CN118739848A - Voltage conversion chip and electronic equipment - Google Patents
Voltage conversion chip and electronic equipment Download PDFInfo
- Publication number
- CN118739848A CN118739848A CN202310368569.2A CN202310368569A CN118739848A CN 118739848 A CN118739848 A CN 118739848A CN 202310368569 A CN202310368569 A CN 202310368569A CN 118739848 A CN118739848 A CN 118739848A
- Authority
- CN
- China
- Prior art keywords
- coupled
- output
- circuit
- port
- duty cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 105
- 238000001514 detection method Methods 0.000 claims abstract description 117
- 238000010586 diagram Methods 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/157—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本申请实施例提供了一种电压转换芯片及电子设备,应用于集成电路技术领域。该电压转换芯片内设置有开关电路、电流检测电路、占空比调节电路、驱动器、振荡器和电压反馈电路。其中,输入端口和输出端口通过开关电路耦合。电压反馈电路的输出端与驱动器的第一输入端耦合。占空比调节电路的输入端与振荡器耦合。占空比调节电路的输出端与驱动器的第二输入端耦合。电路检测电路还与占空比调节电路耦合。通过电流检测电路的检测信号可以调节占空比调节电路输出的时钟信号的占空比。驱动器根据该时钟信号和电压反馈电路输出的电压信号对开关电路进行控制,以调节输出端口的输出电压和输出电流,使输出端口的输出电压和输出电流更加稳定。
The embodiment of the present application provides a voltage conversion chip and an electronic device, which are applied to the field of integrated circuit technology. The voltage conversion chip is provided with a switch circuit, a current detection circuit, a duty cycle adjustment circuit, a driver, an oscillator and a voltage feedback circuit. Among them, the input port and the output port are coupled through the switch circuit. The output end of the voltage feedback circuit is coupled with the first input end of the driver. The input end of the duty cycle adjustment circuit is coupled with the oscillator. The output end of the duty cycle adjustment circuit is coupled with the second input end of the driver. The circuit detection circuit is also coupled with the duty cycle adjustment circuit. The duty cycle of the clock signal output by the duty cycle adjustment circuit can be adjusted by the detection signal of the current detection circuit. The driver controls the switch circuit according to the clock signal and the voltage signal output by the voltage feedback circuit to adjust the output voltage and output current of the output port, so that the output voltage and output current of the output port are more stable.
Description
技术领域Technical Field
本申请涉及集成电路技术领域,尤其涉及一种电压转换芯片及电子设备。The present application relates to the technical field of integrated circuits, and in particular to a voltage conversion chip and an electronic device.
背景技术Background Art
直流电压转换器(DC-DCconverter,简称DC-DC转换器)可以根据直流输入电压输出不同数值的直流输出电压,以满足不同元器件的供电需求。因此DC-DC转换器在不间断电源、显示屏、电动汽车、燃料电池并网发电、光伏并网发电等领域得到了广泛的应用。其中,在一些应用场景中,需要两个并联的DC-DC转换器去共同驱动负载,从而满足大电流输出的需求。目前,常用的方案是将一个DC-DC转换器作为主片,另一个DC-DC转换器作为从片。当负载不需要进行大电流供电时,仅通过主片进行电压转换,从而为负载供电。当负载需要进行大电流供电时,则主片控制从片启动,两个DC-DC转换器并联为负载供电,从而提高负载的电流。但是,上述方案中的DC-DC转换器仅通过自身的反馈电流或反馈电压调节自身的输出,容易对输出电流和输出电压的稳定性造成影响。A DC voltage converter (DC-DC converter, referred to as a DC-DC converter) can output DC output voltages of different values according to the DC input voltage to meet the power supply requirements of different components. Therefore, DC-DC converters have been widely used in the fields of uninterruptible power supplies, display screens, electric vehicles, fuel cell grid-connected power generation, photovoltaic grid-connected power generation, etc. Among them, in some application scenarios, two parallel DC-DC converters are required to jointly drive the load to meet the needs of high current output. At present, a common solution is to use one DC-DC converter as the master chip and the other DC-DC converter as the slave chip. When the load does not need to be powered by a large current, the voltage conversion is performed only through the master chip to power the load. When the load needs to be powered by a large current, the master chip controls the slave chip to start, and the two DC-DC converters are connected in parallel to power the load, thereby increasing the current of the load. However, the DC-DC converter in the above scheme only adjusts its own output through its own feedback current or feedback voltage, which is easy to affect the stability of the output current and output voltage.
发明内容Summary of the invention
本申请实施例提供了一种电压转换芯片及电子设备,以解决直流电压转换器输出电流和输出电压稳定性差的问题。The embodiments of the present application provide a voltage conversion chip and an electronic device to solve the problem of poor stability of output current and output voltage of a DC voltage converter.
为了达到上述目的,本申请实施例提供了如下技术方案:In order to achieve the above objectives, the present application provides the following technical solutions:
第一方面,提供了一种电压转换芯片,该电压转换芯片包括输入端口、输出端口、开关电路、驱动器、振荡器、电压反馈电路、电流检测电路、占空比调节电路和控制端口。其中,开关电路包括输入端、输出端以及一个或多个控制端,且每个控制端对应控制开关电路中的一个开关的导通状态。同时,开关电路的输入端与输入端口耦合;开关电路的输出端与输出端口耦合;开关电路的各个控制端均与驱动器耦合。另外,开关电路的输入端或者输出端设有检测点;电流检测电路的检测端和电压反馈电路的输入端均与检测点耦合。进一步的,电压反馈电路的输出端与驱动器的第一输入端耦合。振荡器的输出端与占空比调节电路的输入端耦合。占空比调节电路的输出端与驱动器的第二输入端耦合。电流检测电路的输出端与占空比调节电路的控制端耦合。电流检测电路、电压反馈电路、振荡器和驱动器还与控制端口耦合。基于此,通过控制端口的输入电压可以启动电流检测电路、电压反馈电路、振荡器和驱动器。驱动器可以根据电压反馈电路反馈的电压信号和占空比调节电路输出的时钟信号对开关电路进行控制;同时,占空比调节电路可以根据电流检测电路的输出结果调节上述时钟信号的占空比,从而在大电流输出的情况下更好的控制驱动器输出给开关电路的控制信号,使得输出端口的输出电流和输出电压更加稳定。In a first aspect, a voltage conversion chip is provided, which includes an input port, an output port, a switch circuit, a driver, an oscillator, a voltage feedback circuit, a current detection circuit, a duty cycle adjustment circuit and a control port. The switch circuit includes an input terminal, an output terminal and one or more control terminals, and each control terminal controls the conduction state of a switch in the switch circuit. At the same time, the input terminal of the switch circuit is coupled to the input port; the output terminal of the switch circuit is coupled to the output port; and each control terminal of the switch circuit is coupled to the driver. In addition, a detection point is provided at the input terminal or the output terminal of the switch circuit; the detection terminal of the current detection circuit and the input terminal of the voltage feedback circuit are coupled to the detection point. Further, the output terminal of the voltage feedback circuit is coupled to the first input terminal of the driver. The output terminal of the oscillator is coupled to the input terminal of the duty cycle adjustment circuit. The output terminal of the duty cycle adjustment circuit is coupled to the second input terminal of the driver. The output terminal of the current detection circuit is coupled to the control terminal of the duty cycle adjustment circuit. The current detection circuit, the voltage feedback circuit, the oscillator and the driver are also coupled to the control port. Based on this, the current detection circuit, the voltage feedback circuit, the oscillator and the driver can be started by the input voltage of the control port. The driver can control the switching circuit according to the voltage signal fed back by the voltage feedback circuit and the clock signal output by the duty cycle adjustment circuit; at the same time, the duty cycle adjustment circuit can adjust the duty cycle of the above clock signal according to the output result of the current detection circuit, so as to better control the control signal output by the driver to the switching circuit under the condition of large current output, so that the output current and output voltage of the output port are more stable.
在一种可能的实现方式中,上述电压转换芯片还包括:第一连接端口和第二连接端口。其中,第一连接端口与电压反馈电路的输出端耦合。第二连接端口与占空比调节电路的输出端耦合。其中,第一连接端口和第二连接端口用于连接从电压转换芯片。基于此,上述电压转换芯片可以作为主电压转换芯片向从电压转换芯片的驱动器发送电压信号和时钟信号,从而在更为准确的控制从电压转换芯片的输出电压和输出电流。In a possible implementation, the voltage conversion chip further includes: a first connection port and a second connection port. The first connection port is coupled to the output end of the voltage feedback circuit. The second connection port is coupled to the output end of the duty cycle adjustment circuit. The first connection port and the second connection port are used to connect to the slave voltage conversion chip. Based on this, the voltage conversion chip can be used as a master voltage conversion chip to send a voltage signal and a clock signal to a driver of the slave voltage conversion chip, thereby more accurately controlling the output voltage and output current of the slave voltage conversion chip.
在一种可能的实现方式中,上述电压转换芯片还包括:占空比检测电路、第一多路选择器和第二多路选择器。其中,第一多路选择器的第一输入端与占空比调节电路的输出端耦合。第一多路选择器的输出端与第二连接端口耦合。占空比检测电路的输入端与第二连接端口耦合。占空比检测电路的输出端与第二多路选择器的第一输入端耦合。第一多路选择器的控制端以及第二多路选择器的第二输入端和控制端均与控制端口耦合。基于此,当控制端口输入高电平时,该电压转换芯片可以根据控制端口输入的信号启动驱动器、振荡器、电路电流检测电路和电压反馈电路;同时,该高电平可以使第一多路选择器的第一输入端与输出端导通,并使第二多路选择器的第二输入端与输出端导通,从而通过第一连接端口输出的电压信号,同时通过第二连接端口输出时钟信号,使得两个电压转换芯片互连时,可以将该电压转换芯片作为主片使用。另外,当控制端口输入低电平时,驱动器、振荡器、电路电流检测电路和电压反馈电路均不运行,第一多路选择器的第二输入端与输出端导通,并使第二多路选择器的第一输入端与输出端导通。驱动器可以通过第一连接端口输入的电压信号和第二连接端口输入的时钟信号对开关电路进行控制,使得两个电压转换芯片互连时,可以将该电压转换芯片作为从片使用。In a possible implementation, the voltage conversion chip further includes: a duty cycle detection circuit, a first multiplexer, and a second multiplexer. The first input end of the first multiplexer is coupled to the output end of the duty cycle adjustment circuit. The output end of the first multiplexer is coupled to the second connection port. The input end of the duty cycle detection circuit is coupled to the second connection port. The output end of the duty cycle detection circuit is coupled to the first input end of the second multiplexer. The control end of the first multiplexer and the second input end and control end of the second multiplexer are all coupled to the control port. Based on this, when the control port inputs a high level, the voltage conversion chip can start the driver, the oscillator, the circuit current detection circuit, and the voltage feedback circuit according to the signal input by the control port; at the same time, the high level can make the first input end of the first multiplexer conductive with the output end, and make the second input end of the second multiplexer conductive with the output end, so that the voltage signal output through the first connection port and the clock signal output through the second connection port at the same time, so that when the two voltage conversion chips are interconnected, the voltage conversion chip can be used as the main chip. In addition, when the control port inputs a low level, the driver, the oscillator, the circuit current detection circuit and the voltage feedback circuit are not in operation, the second input terminal of the first multiplexer is connected to the output terminal, and the first input terminal of the second multiplexer is connected to the output terminal. The driver can control the switch circuit through the voltage signal input from the first connection port and the clock signal input from the second connection port, so that when the two voltage conversion chips are interconnected, the voltage conversion chip can be used as a slave chip.
在一种可能的实现方式中,上述电压转换芯片还包括:还包括:分频器;分频器的输入端与第二连接端口耦合;分频器的输出端与驱动器的第二输入端耦合。基于此,驱动器接收的时钟信号的频率为第二连接端口输入的时钟信号的频率的一半,通过这种方式,当电压转换芯片作为从片使用时,可以与主片的信号存在相位差,从而将从片的峰值电流与主片错开,降低电流纹波对输出电流的影响。In a possible implementation, the voltage conversion chip further includes: a frequency divider; an input end of the frequency divider is coupled to the second connection port; an output end of the frequency divider is coupled to the second input end of the driver. Based on this, the frequency of the clock signal received by the driver is half the frequency of the clock signal input by the second connection port. In this way, when the voltage conversion chip is used as a slave chip, there can be a phase difference with the signal of the master chip, so that the peak current of the slave chip is staggered from that of the master chip, reducing the impact of current ripple on the output current.
在一种可能的实现方式中,上述电压反馈电路包括:第一电阻、第二电阻和误差放大器。其中,第一电阻的第一端与检测点耦合。第二电阻的第一端和误差放大器的第一输入端均与第一电阻的第二端耦合,第二电阻的第二端接地。误差放大器的控制端与控制端口耦合。误差放大器的输出端与驱动器的第一输入端耦合。基于此,电压反馈电路可以通过分压的方式将反馈电压与参考电压进行比较后输出对应的反馈信号,从而调节驱动器的驱动信号。In a possible implementation, the voltage feedback circuit includes: a first resistor, a second resistor and an error amplifier. The first end of the first resistor is coupled to the detection point. The first end of the second resistor and the first input end of the error amplifier are both coupled to the second end of the first resistor, and the second end of the second resistor is grounded. The control end of the error amplifier is coupled to the control port. The output end of the error amplifier is coupled to the first input end of the driver. Based on this, the voltage feedback circuit can compare the feedback voltage with the reference voltage by voltage division and then output a corresponding feedback signal, thereby adjusting the drive signal of the driver.
第二方面,提供了一种电压转换芯片,该电压转换芯片包括输入端口、输出端口、开关电路、驱动器、占空比检测电路、第一连接端口和第二连接端口。其中,开关电路包括输入端、输出端以及一个或多个控制端;每个控制端对应控制开关电路中的一个开关的导通状态。开关电路的输入端与输入端口耦合。开关电路的输出端与输出端口耦合。开关电路的各个控制端均与驱动器耦合。驱动器第一输入端与第一连接端口耦合。驱动器的第二输入端与第二连接端口耦合。占空比检测电路的输入端与第二连接端口耦合。占空比检测电路的输出端与驱动器的控制端耦合。基于此,该电压转换芯片的驱动器可以根据第一连接端口输入的电压信号和第二连接端口输入的时钟信号对开关电路进行控制,从而可以更为灵活得对输出端口的输出电流和输出电压进行控制。In a second aspect, a voltage conversion chip is provided, which includes an input port, an output port, a switch circuit, a driver, a duty cycle detection circuit, a first connection port, and a second connection port. The switch circuit includes an input terminal, an output terminal, and one or more control terminals; each control terminal corresponds to controlling the conduction state of a switch in the switch circuit. The input terminal of the switch circuit is coupled to the input port. The output terminal of the switch circuit is coupled to the output port. Each control terminal of the switch circuit is coupled to the driver. The first input terminal of the driver is coupled to the first connection port. The second input terminal of the driver is coupled to the second connection port. The input terminal of the duty cycle detection circuit is coupled to the second connection port. The output terminal of the duty cycle detection circuit is coupled to the control terminal of the driver. Based on this, the driver of the voltage conversion chip can control the switch circuit according to the voltage signal input from the first connection port and the clock signal input from the second connection port, so that the output current and output voltage of the output port can be controlled more flexibly.
在一种可能的实现方式中,上述电压转换芯片还包括:分频器。其中,分频器的输入端与第二连接端口耦合;分频器的输出端与驱动器的第二输入端耦合。基于此,该电压转换芯片的驱动器的第二输入端输入的时钟信号的频率为第二连接端口的时钟信号的频率的一半。基于此,当该电压转换芯片作为从片时,该电压转换芯片的峰值电流可以与主片的峰值电流错开,降低电流纹波对输出电流的影响。In a possible implementation, the voltage conversion chip further includes: a frequency divider. The input end of the frequency divider is coupled to the second connection port; the output end of the frequency divider is coupled to the second input end of the driver. Based on this, the frequency of the clock signal input to the second input end of the driver of the voltage conversion chip is half the frequency of the clock signal of the second connection port. Based on this, when the voltage conversion chip is used as a slave chip, the peak current of the voltage conversion chip can be staggered with the peak current of the master chip, reducing the impact of current ripple on the output current.
在一种可能的实现方式中,上述电压转换芯片还包括:控制端口、振荡器、占空比调节电路、电流检测电路、第一多路选择器和电压反馈电路。所述开关电路的输入端或者输出端设有检测点。所述电流检测电路的检测端和所述电压反馈电路的输入端均与所述检测点耦合。所述电流检测电路的输出端与所述占空比调节电路的控制端耦合。所述占空比调节电路的输入端与所述振荡器的输出端耦合。所述电压反馈电路的输出端与所述驱动器的第一输入端耦合。所述占空比调节电路的输出端与所述驱动器的第二输入端耦合。所述电流检测电路、所述电压反馈电路、所述驱动器和所述振荡器还与所述控制端口耦合。所述第一多路选择器的第一输入端与所述占空比检测电路的输出端耦合;所述第一多路选择器的第二输入端和控制端均与所述控制端口耦合。基于此,当控制端口输入电压时,该电压转换芯片也可以通过电流检测电路的检测结果对占空比调节电路进行控制,从而调节驱动器的时钟信号。同时,该电压转换芯片可以通过第一连接端口输出电压信号,并通过第二连接端口输出时钟信号,从而对另一个电压转换芯片进行控制。In a possible implementation, the voltage conversion chip further includes: a control port, an oscillator, a duty cycle adjustment circuit, a current detection circuit, a first multiplexer, and a voltage feedback circuit. A detection point is provided at the input or output of the switch circuit. The detection end of the current detection circuit and the input end of the voltage feedback circuit are both coupled to the detection point. The output end of the current detection circuit is coupled to the control end of the duty cycle adjustment circuit. The input end of the duty cycle adjustment circuit is coupled to the output end of the oscillator. The output end of the voltage feedback circuit is coupled to the first input end of the driver. The output end of the duty cycle adjustment circuit is coupled to the second input end of the driver. The current detection circuit, the voltage feedback circuit, the driver, and the oscillator are also coupled to the control port. The first input end of the first multiplexer is coupled to the output end of the duty cycle detection circuit; the second input end and the control end of the first multiplexer are both coupled to the control port. Based on this, when the control port inputs a voltage, the voltage conversion chip can also control the duty cycle adjustment circuit through the detection result of the current detection circuit, thereby adjusting the clock signal of the driver. At the same time, the voltage conversion chip can output a voltage signal through the first connection port and output a clock signal through the second connection port, thereby controlling another voltage conversion chip.
在一种可能的实现方式中,上述的电压转换芯片还包括:第二多路选择器。其中,第二多路选择器的第一输入端与占空比调节电路的输出端耦合。第二多路选择器的输出端与第二连接端口耦合。基于此,可以通过输入端口的电平信号控制第二多路选择器导通的通路,从而根据实际需求选择根据第一连接端口输入的电压信号和第二连接端口输入的时钟信号对开关电路进行控制,或者通过电压反馈电路输出的电压信号和占空比调节电路输出的时钟信号对另一个电压转换芯片进行控制。In a possible implementation, the voltage conversion chip further includes: a second multiplexer. The first input end of the second multiplexer is coupled to the output end of the duty cycle adjustment circuit. The output end of the second multiplexer is coupled to the second connection port. Based on this, the path of the second multiplexer can be controlled by the level signal of the input port, so as to control the switch circuit according to the voltage signal input by the first connection port and the clock signal input by the second connection port according to actual needs, or control another voltage conversion chip by the voltage signal output by the voltage feedback circuit and the clock signal output by the duty cycle adjustment circuit.
在一种可能的实现方式中,上述的电压反馈电路包括:第一电阻、第二电阻和误差放大器。第一电阻的第一端与检测点耦合。第二电阻的第一端和误差放大器的第一输入端均与第一电阻的第二端耦合。第二电阻的第二端接地。误差放大器的控制端与控制端口耦合。误差放大器的输出端与第一连接端口耦合。电压反馈电路可以通过分压的方式将反馈电压与参考电压进行比较后输出对应的反馈信号,从而调节驱动器的驱动信号。In a possible implementation, the voltage feedback circuit includes: a first resistor, a second resistor and an error amplifier. The first end of the first resistor is coupled to the detection point. The first end of the second resistor and the first input end of the error amplifier are both coupled to the second end of the first resistor. The second end of the second resistor is grounded. The control end of the error amplifier is coupled to the control port. The output end of the error amplifier is coupled to the first connection port. The voltage feedback circuit can compare the feedback voltage with the reference voltage by voltage division and then output a corresponding feedback signal, thereby adjusting the drive signal of the driver.
第三方面,提供了一种电子设备,该电子设备包括电路板,以及设置在电路板上的第一电压转换芯片和第二电压转换芯片。第一电压转换芯片与第二电压转换芯片耦合;其中,第一电压转换芯片为上述第一方面中任一种可能的实现方式中的电压转换芯片;第二电压转换芯片为上述第二方面中任一种可能的实现方式中的电压转换芯片。In a third aspect, an electronic device is provided, the electronic device comprising a circuit board, and a first voltage conversion chip and a second voltage conversion chip disposed on the circuit board. The first voltage conversion chip is coupled to the second voltage conversion chip; wherein the first voltage conversion chip is a voltage conversion chip in any possible implementation of the first aspect; and the second voltage conversion chip is a voltage conversion chip in any possible implementation of the second aspect.
其中,上述第三方面所能带来的技术效果可参见上述第一方面和第二方面,此处不再赘述。Among them, the technical effects that can be brought about by the above-mentioned third aspect can be referred to the above-mentioned first and second aspects, and will not be repeated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一种DC-DC变换器的使用场景示意图;FIG1 is a schematic diagram of a use scenario of a DC-DC converter;
图2为另一种DC-DC变换器的使用场景示意图;FIG2 is a schematic diagram of another use scenario of a DC-DC converter;
图3为又一种DC-DC变换器的使用场景示意图;FIG3 is a schematic diagram of another use scenario of a DC-DC converter;
图4为图3中的DC-DC变换器对应的驱动方式示意图;FIG4 is a schematic diagram of a driving mode corresponding to the DC-DC converter in FIG3 ;
图5为本申请实施例提供的一种电压转换芯片的结构示意图;FIG5 is a schematic diagram of the structure of a voltage conversion chip provided in an embodiment of the present application;
图6为本申请实施例提供的另一种电压转换芯片的结构示意图;FIG6 is a schematic diagram of the structure of another voltage conversion chip provided in an embodiment of the present application;
图7为本申请实施例提供的一种DC-DC变换器的结构示意图;FIG7 is a schematic diagram of the structure of a DC-DC converter provided in an embodiment of the present application;
图8为本申请实施例提供的另一种DC-DC变换器的结构示意图;FIG8 is a schematic diagram of the structure of another DC-DC converter provided in an embodiment of the present application;
图9为本申请实施例提供的又一种电压转换芯片的结构示意图;FIG9 is a schematic diagram of the structure of another voltage conversion chip provided in an embodiment of the present application;
图10为本申请实施例提供的一种主片与从片的工作方式示意图;FIG10 is a schematic diagram of a working mode of a master chip and a slave chip provided in an embodiment of the present application;
图11为本申请实施例提供的一种输出电流与时钟信号的关系图;FIG11 is a diagram showing a relationship between an output current and a clock signal provided in an embodiment of the present application;
图12为本申请实施例提供的又一种电压转换芯片的结构示意图;FIG12 is a schematic diagram of the structure of another voltage conversion chip provided in an embodiment of the present application;
图13为本申请实施例提供的又一种电压转换芯片的结构示意图;FIG13 is a schematic diagram of the structure of another voltage conversion chip provided in an embodiment of the present application;
图14为本申请实施例提供的又一种DC-DC变换器的结构示意图;FIG14 is a schematic diagram of the structure of another DC-DC converter provided in an embodiment of the present application;
图15为本申请实施例提供的又一种DC-DC变换器的结构示意图。FIG. 15 is a schematic diagram of the structure of another DC-DC converter provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below in conjunction with the drawings in the embodiments of the present application.
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。In the description of this application, unless otherwise specified, "/" indicates that the objects associated before and after are in an "or" relationship, for example, A/B can represent A or B; "and/or" in this application is only a kind of association relationship describing the associated objects, indicating that there can be three relationships, for example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. In addition, in the description of this application, unless otherwise specified, "multiple" refers to two or more than two. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple. In addition, in order to facilitate the clear description of the technical solutions of the embodiments of the present application, in the embodiments of the present application, the words "first", "second" and the like are used to distinguish the same items or similar items with substantially the same functions and effects. Those skilled in the art will understand that the words "first", "second" and the like do not limit the quantity and execution order, and the words "first", "second" and the like do not necessarily limit the differences. At the same time, in the embodiments of the present application, the words "exemplary" or "for example" are used to indicate examples, illustrations or explanations. Any embodiment or design described as "exemplary" or "for example" in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a concrete manner for easy understanding.
在描述一些实施例时,可能使用了“耦合”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或点接触。又如,描述一些实施例时可能使用了术语“耦合”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦合”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。When describing some embodiments, the expressions "coupled" and "connected" and their derivatives may be used. For example, when describing some embodiments, the term "connected" may be used to indicate that two or more components are in direct physical contact or point contact with each other. For another example, when describing some embodiments, the term "coupled" may be used to indicate that two or more components are in direct physical contact or electrical contact. However, the term "coupled" may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents of this document.
目前,在通信、不间断电源、显示屏、电动汽车、燃料电池并网发电、光伏并网发电等领域的纵多电子设备中均会使用到直流电压转换器。而根据使用场景的不同,目前的直流电压转换器主要分为降压型直流电压转换器、升压型直流电压转换器以及同时具备升压和降压功能的直流电压转换器。其中,各类型的直流电压转换器通常都是在电压转换芯片的基础之上通过改变外接器件的连接方式实现不同的功能的。以升压型直流电压转换器为例,如图1所示,目前的升压型直流电压转换器通常包括电感器L1、电压转换芯片100和输出电容C1。其中,电压转换芯片100通常包括输入端口、第一开关K1、第二开关K2、控制电路110、输出检测电路120和输出端口。电感器L1的第一端与直流电源V耦合。第一开关K1的第二端通过输出端口与输出电容C1的第一端和负载Z的正极耦合。输出电容C1的第二端和负载Z的负极接地,且第二开关K2的第二端接地。输出检测电路120的输入端与输出端口耦合。控制电路110分别与输出检测电路120的输出端、第一开关K1和第二开关K2耦合。通过输出检测电路120可以对输出端口的输出电压和输出电流进行检测,然后控制电路110根据输出检测电路120的检测结果对第一开关K1和第二开关K2进行控制,从而调节输出电压的占空比,输出稳定的电流与电压。At present, DC voltage converters are used in many electronic devices in the fields of communications, uninterruptible power supplies, display screens, electric vehicles, fuel cell grid-connected power generation, photovoltaic grid-connected power generation, etc. According to different usage scenarios, the current DC voltage converters are mainly divided into step-down DC voltage converters, step-up DC voltage converters, and DC voltage converters with both step-up and step-down functions. Among them, various types of DC voltage converters usually achieve different functions by changing the connection mode of external devices on the basis of voltage conversion chips. Taking the step-up DC voltage converter as an example, as shown in Figure 1, the current step-up DC voltage converter usually includes an inductor L1, a voltage conversion chip 100 and an output capacitor C1. Among them, the voltage conversion chip 100 usually includes an input port, a first switch K1, a second switch K2, a control circuit 110, an output detection circuit 120 and an output port. The first end of the inductor L1 is coupled to the DC power supply V. The second end of the first switch K1 is coupled to the first end of the output capacitor C1 and the positive electrode of the load Z through the output port. The second end of the output capacitor C1 and the negative electrode of the load Z are grounded, and the second end of the second switch K2 is grounded. The input end of the output detection circuit 120 is coupled to the output port. The control circuit 110 is coupled to the output end of the output detection circuit 120, the first switch K1, and the second switch K2, respectively. The output voltage and output current of the output port can be detected by the output detection circuit 120, and then the control circuit 110 controls the first switch K1 and the second switch K2 according to the detection result of the output detection circuit 120, so as to adjust the duty cycle of the output voltage and output stable current and voltage.
在一些应用场景中,因为对元件的尺寸有限制,同时对输出电流的纹波也有要求,因此会采用两个并联的DC-DC变换器驱动负载。其中,一个DC-DC变换器中的第一电压转换芯片作为主片,另一个DC-DC变换器中的第二电压转换芯片作为从片。第一电压转换芯片与第二电压转换芯片耦合。主片可以给从片传输控制信号,从而在负载需要提供大电流的时候,启动从片,通过两个DC-DC变换器共同为负载提供电流。示例性的,如图2所示,在一些应用场景中,当使用两个DC-DC变换器驱动负载时,第一DC-DC变换器可以采用图1中的DC-DC变换器。第二DC-DC变换器则包括电感器L2、电压转换芯片200和输出电容C2。其中,电压转换芯片200包括输入端口、输出端口、第三开关K3、第四开关K4和驱动器210。电感器L2的第一端与直流电源V耦合。第三开关K3的第一端和第四开关K4的第一端均通过输入端口与电感器L2的第二端耦合。第三开关K3的第二端通过输出端口与输出电容的第一端和负载Z1的正极耦合。第四开关K4的第二端接地。第一DC-DC变换器中的控制电路110设有一个连接端口。驱动器210通过电压转换芯片200上的连接端口与第一DC-DC变换器上的连接端口耦合。当输出检测电路120检测到的第一DC-DC变换器的输出端口的输出电流超过设定阈值时,控制电路110在向第一开关K1和第二开关K2输出脉冲宽度调制(pulse widthmodulation,PWM)信号时,还可以通过连接端口向第二DC-DC变换器中的驱动器210输出时钟信号,从而控制驱动器210向第三开关K3和第四开关K4输出调制信号,使两个DC-DC变换器同步运行,从而满足负载对大电流的需求。当输出检测电路120检测到的第一DC-DC变换器的输出端口的输出电流低于设定阈值时,控制电路110则可以停止向驱动器210输出时钟信号,从而使第二DC-DC变换器停止运行,降低提供给负载的电流。In some application scenarios, because there are restrictions on the size of components and requirements for the ripple of the output current, two parallel DC-DC converters are used to drive the load. Among them, the first voltage conversion chip in one DC-DC converter is used as the master chip, and the second voltage conversion chip in another DC-DC converter is used as the slave chip. The first voltage conversion chip is coupled to the second voltage conversion chip. The master chip can transmit a control signal to the slave chip, so that when the load needs to provide a large current, the slave chip is started, and the current is provided to the load through two DC-DC converters. Exemplarily, as shown in Figure 2, in some application scenarios, when two DC-DC converters are used to drive the load, the first DC-DC converter can use the DC-DC converter in Figure 1. The second DC-DC converter includes an inductor L2, a voltage conversion chip 200 and an output capacitor C2. Among them, the voltage conversion chip 200 includes an input port, an output port, a third switch K3, a fourth switch K4 and a driver 210. The first end of the inductor L2 is coupled to the DC power supply V. The first end of the third switch K3 and the first end of the fourth switch K4 are coupled to the second end of the inductor L2 through the input port. The second end of the third switch K3 is coupled to the first end of the output capacitor and the positive electrode of the load Z1 through the output port. The second end of the fourth switch K4 is grounded. The control circuit 110 in the first DC-DC converter is provided with a connection port. The driver 210 is coupled to the connection port on the first DC-DC converter through the connection port on the voltage conversion chip 200. When the output current of the output port of the first DC-DC converter detected by the output detection circuit 120 exceeds the set threshold, the control circuit 110 can also output a clock signal to the driver 210 in the second DC-DC converter through the connection port when outputting a pulse width modulation (PWM) signal to the first switch K1 and the second switch K2, thereby controlling the driver 210 to output a modulation signal to the third switch K3 and the fourth switch K4, so that the two DC-DC converters operate synchronously, thereby meeting the load's demand for large current. When the output current of the output port of the first DC-DC converter detected by the output detection circuit 120 is lower than the set threshold, the control circuit 110 can stop outputting the clock signal to the driver 210, thereby stopping the second DC-DC converter from running and reducing the current provided to the load.
但是,主片和从片仅通过主片的输出电流进行控制,且从片只能通过PWM信号控制输出的电流,容易对整体的输出电流和输出电压的稳定性造成影响。However, the master chip and the slave chip are controlled only by the output current of the master chip, and the slave chip can only control the output current through the PWM signal, which can easily affect the stability of the overall output current and output voltage.
在一些应用场景中,如图3所示,为了方便对两个互连的DC-DC变换器进行控制,同时可以根据使用需求对DC-DC变换器功能进行切换。目前有的电压转换芯片还设置了主片和从片的控制端口MS以及用于互连的信号输入端口和信号输出端口。其中,信号输入端口包括时钟信号输入端口PWMI和启动信号输入端口SYNCI。信号输出端口包括时钟信号输出端口PWMO和启动信号输出端口SYNCO。主片U1的输入端口通过电感器L1与输入电源V耦合;主片U1的输出端口通过接地电容C1与负载Z1的正极耦合。从片U2的输入端口通过电感器L2与输入电源V耦合;从片U2的输出端口通过接地电容C1与负载Z1的正极耦合。进一步的,作为主片U1的电压转换芯片的时钟信号输入端口PWMI和启动信号输入端口SYNCI均接地,控制端口MS与输入电源V耦合。作为从片U2的电压转换芯片的时钟信号输入端口PWMI与主片U1的时钟信号输出端口PWMO耦合,同时其启动信号输入端口SYNCI与主片U1的启动信号输出端口SYNCO耦合。从片U2的控制端口MS接地,时钟信号输出端口PWMO和启动信号输出端口SYNCO为空接状态。In some application scenarios, as shown in FIG3 , in order to facilitate the control of two interconnected DC-DC converters, the functions of the DC-DC converters can be switched according to the use requirements. At present, some voltage conversion chips are also provided with control ports MS of the master and slave chips, as well as signal input ports and signal output ports for interconnection. Among them, the signal input port includes a clock signal input port PWMI and a start signal input port SYNCI. The signal output port includes a clock signal output port PWMO and a start signal output port SYNCO. The input port of the master chip U1 is coupled to the input power supply V through the inductor L1; the output port of the master chip U1 is coupled to the positive electrode of the load Z1 through the grounding capacitor C1. The input port of the slave chip U2 is coupled to the input power supply V through the inductor L2; the output port of the slave chip U2 is coupled to the positive electrode of the load Z1 through the grounding capacitor C1. Further, the clock signal input port PWMI and the start signal input port SYNCI of the voltage conversion chip as the master chip U1 are both grounded, and the control port MS is coupled to the input power supply V. The clock signal input port PWMI of the voltage conversion chip of the slave chip U2 is coupled to the clock signal output port PWMO of the master chip U1, and its start signal input port SYNCI is coupled to the start signal output port SYNCO of the master chip U1. The control port MS of the slave chip U2 is grounded, and the clock signal output port PWMO and the start signal output port SYNCO are in an unconnected state.
在为负载Z1供电时,主片U1的时钟信号输出端口PWMO和启动信号输出端口SYNCO输出的信号,以及主片U1和从片U2的输出电流如图4所示。当主片U1的输出电流低于设定阈值时,虽然主片U1也会通过时钟信号输出端口PWMO向从片的时钟信号输入端口PWMI传输PWM信号,但是主片U1的启动信号输出端口SYNCO只会输出低电平,此时从片不会运行。当主片U1的输出电流超过设定阈值时,主片U1可以通过启动信号输出端口SYNCO输出高电平,此时从片U2可以根据PWM信号输出电流,从而使负载Z1的总体电流增加。When supplying power to the load Z1, the signals output by the clock signal output port PWMO and the start signal output port SYNCO of the master chip U1, as well as the output currents of the master chip U1 and the slave chip U2 are shown in Figure 4. When the output current of the master chip U1 is lower than the set threshold, although the master chip U1 will also transmit the PWM signal to the clock signal input port PWMI of the slave chip through the clock signal output port PWMO, the start signal output port SYNCO of the master chip U1 will only output a low level, and the slave chip will not run at this time. When the output current of the master chip U1 exceeds the set threshold, the master chip U1 can output a high level through the start signal output port SYNCO, and the slave chip U2 can output current according to the PWM signal, thereby increasing the overall current of the load Z1.
但是通过上述方式,虽然主片U1可以向从片U2发送启动信号,但是主片U1和从片U2仅通过主片U1的输出电流进行控制,且从片U2只能通过PWM信号控制输出的电流,容易对整体的输出电流和输出电压的稳定性造成影响。However, through the above method, although the master chip U1 can send a start signal to the slave chip U2, the master chip U1 and the slave chip U2 are only controlled by the output current of the master chip U1, and the slave chip U2 can only control the output current through the PWM signal, which is easy to affect the stability of the overall output current and output voltage.
为了解决上述问题,如图5所示,本申请实施例提供了一种电压转换芯片500,该电压转换芯片500包括输入端口Vin、开关电路510、驱动器520、振荡器530、电压反馈电路540、电流检测电路550、占空比调节电路560、输出端口Vout和控制端口MS。其中,上述开关电路510包括输入端、输出端以及一个或多个控制端;每个控制端对应控制开关电路510中的一个开关的导通状态。该开关电路510的输入端与输入端口Vin耦合。开关电路510的输出端与输出端口Vout耦合;开关电路510的各个控制端均与驱动器520耦合。开关电路510的输入端或者输出端设有检测点;电流检测电路550的检测端和电压反馈电路540的输入端均与检测点耦合。进一步的,电压反馈电路540的输出端与驱动器520的第一输入端耦合。振荡器530的输出端与占空比调节电路560的输入端耦合。占空比调节电路560的输出端与驱动器520的第二输入端耦合。电流检测电路550的输出端与占空比调节电路560的控制端耦合。电流检测电路550、电压反馈电路540、振荡器530和驱动器520还与控制端口MS耦合。In order to solve the above problems, as shown in FIG5 , an embodiment of the present application provides a voltage conversion chip 500, which includes an input port Vin, a switch circuit 510, a driver 520, an oscillator 530, a voltage feedback circuit 540, a current detection circuit 550, a duty cycle adjustment circuit 560, an output port Vout, and a control port MS. The switch circuit 510 includes an input terminal, an output terminal, and one or more control terminals; each control terminal controls the conduction state of a switch in the switch circuit 510. The input terminal of the switch circuit 510 is coupled to the input port Vin. The output terminal of the switch circuit 510 is coupled to the output port Vout; each control terminal of the switch circuit 510 is coupled to the driver 520. The input terminal or the output terminal of the switch circuit 510 is provided with a detection point; the detection terminal of the current detection circuit 550 and the input terminal of the voltage feedback circuit 540 are both coupled to the detection point. Further, the output terminal of the voltage feedback circuit 540 is coupled to the first input terminal of the driver 520. The output terminal of the oscillator 530 is coupled to the input terminal of the duty cycle adjustment circuit 560. The output terminal of the duty cycle adjustment circuit 560 is coupled to the second input terminal of the driver 520. The output terminal of the current detection circuit 550 is coupled to the control terminal of the duty cycle adjustment circuit 560. The current detection circuit 550, the voltage feedback circuit 540, the oscillator 530 and the driver 520 are also coupled to the control port MS.
当单独使用上述电压转换芯片时,可以向控制端口MS输入电压,为电流检测电路550、电压反馈电路540、振荡器530和驱动器520正常供电。此时,电压反馈电路540可以根据输出电压向驱动器520输出实时的电压信号。电流检测电路550可以根据输出端口Vout的输出电流向占空比调节电路560发送控制信号。其中,当输出端口Vout的输出电流低于设定阈值时,可以向占空比调节电路560输出第一控制信号,从而使占空比调节电路560输出第一时钟信号。驱动器520可以根据该第一时钟信号和实时的第一电压信号对开关电路中的开关的导通状态。当输出端口Vout的输出电流超过设定阈值时,可以向占空比调节电路560输出第二控制信号,从而使占空比调节电路560输出第二时钟信号。驱动器520可以根据该第二时钟信号和实时的第二电压信号对开关电路中的开关的导通状态。When the voltage conversion chip is used alone, a voltage can be input to the control port MS to supply power to the current detection circuit 550, the voltage feedback circuit 540, the oscillator 530 and the driver 520. At this time, the voltage feedback circuit 540 can output a real-time voltage signal to the driver 520 according to the output voltage. The current detection circuit 550 sends a control signal to the duty cycle adjustment circuit 560 according to the output current of the output port Vout. Among them, when the output current of the output port Vout is lower than the set threshold, a first control signal can be output to the duty cycle adjustment circuit 560, so that the duty cycle adjustment circuit 560 outputs a first clock signal. The driver 520 can control the conduction state of the switch in the switch circuit according to the first clock signal and the real-time first voltage signal. When the output current of the output port Vout exceeds the set threshold, a second control signal can be output to the duty cycle adjustment circuit 560, so that the duty cycle adjustment circuit 560 outputs a second clock signal. The driver 520 can control the conduction state of the switch in the switch circuit according to the second clock signal and the real-time second voltage signal.
示例性的,占空比调节电路560可以选用至少能够输出两种占空比时钟信号的占空比可调脉冲电路。例如,当输出端口Vout的输出电流低于设定阈值时,占空比调节电路560可以将振荡器530输出的信号调整为20%占空比的时钟信号后作为第一时钟信号。当输出端口Vout的输出电流超过设定阈值时,占空比调节电路560可以将振荡器530输出的信号调整为80%占空比的时钟信号后作为第二时钟信号。驱动器520通过第一时钟信号和第一电压信号可以控制开关电路输出较低的电压,从而使输出端口Vout的输出电流较低。驱动器520通过第二时钟信号和第二电压信号可以控制开关电路输出较高的电压,从而提高输出端口Vout的输出电流。Exemplarily, the duty cycle adjustment circuit 560 can select a duty cycle adjustable pulse circuit that can output at least two duty cycle clock signals. For example, when the output current of the output port Vout is lower than the set threshold, the duty cycle adjustment circuit 560 can adjust the signal output by the oscillator 530 to a clock signal with a 20% duty cycle as the first clock signal. When the output current of the output port Vout exceeds the set threshold, the duty cycle adjustment circuit 560 can adjust the signal output by the oscillator 530 to a clock signal with a 80% duty cycle as the second clock signal. The driver 520 can control the switch circuit to output a lower voltage through the first clock signal and the first voltage signal, thereby making the output current of the output port Vout lower. The driver 520 can control the switch circuit to output a higher voltage through the second clock signal and the second voltage signal, thereby increasing the output current of the output port Vout.
在上述实现过程中,上述占空比调节电路560可以通过微处理器实现,也可以通过逻辑电路实现,本申请实施例对此不做具体限制。进一步的,占空比调节电路560输出的两种占空比的时钟信号也可以根据实际需求进行调整,并不局限于上述的20%和80%。In the above implementation process, the duty cycle adjustment circuit 560 can be implemented by a microprocessor or a logic circuit, and the embodiment of the present application does not impose specific restrictions on this. Further, the two duty cycle clock signals output by the duty cycle adjustment circuit 560 can also be adjusted according to actual needs, and are not limited to the above 20% and 80%.
在一种可能的实现方式中,上述电压转换芯片还可以包括第一连接端口EA和第二连接端口CLK2X。其中,第一连接端口EA与电压反馈电路540的输出端耦合;第二连接端口CLK2X与占空比调节电路560的输出端耦合。第一连接端口EA和第二连接端口CLK2X可以与另一个从电压转换芯片耦合。通过第一连接端口EA的电压信号和第二连接端口CLK2X输出的时钟信号,可以在两个电压转换芯片并联为负载供电时,通过该电压转化芯片对从电压转换芯片进行控制。In a possible implementation, the voltage conversion chip may further include a first connection port EA and a second connection port CLK2X. The first connection port EA is coupled to the output end of the voltage feedback circuit 540; the second connection port CLK2X is coupled to the output end of the duty cycle adjustment circuit 560. The first connection port EA and the second connection port CLK2X may be coupled to another slave voltage conversion chip. Through the voltage signal of the first connection port EA and the clock signal output from the second connection port CLK2X, when the two voltage conversion chips are connected in parallel to supply power to the load, the slave voltage conversion chip may be controlled through the voltage conversion chip.
在一种可能的实施方案中,上述电压反馈电路540包括:第一电阻R1、第二电阻R2和误差放大器U0。其中,第一电阻R1的第一端与检测点耦合。第二电阻R2的第一端和误差放大器U0的第一输入端均与第一电阻R1的第二端耦合。第二电阻R2的第二端接地。误差放大器U0的控制端与控制端口MS耦合。误差放大器U0的输出端与驱动器520的第一输入端耦合。输出端口Vout的电压信号经过第一电阻R1和第二电阻R2进行分压后的反馈电压经误差放大器U0与参考电压Ref进行比较后,可以输出对应的电压信号。例如,当反馈电压高于参考电压Ref时,可以输出较高的反馈电压;当反馈电压低于参考电压Ref时,可以输出较低的反馈电压信号。上述的电流检测电路550可以选用各种常规的电流检测电路,本申请实施例对此不做具体限制。In a possible implementation, the voltage feedback circuit 540 includes: a first resistor R1, a second resistor R2 and an error amplifier U0. The first end of the first resistor R1 is coupled to the detection point. The first end of the second resistor R2 and the first input end of the error amplifier U0 are both coupled to the second end of the first resistor R1. The second end of the second resistor R2 is grounded. The control end of the error amplifier U0 is coupled to the control port MS. The output end of the error amplifier U0 is coupled to the first input end of the driver 520. After the feedback voltage of the voltage signal of the output port Vout is divided by the first resistor R1 and the second resistor R2, it is compared with the reference voltage Ref by the error amplifier U0, and the corresponding voltage signal can be output. For example, when the feedback voltage is higher than the reference voltage Ref, a higher feedback voltage can be output; when the feedback voltage is lower than the reference voltage Ref, a lower feedback voltage signal can be output. The above-mentioned current detection circuit 550 can select various conventional current detection circuits, and the embodiment of the present application does not make specific restrictions on this.
在一种实施方案中,如图6所示,上述的电压转换芯片500还可以包括占空比检测电路580、第一多路选择器A1和第二多路选择器A2。其中,第一多路选择器A1的第一输入端与占空比调节电路560的输出端耦合;第一多路选择器A1的输出端与第二连接端口CLK2X耦合。占空比检测电路580的输入端与第二连接端口CLK2X耦合。占空比检测电路580的输出端与第二多路选择器A2的第一输入端耦合;第一多路选择器A1的控制端以及第二多路选择器A2的第二输入端和控制端均与控制端口MS耦合。当控制端口MS没有输入电压(即接地或者空接)时,该电压转换芯片500可以作为从电压转换芯片使用。其中,通过占空比检测电路580可以检测第二连接端口CLK2X输入的时钟信号是否满足驱动器520使能的要求。如果第二连接端口CLK2X输入的时钟信号满足驱动器520使能的要求,则占空比检测电路580可以向驱动器520传输使能信号,使驱动器520可以根据第二连接端口CLK2X输入的时钟信号和第一连接端口EA输入的电压信号对开关电路510进行控制,从而调整输出端口Vout的输出电流。In one embodiment, as shown in FIG6 , the voltage conversion chip 500 may further include a duty cycle detection circuit 580, a first multiplexer A1, and a second multiplexer A2. The first input terminal of the first multiplexer A1 is coupled to the output terminal of the duty cycle adjustment circuit 560; the output terminal of the first multiplexer A1 is coupled to the second connection port CLK2X. The input terminal of the duty cycle detection circuit 580 is coupled to the second connection port CLK2X. The output terminal of the duty cycle detection circuit 580 is coupled to the first input terminal of the second multiplexer A2; the control terminal of the first multiplexer A1 and the second input terminal and the control terminal of the second multiplexer A2 are coupled to the control port MS. When the control port MS has no input voltage (i.e., grounded or empty), the voltage conversion chip 500 can be used as a slave voltage conversion chip. The duty cycle detection circuit 580 can detect whether the clock signal input to the second connection port CLK2X meets the requirements for enabling the driver 520. If the clock signal input by the second connection port CLK2X meets the requirements for enabling the driver 520, the duty cycle detection circuit 580 can transmit an enable signal to the driver 520, so that the driver 520 can control the switch circuit 510 according to the clock signal input by the second connection port CLK2X and the voltage signal input by the first connection port EA, thereby adjusting the output current of the output port Vout.
其中,占空比检测电路580可以在第二连接端口CLK2X输入的时钟信号的占空比为80%时,使能驱动器520。在第二连接端口CLK2X输入的时钟信号的占空比为20%时,停止使能驱动器520。The duty cycle detection circuit 580 can enable the driver 520 when the duty cycle of the clock signal inputted from the second connection port CLK2X is 80%, and stop enabling the driver 520 when the duty cycle of the clock signal inputted from the second connection port CLK2X is 20%.
在上述实现过程中,上述占空比检测电路580可以通过微处理器实现,也可以通过逻辑电路实现,本申请实施例对此不做具体限制。进一步的,占空比检测电路580向驱动器520输出使能信号时,对应的时钟信号的占空比也可以根据实际需求进行调整,并不局限于上述的20%和80%。In the above implementation process, the above duty cycle detection circuit 580 can be implemented by a microprocessor or a logic circuit, and the embodiment of the present application does not impose specific restrictions on this. Further, when the duty cycle detection circuit 580 outputs an enable signal to the driver 520, the duty cycle of the corresponding clock signal can also be adjusted according to actual needs, and is not limited to the above 20% and 80%.
在一种可能的实施方案中,如图7所示,可以利用上述电压转换芯片500搭建一个升压型DC-DC变换器。其中,开关电路510可以包括第一开关K1和第二开关K2。第一开关K1的第一端和第二开关K2的第一端通过输入端口Vin与电感器L1的第一端耦合。第一开关K1的第二端接地,第二开关K2的第二端与输出端口Vout耦合。电感器L1的第二端与输入电源U耦合。接地电容C1和负载Z均与输出端口Vout耦合。检测点可以设置在第二开关K2的第二端与输出端口Vout之间。电流检测电路550的检测端和电压反馈电路540的输入端均与该检测点耦合。In a possible implementation, as shown in FIG7 , a boost-type DC-DC converter can be built using the voltage conversion chip 500. The switch circuit 510 may include a first switch K1 and a second switch K2. The first end of the first switch K1 and the first end of the second switch K2 are coupled to the first end of the inductor L1 through the input port Vin. The second end of the first switch K1 is grounded, and the second end of the second switch K2 is coupled to the output port Vout. The second end of the inductor L1 is coupled to the input power supply U. The grounding capacitor C1 and the load Z are both coupled to the output port Vout. The detection point can be set between the second end of the second switch K2 and the output port Vout. The detection end of the current detection circuit 550 and the input end of the voltage feedback circuit 540 are both coupled to the detection point.
当输出端口Vout的输出电流低于设定阈值时,驱动器520可以根据通过第一时钟信号和第一电压信号控制第一开关K1和第二开关K2的导通状态,从而控制输出端口Vout的输出电流。示例性的,当第一开关K1导通,第二开关K2断开时,可以对电感器L1进行充电。当第一开关K1断开,第二开关K2导通时,可以通过电感器L1进行放电,从而提高输出端口Vout的输出电压,进而提高输出电流。驱动器520可以通过上述的第一时钟信号和第一电压信号控制第一开关K1导通较短的时间,从而降低输出端口Vout的输出电压,进而降低输出电流。驱动器520也可以通过上述的第二时钟信号和第二电压信号控制第一开关K1导通较长的时间,从而提高输出端口Vout的输出电压,进而提高输出电流。When the output current of the output port Vout is lower than the set threshold, the driver 520 can control the conduction state of the first switch K1 and the second switch K2 according to the first clock signal and the first voltage signal, thereby controlling the output current of the output port Vout. Exemplarily, when the first switch K1 is turned on and the second switch K2 is turned off, the inductor L1 can be charged. When the first switch K1 is turned off and the second switch K2 is turned on, it can be discharged through the inductor L1, thereby increasing the output voltage of the output port Vout, thereby increasing the output current. The driver 520 can control the first switch K1 to be turned on for a shorter time through the above-mentioned first clock signal and the first voltage signal, thereby reducing the output voltage of the output port Vout, thereby reducing the output current. The driver 520 can also control the first switch K1 to be turned on for a longer time through the above-mentioned second clock signal and the second voltage signal, thereby increasing the output voltage of the output port Vout, thereby increasing the output current.
在一种可能的实施方案中,如图8所示,也可以利用上述电压转换芯片500搭建一个降压型的DC-DC变换器。其中,开关电路510可以包括第一开关K1和第二开关K2。第一开关K1的第一端和第二开关K2的第一端通过输出端口Vout与电感器L1的第一端耦合。第一开关K1的第二端接地,第二开关K2的第二端与输入端口Vin耦合。电感器L1的第二端分别与接地电容C1的第一端和负载Z的正极耦合。负载Z的负极和接地电容C1的第二端均接地。检测点可以设置在第二开关K2与第一开关K1的耦合点与输出端口Vout之间,同时,电流检测电路550的检测端和电压反馈电路540的输入端均与该检测点耦合。In a possible implementation, as shown in FIG8 , the voltage conversion chip 500 can also be used to build a step-down DC-DC converter. Among them, the switch circuit 510 may include a first switch K1 and a second switch K2. The first end of the first switch K1 and the first end of the second switch K2 are coupled to the first end of the inductor L1 through the output port Vout. The second end of the first switch K1 is grounded, and the second end of the second switch K2 is coupled to the input port Vin. The second end of the inductor L1 is coupled to the first end of the grounded capacitor C1 and the positive electrode of the load Z, respectively. The negative electrode of the load Z and the second end of the grounded capacitor C1 are both grounded. The detection point can be set between the coupling point of the second switch K2 and the first switch K1 and the output port Vout, and at the same time, the detection end of the current detection circuit 550 and the input end of the voltage feedback circuit 540 are both coupled to the detection point.
在图7和图8对应的实现方式中,第二开关K2也可以替换为二极管。驱动器520通过控制第一开关K1的导通时长和断开时长也可以实现对输出电压的控制。进一步的,上述的开关电路510也可以选取其它类型的开关电路结构,本申请实施例对此不做具体限制。In the implementation corresponding to FIG. 7 and FIG. 8 , the second switch K2 may also be replaced by a diode. The driver 520 may also control the output voltage by controlling the on-time and off-time of the first switch K1. Furthermore, the switch circuit 510 may also select other types of switch circuit structures, which are not specifically limited in the present application.
在一种可能的实施方案中,如图9所示,本申请实施例还提供了一种电压转换芯片900,该电压转换芯片包括输入端口Vin、输出端口Vout、开关电路910、驱动器920、占空比检测电路930、第一连接端口EA和第二连接端口CLK2X。其中,开关电路910包括输入端、输出端以及一个或多个控制端;每个控制端对应控制开关电路910中的一个开关的导通状态。开关电路910的输入端与输入端口Vin耦合;开关电路910的输出端与输出端口Vout耦合。开关电路910的各个控制端均与驱动器920耦合。驱动器920第一输入端与第一连接端口EA耦合。驱动器920的第二输入端与第二连接端口CLK2X耦合。占空比检测电路930的输入端与第二连接端口CLK2X耦合。占空比检测电路930的输出端与驱动器920的控制端耦合。In a possible implementation, as shown in FIG9 , the embodiment of the present application further provides a voltage conversion chip 900, which includes an input port Vin, an output port Vout, a switch circuit 910, a driver 920, a duty cycle detection circuit 930, a first connection port EA, and a second connection port CLK2X. The switch circuit 910 includes an input terminal, an output terminal, and one or more control terminals; each control terminal controls the conduction state of a switch in the switch circuit 910. The input terminal of the switch circuit 910 is coupled to the input port Vin; the output terminal of the switch circuit 910 is coupled to the output port Vout. Each control terminal of the switch circuit 910 is coupled to the driver 920. The first input terminal of the driver 920 is coupled to the first connection port EA. The second input terminal of the driver 920 is coupled to the second connection port CLK2X. The input terminal of the duty cycle detection circuit 930 is coupled to the second connection port CLK2X. The output terminal of the duty cycle detection circuit 930 is coupled to the control terminal of the driver 920.
通过上述方式,占空比检测电路930可以根据第二连接端口CLK2X输入的时钟信号使能驱动器920,驱动器920则可以根据第二连接端口CLK2X输入的时钟信号和第一连接端口EA输入的电压信号对开关电路进行控制,从而调整输出端口Vout的输出电流。该电压转换芯片可以通过第一连接端口EA和第二连接端口CLK2X与主电压转换芯片耦合,或者与特定的控制器或者控制电路耦合,从而根据第二连接端口CLK2X输入的时钟信号和第一连接端口EA输入的电压信号输出更稳定的输出电流。In the above manner, the duty cycle detection circuit 930 can enable the driver 920 according to the clock signal input by the second connection port CLK2X, and the driver 920 can control the switch circuit according to the clock signal input by the second connection port CLK2X and the voltage signal input by the first connection port EA, thereby adjusting the output current of the output port Vout. The voltage conversion chip can be coupled with the main voltage conversion chip through the first connection port EA and the second connection port CLK2X, or coupled with a specific controller or control circuit, so as to output a more stable output current according to the clock signal input by the second connection port CLK2X and the voltage signal input by the first connection port EA.
在一种可能的实施方案中,上述的电压转换芯片还可以设置分频器940。其中,该分频器940的输入端与第二连接端口CLK2X耦合;该分频器940的输出端与驱动器920的第二输入端耦合。通过该分频器940,可以将驱动器920的第二输入端输入的时钟信号的频率转换为第二连接端口CLK2X输入的时钟信号的频率的一半,使得该电压转换芯片900的输出端口Vout输出的电流的峰值可以与主电压转换芯片更好的错开,从而降低电流纹波对负载电流的影响。In a possible implementation, the voltage conversion chip may also be provided with a frequency divider 940. The input end of the frequency divider 940 is coupled to the second connection port CLK2X; the output end of the frequency divider 940 is coupled to the second input end of the driver 920. Through the frequency divider 940, the frequency of the clock signal input to the second input end of the driver 920 may be converted to half the frequency of the clock signal input to the second connection port CLK2X, so that the peak value of the current outputted by the output port Vout of the voltage conversion chip 900 may be better staggered with the main voltage conversion chip, thereby reducing the influence of the current ripple on the load current.
示例性的,当图9中的电压转换芯片900作为从片,图5中的电压转换芯片500作为主片时。两个电压转换芯片的工作方式如图10所示。其中,当主片中的电压反馈电路540输出的电压信号低于设定的阈值时,主片的输出端口Vout的输出电流低于设定的阈值,则主片的第二连接端口CLK2X输出的时钟信号的占空比为20%。此时,占空比检测电路930向驱动器920的使能端提供低电平,从片不运行。当电压反馈电路540输出的电压信号高于设定的阈值时,主片的输出端口Vout的输出电流超过设定的阈值,则主片的第二连接端口CLK2X输出的时钟信号的占空比为80%。此时,占空比检测电路930可以在下一个时钟信号周期向驱动器920的使能端提供高电平,使从片运行,通过主片和从片并联为负载Z供电,从而提高负载Z的电流。当电压反馈电路540输出的电压信号再次低于设定的阈值时,主片的输出端口Vout的输出电流低于设定的阈值,则主片的第二连接端口CLK2X输出的时钟信号的占空比为20%。此时,占空比检测电路930向驱动器920的使能端提供低电平,从片停止运行。Exemplarily, when the voltage conversion chip 900 in FIG. 9 is used as a slave chip and the voltage conversion chip 500 in FIG. 5 is used as a master chip. The working mode of the two voltage conversion chips is shown in FIG. 10. Among them, when the voltage signal output by the voltage feedback circuit 540 in the master chip is lower than the set threshold value, the output current of the output port Vout of the master chip is lower than the set threshold value, then the duty cycle of the clock signal output by the second connection port CLK2X of the master chip is 20%. At this time, the duty cycle detection circuit 930 provides a low level to the enable end of the driver 920, and the slave chip does not operate. When the voltage signal output by the voltage feedback circuit 540 is higher than the set threshold value, the output current of the output port Vout of the master chip exceeds the set threshold value, then the duty cycle of the clock signal output by the second connection port CLK2X of the master chip is 80%. At this time, the duty cycle detection circuit 930 can provide a high level to the enable end of the driver 920 in the next clock signal cycle, so that the slave chip operates, and the load Z is powered by the master chip and the slave chip in parallel, thereby increasing the current of the load Z. When the voltage signal output by the voltage feedback circuit 540 is lower than the set threshold again, the output current of the output port Vout of the master chip is lower than the set threshold, and the duty cycle of the clock signal output by the second connection port CLK2X of the master chip is 20%. At this time, the duty cycle detection circuit 930 provides a low level to the enable terminal of the driver 920, and the slave chip stops running.
在上述过程中,主片和从片的输出电流与第二连接端口CLK2X的时钟信号之间的关系如图11所示。具体的,当主片的第二连接端口CLK2X输出的时钟信号的占空比为20%时,主片正常向开关电路510输出PWM信号。当主片的第二连接端口CLK2X输出的时钟信号的占空比为80%时,从片中的驱动器920在下一个信号周期向对应的开关电路910输出PWM信号。考虑到分频器940使得时钟信号的频率为驱动器920输出的PWM信号的两倍,所以通过上述方式可以使主片和从片的PWM信号有180度的相位差,从而将主片和从片的峰值电流错开,以降低电流纹波对负载电流稳定性的影响。In the above process, the relationship between the output current of the master chip and the slave chip and the clock signal of the second connection port CLK2X is shown in FIG11. Specifically, when the duty cycle of the clock signal output by the second connection port CLK2X of the master chip is 20%, the master chip normally outputs a PWM signal to the switch circuit 510. When the duty cycle of the clock signal output by the second connection port CLK2X of the master chip is 80%, the driver 920 in the slave chip outputs a PWM signal to the corresponding switch circuit 910 in the next signal cycle. Considering that the frequency divider 940 makes the frequency of the clock signal twice that of the PWM signal output by the driver 920, the above method can make the PWM signals of the master chip and the slave chip have a phase difference of 180 degrees, thereby staggering the peak currents of the master chip and the slave chip to reduce the influence of the current ripple on the stability of the load current.
在上述实现过程中,时钟信号的占空比也可以根据实际需求进行调整,并不局限于上述的20%和80%。In the above implementation process, the duty cycle of the clock signal can also be adjusted according to actual needs, and is not limited to the above 20% and 80%.
在一种可能的实施方案中,如图12所示,上述的电压转换芯片900还可以包括控制端口MS、振荡器950、占空比调节电路960、电流检测电路970、第一多路选择器A1和电压反馈电路980。其中,开关电路910的输入端或者输出端设有检测点。电流检测电路970的检测端和电压反馈电路980的输入端均与检测点耦合。电流检测电路970的输出端与占空比调节电路960的控制端耦合。占空比调节电路960的输入端与振荡器950的输出端耦合。电压反馈电路980的输出端与驱动器920的第一输入端耦合。占空比调节电路960的输出端与驱动器920的第二输入端耦合。电流检测电路970、电压反馈电路980、驱动器920和振荡器950还与控制端口MS耦合。第一多路选择器A1的第一输入端与占空比检测电路930的输出端耦合。第一多路选择器A1的第二输入端和控制端均与控制端口MS耦合。该电压反馈电路980可以选用图5-图8中的电压反馈电路540的结构,本申请实施例在此不做赘述。In a possible implementation, as shown in FIG12 , the voltage conversion chip 900 may further include a control port MS, an oscillator 950, a duty cycle adjustment circuit 960, a current detection circuit 970, a first multiplexer A1, and a voltage feedback circuit 980. Among them, a detection point is provided at the input end or the output end of the switch circuit 910. The detection end of the current detection circuit 970 and the input end of the voltage feedback circuit 980 are both coupled to the detection point. The output end of the current detection circuit 970 is coupled to the control end of the duty cycle adjustment circuit 960. The input end of the duty cycle adjustment circuit 960 is coupled to the output end of the oscillator 950. The output end of the voltage feedback circuit 980 is coupled to the first input end of the driver 920. The output end of the duty cycle adjustment circuit 960 is coupled to the second input end of the driver 920. The current detection circuit 970, the voltage feedback circuit 980, the driver 920, and the oscillator 950 are also coupled to the control port MS. The first input end of the first multiplexer A1 is coupled to the output end of the duty cycle detection circuit 930. The second input terminal and the control terminal of the first multiplexer A1 are coupled to the control port MS. The voltage feedback circuit 980 may adopt the structure of the voltage feedback circuit 540 in FIG. 5 to FIG. 8 , and the embodiment of the present application will not be described in detail here.
通过上述方式,该电压转换芯片900除了可以通过第一连接端口EA输入的电压信号和第二连接端口CLK2X输入的时钟信号控制输出的电流外,还可以在控制端口MS输入电压时,启动电流检测电路970、电压反馈电路980、驱动器920和振荡器950。此时,电压反馈电路980可以为驱动器920提供反馈的电压信号。占空比调节电路960可以通过电流检测电路970的检测信号将振荡器950输出的基础信号调节为预设占空比的时钟信号,并将该时钟信号传输给驱动器920。驱动器920根据上述电压信号和时钟信号对开关电路910进行控制,从而输出更为稳定的电流。In the above manner, in addition to controlling the output current through the voltage signal input from the first connection port EA and the clock signal input from the second connection port CLK2X, the voltage conversion chip 900 can also start the current detection circuit 970, the voltage feedback circuit 980, the driver 920 and the oscillator 950 when the voltage is input to the control port MS. At this time, the voltage feedback circuit 980 can provide a feedback voltage signal for the driver 920. The duty cycle adjustment circuit 960 can adjust the basic signal output by the oscillator 950 to a clock signal with a preset duty cycle through the detection signal of the current detection circuit 970, and transmit the clock signal to the driver 920. The driver 920 controls the switch circuit 910 according to the above voltage signal and clock signal, so as to output a more stable current.
在一种可能的实施方案中,如图13所示,上述的电压转换芯片900还可以包括第二多路选择器A2。其中,第二多路选择器A2的第一输入端与占空比调节电路960的输出端耦合。第二多路选择器A2的输出端与第二连接端口CLK2X耦合。当控制端口MS输入电压时,第二多路选择器A2的第二输入端与输出端导通,第一多路选择器A1的第一输入端与输出端导通。此时,驱动器920可以通过电压反馈电路980输出的电压信号和占空比调节电路960输出的时钟信号对开关电路910进行控制。当控制端口MS没有输入电压(即接地或者空接)时,第二多路选择器A2的第一输入端与输出端导通,第一多路选择器A1的第二输入端与输出端导通。此时,驱动器920可以通过第一连接端口EA接收的电压信号和第二连接端口CLK2X接收的时钟信号对开关电路910进行控制。In a possible implementation, as shown in FIG. 13 , the voltage conversion chip 900 may further include a second multiplexer A2. The first input terminal of the second multiplexer A2 is coupled to the output terminal of the duty cycle adjustment circuit 960. The output terminal of the second multiplexer A2 is coupled to the second connection port CLK2X. When the control port MS inputs a voltage, the second input terminal of the second multiplexer A2 is connected to the output terminal, and the first input terminal of the first multiplexer A1 is connected to the output terminal. At this time, the driver 920 can control the switch circuit 910 through the voltage signal output by the voltage feedback circuit 980 and the clock signal output by the duty cycle adjustment circuit 960. When the control port MS has no input voltage (i.e., grounded or empty), the first input terminal of the second multiplexer A2 is connected to the output terminal, and the second input terminal of the first multiplexer A1 is connected to the output terminal. At this time, the driver 920 can control the switch circuit 910 through the voltage signal received by the first connection port EA and the clock signal received by the second connection port CLK2X.
在一种可能的实施方案中,如图14所示,可以利用上述电压转换芯片900搭建一个升压型DC-DC变换器。其中,开关电路910可以包括第一开关K1和第二开关K2。第一开关K1的第一端和第二开关K2的第一端通过输入端口Vin与电感器L1的第一端耦合。第一开关K1的第二端接地,第二开关K2的第二端与输出端口Vout耦合。电感器L1的第二端与输入电源U耦合,负载Z和接地电容C1均与输出端口Vout耦合。检测点可以设置在第二开关K2的第二端与输出端口Vout之间。电流检测电路970的检测端和电压反馈电路980的输入端均与该检测点耦合。In a possible implementation, as shown in FIG14 , the voltage conversion chip 900 can be used to build a boost DC-DC converter. The switch circuit 910 may include a first switch K1 and a second switch K2. The first end of the first switch K1 and the first end of the second switch K2 are coupled to the first end of the inductor L1 through the input port Vin. The second end of the first switch K1 is grounded, and the second end of the second switch K2 is coupled to the output port Vout. The second end of the inductor L1 is coupled to the input power supply U, and the load Z and the grounding capacitor C1 are both coupled to the output port Vout. The detection point can be set between the second end of the second switch K2 and the output port Vout. The detection end of the current detection circuit 970 and the input end of the voltage feedback circuit 980 are both coupled to the detection point.
示例性的,当控制端口MS没有输入电压时,占空比检测电路930可以在第二连接端口CLK2X输入的时钟信号的占空比满足预设值时,启动驱动器920。驱动器920可以根据第二连接端口CLK2X输入的时钟信号和第一连接端口EA输入的电压信号对第一开关K1和第二开关K2的导通时长和断开时长进行控制。其中,当第一开关K1导通,第二开关K2断开时,可以对电感器L1进行充电。当第一开关K1断开,第二开关K2导通时,可以通过电感器L1进行放电,从而提高输出端口Vout的输出电压,进而提高输出电流。其中,第一开关K1和第二开关K2的导通控制过程可以参照图7中对应的描述,本申请实施例对此不做赘述。Exemplarily, when there is no input voltage to the control port MS, the duty cycle detection circuit 930 can start the driver 920 when the duty cycle of the clock signal input to the second connection port CLK2X meets the preset value. The driver 920 can control the on-time and off-time of the first switch K1 and the second switch K2 according to the clock signal input to the second connection port CLK2X and the voltage signal input to the first connection port EA. When the first switch K1 is turned on and the second switch K2 is turned off, the inductor L1 can be charged. When the first switch K1 is turned off and the second switch K2 is turned on, it can be discharged through the inductor L1, thereby increasing the output voltage of the output port Vout, and then increasing the output current. The on-control process of the first switch K1 and the second switch K2 can refer to the corresponding description in Figure 7, and the embodiment of the present application will not be repeated.
进一步的,当向控制端口MS输入电压时,如果输出端口Vout的输出电流低于设定阈值时,则驱动器920也可以根据通过电压反馈电路980输出的电压信号和占空比调节电路960输出的时钟信号控制第一开关K1和第二开关K2的导通状态,从而控制输出端口Vout的输出电流。Furthermore, when a voltage is input to the control port MS, if the output current of the output port Vout is lower than the set threshold, the driver 920 can also control the conduction state of the first switch K1 and the second switch K2 according to the voltage signal output by the voltage feedback circuit 980 and the clock signal output by the duty cycle adjustment circuit 960, thereby controlling the output current of the output port Vout.
在一种可能的实施方案中,如图15所示,也可以利用上述电压转换芯片900搭建一个降压型的DC-DC变换器。其中,开关电路910可以包括第一开关K1和第二开关K2。第一开关K1的第一端和第二开关K2的第一端通过输出端口Vout与电感器L1的第一端耦合。第一开关K1的第二端接地,第二开关K2的第二端与输入端口Vin耦合。电感器L1的第二端分别与接地电容C1的第一端和负载Z的正极耦合。负载Z的负极和接地电容C1的第二端均接地。检测点可以设置在第二开关K2与第一开关K1的耦合点与输出端口Vout之间,同时,电流检测电路970的检测端和电压反馈电路980的输入端均与该检测点耦合。In a possible implementation, as shown in FIG15 , the voltage conversion chip 900 can also be used to build a step-down DC-DC converter. Among them, the switch circuit 910 may include a first switch K1 and a second switch K2. The first end of the first switch K1 and the first end of the second switch K2 are coupled to the first end of the inductor L1 through the output port Vout. The second end of the first switch K1 is grounded, and the second end of the second switch K2 is coupled to the input port Vin. The second end of the inductor L1 is coupled to the first end of the grounded capacitor C1 and the positive electrode of the load Z, respectively. The negative electrode of the load Z and the second end of the grounded capacitor C1 are both grounded. The detection point can be set between the coupling point of the second switch K2 and the first switch K1 and the output port Vout, and at the same time, the detection end of the current detection circuit 970 and the input end of the voltage feedback circuit 980 are both coupled to the detection point.
在图14和图15对应的实现方式中,第二开关K2也可以替换为二极管。驱动器920通过控制第一开关K1的导通时长和断开时长也可以实现对输出电压的控制。进一步的,上述的开关电路910也可以选取其它类型的开关电路结构,本申请实施例对此不做具体限制。In the implementations corresponding to FIG. 14 and FIG. 15 , the second switch K2 may also be replaced by a diode. The driver 920 may also control the output voltage by controlling the on-time and off-time of the first switch K1. Furthermore, the switch circuit 910 may also select other types of switch circuit structures, which are not specifically limited in the embodiments of the present application.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的电路的功能,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art will appreciate that the functions of the circuits of the various examples described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or in a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
在本申请所提供的几个实施例中,应该理解到,所揭露的电路和电子设备,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed circuits and electronic devices can be implemented in other ways. For example, the device embodiments described above are only schematic, for example, the division of modules is only a logical function division, and there may be other division methods in actual implementation, such as multiple modules or components can be combined or integrated into another device, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or modules, which can be electrical, mechanical or other forms.
另外,在本申请各个实施例中的各个电压转换芯片可以集成在一个设备中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个设备中。In addition, each voltage conversion chip in each embodiment of the present application may be integrated into one device, or each module may exist physically separately, or two or more modules may be integrated into one device.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the present application, but the protection scope of the present application is not limited thereto. Any person skilled in the art who is familiar with the present technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310368569.2A CN118739848A (en) | 2023-03-30 | 2023-03-30 | Voltage conversion chip and electronic equipment |
PCT/CN2024/083816 WO2024199221A1 (en) | 2023-03-30 | 2024-03-26 | Voltage conversion chip and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310368569.2A CN118739848A (en) | 2023-03-30 | 2023-03-30 | Voltage conversion chip and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118739848A true CN118739848A (en) | 2024-10-01 |
Family
ID=92857047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310368569.2A Pending CN118739848A (en) | 2023-03-30 | 2023-03-30 | Voltage conversion chip and electronic equipment |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118739848A (en) |
WO (1) | WO2024199221A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120286750A1 (en) * | 2011-05-10 | 2012-11-15 | Peng Xu | Switching regulators with adaptive clock generators and associated methods of control |
CN103856055B (en) * | 2014-02-28 | 2016-06-29 | 台达电子企业管理(上海)有限公司 | Dc/dc converter and control method thereof |
US10903745B1 (en) * | 2015-05-14 | 2021-01-26 | Maxim Integrated Products, Inc. | Average current mode control architecture |
CN107222090B (en) * | 2017-06-15 | 2019-02-22 | 温州大学 | A parallel power supply output power balance control system capturing on-time |
-
2023
- 2023-03-30 CN CN202310368569.2A patent/CN118739848A/en active Pending
-
2024
- 2024-03-26 WO PCT/CN2024/083816 patent/WO2024199221A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024199221A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10222814B1 (en) | Systems and methods for DC-to-DC converter control | |
US7986133B2 (en) | Power supply unit | |
CN101488713B (en) | Voltage converter | |
CN100574066C (en) | DC-DC converter and control device and method, supply unit and electronic equipment | |
US20130328534A1 (en) | Method of controlling a power converting device and related circuit | |
CN102857101B (en) | Multi-input single-output DC (direct current)/DC converter | |
US7423415B2 (en) | DC-DC converter and its control method, and switching regulator and its control method | |
CN101488712A (en) | Voltage converter | |
CN101159413A (en) | Multi-phase converter with frequency and phase timing control | |
CN102468741A (en) | rectifier circuit | |
Ren et al. | Dual-edge modulated four-switch Buck-Boost converter | |
CN106469981A (en) | Many topology power converter controller | |
CN116846009A (en) | Power supply device and power supply method | |
CN101783581A (en) | Multi-phase drive circuit | |
CN112688540B (en) | Switching power converter and boost turn-off time adaptive adjusting unit | |
CN118748510A (en) | Mode conversion control circuit and control method of four-switch buck-boost converter | |
CN118739848A (en) | Voltage conversion chip and electronic equipment | |
CN109787349B (en) | UPS circuit, power supply circuit and electronic equipment | |
CN215343977U (en) | Power supply circuit, power supply system and intelligent door lock | |
CN109765960B (en) | Maximum power tracking power generation device and system | |
KR20180126940A (en) | Buck-boost dc/dc converter | |
CN113992011A (en) | Multiphase switch converter cascade system and voltage conversion circuit thereof | |
CN106558996A (en) | For obtaining the improved DC DC potential devices of constant output voltage | |
TWI411210B (en) | Freewheel charge-pump controlled single-inductor multiple-output dc-dc converter | |
CN208285221U (en) | A kind of power supply built-up circuit of electrical equipment mainboard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |