CN118731914A - An adaptive proximity light detection sensor - Google Patents
An adaptive proximity light detection sensor Download PDFInfo
- Publication number
- CN118731914A CN118731914A CN202410774638.4A CN202410774638A CN118731914A CN 118731914 A CN118731914 A CN 118731914A CN 202410774638 A CN202410774638 A CN 202410774638A CN 118731914 A CN118731914 A CN 118731914A
- Authority
- CN
- China
- Prior art keywords
- digital
- current
- integrator
- calibration module
- detection sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electronic Switches (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光学传感器领域,特别是涉及一种自适应接近光检测传感器。The present invention relates to the field of optical sensors, and in particular to an adaptive proximity light detection sensor.
背景技术Background Art
在手机和平板电脑领域,高性能光学传感器芯片作为标准配置被用接近光检测,系统设计师可根据显示屏离被测物体距离的远近自动调节显示屏的亮灭,从而降低系统功耗。在实际屏下应用场景中,由于显示屏对红外线的衰减以及屏幕对LED灯开启时间的要求,需要接近光检测传感器能够分辨微弱的物体红外反射信号。In the field of mobile phones and tablets, high-performance optical sensor chips are used as standard configuration for proximity light detection. System designers can automatically adjust the brightness of the display screen according to the distance between the display screen and the object being measured, thereby reducing system power consumption. In actual under-screen application scenarios, due to the attenuation of infrared light by the display screen and the screen's requirements for the LED light on time, the proximity light detection sensor needs to be able to distinguish weak infrared reflection signals of objects.
现有技术方案中,接近光检测系统由LED发射端与接近光检测接收端组成。通过控制LED开关的导通和关断来控制LED灯发光,当光电二极管(photo diode)接收到物体的反射光信号后,光信号由模拟前端电路AFE转换成电信号,再通过模数转换器ADC转换成数字信号Data进行系统级数字信号处理。In the existing technical solution, the proximity light detection system consists of an LED transmitter and a proximity light detection receiver. The LED light is controlled by controlling the on and off of the LED switch. When the photodiode receives the reflected light signal of the object, the light signal is converted into an electrical signal by the analog front-end circuit AFE, and then converted into a digital signal Data by the analog-to-digital converter ADC for system-level digital signal processing.
实际应用中由于手机内部结构对光学传感器芯片光路的影响,结构光干扰会造成传感器输出偏差,从而影响光学传感器芯片判断被测物体的接近远离状态。现有技术方案通过固定偏差消除的方法来减少结构光干扰的影响,即通过在数模转换器ADC输出增加固定数字偏差(digital offset)减少结构光干扰。但实际应用中光学传感器芯片在应用端一致性差,同时由于手机结构的差异,增加的消除量数字偏差值也会有差异,不适用于手机批量生产。In actual applications, due to the influence of the internal structure of the mobile phone on the optical path of the optical sensor chip, structured light interference will cause sensor output deviation, thereby affecting the optical sensor chip's judgment of the proximity and distance of the measured object. The existing technical solution reduces the impact of structured light interference by eliminating fixed deviations, that is, by adding a fixed digital offset to the output of the digital-to-analog converter ADC to reduce structured light interference. However, in actual applications, the consistency of optical sensor chips at the application end is poor. At the same time, due to differences in mobile phone structures, the added digital deviation value of the elimination amount will also be different, which is not suitable for mass production of mobile phones.
发明内容Summary of the invention
本发明的目的是提供一种自适应接近光检测传感器,能够自适应地消除结构光干扰,增加光学传感器芯片在应用中的一致性,适用于手机批量生产,同时能够自适应地降低接近光传感器噪声,提升和优化光学传感器性能。The purpose of the present invention is to provide an adaptive proximity light detection sensor that can adaptively eliminate structured light interference, increase the consistency of optical sensor chips in applications, and is suitable for mass production of mobile phones. At the same time, it can adaptively reduce proximity light sensor noise and improve and optimize optical sensor performance.
为实现上述技术目的,本发明提供一种自适应接近光检测传感器,所述传感器的接收端包括:光电二极管、积分器和模数转换器,所述模数转换器输出的数字信号中含有结构光干扰的数据,其中:所述接收端还包括电流源阵列和第一数字校准模块,所述电流源阵列与所述光电二极管二者之间呈并联布置且连接至所述积分器的正相输入端,所述第一数字校准模块采集所述数字信号并对所述电流源阵列的电流进行反馈校准,以达到减少所述数字信号中所述结构光干扰的成分。To achieve the above technical objectives, the present invention provides an adaptive proximity light detection sensor, wherein the receiving end of the sensor includes: a photodiode, an integrator and an analog-to-digital converter, the digital signal output by the analog-to-digital converter contains data of structured light interference, wherein: the receiving end also includes a current source array and a first digital calibration module, the current source array and the photodiode are arranged in parallel and connected to the non-inverting input terminal of the integrator, the first digital calibration module collects the digital signal and performs feedback calibration on the current of the current source array to reduce the component of the structured light interference in the digital signal.
本发明提供一种自适应接近光检测传感器,通过第一数字校准模块采集所述数字信号并对电流源阵列的电流进行反馈校准,这种反馈校准形式使得电流信号到数字信号形成自适应的校准形式,能够自适应地消除结构光干扰,增加光学传感器芯片在应用中的一致性,适用于手机批量生产。The present invention provides an adaptive proximity light detection sensor, which collects the digital signal through a first digital calibration module and performs feedback calibration on the current of a current source array. This feedback calibration form enables the current signal to form an adaptive calibration form to the digital signal, can adaptively eliminate structured light interference, increase the consistency of the optical sensor chip in the application, and is suitable for mass production of mobile phones.
作为进一步的改进,所述反馈校准包括:所述数字信号通过所述第一数字校准模块,首先调整所述电流源阵列的电流强度,以对流进所述积分器的电流进行粗调校准,然后调整所述电流源阵列所输出电流的电流宽度,以对流经所述积分器的电流进行细调校准。As a further improvement, the feedback calibration includes: the digital signal passes through the first digital calibration module, first adjusting the current intensity of the current source array to perform a coarse calibration on the current flowing into the integrator, and then adjusting the current width of the current output by the current source array to perform a fine calibration on the current flowing through the integrator.
作为进一步的改进,所述传感器的发射端为LED发射端,所述LED发射端具有LED开关,以导通和关断控制所述LED发射端中LED灯发光,所述积分器具有正相输入端负反馈电路,所述正相输入端负反馈电路为积分电容,所述接收端还包括梳状滤波器,所述数字信号经所述梳状滤波器后与所述第一数字校准模块相连。As a further improvement, the transmitting end of the sensor is an LED transmitting end, and the LED transmitting end has an LED switch to turn on and off the LED lamp in the LED transmitting end to control the light emission. The integrator has a negative feedback circuit at the positive input end, and the negative feedback circuit at the positive input end is an integrating capacitor. The receiving end also includes a comb filter, and the digital signal is connected to the first digital calibration module after passing through the comb filter.
作为进一步的改进,所述光电二极管接收所述LED发射端的反射光后转换成电流信号,所述电流信号经所述积分器和所述积分电容流出转换成电压信号,所述电压信号经所述模数转换器和所述梳状滤波器流出转换成所述数字信号。As a further improvement, the photodiode receives the reflected light from the LED emission end and converts it into a current signal, the current signal flows out through the integrator and the integrating capacitor and is converted into a voltage signal, and the voltage signal flows out through the analog-to-digital converter and the comb filter and is converted into the digital signal.
作为进一步的改进,所述光电二极管与所述积分器之间布置有第一开关,所述第一开关控制由所述光电二极管转换成的电流信号至所述积分器;所述电流源阵列的一端连接电源端VDD,且所述电流源阵列的另一端与所述积分器的正相输入端之间布置有与所述电流源阵列相对应匹配的第二开关阵列,所述第一数字校准模块经所述第二开关阵列控制所述电流源阵列所输出电流的所述电流强度和所述宽度的减小。As a further improvement, a first switch is arranged between the photodiode and the integrator, and the first switch controls the current signal converted by the photodiode to the integrator; one end of the current source array is connected to the power supply terminal VDD, and a second switch array corresponding to the current source array is arranged between the other end of the current source array and the non-inverting input terminal of the integrator, and the first digital calibration module controls the reduction of the current intensity and the width of the current output by the current source array through the second switch array.
作为进一步的改进,所述数字信号Data<15:0>,所述电流强度的选择信号Isrc_sel<3:0>,在首先所述粗调校准中,当所述数字信号Data<15:0>减小至小于门限阈值d0时,所述第一数字校准模块停止工作,所述电流强度的选择信号Isrc_sel<3:0>锁定为d2,在其后所述细调校准中,随着所述电流宽度信号宽度的减小,所述数字信号Data<15:0>逐渐增加,当满足结构光门限阈值大于0和小于d20的要求,所述第一数字校准模块停止工作,此时锁定所述电流宽度信号宽度,结构光干扰消除完成。As a further improvement, the digital signal Data<15:0>, the current strength selection signal Isrc_sel<3:0>, in the first coarse adjustment calibration, when the digital signal Data<15:0> decreases to less than the threshold value d0, the first digital calibration module stops working, and the current strength selection signal Isrc_sel<3:0> is locked to d2, and in the subsequent fine adjustment calibration, as the width of the current width signal decreases, the digital signal Data<15:0> gradually increases, and when the requirement that the structured light threshold is greater than 0 and less than d20 is met, the first digital calibration module stops working, and at this time the current width signal width is locked, and the structured light interference elimination is completed.
作为进一步的改进,所述接收端还包括:匹配电容和第二数字校准模块,所述匹配电容连接至所述积分器的负相输入端,所述积分器具有负相输入端负反馈电路,所述负相输入端负反馈电路为电容,所述第二数字校准模块采集所述数字信号并对所述匹配电容进行噪声校准,以降低接近光传感器噪声。As a further improvement, the receiving end also includes: a matching capacitor and a second digital calibration module, the matching capacitor is connected to the negative phase input terminal of the integrator, the integrator has a negative feedback circuit at the negative phase input terminal, the negative feedback circuit at the negative phase input terminal is a capacitor, and the second digital calibration module collects the digital signal and performs noise calibration on the matching capacitor to reduce the proximity light sensor noise.
作为进一步的改进,所述噪声校准为所述数字信号通过所述第二数字校准模块对所述匹配电容进行校准,通过调整所述负相输入端负反馈电路的所述电容使得所述匹配电容与所述光电二极管的寄生电容匹配,减少所述积分器的噪声干扰,以达到减小所述数字信号的噪声跳动。As a further improvement, the noise calibration is that the digital signal calibrates the matching capacitor through the second digital calibration module, and the matching capacitor is matched with the parasitic capacitance of the photodiode by adjusting the capacitance of the negative feedback circuit at the negative phase input end, thereby reducing the noise interference of the integrator and reducing the noise jump of the digital signal.
作为进一步的改进,所述寄生电容与所述光电二极管并联布置并具有接地端,所述寄生电容与所述光电二极管并联的另一端与所述第一开关相连,所述匹配电容的一端接地,且所述匹配电容的另一端与所述积分器的负相输入端之间布置有与所述匹配电容相对应匹配的第三开关阵列,所述第二数字校准模块作用于所述第三开关阵列。As a further improvement, the parasitic capacitor is arranged in parallel with the photodiode and has a grounding end, the other end of the parasitic capacitor connected in parallel with the photodiode is connected to the first switch, one end of the matching capacitor is grounded, and a third switch array corresponding to the matching capacitor is arranged between the other end of the matching capacitor and the negative phase input end of the integrator, and the second digital calibration module acts on the third switch array.
作为进一步的改进,本发明提供一种自适应接近光检测传感器应用于手机或平板电脑领域,LED驱动电流为100mA,LED开启时间为1ms,模数转换器满量程65535Code,在3cm距离处的接近光响应数据为38000Code,对空结构光数据减少至20Code以内,噪声跳动为10Code。As a further improvement, the present invention provides an adaptive proximity light detection sensor for application in the field of mobile phones or tablet computers, with an LED driving current of 100mA, an LED on time of 1ms, an analog-to-digital converter full scale of 65535Code, proximity light response data at a distance of 3cm is 38000Code, the air structured light data is reduced to less than 20Code, and the noise jump is 10Code.
本发明提供的一种自适应接近光检测传感器特别应用于手机或平板电脑的批量生产,同时能够自适应地降低接近光传感器噪声,提升和优化光学传感器性能。The adaptive proximity light detection sensor provided by the present invention is particularly applicable to the mass production of mobile phones or tablet computers, and can adaptively reduce the proximity light sensor noise, and improve and optimize the optical sensor performance.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明系统框架示意图;FIG1 is a schematic diagram of the system framework of the present invention;
图2为本发明结构光干扰消除校准时序示意图;FIG2 is a schematic diagram of a timing diagram of structured light interference elimination calibration according to the present invention;
图3为本发明降低接近光传感器噪声示意图。FIG. 3 is a schematic diagram of reducing the noise of a proximity light sensor according to the present invention.
附图标记:光电二极管1;电流源阵列2;匹配电容阵列3;积分器4;模数转换器ADC;梳妆滤波器5;第一数字校准模块6;第二数字校准模块7;电流信号8;积分电容9;电容10;寄生电容11,电源端VDD,第一开关Sw1;第二开关阵列Sw2 Array;第三开关阵列Sw3 Array。Figure numerals: photodiode 1; current source array 2; matching capacitor array 3; integrator 4; analog-to-digital converter ADC; comb filter 5; first digital calibration module 6; second digital calibration module 7; current signal 8; integrating capacitor 9; capacitor 10; parasitic capacitor 11, power supply terminal VDD, first switch Sw1; second switch array Sw2 Array; third switch array Sw3 Array.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
如图1至图3所示,为实现上述技术目的,本发明提供一种自适应接近光检测传感器,所述传感器的接收端包括:光电二极管1、积分器4和模数转换器ADC,所述模数转换器ADC输出的数字信号中含有结构光干扰的数据,其中:所述接收端还包括电流源阵列2和第一数字校准模块6,所述电流源阵列2与所述光电二极管1二者之间呈并联布置且连接至所述积分器4的正相输入端,所述第一数字校准模块6采集所述数字信号并对所述电流源阵列2的电流进行反馈校准,以达到减少所述数字信号中所述结构光干扰的成分。As shown in Figures 1 to 3, in order to achieve the above-mentioned technical objectives, the present invention provides an adaptive proximity light detection sensor, wherein the receiving end of the sensor includes: a photodiode 1, an integrator 4 and an analog-to-digital converter ADC, the digital signal output by the analog-to-digital converter ADC contains data of structured light interference, wherein: the receiving end also includes a current source array 2 and a first digital calibration module 6, the current source array 2 and the photodiode 1 are arranged in parallel and connected to the non-inverting input terminal of the integrator 4, the first digital calibration module 6 collects the digital signal and performs feedback calibration on the current of the current source array 2 to reduce the component of the structured light interference in the digital signal.
本发明提供一种自适应接近光检测传感器,通过第一数字校准模块采集所述数字信号并对电流源阵列的电流进行反馈校准,这种反馈校准形式使得电流信号到数字信号形成自适应的校准形式,能够自适应地消除结构光干扰,增加光学传感器芯片在应用中的一致性,适用于手机批量生产。The present invention provides an adaptive proximity light detection sensor, which collects the digital signal through a first digital calibration module and performs feedback calibration on the current of a current source array. This feedback calibration form enables the current signal to form an adaptive calibration form to the digital signal, can adaptively eliminate structured light interference, increase the consistency of the optical sensor chip in the application, and is suitable for mass production of mobile phones.
作为进一步的改进,所述反馈校准包括:所述数字信号通过所述第一数字校准模块6,首先调整所述电流源阵列2的电流强度,以对流进所述积分器4的电流进行粗调校准,然后调整所述电流源阵列2所输出电流的电流宽度,以对流经所述积分器4的电流进行细调校准。As a further improvement, the feedback calibration includes: the digital signal passes through the first digital calibration module 6, first adjusting the current intensity of the current source array 2 to perform a coarse calibration on the current flowing into the integrator 4, and then adjusting the current width of the current output by the current source array 2 to perform a fine calibration on the current flowing through the integrator 4.
作为进一步的改进,所述传感器的发射端为LED发射端,所述LED发射端具有LED开关,以导通和关断控制所述LED发射端中LED灯发光,所述积分器4具有正相输入端负反馈电路,所述正相输入端负反馈电路为积分电容9,所述接收端还包括梳状滤波器5,所述数字信号经所述梳状滤波器5后与所述第一数字校准模块6相连。As a further improvement, the transmitting end of the sensor is an LED transmitting end, and the LED transmitting end has an LED switch to turn on and off the LED lamp in the LED transmitting end to control the light emission. The integrator 4 has a negative feedback circuit at the positive input end, and the negative feedback circuit at the positive input end is an integrating capacitor 9. The receiving end also includes a comb filter 5, and the digital signal is connected to the first digital calibration module 6 after passing through the comb filter 5.
作为进一步的改进,所述光电二极管1接收所述LED发射端的反射光后转换成电流信号,所述电流信号经所述积分器4和所述积分电容9流出转换成电压信号,所述电压信号经所述模数转换器ADC和所述梳状滤波器5流出转换成所述数字信号。As a further improvement, the photodiode 1 receives the reflected light from the LED emission end and converts it into a current signal. The current signal flows out through the integrator 4 and the integrating capacitor 9 and is converted into a voltage signal. The voltage signal flows out through the analog-to-digital converter ADC and the comb filter 5 and is converted into the digital signal.
作为进一步的改进,所述光电二极管1与所述积分器4之间布置有第一开关Sw1,所述第一开关Sw1控制由所述光电二极管1转换成的电流信号至所述积分器4;所述电流源阵列2的一端连接电源端VDD,且所述电流源阵列2的另一端与所述积分器4的正相输入端之间布置有与所述电流源阵列2相对应匹配的第二开关阵列Sw2 Array,所述第一数字校准模块6经所述第二开关阵列Sw2 Array控制所述电流源阵列2所输出电流的所述电流强度和所述宽度的减小。As a further improvement, a first switch Sw1 is arranged between the photodiode 1 and the integrator 4, and the first switch Sw1 controls the current signal converted by the photodiode 1 to the integrator 4; one end of the current source array 2 is connected to the power supply terminal VDD, and a second switch array Sw2 Array corresponding to the current source array 2 is arranged between the other end of the current source array 2 and the non-inverting input terminal of the integrator 4, and the first digital calibration module 6 controls the reduction of the current intensity and the width of the current output by the current source array 2 through the second switch array Sw2 Array.
作为进一步的改进,所述数字信号Data<15:0>,所述电流强度的选择信号Isrc_sel<3:0>,在首先所述粗调校准中,当所述数字信号Data<15:0>减小至小于门限阈值d0时,所述第一数字校准模块6停止工作,所述电流强度的选择信号Isrc_sel<3:0>锁定为d2,在其后所述细调校准中,随着所述电流宽度信号宽度的减小,所述数字信号Data<15:0>逐渐增加,当满足结构光门限阈值大于0和小于d20的要求,所述第一数字校准模块6停止工作,此时锁定所述电流宽度信号宽度,结构光干扰消除完成。As a further improvement, the digital signal Data<15:0>, the current strength selection signal Isrc_sel<3:0>, in the first coarse adjustment calibration, when the digital signal Data<15:0> decreases to less than the threshold value d0, the first digital calibration module 6 stops working, and the current strength selection signal Isrc_sel<3:0> is locked to d2, and in the subsequent fine adjustment calibration, as the width of the current width signal decreases, the digital signal Data<15:0> gradually increases, and when the requirement that the structured light threshold is greater than 0 and less than d20 is met, the first digital calibration module 6 stops working, and at this time the current width signal width is locked, and the structured light interference elimination is completed.
作为进一步的改进,所述接收端还包括:匹配电容3和第二数字校准模块7,所述匹配电容3连接至所述积分器4的负相输入端,所述积分器4具有负相输入端负反馈电路,所述负相输入端负反馈电路为电容10,所述第二数字校准模块7采集所述数字信号并对所述匹配电容3进行噪声校准,以降低接近光传感器噪声。As a further improvement, the receiving end also includes: a matching capacitor 3 and a second digital calibration module 7, the matching capacitor 3 is connected to the negative phase input terminal of the integrator 4, the integrator 4 has a negative feedback circuit at the negative phase input terminal, the negative feedback circuit at the negative phase input terminal is a capacitor 10, and the second digital calibration module 7 collects the digital signal and performs noise calibration on the matching capacitor 3 to reduce the proximity light sensor noise.
作为进一步的改进,所述噪声校准为所述数字信号通过所述第二数字校准模块7对所述匹配电容3进行校准,通过调整所述负相输入端负反馈电路的所述电容10使得所述匹配电容3与所述光电二极管1的寄生电容11匹配,减少所述积分器4的噪声干扰,以达到减小所述数字信号的噪声跳动。As a further improvement, the noise calibration is that the digital signal calibrates the matching capacitor 3 through the second digital calibration module 7, and the matching capacitor 3 is matched with the parasitic capacitance 11 of the photodiode 1 by adjusting the capacitor 10 of the negative feedback circuit at the negative phase input end, thereby reducing the noise interference of the integrator 4 and reducing the noise jump of the digital signal.
作为进一步的改进,所述寄生电容11与所述光电二极管1并联布置并具有接地端,所述寄生电容11与所述光电二极管1并联的另一端与所述第一开关Sw1相连,所述匹配电容3的一端接地,且所述匹配电容3的另一端与所述积分器4的负相输入端之间布置有与所述匹配电容3相对应匹配的第三开关阵列Sw3 Array,所述第二数字校准模块7作用于所述第三开关阵列Sw3 Array。As a further improvement, the parasitic capacitor 11 is arranged in parallel with the photodiode 1 and has a grounding end, the other end of the parasitic capacitor 11 connected in parallel with the photodiode 1 is connected to the first switch Sw1, one end of the matching capacitor 3 is grounded, and a third switch array Sw3 Array corresponding to the matching capacitor 3 is arranged between the other end of the matching capacitor 3 and the negative phase input end of the integrator 4, and the second digital calibration module 7 acts on the third switch array Sw3 Array.
作为进一步的改进,本发明提供一种自适应接近光检测传感器应用于手机或平板电脑领域,LED驱动电流为100mA,LED开启时间为1ms,模数转换器满量程65535Code,在3cm距离处的接近光响应数据为38000Code,对空结构光数据减少至20Code以内,噪声跳动为10Code。As a further improvement, the present invention provides an adaptive proximity light detection sensor for application in the field of mobile phones or tablet computers, with an LED driving current of 100mA, an LED on time of 1ms, an analog-to-digital converter full scale of 65535Code, proximity light response data at a distance of 3cm is 38000Code, the air structured light data is reduced to less than 20Code, and the noise jump is 10Code.
本发明提供的一种自适应接近光检测传感器特别应用于手机或平板电脑的批量生产,同时能够自适应地降低接近光传感器噪声,提升和优化光学传感器性能。The adaptive proximity light detection sensor provided by the present invention is particularly applicable to the mass production of mobile phones or tablet computers, and can adaptively reduce the proximity light sensor noise, and improve and optimize the optical sensor performance.
本发明优先实施例中,系统框架如图1所示,传感器接收端由光电二极管1(Photodiode)、电流源阵列2(Isrc)、匹配电容阵列3(Cdummy)、积分器4(Integrator)、模数转换器ADC、梳妆滤波器5(CIC fi lter)和第一数字校准模块6和第二数字校准模块7组成。In the preferred embodiment of the present invention, the system framework is shown in Figure 1, and the sensor receiving end is composed of a photodiode 1 (Photodiode), a current source array 2 (Isrc), a matching capacitor array 3 (Cdummy), an integrator 4 (Integrator), an analog-to-digital converter ADC, a comb filter 5 (CIC filter) and a first digital calibration module 6 and a second digital calibration module 7.
本发明工作原理如下:光电二极管1接收LED反射光后转换成电流信号8(Ipd),电流信号8流出积分器4和积分电容9(Cint)转换成电压信号,由模数转换器ADC和梳状滤波器5转换成数字信号Data<15:0>。数字信号Data<15:0>通过第一数字校准模块分别调整电流源阵列2的电流强度的选择信号Isrc_sel<3:0>对流进积分器4的电流进行粗调,再通过电流宽度Isrc_width对流经积分器4的电流进行细调,已达到减少数字信号Data<15:0>中结构光干扰成分。The working principle of the present invention is as follows: the photodiode 1 receives the reflected light of the LED and converts it into a current signal 8 (Ipd), the current signal 8 flows out of the integrator 4 and the integrating capacitor 9 (Cint) and is converted into a voltage signal, which is converted into a digital signal Data<15:0> by the analog-to-digital converter ADC and the comb filter 5. The digital signal Data<15:0> adjusts the current intensity selection signal Isrc_sel<3:0> of the current source array 2 respectively through the first digital calibration module to roughly adjust the current flowing into the integrator 4, and then finely adjusts the current flowing through the integrator 4 through the current width Isrc_width, so as to reduce the structured light interference component in the digital signal Data<15:0>.
同时数字信号Data<15:0>通过第二数字校准模块7对匹配电容3进行校准,通过调整作为负相输入端负反馈电路的电容10的电容选择信号Cd_sel<3:0>使得匹配电容3与光电二极管1的寄生电容11(Cpd)匹配,减少积分器4的噪声干扰,以达到减小数字信号Data<15:0>噪声跳动的目的。At the same time, the digital signal Data<15:0> is calibrated on the matching capacitor 3 through the second digital calibration module 7. The matching capacitor 3 is matched with the parasitic capacitance 11 (Cpd) of the photodiode 1 by adjusting the capacitance selection signal Cd_sel<3:0> of the capacitor 10 which is the negative feedback circuit at the negative phase input end, thereby reducing the noise interference of the integrator 4 and achieving the purpose of reducing the noise jitter of the digital signal Data<15:0>.
在本发明优先的实施例中,如图1和2所示,自适应结构光干扰消除分为粗调校准和细调校准两部分,以模数转换器ADC输出数字信号Data<15:0>、电流源阵列2强度选择信号Isrc_sel<3:0>和电流源阵列2电流宽度Isrc_width的控制信号为例说明校准过程,校准时序如图2所示。In a preferred embodiment of the present invention, as shown in FIGS. 1 and 2 , adaptive structured light interference elimination is divided into two parts: coarse calibration and fine calibration. The calibration process is explained by taking the analog-to-digital converter ADC output digital signal Data<15:0>, the current source array 2 intensity selection signal Isrc_sel<3:0> and the current source array 2 current width Isrc_width control signal as examples. The calibration timing is shown in FIG. 2 .
粗调校准:当所述电流强度的选择信号Isrc_sel<3:0>=d0时,所述电流源阵列断开,所述模数转换器输出包含结构光干扰的所述数字信号Data<15:0>=d8000,超出门限阈值d0,此时所述第一数字校准模块6开始工作,粗调校准开始,增加所述电流强度的选择信号Isrc_sel<3:0>至d1,同时第一开关Sw1的开关时序与所述LED发射端的LED脉冲(LEDPulse)相同,所述电流源阵列2对结构光电流进行补偿,所述数字信号Data<15:0>从d8000减小到d5000,由于仍然大于门限阈值d0,所述电流强度的选择信号Isrc_sel<3:0>继续增加到d2,所述数字信号Data<15:0>减小至-1000,此时所述数字信号Data<15:0>小于门限阈值d0,所述第一数字校准模块6停止工作,所述电流强度的选择信号Isrc_sel<3:0>锁定为d2;Coarse adjustment calibration: When the current intensity selection signal Isrc_sel<3:0>=d0, the current source array is disconnected, and the analog-to-digital converter outputs the digital signal Data<15:0>=d8000 containing structured light interference, which exceeds the threshold d0. At this time, the first digital calibration module 6 starts to work, and the coarse adjustment calibration starts, increasing the current intensity selection signal Isrc_sel<3:0> to d1. At the same time, the switching timing of the first switch Sw1 is the same as the LED pulse (LEDPulse) of the LED transmitting end. The current source array 2 compensates the structured photocurrent, and the digital signal Data<15:0> decreases from d8000 to d5000. Since it is still greater than the threshold value d0, the current intensity selection signal Isrc_sel<3:0> continues to increase to d2, and the digital signal Data<15:0> decreases to -1000. At this time, the digital signal Data<15:0> is less than the threshold value d0, and the first digital calibration module 6 stops working, and the current intensity selection signal Isrc_sel<3:0> is locked to d2;
细调校准:当粗调校准结束,所述电流强度的选择信号Isrc_sel<3:0>锁定为d2后,细调校准开始。通过逐渐减少第二开关阵列Sw2 Array的控制信号电流宽度Isrc_width的宽度,以细调电流源阵列2电流源流进积分器4的电流大小以补偿结构光电流。随着电流宽度Isrc_width信号宽度的减小,数字信号Data<15:0>以d100的step逐渐增加,当数字信号Data<15:0>=d5时,其满足结构光门限阈值大于0和小于d20的要求,第一数字校准模块6停止工作,此时锁定电流宽度Isrc_width信号宽度,结构光干扰消除完成。Fine-tuning calibration: When the coarse-tuning calibration is completed and the current intensity selection signal Isrc_sel<3:0> is locked to d2, the fine-tuning calibration begins. By gradually reducing the width of the control signal current width Isrc_width of the second switch array Sw2 Array, the current source of the current source array 2 flowing into the integrator 4 is fine-tuned to compensate for the structured light current. As the current width Isrc_width signal width decreases, the digital signal Data<15:0> gradually increases in steps of d100. When the digital signal Data<15:0>=d5, it meets the requirement that the structured light threshold is greater than 0 and less than d20, and the first digital calibration module 6 stops working. At this time, the current width Isrc_width signal width is locked, and the structured light interference elimination is completed.
本发明优先实施例中,还具有低噪声接近光传感器的功能,其通过第二数字校准模块7控制匹配电容阵列3的大小,以匹配光电二极管1的寄生电容11,从而减小积分器噪声,其校准时序如图3所示:In the preferred embodiment of the present invention, it also has the function of a low-noise proximity light sensor, which controls the size of the matching capacitor array 3 through the second digital calibration module 7 to match the parasitic capacitance 11 of the photodiode 1, thereby reducing the integrator noise. The calibration timing is shown in FIG3:
当匹配电容阵列Cdummy<3:0>=d0时,数字信号Data<15:0>初始噪声跳动(jitter)为200,第二数字校准模块判断其值超出跳动门限阈值10,此时第二数字校准模块开始工作。匹配电容阵列Cdummy<3:0>开始逐次递增,电容值逐渐增加,当其值增加到d3时,数字信号噪声跳动(Data jitter)减小为8,其值小于跳动门限阈值10,第二数字校准模块停止工作,匹配电容阵列Cdummy<3:0>锁定为d3,噪声校准完成。When the matching capacitor array Cdummy<3:0>=d0, the initial noise jitter of the digital signal Data<15:0> is 200, and the second digital calibration module determines that its value exceeds the jitter threshold 10, and the second digital calibration module starts working. The matching capacitor array Cdummy<3:0> starts to increase gradually, and the capacitance value gradually increases. When its value increases to d3, the digital signal noise jitter (Data jitter) decreases to 8, and its value is less than the jitter threshold 10. The second digital calibration module stops working, and the matching capacitor array Cdummy<3:0> is locked to d3, and the noise calibration is completed.
本发明提供一种自适应接近光检测传感器应用于手机或平板电脑领域,LED驱动电流为100mA,LED开启时间为1ms,模数转换器满量程65535Code,在3cm距离处的接近光响应数据为38000Code,对空结构光数据减少至20Code以内,噪声跳动为10Code。经实际测试,本发明优先实施例的测试结果与现有技术相对比,现有技术中模数转换器ADC输出的数字信号为8000LSB,数字信号噪声跳动200LSB,而本发明则对应为5LSB和8LSB。由此可见本发明所公开的方案和实施例具有明显的技术进步,是一种自适应接近光检测传感器,特别应用于手机或平板电脑的批量生产,同时能够自适应地降低接近光传感器噪声,提升和优化光学传感器性能。The present invention provides an adaptive proximity light detection sensor for use in the field of mobile phones or tablet computers, wherein the LED driving current is 100mA, the LED on time is 1ms, the full scale of the analog-to-digital converter is 65535Code, the proximity light response data at a distance of 3cm is 38000Code, the data for the air structured light is reduced to less than 20Code, and the noise jump is 10Code. After actual testing, the test results of the preferred embodiment of the present invention are compared with the prior art. In the prior art, the digital signal output by the analog-to-digital converter ADC is 8000LSB, and the digital signal noise jump is 200LSB, while the corresponding values of the present invention are 5LSB and 8LSB. It can be seen that the scheme and embodiments disclosed in the present invention have obvious technical progress, and are an adaptive proximity light detection sensor, which is particularly applicable to the mass production of mobile phones or tablet computers, and can adaptively reduce the proximity light sensor noise, and improve and optimize the performance of the optical sensor.
应了解本发明所要保护的范围不限于非限制性实施方案,应了解非限制性实施方案仅仅作为实例进行说明。本申请所要要求的实质的保护范围更体现于独立权利要求提供的范围,以及其从属权利要求。It should be understood that the scope of the present invention is not limited to the non-limiting embodiments, and it should be understood that the non-limiting embodiments are only described as examples. The substantial protection scope required by this application is more reflected in the scope provided by the independent claims, as well as its dependent claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410774638.4A CN118731914A (en) | 2024-06-17 | 2024-06-17 | An adaptive proximity light detection sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410774638.4A CN118731914A (en) | 2024-06-17 | 2024-06-17 | An adaptive proximity light detection sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118731914A true CN118731914A (en) | 2024-10-01 |
Family
ID=92850662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410774638.4A Pending CN118731914A (en) | 2024-06-17 | 2024-06-17 | An adaptive proximity light detection sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118731914A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119200017A (en) * | 2024-10-14 | 2024-12-27 | 上海天易合芯微电子有限公司 | Self-adaptive ambient light elimination proximity light detection sensor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050285541A1 (en) * | 2003-06-23 | 2005-12-29 | Lechevalier Robert E | Electron beam RF amplifier and emitter |
CN101944897A (en) * | 2009-07-07 | 2011-01-12 | 英特赛尔美国股份有限公司 | Proximity sensors with improved ambient light rejection |
CN102006079A (en) * | 2010-12-22 | 2011-04-06 | 复旦大学 | Digital to analog converter |
CN102970037A (en) * | 2011-09-01 | 2013-03-13 | 国民技术股份有限公司 | Self-calibrating circuit of current source |
US10310528B1 (en) * | 2017-12-06 | 2019-06-04 | Silicon Laboratories Inc. | System and method for correcting offset voltage errors within a band gap circuit |
CN117097335A (en) * | 2023-10-18 | 2023-11-21 | 南京天易合芯电子有限公司 | High-sensitivity proximity light detection sensor |
CN117097339A (en) * | 2023-10-20 | 2023-11-21 | 南京天易合芯电子有限公司 | Proximity light detection sensor with high-performance dynamic environment light inhibition |
CN117110692A (en) * | 2023-10-24 | 2023-11-24 | 武汉市聚芯微电子有限责任公司 | Current integrating circuit, photo-generated current reading circuit and chip |
CN220173208U (en) * | 2023-06-25 | 2023-12-12 | 武汉市聚芯微电子有限责任公司 | Photocurrent integrating circuit and proximity light sensor |
-
2024
- 2024-06-17 CN CN202410774638.4A patent/CN118731914A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050285541A1 (en) * | 2003-06-23 | 2005-12-29 | Lechevalier Robert E | Electron beam RF amplifier and emitter |
CN101944897A (en) * | 2009-07-07 | 2011-01-12 | 英特赛尔美国股份有限公司 | Proximity sensors with improved ambient light rejection |
CN102006079A (en) * | 2010-12-22 | 2011-04-06 | 复旦大学 | Digital to analog converter |
CN102970037A (en) * | 2011-09-01 | 2013-03-13 | 国民技术股份有限公司 | Self-calibrating circuit of current source |
US10310528B1 (en) * | 2017-12-06 | 2019-06-04 | Silicon Laboratories Inc. | System and method for correcting offset voltage errors within a band gap circuit |
CN220173208U (en) * | 2023-06-25 | 2023-12-12 | 武汉市聚芯微电子有限责任公司 | Photocurrent integrating circuit and proximity light sensor |
CN117097335A (en) * | 2023-10-18 | 2023-11-21 | 南京天易合芯电子有限公司 | High-sensitivity proximity light detection sensor |
CN117097339A (en) * | 2023-10-20 | 2023-11-21 | 南京天易合芯电子有限公司 | Proximity light detection sensor with high-performance dynamic environment light inhibition |
CN117110692A (en) * | 2023-10-24 | 2023-11-24 | 武汉市聚芯微电子有限责任公司 | Current integrating circuit, photo-generated current reading circuit and chip |
Non-Patent Citations (2)
Title |
---|
王启万: "前向散射式能见度仪的发射和接收装置设计", 气象水文海洋仪器, no. 02, 10 May 2005 (2005-05-10) * |
邱红辉;段雄英;邹积岩;: "基于LPCT的激光供能电子式电流互感器", 电工技术学报, no. 04, 26 April 2008 (2008-04-26) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119200017A (en) * | 2024-10-14 | 2024-12-27 | 上海天易合芯微电子有限公司 | Self-adaptive ambient light elimination proximity light detection sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101108959B1 (en) | Photodetection Semiconductor Devices and Mobile Devices | |
CN209117866U (en) | A kind of Larger Dynamic range optical receiving circuit based on avalanche diode | |
CN118731914A (en) | An adaptive proximity light detection sensor | |
EP1881600A2 (en) | DC offset cancellation for a trans-impedance amplifier | |
DK2431778T3 (en) | Flexible configurable optical subunit | |
CN105282460A (en) | Dynamic range enhanced readout method and circuit with offset cancellation | |
CN106932783A (en) | A kind of wide range high-speed, high precision LDMS | |
US7236743B2 (en) | Method and arrangement for noise rejection in a receiver circuit | |
US10522142B2 (en) | Vehicle-mounted charger having voice control function | |
CN108923754A (en) | A kind of photo detector signal amplifying device | |
TWI822381B (en) | Light sensor circuit | |
CN112000163B (en) | Bias power supply circuit of photoelectric detector | |
CN201319584Y (en) | Photo diode amplifier | |
CN117097335B (en) | High-sensitivity proximity light detection sensor | |
CN201285460Y (en) | Pluggable optical transceiving module based on intelligent control unit | |
US5003378A (en) | Automatic white balance circuit | |
CN213426170U (en) | Device for improving sensitivity of APD receiver | |
US11441943B2 (en) | Proximity sensing device | |
CN103338028B (en) | Triple oscillatory feedback Weak Signal Processing circuit | |
TW202346892A (en) | Distance sensing apparatus and sensing method thereof | |
US8004440B2 (en) | Transimpedance amplifier and analog-digital converter circuit | |
CN101447769A (en) | Photodiode amplifier | |
CN118836974A (en) | Optical sensor and electronic device | |
US10608589B2 (en) | Multiplexed integrating amplifier for loss of signal detection | |
US8121561B2 (en) | Power tuning system and method for power amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |