the second minimum threshold and the second maximum threshold of the transmission module 262 according to the second maximum aggregation number that the link 142 can support. The first maximum aggregation number may be determined by the first transmission condition and the software or hardware settings related to the link 141, and the second maximum aggregation number may be determined by the second transmission condition and the software or hardware settings related to the link 142. The first maximum aggregation number and the second maximum aggregation number may be the same or different. For example, if the first maximum aggregation number is 128 and the second maximum aggregation number is 64, the first minimum threshold may be set to 128 (equal to the first maximum aggregation number), the first maximum threshold may be set to 256 (equal to twice the first maximum aggregation number), the second minimum threshold may be set to 64 (equal to the second maximum aggregation number), and the second maximum threshold may be set to 128 (equal to twice the second maximum aggregation number).
由于无线环境会随时间改变,链路141及链路142的联机质量会随无线环境改变,因此。在一些实施例中,分析模块24另可从BB/RF模块291获得链路141的第一通道使用状况,及从BB/RF模块292获得链路142的第二通道使用状况,藉以判断链路141及链路142的联机质量。第一通道使用状况可包含链路141的闲置通道评估(Clear Channel Assessment,CCA)结果及/或网络分配向量(Network Allocation Vector,NAV),且第二通道使用状况可包含链路142的CCA结果及/或NAV。当侦测到802.11传输的前导码(preamble)及/或通道能量超出默认临界值时,分析模块24可判定链路的CCA结果为忙碌。当侦测到NAV具有非零值时,分析模块24可判定链路处于忙碌状态。多链路控制模块22另可从分析模块24接收第一信道使用状况及第二信道使用状况,依据第一通道使用状况调整第一最小临界值及第一最大临界值,及依据第二通道使用状况调整第二最小临界值及第二最大临界值。例如,若在2个相邻TBTT之间链路141的CCA结果及NAV皆显示链路141闲置,且链路141的CCA结果及/或NAV皆显示链路141忙碌,则多链路控制模块22可提高第一最小临界值及第一最大临界值,及降低第二最小临界值及第二最大临界值。Since the wireless environment changes over time, the connection quality of link 141 and link 142 will change with the wireless environment. Therefore. In some embodiments, the analysis module 24 can also obtain the first channel usage status of link 141 from the BB/RF module 291 and the second channel usage status of link 142 from the BB/RF module 292 to determine the connection quality of link 141 and link 142. The first channel usage status may include the Clear Channel Assessment (CCA) result and/or the Network Allocation Vector (NAV) of link 141, and the second channel usage status may include the CCA result and/or NAV of link 142. When the preamble and/or channel energy of the 802.11 transmission is detected to exceed the default critical value, the analysis module 24 can determine that the CCA result of the link is busy. When the NAV is detected to have a non-zero value, the analysis module 24 can determine that the link is in a busy state. The multi-link control module 22 may also receive the first channel usage status and the second channel usage status from the analysis module 24, adjust the first minimum threshold and the first maximum threshold according to the first channel usage status, and adjust the second minimum threshold and the second maximum threshold according to the second channel usage status. For example, if the CCA result and NAV of the link 141 between two adjacent TBTTs both show that the link 141 is idle, and the CCA result and/or NAV of the link 141 both show that the link 141 is busy, the multi-link control module 22 may increase the first minimum threshold and the first maximum threshold, and decrease the second minimum threshold and the second maximum threshold.
在一些实施例中,多链路控制模块22可依据第一传输状况中的传输率及/或第一最大聚合大小判断传输模块261的第一传输能力,依据第二传输状况中的传输率及/或第二最大聚合大小判断传输模块262的第二传输能力,及依据第一传输能力及第二传输能力调整传输模块261的第一优先级及传输模块262的第二优先级。例如,若第二传输能力大于第一传输能力,则多链路控制模块22可将第二优先级调整为高于第一优先级。多链路控制模块22可依据第一优先级及第二优先级使用第一最小临界值、第一最大临界值、第二最小临界值及第二最大临界值分配该些待分配MAC分组,如图4所示,在后续段落会详细说明。In some embodiments, the multi-link control module 22 may determine the first transmission capability of the transmission module 261 according to the transmission rate and/or the first maximum aggregation size in the first transmission condition, determine the second transmission capability of the transmission module 262 according to the transmission rate and/or the second maximum aggregation size in the second transmission condition, and adjust the first priority of the transmission module 261 and the second priority of the transmission module 262 according to the first transmission capability and the second transmission capability. For example, if the second transmission capability is greater than the first transmission capability, the multi-link control module 22 may adjust the second priority to be higher than the first priority. The multi-link control module 22 may allocate the MAC packets to be allocated using the first minimum threshold, the first maximum threshold, the second minimum threshold, and the second maximum threshold according to the first priority and the second priority, as shown in FIG4 , which will be described in detail in the subsequent paragraphs.
在图2的实施例中,分析模块24可快速获取第一传输状况及第二传输状况以计算分组消耗率之比,使多链路控制模块22得以依据分组消耗率之比快速调整传输模块261及传输模块262的临界值及将待分配MAC分组快速且正确地分配至传输模块261或传输模块262,大幅减低信息回馈的延迟与带宽,符合BA机制的规范,提高传输可靠度,降低数据延迟,及减低信号干扰的影响。In the embodiment of FIG. 2 , the analysis module 24 can quickly obtain the first transmission status and the second transmission status to calculate the ratio of the packet consumption rate, so that the multi-link control module 22 can quickly adjust the critical values of the transmission module 261 and the transmission module 262 according to the ratio of the packet consumption rate and quickly and correctly allocate the MAC packet to be allocated to the transmission module 261 or the transmission module 262, thereby greatly reducing the delay and bandwidth of information feedback, complying with the specifications of the BA mechanism, improving transmission reliability, reducing data delay, and reducing the impact of signal interference.
图3为AP MLD 10的控制方法300的流程图。分组分配方法300包含步骤S302至S318,步骤S302至S312用以调整传输模块261及传输模块262各自的最小临界值及最大临界值,步骤S314及S316用以依据BA窗口大小判断是否要对待分配MAC分组进行分配,步骤S318用以在多链路操作中分配分组至传输模块261或传输模块262。任何合理的技术变更或是步骤调整都属于本发明所揭露的范畴。步骤S302至S318的详细内容如下所述:FIG3 is a flow chart of the control method 300 of the AP MLD 10. The packet allocation method 300 includes steps S302 to S318. Steps S302 to S312 are used to adjust the minimum threshold and the maximum threshold of the transmission module 261 and the transmission module 262, respectively. Steps S314 and S316 are used to determine whether to allocate the MAC packet to be allocated according to the BA window size. Step S318 is used to allocate the packet to the transmission module 261 or the transmission module 262 in the multi-link operation. Any reasonable technical changes or step adjustments fall within the scope of the present invention. The details of steps S302 to S318 are as follows:
步骤S302:传输模块261经由链路141对传输模块261中的一组分组进行分组传输,及针对传输模块261的每次分组传输传送第一传输状况;Step S302: the transmission module 261 performs packet transmission on a group of packets in the transmission module 261 via the link 141, and transmits a first transmission status for each packet transmission of the transmission module 261;
步骤S304:传输模块262经由链路142对传输模块262中的一组分组进行分组传输,及针对传输模块262的每次分组传输传送第二传输状况;Step S304: the transmission module 262 performs packet transmission on a group of packets in the transmission module 262 via the link 142, and transmits a second transmission status for each packet transmission of the transmission module 262;
步骤S306:分析模块24依据第一传输状况及第二传输状况计算传输模块261对传输模块262的分组消耗率之比;Step S306: the analysis module 24 calculates the ratio of the packet consumption rate of the transmission module 261 to the packet consumption rate of the transmission module 262 according to the first transmission status and the second transmission status;
步骤S308:多链路控制模块22计算传输模块261对传输模块262的分组分配率之比;Step S308: the multi-link control module 22 calculates the ratio of the packet allocation rate of the transmission module 261 to the transmission module 262;
步骤S310:多链路控制模块22判断分组消耗率之比是否等于分组分配率之比?若是,继续步骤S314;若否,继续步骤S312;Step S310: The multi-link control module 22 determines whether the ratio of the packet consumption rate is equal to the ratio of the packet allocation rate. If yes, proceed to step S314; if not, proceed to step S312;
步骤S312:多链路控制模块22依据至少分组消耗率之比调整传输模块261的第一最小临界值及第一最大临界值,及/或调整传输模块262的第二最小临界值及第二最大临界值;Step S312: the multi-link control module 22 adjusts the first minimum threshold and the first maximum threshold of the transmission module 261 and/or adjusts the second minimum threshold and the second maximum threshold of the transmission module 262 according to at least the ratio of the packet consumption rates;
步骤S314:多链路控制模块22依据待分配MAC分组的最小分组序号及第一最小分组序号SNmin1计算第一差值Diff1,依据待分配MAC分组的最小分组序号及第二最小分组序号SNmin2计算第二差值Diff2;Step S314: the multi-link control module 22 calculates the first difference Diff1 according to the minimum packet sequence number of the MAC packet to be allocated and the first minimum packet sequence number SNmin1, and calculates the second difference Diff2 according to the minimum packet sequence number of the MAC packet to be allocated and the second minimum packet sequence number SNmin2;
步骤S316:多链路控制模块22判断第一差值Diff1及第二差值Diff2是否小于BA窗口大小BA_LMT?若是,继续步骤S318;若否,回到步骤S314;Step S316: The multi-link control module 22 determines whether the first difference Diff1 and the second difference Diff2 are smaller than the BA window size BA_LMT. If yes, proceed to step S318; if not, return to step S314;
步骤S318:多链路控制模块22依据第一最小临界值、第一最大临界值、第二最小临界值、及/或第二最大临界值将待分配MAC分组分配至传输模块261或传输模块262。Step S318: The multi-link control module 22 allocates the MAC packets to be allocated to the transmission module 261 or the transmission module 262 according to the first minimum threshold, the first maximum threshold, the second minimum threshold, and/or the second maximum threshold.
在步骤S302,传输模块261中的该组分组的数量可等于第一最大聚合大小,例如128。在步骤S304,传输模块262中的该组分组的数量可等于第二最大聚合大小,例如64。In step S302 , the number of the group of packets in the transmission module 261 may be equal to a first maximum aggregation size, such as 128. In step S304 , the number of the group of packets in the transmission module 262 may be equal to a second maximum aggregation size, such as 64.
在步骤S306,分析模块24定期在预定时段依据第一传输状况中的成功传输的分组数量及/或重试率、传输模块261的第一平均聚合大小、第二传输状况中之成功传输的分组数量及/或重试率、及/或传输模块262的第二平均聚合大小计算传输模块261对传输模块262的分组消耗率之比,并传送分组消耗率之比至多链路控制模块22。预定时段可为TBTT。接着,多链路控制模块22定期在预定时段计算传输模块261对传输模块262的分组分配率之比(步骤S308),比较分组消耗率之比及分组分配率之比,并判断分组消耗率之比是否等于分组分配率之比(步骤S310)。在一些实施例中,若分组消耗率之比及分组分配率之比的绝对差值超过预设容忍值,多链路控制模块22可判定分组消耗率之比不等于分组分配率之比。若分组消耗率之比及分组分配率之比的绝对差值未超过预设容忍值,则多链路控制模块22可判定分组消耗率之比等于分组分配率之比。例如,预设容忍值可为0.5,若分组消耗率之比为4∶3,分组分配率之比为2∶1,则由于分组消耗率之比及分组分配率之比的绝对差值超过预设容忍值(0.67>0.5),因此多链路控制模块22可判定分组消耗率之比不等于分组分配率之比。若分组消耗率之比为4∶3,分组分配率之比为1∶1,则由于分组消耗率之比及分组分配率之比的绝对差值未超过预设容忍值(0.33<0.5),因此多链路控制模块22可判定分组消耗率之比等于分组分配率之比。In step S306, the analysis module 24 periodically calculates the ratio of the packet consumption rate of the transmission module 261 to the transmission module 262 according to the number of packets successfully transmitted and/or the retry rate in the first transmission condition, the first average aggregation size of the transmission module 261, the number of packets successfully transmitted and/or the retry rate in the second transmission condition, and/or the second average aggregation size of the transmission module 262 at a predetermined time period, and transmits the ratio of the packet consumption rate to the multi-link control module 22. The predetermined time period may be TBTT. Next, the multi-link control module 22 periodically calculates the ratio of the packet allocation rate of the transmission module 261 to the transmission module 262 at a predetermined time period (step S308), compares the ratio of the packet consumption rate and the ratio of the packet allocation rate, and determines whether the ratio of the packet consumption rate is equal to the ratio of the packet allocation rate (step S310). In some embodiments, if the absolute difference between the ratio of the packet consumption rate and the ratio of the packet allocation rate exceeds a preset tolerance value, the multi-link control module 22 may determine that the ratio of the packet consumption rate is not equal to the ratio of the packet allocation rate. If the absolute difference between the ratio of the packet consumption rate and the ratio of the packet allocation rate does not exceed the preset tolerance value, the multi-link control module 22 can determine that the ratio of the packet consumption rate is equal to the ratio of the packet allocation rate. For example, the preset tolerance value can be 0.5. If the ratio of the packet consumption rate is 4:3 and the ratio of the packet allocation rate is 2:1, since the absolute difference between the ratio of the packet consumption rate and the ratio of the packet allocation rate exceeds the preset tolerance value (0.67>0.5), the multi-link control module 22 can determine that the ratio of the packet consumption rate is not equal to the ratio of the packet allocation rate. If the ratio of the packet consumption rate is 4:3 and the ratio of the packet allocation rate is 1:1, since the absolute difference between the ratio of the packet consumption rate and the ratio of the packet allocation rate does not exceed the preset tolerance value (0.33<0.5), the multi-link control module 22 can determine that the ratio of the packet consumption rate is equal to the ratio of the packet allocation rate.
若分组消耗率之比不等于分组分配率之比,在步骤S312,多链路控制模块22依据至少分组消耗率之比调整第一最小临界值及第一最大临界值,及/或第二最小临界值及第二最大临界值。在一些实施例中,多链路控制模块22可依据分组消耗率之比仅调整第一最小临界值及第一最大临界值。例如,若分组消耗率之比为2∶1,第一最小临界值为128,第一最大临界值为256,第二最小临界值为128,及第二最大临界值为256,则多链路控制模块22可调整第一最小临界值至256及调整第一最大临界值至512,同时维持第二最小临界值在128及维持第二最大临界值在256。在另一些实施例中,多链路控制模块22可依据分组消耗率之比仅调整第二最小临界值及第二最大临界值。例如,若分组消耗率之比为2:1,第一最小临界值为128,第一最大临界值为256,第二最小临界值为128,及第二最大临界值为256,则多链路控制模块22可调整第二最小临界值至64及调整第二最大临界值至128,同时维持第一最小临界值在128及维持第一最大临界值在256。在另一些实施例中,多链路控制模块22可依据分组消耗率之比调整第一最小临界值、第一最大临界值、第二最小临界值及第二最大临界值。例如,若分组消耗率之比为4∶1,第一最小临界值为128,第一最大临界值为256,第二最小临界值为128,及第二最大临界值为256,则多链路控制模块22可调整第一最小临界值至256,调整第一最大临界值至512,调整第二最小临界值至64,及调整第二最大临界值至128。在一些实施例中,多链路控制模块22可另依据第一最大聚合大小及第二最大聚合大小、及/或第一信道使用状况及第二信道使用状况调整第一最小临界值及第一最大临界值,及/或第二最小临界值及第二最大临界值。If the ratio of the packet consumption rates is not equal to the ratio of the packet allocation rates, in step S312, the multi-link control module 22 adjusts the first minimum critical value and the first maximum critical value, and/or the second minimum critical value and the second maximum critical value according to at least the ratio of the packet consumption rates. In some embodiments, the multi-link control module 22 may adjust only the first minimum critical value and the first maximum critical value according to the ratio of the packet consumption rates. For example, if the ratio of the packet consumption rates is 2:1, the first minimum critical value is 128, the first maximum critical value is 256, the second minimum critical value is 128, and the second maximum critical value is 256, then the multi-link control module 22 may adjust the first minimum critical value to 256 and the first maximum critical value to 512, while maintaining the second minimum critical value at 128 and maintaining the second maximum critical value at 256. In other embodiments, the multi-link control module 22 may adjust only the second minimum critical value and the second maximum critical value according to the ratio of the packet consumption rates. For example, if the ratio of the packet consumption rate is 2:1, the first minimum threshold is 128, the first maximum threshold is 256, the second minimum threshold is 128, and the second maximum threshold is 256, the multi-link control module 22 may adjust the second minimum threshold to 64 and the second maximum threshold to 128, while maintaining the first minimum threshold at 128 and maintaining the first maximum threshold at 256. In other embodiments, the multi-link control module 22 may adjust the first minimum threshold, the first maximum threshold, the second minimum threshold, and the second maximum threshold according to the ratio of the packet consumption rate. For example, if the ratio of the packet consumption rate is 4:1, the first minimum threshold is 128, the first maximum threshold is 256, the second minimum threshold is 128, and the second maximum threshold is 256, the multi-link control module 22 may adjust the first minimum threshold to 256, adjust the first maximum threshold to 512, adjust the second minimum threshold to 64, and adjust the second maximum threshold to 128. In some embodiments, the multi-link control module 22 may further adjust the first minimum threshold and the first maximum threshold, and/or the second minimum threshold and the second maximum threshold according to the first maximum aggregation size and the second maximum aggregation size, and/or the first channel usage status and the second channel usage status.
为了避免序号溢位,分析模块24获得传输模块261中所有MAC分组的第一最小分组序号SNmin1,获得传输模块262中所有MAC分组的第二最小分组序号SNmin2,多链路控制模块22依据待分配MAC分组的最小分组序号及第一最小分组序号SNmin1计算第一差值Diff1,依据待分配MAC分组的最小分组序号及第二最小分组序号SNmin2计算第二差值Diff2,比较BA窗口大小BA_LMT及第一差值Diff1及比较BA窗口大小BA_LMT及第二差值Diff2以判断是否要放行待分配MAC分组至传输模块261/262。在一些实施例中,若第一最小分组序号SNmin1/第二最小分组序号SNmin2小于待分配MAC分组的最小分组序号,则多链路控制模块22可计算待分配MAC分组的最小分组序号及第一最小分组序号SNmin1/第二最小分组序号SNmin2之间的差值以作为第一差值Diff1/第二差值Diff2。在另一些实施例中,若第一最小分组序号SNmin1/第二最小分组序号SNmin2大于或等于待分配MAC分组的最小分组序号,则多链路控制模块22可计算待分配MAC分组的最小分组序号及第一最小分组序号SNmin1/第二最小分组序号SNmin2之间的差值,并将差值加上预设最大分组序号以获得第一差值Diff1/第二差值Diff2。举例而言,MAC分组的分组序号可设为介于1到4096之间,则预设最大分组序号为4096。若第一最小分组序号SNmin1为1,第二最小分组序号SNmin2为4090,待分配MAC分组的最小分组序号为1020,则由于第一最小分组序号SNmin1小于待分配MAC分组的最小分组序号(1<1020),因此多链路控制模块22计算第一差值Diff1为1019(=1020-1),由于第二最小分组序号SNmin2大于待分配MAC分组的最小分组序号(4090>1020),因此多链路控制模块22计算第二差值Diff2为1026(=(1020-4090)+4096)。若第一差值Diff1及第二差值Diff2皆小于BA窗口大小BA_LMT,则多链路控制模块22可判定序号溢位未发生,并将待分配MAC分组依据第一最小临界值、第一最大临界值、第二最小临界值、及/或第二最大临界值将待分配MAC分组分配至传输模块261或传输模块262(步骤S318)。若第一差值Diff1及/或第二差值Diff2不小于(即大于或等于)BA窗口大小BA_LMT,则多链路控制模块22可判定序号溢位已发生,因此暂缓分配MAC分组,并继续重算第一差值Diff1及第二差值Diff2直到第一差值Diff1及第二差值Diff2小于BA窗口大小BA_LMT为止。例如,若第一差值Diff1为1019,第二差值Diff2为1026,BA窗口大小BA_LMT为1024,由于第二差值Diff2大于BA窗口大小BA_LMT(1026>1024),即便第一差值Diff1小于BA窗口大小BA_LMT(1019<1024),多链路控制模块22仍会判定序号溢位已发生,并暂缓分配MAC分组至传输模块261/262。In order to avoid sequence number overflow, the analysis module 24 obtains the first minimum packet sequence number SNmin1 of all MAC packets in the transmission module 261, and obtains the second minimum packet sequence number SNmin2 of all MAC packets in the transmission module 262. The multi-link control module 22 calculates the first difference Diff1 based on the minimum packet sequence number of the MAC packet to be allocated and the first minimum packet sequence number SNmin1, calculates the second difference Diff2 based on the minimum packet sequence number of the MAC packet to be allocated and the second minimum packet sequence number SNmin2, compares the BA window size BA_LMT and the first difference Diff1, and compares the BA window size BA_LMT and the second difference Diff2 to determine whether to release the MAC packet to be allocated to the transmission module 261/262. In some embodiments, if the first minimum packet sequence number SNmin1/the second minimum packet sequence number SNmin2 is less than the minimum packet sequence number of the MAC packet to be allocated, the multi-link control module 22 may calculate the difference between the minimum packet sequence number of the MAC packet to be allocated and the first minimum packet sequence number SNmin1/the second minimum packet sequence number SNmin2 as the first difference Diff1/the second difference Diff2. In other embodiments, if the first minimum packet sequence number SNmin1/the second minimum packet sequence number SNmin2 is greater than or equal to the minimum packet sequence number of the MAC packet to be allocated, the multi-link control module 22 may calculate the difference between the minimum packet sequence number of the MAC packet to be allocated and the first minimum packet sequence number SNmin1/the second minimum packet sequence number SNmin2, and add the difference to the preset maximum packet sequence number to obtain the first difference Diff1/the second difference Diff2. For example, the packet sequence number of the MAC packet can be set to be between 1 and 4096, and the preset maximum packet sequence number is 4096. If the first minimum packet sequence number SNmin1 is 1, the second minimum packet sequence number SNmin2 is 4090, and the minimum packet sequence number of the MAC packet to be allocated is 1020, then since the first minimum packet sequence number SNmin1 is less than the minimum packet sequence number of the MAC packet to be allocated (1<1020), the multi-link control module 22 calculates the first difference Diff1 as 1019 (=1020-1), and since the second minimum packet sequence number SNmin2 is greater than the minimum packet sequence number of the MAC packet to be allocated (4090>1020), the multi-link control module 22 calculates the second difference Diff2 as 1026 (=(1020-4090)+4096). If both the first difference Diff1 and the second difference Diff2 are smaller than the BA window size BA_LMT, the multi-link control module 22 may determine that the sequence number overflow has not occurred, and allocate the MAC packet to be allocated to the transmission module 261 or the transmission module 262 according to the first minimum threshold, the first maximum threshold, the second minimum threshold, and/or the second maximum threshold (step S318). If the first difference Diff1 and/or the second difference Diff2 is not smaller than (i.e., greater than or equal to) the BA window size BA_LMT, the multi-link control module 22 may determine that the sequence number overflow has occurred, and thus suspend the allocation of the MAC packet, and continue to recalculate the first difference Diff1 and the second difference Diff2 until the first difference Diff1 and the second difference Diff2 are smaller than the BA window size BA_LMT. For example, if the first difference Diff1 is 1019, the second difference Diff2 is 1026, and the BA window size BA_LMT is 1024, since the second difference Diff2 is greater than the BA window size BA_LMT (1026>1024), even if the first difference Diff1 is less than the BA window size BA_LMT (1019<1024), the multi-link control module 22 will still determine that the sequence number overflow has occurred and temporarily suspend the allocation of MAC packets to the transmission module 261/262.
图4为控制方法300中步骤S318的流程图。步骤S408包含步骤S402至S434。任何合理的技术变更或是步骤调整都属于本发明所揭露的范畴。4 is a flow chart of step S318 in the control method 300. Step S408 includes steps S402 to S434. Any reasonable technical changes or step adjustments fall within the scope of the present invention.
步骤S402至S434的详细内容如下所述:The details of steps S402 to S434 are as follows:
步骤S402:多链路控制模块22判断第一分组数量P1是否小于第一最小临界值Tmin1?若是,继续步骤S404;若否,继续步骤S412;Step S402: The multi-link control module 22 determines whether the first packet quantity P1 is less than the first minimum threshold value Tmin1. If yes, proceed to step S404; if no, proceed to step S412;
步骤S404:多链路控制模块22将待分配分组分配至传输模块261;结束步骤S318;Step S404: the multi-link control module 22 distributes the to-be-distributed packets to the transmission module 261; and step S318 ends;
步骤S412:多链路控制模块22判断第一分组数量P2是否小于第二最小临界值Tmin2?若是,继续步骤S414;若否,继续步骤S422;Step S412: The multi-link control module 22 determines whether the first packet quantity P2 is less than the second minimum threshold value Tmin2. If yes, proceed to step S414; if no, proceed to step S422;
步骤S414:多链路控制模块22将待分配分组分配至传输模块262;结束步骤S318;Step S414: the multi-link control module 22 distributes the to-be-distributed packets to the transmission module 262; and step S318 ends;
步骤S422:多链路控制模块22判断第一分组数量P1是否小于第一最大临界值Tmax1?若是,继续步骤S424;若否,继续步骤S432;Step S422: The multi-link control module 22 determines whether the first packet quantity P1 is less than the first maximum threshold value Tmax1. If yes, proceed to step S424; if no, proceed to step S432;
步骤S424:多链路控制模块22将待分配分组分配至传输模块261;结束步骤S318;Step S424: the multi-link control module 22 distributes the to-be-distributed packets to the transmission module 261; and step S318 ends;
步骤S432:多链路控制模块22判断第一分组数量P2是否小于第二最大临界值Tmax2?若是,继续步骤S434;若否,结束步骤S318;Step S432: The multi-link control module 22 determines whether the first packet quantity P2 is less than the second maximum threshold value Tmax2. If yes, proceed to step S434; if no, end step S318;
步骤S434:多链路控制模块22将待分配分组分配至传输模块262;结束步骤S318。Step S434: the multi-link control module 22 distributes the to-be-distributed packets to the transmission module 262; and step S318 ends.
以下搭配图5说明步骤S402至S434。图5为图4的步骤S318中分配分组的示意图。在第5图中,传输模块261的第一优先级高于传输模块262的第二优先级,传输模块261包含队列51,且传输模块262包含队列52。队列51的第一最小临界值Tminl为128,第一最大临界值Tmax1为256。队列52的第二最小临界值Tmin2为64,第二最大临界值Tmax2为128。在不发生序号溢位的前提下,多链路控制模块22会将该些待分配MAC分组优先填补至队列51直到到达第一最小临界值Tmin1为止,接着填补至队列52直到到达第二最小临界值Tmin2为止,接着填补至队列51直到到达第一最大临界值Tmax1为止,接着填补至队列52直到到达第二最大临界值Tmax2为止。Steps S402 to S434 are described below with reference to FIG5 . FIG5 is a schematic diagram of allocating packets in step S318 of FIG4 . In FIG5 , the first priority of the transmission module 261 is higher than the second priority of the transmission module 262 , the transmission module 261 includes a queue 51 , and the transmission module 262 includes a queue 52 . The first minimum critical value Tmin1 of the queue 51 is 128 , and the first maximum critical value Tmax1 is 256 . The second minimum critical value Tmin2 of the queue 52 is 64 , and the second maximum critical value Tmax2 is 128 . Under the premise that sequence number overflow does not occur , the multi-link control module 22 will first fill the MAC packets to be allocated into the queue 51 until the first minimum critical value Tmin1 is reached , and then fill them into the queue 52 until the second minimum critical value Tmin2 is reached , and then fill them into the queue 51 until the first maximum critical value Tmax1 is reached , and then fill them into the queue 52 until the second maximum critical value Tmax2 is reached .
若队列51中的所有分组的第一分组数量P1小于第一最小临界值Tmin1(步骤S402的”是”),多链路控制模块22会将该些待分配MAC分组分配至传输模块261(步骤S404),并结束步骤31。若第一分组数量P1不小于第一最小临界值Tmin1(步骤S402的”否”),及队列52中的所有分组的第二分组数量P2小于第二最小临界值Tmin2(步骤S412的”是”),多链路控制模块22会将该些待分配MAC分组分配至传输模块262(步骤S414),并结束步骤31。若第一分组数量P1不小于第一最小临界值Tmin1(步骤S402的”否”),第二分组数量P2不小于第二最小临界值Tmin2(步骤S412的”否”),且第一分组数量P1小于第一最大临界值Tmax1(步骤S422的”是”),多链路控制模块22会将该些待分配MAC分组分配至传输模块261(步骤S424),并结束步骤31。若第一分组数量P1不小于第一最小临界值Tmin1(步骤S402的”否”),第二分组数量P2不小于第二最小临界值Tmin2(步骤S412的”否”),第一分组数量P1不小于第一最大临界值Tmax1(步骤S422的”否”),且第二分组数量P2小于第二最大临界值Tmax2(步骤S432的”是”),多链路控制模块22会将该些待分配MAC分组分配至传输模块262(步骤S434),并结束步骤318。若第一分组数量P1不小于第一最小临界值Tminl(步骤S402的”否”),第二分组数量P2不小于第二最小临界值Tmin2(步骤S412的”否”),第一分组数量P1不小于第一最大临界值Tmax1(步骤S422的”否”),且第二分组数量P2不小于第二最大临界值Tmax2(步骤S432的”否”),多链路控制模块22会暂存该些MAC分组而不予分配,并结束步骤318。If the first packet quantity P1 of all packets in the queue 51 is less than the first minimum threshold value Tmin1 ("Yes" in step S402), the multi-link control module 22 will allocate the MAC packets to be allocated to the transmission module 261 (step S404), and end step 31. If the first packet quantity P1 is not less than the first minimum threshold value Tmin1 ("No" in step S402), and the second packet quantity P2 of all packets in the queue 52 is less than the second minimum threshold value Tmin2 ("Yes" in step S412), the multi-link control module 22 will allocate the MAC packets to be allocated to the transmission module 262 (step S414), and end step 31. If the first packet quantity P1 is not less than the first minimum threshold value Tmin1 ("No" in step S402), the second packet quantity P2 is not less than the second minimum threshold value Tmin2 ("No" in step S412), and the first packet quantity P1 is less than the first maximum threshold value Tmax1 ("Yes" in step S422), the multi-link control module 22 will allocate the MAC packets to be allocated to the transmission module 261 (step S424), and end step 31. If the first packet quantity P1 is not less than the first minimum critical value Tmin1 ("No" in step S402), the second packet quantity P2 is not less than the second minimum critical value Tmin2 ("No" in step S412), the first packet quantity P1 is not less than the first maximum critical value Tmax1 ("No" in step S422), and the second packet quantity P2 is less than the second maximum critical value Tmax2 ("Yes" in step S432), the multi-link control module 22 will allocate the MAC packets to be allocated to the transmission module 262 (step S434), and end step 318. If the first packet quantity P1 is not less than the first minimum critical value Tmin1 ("No" in step S402), the second packet quantity P2 is not less than the second minimum critical value Tmin2 ("No" in step S412), the first packet quantity P1 is not less than the first maximum critical value Tmax1 ("No" in step S422), and the second packet quantity P2 is not less than the second maximum critical value Tmax2 ("No" in step S432), the multi-link control module 22 will temporarily store the MAC packets without allocating them, and end step 318.
由于第一优先级高于第二优先级,因此第一传输能力大于第二传输能力,多链路控制模块22优先填补队列51接着才填补队列52可提高传输可靠度同时降低数据延迟。此外,多链路控制模块22会依照第一最小临界值Tmin1、第二最小临界值Tmin2、第一最大临界值Tmax1及第二最大临界值Tmax2的顺序交错填补队列51及队列52以增加链路141及链路142的使用率同时提高吞吐量。Since the first priority is higher than the second priority, the first transmission capacity is greater than the second transmission capacity, and the multi-link control module 22 first fills the queue 51 and then fills the queue 52 to improve transmission reliability and reduce data delay. In addition, the multi-link control module 22 fills the queue 51 and the queue 52 in an interlaced manner according to the order of the first minimum threshold value Tmin1, the second minimum threshold value Tmin2, the first maximum threshold value Tmax1 and the second maximum threshold value Tmax2 to increase the utilization rate of the link 141 and the link 142 and improve the throughput.
参考图5,队列51储存有MAC分组PKT172至PKT300,分别具有序号172至300,队列52储存有MAC分组PKT1至PKT64,分别具有序号1至64,多链路控制模块22储存有待分配MAC分组PKT301至PKT304,分别具有序号300至304。若BA窗口大小为1024,由于队列51中第一最小分组序号SNmin1为172(PKT172),队列52中的第二最小分组序号SNmin2为1(PKT1),因此多链路控制模块22计算得出第一差值Diff1为129(=301-172),第二差值Diff2为300(=301-1)。多链路控制模块22判定第一差值Diff1及第二差值Diff2皆小于BA窗口大小BA_LMT(129<1024&300<1024),因此会分配待分配MAC分组PKT301至PKT304。由于第一分组数量P1(=129)不小于第一最小临界值Tmin1(=128)(步骤S402的”否”),第二分组数量P2(=64)不小于第二最小临界值Tmin2(=64)(步骤S412的”否”),且第一分组数量P1(=129)小于第一最大临界值Tmax1(=256)(步骤S422的”是”),因此多链路控制模块22会将该些待分配MAC分组PKT301至PKT304分配至传输模块261(步骤S424)。5 , the queue 51 stores MAC packets PKT172 to PKT300, respectively having sequence numbers 172 to 300, the queue 52 stores MAC packets PKT1 to PKT64, respectively having sequence numbers 1 to 64, and the multi-link control module 22 stores MAC packets to be allocated PKT301 to PKT304, respectively having sequence numbers 300 to 304. If the BA window size is 1024, since the first minimum packet sequence number SNmin1 in the queue 51 is 172 (PKT172), and the second minimum packet sequence number SNmin2 in the queue 52 is 1 (PKT1), the multi-link control module 22 calculates that the first difference Diff1 is 129 (=301-172), and the second difference Diff2 is 300 (=301-1). The multi-link control module 22 determines that both the first difference Diff1 and the second difference Diff2 are smaller than the BA window size BA_LMT (129 < 1024 & 300 < 1024), and thus allocates the pending MAC packets PKT301 to PKT304. Since the first packet number P1 (=129) is not smaller than the first minimum threshold value Tmin1 (=128) (“No” in step S402), the second packet number P2 (=64) is not smaller than the second minimum threshold value Tmin2 (=64) (“No” in step S412), and the first packet number P1 (=129) is smaller than the first maximum threshold value Tmax1 (=256) (“Yes” in step S422), the multi-link control module 22 allocates the pending MAC packets PKT301 to PKT304 to the transmission module 261 (step S424).
当链路141或链路142的联机质量不佳时,多链路控制模块22亦可将该些待分配MAC分组全部都分配至传输模块261及传输模块262中具有较佳联机质量之一者。在一些实施例中,多链路控制模块22可计算预定时段中传输模块261及传输模块262的总吞吐量,计算预定时段中传输模块261的第一吞吐量,及计算预定时段中传输模块262的第二吞吐量。例如,预定时段可为TBTT。若总吞吐量等于第一吞吐量,表示第二吞吐量很低或为0,因此多链路控制模块22可将该些待分配MAC分组全部都分配至传输模块261,藉以提高总吞吐量。若总吞吐量等于第二吞吐量,表示第一吞吐量很低或为0,因此多链路控制模块22可将该些待分配MAC分组全部都分配至传输模块262,藉以提高总吞吐量。When the connection quality of link 141 or link 142 is poor, the multi-link control module 22 may also allocate all of the MAC packets to be allocated to one of the transmission modules 261 and 262 with better connection quality. In some embodiments, the multi-link control module 22 may calculate the total throughput of the transmission modules 261 and 262 in a predetermined period, calculate the first throughput of the transmission module 261 in a predetermined period, and calculate the second throughput of the transmission module 262 in a predetermined period. For example, the predetermined period may be TBTT. If the total throughput is equal to the first throughput, it means that the second throughput is very low or 0, so the multi-link control module 22 may allocate all of the MAC packets to be allocated to the transmission module 261 to improve the total throughput. If the total throughput is equal to the second throughput, it means that the first throughput is very low or 0, so the multi-link control module 22 may allocate all of the MAC packets to be allocated to the transmission module 262 to improve the total throughput.
在另一些实施例中,多链路控制模块22可计算传输模块261传送预定数据量的第一数据延迟,及计算传输模块262传送预定数据量的第二数据延迟。例如,预定数据量可为1024个MAC分组。在一些实施例中,多链路控制模块22可依据第一数据延迟及第二数据延迟之间的绝对差值分配该些待分配MAC分组。若第二数据延迟超出第一数据延迟,则多链路控制模块22可将该些待分配MAC分组的大部分分配至传输模块261,将该些待分配MAC分组的剩余部分分配至传输模块262,藉以降低总数据延迟。该些待分配MAC分组的分配比例可依据第一数据延迟及第二数据延迟之间的绝对差值决定。当第一数据延迟及第二数据延迟之间的绝对差值越大,多链路控制模块22可增加分配至传输模块261的比例。若第二数据延迟小于第一数据延迟,多链路控制模块22可将该些待分配MAC分组的大部分分配至传输模块262,将该些待分配MAC分组的剩余部分分配至传输模块261,藉以降低总数据延迟。该些待分配MAC分组的分配比例可依据第一数据延迟及第二数据延迟之间的绝对差值决定。当第一数据延迟及第二数据延迟之间的绝对差值越大,多链路控制模块22可增加分配至传输模块262的比例。In other embodiments, the multi-link control module 22 may calculate the first data delay for the transmission module 261 to transmit a predetermined amount of data, and calculate the second data delay for the transmission module 262 to transmit a predetermined amount of data. For example, the predetermined amount of data may be 1024 MAC packets. In some embodiments, the multi-link control module 22 may allocate the MAC packets to be allocated based on the absolute difference between the first data delay and the second data delay. If the second data delay exceeds the first data delay, the multi-link control module 22 may allocate most of the MAC packets to be allocated to the transmission module 261, and allocate the remaining part of the MAC packets to be allocated to the transmission module 262, so as to reduce the total data delay. The allocation ratio of the MAC packets to be allocated may be determined based on the absolute difference between the first data delay and the second data delay. When the absolute difference between the first data delay and the second data delay is larger, the multi-link control module 22 may increase the ratio allocated to the transmission module 261. If the second data delay is less than the first data delay, the multi-link control module 22 may allocate most of the MAC packets to be allocated to the transmission module 262, and allocate the remaining portion of the MAC packets to be allocated to the transmission module 261, so as to reduce the total data delay. The allocation ratio of the MAC packets to be allocated may be determined according to the absolute difference between the first data delay and the second data delay. When the absolute difference between the first data delay and the second data delay is larger, the multi-link control module 22 may increase the ratio allocated to the transmission module 262.
当链路141或链路142发生阻塞时,链路重设模块28可将传输模块261可将MAC分组从传输模块261及传输模块262发生阻塞之一者改传至传输模块261及传输模块262未发生阻塞之另一者,提高AP MLD 10的吞吐量同时降低数据延迟及增加信道使用率。在一些实施例中,分析模块24可依据第一传输状况判断链路141是否发生第一传输阻塞,及依据第二传输状况判断链路142是否发生第二传输阻塞。例如,若成功传输的MAC分组的分组数量小于预设比例,例如10%时,分析模块24可判定链路发生传输阻塞。若成功传输的MAC分组的分组数量不小于默认比例时,分析模块24可判定链路未发生传输阻塞。若发生第一传输阻塞,链路重设模块28可将传输模块261中的所有MAC分组从传输模块261传送至传输模块262。若发生第二传输阻塞,链路重设模块28可将传输模块262中的所有MAC分组从传输模块262传送至传输模块261。图6为链路重设模块28改传MAC分组的示意图。由于收到发生第一传输阻塞,因此链路重设模块28将传输模块261中的所有MAC分组从传输模块261传送至传输模块262,以使所有的MAC分组都从链路142传送,链路141不传送任何MAC分组,藉以提高AP MLD10的吞吐量同时降低数据延迟及增加信道使用率。When the link 141 or the link 142 is blocked, the link resetting module 28 can redirect the transmission module 261 to transfer the MAC packets from one of the transmission modules 261 and the transmission module 262 where the blockage occurs to the other of the transmission modules 261 and the transmission module 262 where the blockage does not occur, thereby improving the throughput of the AP MLD 10 while reducing data delay and increasing channel utilization. In some embodiments, the analysis module 24 can determine whether the first transmission blockage occurs in the link 141 according to the first transmission status, and determine whether the second transmission blockage occurs in the link 142 according to the second transmission status. For example, if the number of MAC packets successfully transmitted is less than a preset ratio, such as 10%, the analysis module 24 can determine that the link is blocked. If the number of MAC packets successfully transmitted is not less than the default ratio, the analysis module 24 can determine that the link is not blocked. If the first transmission blockage occurs, the link resetting module 28 can transfer all MAC packets in the transmission module 261 from the transmission module 261 to the transmission module 262. If the second transmission congestion occurs, the link resetting module 28 may transfer all MAC packets in the transmission module 262 from the transmission module 262 to the transmission module 261. Figure 6 is a schematic diagram of the link resetting module 28 retransmitting MAC packets. Since the first transmission congestion occurs, the link resetting module 28 transfers all MAC packets in the transmission module 261 from the transmission module 261 to the transmission module 262, so that all MAC packets are transmitted from the link 142, and the link 141 does not transmit any MAC packet, thereby improving the throughput of the AP MLD 10 while reducing data delay and increasing channel utilization.
本发明实施例揭露在多链路操作中依据传输状况及通道使用状况分配MAC分组的多链路装置及其操作方法,大幅减低信息回馈的延迟与带宽,保持个别链路的独立性,符合BA机制的规范,实时反应个别链路的联机质量,提高传输可靠度,降低数据延迟,及减低信号干扰的影响。The embodiment of the present invention discloses a multi-link device and an operation method thereof for allocating MAC packets according to transmission status and channel usage status in a multi-link operation, which significantly reduces the delay and bandwidth of information feedback, maintains the independence of individual links, complies with the specification of the BA mechanism, reflects the connection quality of individual links in real time, improves transmission reliability, reduces data delay, and reduces the impact of signal interference.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的等同变化与修改,皆应属本发明的涵盖范围。The above description is only a preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention should fall within the scope of the present invention.
【符号说明】【Explanation of symbols】
1:多链路通讯系统1: Multi-link communication system
10:存取点多链路装置(access point multi-link device,AP MLD)10: Access point multi-link device (AP MLD)
12:非存取点多链路装置(non-access point multi-link device,非AP MLD)101,102:存取点(access point,AP)12: non-access point multi-link device (non-AP MLD) 101, 102: access point (AP)
121,122:站点(station,STA)121, 122: station (STA)
141,142:链路141, 142: Link
20:驱动程序20: Driver
22:多链路控制模块22: Multi-link control module
24:分析模块24: Analysis module
261,262:传输模块261, 262: Transmission module
28:链路重设模块28: Link reset module
291,292:基频(baseband,BB)/射频(radio frequency,RF)模块300:控制方法291, 292: Baseband (BB)/Radio Frequency (RF) Module 300: Control Method
S302至S318,S402至S434:步骤S302 to S318, S402 to S434: Steps
51,52:队列51, 52: Queue
Tmin1:第一最小临界值Tmin1: First minimum critical value
Tmax1:第一最大临界值Tmax1: The first maximum critical value
Tmin2:第二最小临界值Tmin2: Second minimum critical value
Tmax2:第二最大临界值Tmax2: Second maximum critical value
PKT1至PKT64,PKT171至PKT300,PKT301至PKT304:MAC分组PKT1 to PKT64, PKT171 to PKT300, PKT301 to PKT304: MAC Packet
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310327704.9A CN118741610A (en) | 2023-03-30 | 2023-03-30 | Multi-link device and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310327704.9A CN118741610A (en) | 2023-03-30 | 2023-03-30 | Multi-link device and operation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118741610A true CN118741610A (en) | 2024-10-01 |
Family
ID=92846300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310327704.9A Pending CN118741610A (en) | 2023-03-30 | 2023-03-30 | Multi-link device and operation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118741610A (en) |
-
2023
- 2023-03-30 CN CN202310327704.9A patent/CN118741610A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12193116B2 (en) | Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same | |
CN114208388B (en) | Multi-link Communication in Wireless Networks | |
US20230262768A1 (en) | Method and wireless communication terminal for transmitting/receiving frame in wireless communication system | |
KR101401970B1 (en) | Method and system for channel time allocation and access control in a wireless network | |
US20240098824A1 (en) | Wireless communication method using multiple links, and wireless communication terminal using same | |
CN115280840B (en) | Multilink communication for wireless networks with dynamic link configuration | |
US20080259853A1 (en) | Radio Lan System, and Base Station and Terminal Station Thereof | |
US20230217521A1 (en) | Wireless communication method using multi-link, and wireless communication terminal using same | |
WO2014044171A1 (en) | Channel negotiation method, device, and system | |
CN103179656B (en) | The synchronization transfer method and system of Business Stream in a kind of heterogeneous network | |
JP2022160878A (en) | Communication apparatus, method for controlling communication apparatus, and program | |
WO2020179533A1 (en) | Wireless communication system and wireless communication method | |
JP5489188B2 (en) | Wireless network operation method and wireless network | |
CN111726792B (en) | Wireless communication method, wireless communication apparatus, storage medium, and computer device | |
US10798225B2 (en) | Simultaneous transmission method across multiple wireless communication standards | |
TWI783884B (en) | Multi-link device and packet allocation method thereof | |
CN118741610A (en) | Multi-link device and operation method thereof | |
TW202439808A (en) | Multilink device and control method thereof | |
US7840183B2 (en) | Short-range wireless communication device | |
CN115412971B (en) | A multi-air interface network throughput optimization method based on Aloha protocol | |
CN116828477A (en) | Multilink device and packet allocation method thereof | |
CN115334617B (en) | Method, device and storage medium for data transmission through establishing access point | |
Chang et al. | An effective APP MAC scheme for multimedia WLAN-based DSRC networks | |
CN109005559A (en) | Resource Allocation Method for Two-Phase Connectionless Protocol with Conflict Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |