[go: up one dir, main page]

CN118726215A - A recombinant microorganism producing pantoic acid and its application - Google Patents

A recombinant microorganism producing pantoic acid and its application Download PDF

Info

Publication number
CN118726215A
CN118726215A CN202310341207.4A CN202310341207A CN118726215A CN 118726215 A CN118726215 A CN 118726215A CN 202310341207 A CN202310341207 A CN 202310341207A CN 118726215 A CN118726215 A CN 118726215A
Authority
CN
China
Prior art keywords
seq
amino acid
gene encoding
nucleotide sequence
identity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310341207.4A
Other languages
Chinese (zh)
Inventor
张学礼
郭恒华
刘萍萍
张冬竹
唐金磊
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Anhui Huaheng Biotechnology Co Ltd
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Anhui Huaheng Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS, Anhui Huaheng Biotechnology Co Ltd filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202310341207.4A priority Critical patent/CN118726215A/en
Publication of CN118726215A publication Critical patent/CN118726215A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1014Hydroxymethyl-, formyl-transferases (2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01086Ketol-acid reductoisomerase (1.1.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011692-Dehydropantoate 2-reductase (1.1.1.169), i.e. ketopantoate-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/02001Glycine hydroxymethyltransferase (2.1.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/0201Aminomethyltransferase (2.1.2.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/020113-Methyl-2-oxobutanoate hydroxymethyltransferase (2.1.2.11), i.e. ketopantoate hydroxymethyltransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01042Branched-chain-amino-acid transaminase (2.6.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01052Phosphoserine transaminase (2.6.1.52)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03003Phosphoserine phosphatase (3.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01009Dihydroxy-acid dehydratase (4.2.1.9), i.e. acetohydroxyacid dehydratase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention provides a genetically engineered pantoic acid producing strain with or having an enhanced NADH dependent acetylhydroxy acid reductase, a method of producing the same, a method of producing D-pantoic acid using the same, and use thereof in producing D-pantoic acid.

Description

一种产泛解酸的重组微生物及其应用A recombinant microorganism producing pantoic acid and its application

技术领域Technical Field

本发明涉及生物技术领域,特别涉及一种产泛解酸的重组微生物及其构建方法,以及该重组微生物在发酵制备D-泛解酸中的应用。The present invention relates to the field of biotechnology, and in particular to a recombinant microorganism producing pantoic acid and a construction method thereof, as well as application of the recombinant microorganism in fermentation preparation of D-pantoic acid.

背景技术Background Art

泛酸钙又称维生素B5,是人体必需的13种维生素之一,只能在微生物和植物中合成,是合成辅酶A的重要前体和维持生物正常生理机能的必需维生素。同时,泛酸钙作为食品添加剂和医药原料药等也具有广泛的应用。目前,泛酸钙主要是通过生物或化学方法拆分DL-泛解酸内酯获得高纯度D-泛解酸内酯后与β-丙氨酸反应获得。由于石化技术制备泛解酸内脂的过程中使用剧毒或强酸/碱试剂、生产过程产生大量废水/气等对环境造成巨大的破坏,DL-泛解酸内脂的手性拆除增加成本等,使得泛酸钙合成企业经常受到环保督察,泛酸钙价格也从一吨几万到几十万元不等。Calcium pantothenate, also known as vitamin B5, is one of the 13 essential vitamins for the human body. It can only be synthesized in microorganisms and plants. It is an important precursor for the synthesis of coenzyme A and an essential vitamin for maintaining normal physiological functions of organisms. At the same time, calcium pantothenate is also widely used as a food additive and pharmaceutical raw material. At present, calcium pantothenate is mainly obtained by biological or chemical methods to split DL-pantolactone to obtain high-purity D-pantolactone and then react with β-alanine. Due to the use of highly toxic or strong acid/alkali reagents in the process of preparing pantolactone by petrochemical technology, the large amount of wastewater/gas generated in the production process, etc., which causes great damage to the environment, and the chiral removal of DL-pantolactone increases costs, etc., calcium pantothenate synthesis companies are often subject to environmental protection inspections, and the price of calcium pantothenate ranges from tens of thousands to hundreds of thousands of yuan per ton.

合成生物学和代谢工程的快速发展使得通过设计和构建微生物细胞工厂以可再生原料替代不可再生的石化资源、以绿色环保的发酵工艺替代石化工艺、以低成本替代高成本生产化学品成为可能并已在许多产品中获得了巨大的成功。The rapid development of synthetic biology and metabolic engineering has made it possible to replace non-renewable petrochemical resources with renewable raw materials, replace petrochemical processes with green and environmentally friendly fermentation processes, and replace high-cost production of chemicals with low costs by designing and constructing microbial cell factories, and has achieved great success in many products.

通过微生物发酵获得的泛解酸本身就是高纯度的D-泛解酸,无需后续拆分,可以直接用于和β-丙氨酸反应生成泛酸钙,这将极大的降低泛酸钙的生产成本和环保压力。而D-泛解酸的合成也是目前工业上限制泛酸钙实现生物合成的限制因素。大肠杆菌(Escherichia coli)自身具有泛解酸合成路径,但基于细胞自身复杂的代谢网络调控,野生型细胞难以积累可检测浓度的泛解酸。Pantoic acid obtained through microbial fermentation is itself a high-purity D-pantoic acid. It does not need to be subsequently split and can be directly used to react with β-alanine to produce calcium pantothenate, which will greatly reduce the production cost and environmental pressure of calcium pantothenate. The synthesis of D-pantoic acid is also the limiting factor in the current industrial biosynthesis of calcium pantothenate. Escherichia coli has its own pantoic acid synthesis pathway, but due to the complex metabolic network regulation of the cell itself, wild-type cells have difficulty accumulating detectable concentrations of pantothenic acid.

因此,提供具有遗传稳定性、无需添加诱导剂和抗生素的能够以可再生资源为原料通过生物发酵生产高纯度泛解酸的微生物细胞对于推动泛酸钙生产、降低生产成本、减少环保压力将具有重要的意义。Therefore, providing microbial cells that are genetically stable, can produce high-purity pantothenic acid through biofermentation using renewable resources as raw materials without the need for the addition of inducers and antibiotics will be of great significance for promoting the production of calcium pantothenate, reducing production costs, and alleviating environmental pressures.

发明内容Summary of the invention

在一个方面,本发明提供了一种经遗传改造的产泛解酸菌株,其具有或具有增强的NADH依赖型乙酰羟基酸还原异构酶。In one aspect, the present invention provides a genetically engineered pantoate-producing strain having or having enhanced NADH-dependent acetohydroxyacid reductoisomerase.

在一个实施方案中,本发明提供了一种经遗传改造的产泛解酸菌株,其:In one embodiment, the present invention provides a genetically modified pantoate producing strain, which:

具有或具有增强的:乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶、磷酸丝氨酸磷酸酶和NADH依赖型乙酰羟基酸还原异构酶的活性;并且having or having increased activity of: acetolactate synthase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase, phosphoserine phosphatase, and NADH-dependent acetohydroxyacid reductoisomerase; and

任选地,具有降低活性的或失活的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶和/或支链氨基酸氨基转移酶;优选地,其中支链氨基酸氨基转移酶是弱化的。Optionally, having reduced activity or inactivation of: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase and/or branched-chain amino acid aminotransferase; preferably, wherein the branched-chain amino acid aminotransferase is attenuated.

在一个方面,本发明提供了一种产生产泛解酸菌株的方法,包括在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶的活性。In one aspect, the present invention provides a method for producing a pantoate-producing strain, comprising imparting or enhancing the activity of NADH-dependent acetohydroxyacid reductoisomerase in the pantoate-producing strain.

在一个实施方案中,本发明提供了一种产生经遗传改造的产泛解酸菌株的方法,包括在菌株中赋予或增强:乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶、磷酸丝氨酸磷酸酶和NADH依赖型乙酰羟基酸还原异构酶的活性;并且In one embodiment, the present invention provides a method for producing a genetically modified pantothenate-producing strain, comprising conferring or enhancing in the strain: the activities of acetolactate synthase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase, phosphoserine phosphatase, and NADH-dependent acetohydroxyacid reductoisomerase; and

任选地,降低或失活:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶和/或支链氨基酸氨基转移酶的活性;优选地,弱化支链氨基酸氨基转移酶的活性。Optionally, the activity of L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase and/or branched-chain amino acid aminotransferase is reduced or inactivated; preferably, the activity of branched-chain amino acid aminotransferase is weakened.

在一个方面,本发明提供了一种产生经遗传改造的产泛解酸菌株的方法,包括:在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCCNo.21699的大肠杆菌中,用编码NADH依赖型乙酰羟基酸还原异构酶的基因替代NADPH依赖型乙酰羟基酸还原异构酶编码基因。In one aspect, the present invention provides a method for producing a genetically modified pantothenate-producing strain, comprising: replacing a gene encoding an NADPH-dependent acetohydroxyacid reductoisomerase with a gene encoding an NADH-dependent acetohydroxyacid reductoisomerase in Escherichia coli with a deposit number of CGMCC No. 21699 at the China General Microbiological Culture Collection Center (CGMCC) in Beijing, China.

在一个方面,本发明提供了一种生产D-泛解酸的方法,包括在适于发酵生产D-泛解酸的条件下培养本发明所述的经遗传改造的泛解酸生产菌株或者根据本发明所述产生经遗传改造的泛解酸生产菌株的方法制备的经遗传改造的泛解酸生产菌株,任选包括分离纯化产生的D-泛解酸。In one aspect, the present invention provides a method for producing D-pantoic acid, comprising culturing the genetically modified pantoic acid-producing strain of the present invention or the genetically modified pantoic acid-producing strain prepared according to the method for producing a genetically modified pantoic acid-producing strain of the present invention under conditions suitable for the fermentation production of D-pantoic acid, optionally comprising isolating and purifying the produced D-pantoic acid.

在一个方面,本发明提供了本发明所述的经遗传改造的泛解酸生产菌株或者根据本发明所述的产生经遗传改造的泛解酸生产菌株的方法制备的经遗传改造的泛解酸生产菌株在生产D-泛解酸中的用途。In one aspect, the present invention provides use of the genetically modified pantoic acid-producing strain of the present invention or the genetically modified pantoic acid-producing strain prepared according to the method for producing a genetically modified pantoic acid-producing strain of the present invention in producing D-pantoic acid.

在一个方面,本发明提供了提高产泛解酸菌株的D-泛解酸生产的方法,包括:在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶的活性。In one aspect, the present invention provides a method for improving the production of D-pantoic acid in a pantoic acid-producing strain, comprising: imparting or enhancing the activity of NADH-dependent acetohydroxyacid reductoisomerase in the pantoic acid-producing strain.

具体实施方式DETAILED DESCRIPTION

除非另有定义,本文所用的技术和科学术语具有本领域技术人员通常理解的含义。参见例如,Singleton et al.,DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY2nd ed.,J.Wiley&Sons(New York,NY 1994);Sambrook et al.,MOLECULAR CLONING,ALABORATORY MANUAL,Cold Springs Harbor Press(Cold Springs Harbor,NY 1989)。Unless otherwise defined, technical and scientific terms used herein have the meanings commonly understood by those skilled in the art. See, for example, Singleton et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY 2nd ed., J. Wiley & Sons (New York, NY 1994); Sambrook et al., MOLECULAR CLONING, ALABORATORY MANUAL, Cold Springs Harbor Press (Cold Springs Harbor, NY 1989).

如本文所用,“经遗传改造的”是指通过生物学手段人工改变的菌株,其与改造前的初始菌株相比具有一或多个改变,例如基因缺失、扩增或突变,从而具有改变的生物学性质例如改良的生产性能。如本文所用,初始菌株可以是对其要进行所述遗传改造的天然菌株或具有其它遗传改造的菌株。As used herein, "genetically modified" refers to a strain artificially altered by biological means, which has one or more changes compared to the initial strain before modification, such as gene deletion, amplification or mutation, thereby having a changed biological property such as improved production performance. As used herein, the initial strain can be a natural strain to which the genetic modification is to be performed or a strain with other genetic modifications.

如本文所用,术语“泛解酸生产菌株”或“产泛解酸菌株”是指能够生产达到可检测水平的D-泛解酸积累的菌株。As used herein, the term "pantoate-producing strain" or "pantoate-producing strain" refers to a strain capable of producing D-pantoate that accumulates to a detectable level.

如本文所用,术语“多肽”、“氨基酸序列”、“肽”及“蛋白质”在本文可互换使用,指称任何长度的氨基酸链,其可能包含经修饰的氨基酸和/或可能被非氨基酸中断。该术语还涵盖经天然或人为干预修饰的氨基酸链;例如二硫键形成、糖基化、脂化、乙酰化、磷酸化或任何其他操纵或修饰,如与标记成份缀合。As used herein, the terms "polypeptide", "amino acid sequence", "peptide" and "protein" are used interchangeably herein to refer to amino acid chains of any length, which may contain modified amino acids and/or may be interrupted by non-amino acids. The term also encompasses amino acid chains modified by natural or human intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification, such as conjugation with a labeling component.

如本文所用,表述“基因”、“核酸序列”、“多核苷酸”和“核苷酸序列”可互换使用,是指核苷酸链,包含DNA和RNA。“基因的表达”是指将与适当调节区特别是启动子可操作地连接的DNA区域转录成具有生物学活性的RNA以及RNA能够被翻译成生物学活性蛋白或肽。As used herein, the expressions "gene", "nucleic acid sequence", "polynucleotide" and "nucleotide sequence" are used interchangeably and refer to nucleotide chains, including DNA and RNA. "Gene expression" refers to the transcription of a DNA region operably linked to an appropriate regulatory region, especially a promoter, into a biologically active RNA and the ability of the RNA to be translated into a biologically active protein or peptide.

如本文所用,简并序列是指由于遗传密码子的简并性,与指定序列编码相同氨基酸序列但是核苷酸序列不同的核苷酸序列。As used herein, a degenerate sequence refers to a nucleotide sequence that encodes the same amino acid sequence as a specified sequence but has a different nucleotide sequence due to the degeneracy of the genetic code.

如本文所用,术语“同源性”、“序列相同性”等在本文可互换使用。序列相同性可通过比对多核苷酸与参考多核苷酸之间的相同核苷酸碱基的数目而检测,例如可以通过标准排列对比算法程序使用由每个供应商制定的默认缺口罚分确定。两个核酸分子是否具有至少80%、85%、90%、95%、96%、97%、98%或99%“相同的”核苷酸序列可以使用已知的计算机算法确定,如BLASTN、FASTA、DNAStar及Gap(University of Wisconsin GeneticsComputer Group(UWG),Madison WI,USA)。例如,核酸分子的相同性百分比可以例如通过使用GAP计算机程序对比序列信息而确定(例如Needleman et al.J.Mol.Biol.48:443(1970),由Smith and Waterman(Adv.Appl.Math.2:482(1981)修订)。简而言之,GAP程序根据相似的排列对比的符号(即核苷酸)的数目除以两个序列中较短序列的符号总数而定义相似性。As used herein, the terms "homology", "sequence identity", etc. are used interchangeably herein. Sequence identity can be detected by comparing the number of identical nucleotide bases between a polynucleotide and a reference polynucleotide, for example, by a standard alignment algorithm program using a default gap penalty determined by each supplier. Whether two nucleic acid molecules have at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% "identical" nucleotide sequences can be determined using known computer algorithms, such as BLASTN, FASTA, DNAStar and Gap (University of Wisconsin Genetics Computer Group (UWG), Madison WI, USA). For example, the percent identity of nucleic acid molecules can be determined, for example, by comparing sequence information using the GAP computer program (e.g., Needleman et al. J. Mol. Biol. 48:443 (1970), as revised by Smith and Waterman (Adv. Appl. Math. 2:482 (1981)). Briefly, the GAP program defines similarity based on the number of similar aligned symbols (i.e., nucleotides) divided by the total number of symbols in the shorter of the two sequences.

如本文所用,乙酰乳酸合成酶(EC 2.2.1.6)负责催化两分子丙酮酸生成一份子乙酰乳酸。自然界中有多种不同来源的乙酰乳酸合成酶,如大肠杆菌中存在三种乙酰乳酸合成酶,分别为乙酰乳酸合成酶I(由ilvBN基因编码)、乙酰乳酸合成酶II(由ilvGM基因编码)和乙酰乳酸合成酶III(由ilvIH基因编码)。而在谷氨酸棒杆菌等微生物中只含有一种乙酰乳酸合成酶,由ilvBN基因编码,在枯草芽孢杆菌中由alsS基因编码。如本文所用,具有或具有增强的乙酰乳酸合成酶活性是指菌株具有或具有增强的将丙酮酸转化为乙酰乳酸的乙酰乳酸合成酶活性。本文中,L-缬氨酸反馈抗性乙酰乳酸合成酶III是指该酶的活性不被L-缬氨酸抑制或抑制的程度与野生型乙酰乳酸合成酶III相比降低。As used herein, acetolactate synthase (EC 2.2.1.6) is responsible for catalyzing two molecules of pyruvate to generate one acetolactate. There are acetolactate synthases from a variety of different sources in nature, such as three acetolactate synthases in Escherichia coli, namely acetolactate synthase I (encoded by the ilvBN gene), acetolactate synthase II (encoded by the ilvGM gene) and acetolactate synthase III (encoded by the ilvIH gene). In microorganisms such as Corynebacterium glutamicum, only one acetolactate synthase is contained, which is encoded by the ilvBN gene and encoded by the alsS gene in Bacillus subtilis. As used herein, having or having enhanced acetolactate synthase activity refers to that the strain has or has enhanced acetolactate synthase activity that converts pyruvate into acetolactate. Herein, L-valine feedback-resistant acetolactate synthase III refers to that the activity of the enzyme is not inhibited by L-valine or the degree of inhibition is reduced compared with wild-type acetolactate synthase III.

如本文所用,乙酰羟基酸还原异构酶(EC 1.1.1.382、EC 1.1.1.383、EC1.1.1.86)是负责催化乙酰乳酸生成2,3-二羟基异戊酸的关键酶,一般使用的乙酰羟基酸还原异构酶多来源于微生物,常见的如大肠杆菌、谷氨酸棒杆菌(Corynebacteriumglutamicum)、枯草芽孢杆菌(Bacillus subtilis)等。如本文所用,具有或具有增强的乙酰羟基酸还原异构酶活性是指菌株具有或具有增强的将乙酰乳酸转化为2,3-二羟基异戊酸的乙酰羟基酸还原异构酶活性。As used herein, acetohydroxy acid reductoisomerase (EC 1.1.1.382, EC 1.1.1.383, EC1.1.1.86) is the key enzyme responsible for catalyzing acetolactate to produce 2,3-dihydroxyisovalerate. The commonly used acetohydroxy acid reductoisomerases are mostly derived from microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. As used herein, having or having enhanced acetohydroxy acid reductoisomerase activity means that the strain has or has enhanced acetohydroxy acid reductoisomerase activity that converts acetolactate into 2,3-dihydroxyisovalerate.

如本文所用,二羟酸脱水酶(EC 4.2.1.9)是负责催化2,3-二羟基异戊酸转化为2-酮异戊酸的关键酶。一般使用的二羟酸脱水酶多来源于微生物,常见的如大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌等。如本文所用,具有或具有增强的二羟酸脱水酶活性是指菌株具有或具有增强的将2,3-二羟基异戊酸转化为2-酮异戊酸的二羟酸脱水酶活性。As used herein, dihydroxy-acid dehydratase (EC 4.2.1.9) is the key enzyme responsible for catalyzing the conversion of 2,3-dihydroxyisovalerate into 2-ketoisovalerate. The commonly used dihydroxy-acid dehydratase is mostly derived from microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. As used herein, having or having enhanced dihydroxy-acid dehydratase activity refers to that the strain has or has enhanced dihydroxy-acid dehydratase activity that converts 2,3-dihydroxyisovalerate into 2-ketoisovalerate.

如本文所用,3-甲基-2-氧代丁酸羟甲基转移酶(EC 2.1.2.11)是负责在5,10-亚甲基四氢叶酸存在情况下将3-甲基-2-酮丁酸转化为2-脱氢泛酸。在绝大多数微生物和植物中都包含3-甲基-2-氧代丁酸羟甲基转移酶,一般使用的3-甲基-2-氧代丁酸羟甲基转移酶基因多来源于大肠杆菌、谷氨酸棒杆菌等微生物。如本文所用,具有或具有增强的3-甲基-2-氧代丁酸羟甲基转移酶活性是指菌株具有或具有增强的将3-甲基-2-酮丁酸转化为2-脱氢泛酸的3-甲基-2-氧代丁酸羟甲基转移酶活性。As used herein, 3-methyl-2-oxobutyrate hydroxymethyltransferase (EC 2.1.2.11) is responsible for converting 3-methyl-2-ketobutyrate into 2-dehydropantothenate in the presence of 5,10-methylenetetrahydrofolate. 3-methyl-2-oxobutyrate hydroxymethyltransferase is included in most microorganisms and plants, and the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene generally used is mostly derived from microorganisms such as Escherichia coli and Corynebacterium glutamicum. As used herein, having or having enhanced 3-methyl-2-oxobutyrate hydroxymethyltransferase activity refers to that the strain has or has enhanced 3-methyl-2-oxobutyrate hydroxymethyltransferase activity that converts 3-methyl-2-ketobutyrate into 2-dehydropantothenate.

如本文所用,2-脱氢泛酸酯-2-还原酶(EC 1.1.1.169)是负责将2-脱氢泛酸催化生成泛解酸。在多数微生物和植物中都包含2-脱氢泛酸酯-2-还原酶。如本文所用,具有或具有增强的2-脱氢泛酸酯-2-还原酶活性是指菌株具有或具有增强的将2-脱氢泛酸生成泛解酸的活性。As used herein, 2-dehydropantothenate-2-reductase (EC 1.1.1.169) is responsible for catalyzing the conversion of 2-dehydropantothenate to pantoic acid. 2-dehydropantothenate-2-reductase is contained in most microorganisms and plants. As used herein, having or having enhanced 2-dehydropantothenate-2-reductase activity means that the strain has or has enhanced activity of converting 2-dehydropantothenate to pantoic acid.

如本文所用,丝氨酸羟甲基转移酶(EC 2.1.2.1)由glyA编码,负责催化由L-丝氨酸生成甘氨酸,同时将四氢叶酸转化为5,10-亚甲基四氢叶酸。该酶广泛存在于动植物和微生物中。一般使用的丝氨酸羟甲基转移酶基因多来源于大肠杆菌、谷氨酸棒杆菌、酵母等。如本文所用,具有或具有增强的丝氨酸羟甲基转移酶活性是指菌株具有或具有增强的将L-丝氨酸转化为甘氨酸并同时生成5,10-亚甲基四氢叶酸的丝氨酸羟甲基转移酶活性。As used herein, serine hydroxymethyltransferase (EC 2.1.2.1) is encoded by glyA, which is responsible for catalyzing the production of glycine from L-serine and converting tetrahydrofolate into 5,10-methylenetetrahydrofolate. The enzyme is widely present in plants, animals and microorganisms. The serine hydroxymethyltransferase genes generally used are mostly derived from Escherichia coli, Corynebacterium glutamicum, yeast, etc. As used herein, having or having enhanced serine hydroxymethyltransferase activity refers to a strain having or having enhanced serine hydroxymethyltransferase activity that converts L-serine into glycine and simultaneously generates 5,10-methylenetetrahydrofolate.

如本文所用,氨甲基转移酶(EC 2.1.2.10)由gcvT编码,甘氨酸裂解系统H蛋白(EC1.4.1.27)有gcvH编码,甘氨酸脱羧酶(EC 1.4.1.27)由gcvP编码,在大肠杆菌中,这三个酶与由lpdA基因编码的脂酰胺脱氢酶亚基共同组成甘氨酸裂解多酶系统,负责催化裂解甘氨酸生成二氧化碳的同时生成NADH和5,10-亚甲基四氢叶酸。如本文所用,具有或具有增强的甘氨酸裂解酶系统活性是指菌株具有或具有增强的将甘氨酸裂解生成二氧化碳并生成NADH和5,10-亚甲基四氢叶酸的酶活性。As used herein, aminomethyltransferase (EC 2.1.2.10) is encoded by gcvT, glycine cleavage system H protein (EC1.4.1.27) is encoded by gcvH, and glycine decarboxylase (EC 1.4.1.27) is encoded by gcvP. In Escherichia coli, these three enzymes together with the lipoamide dehydrogenase subunit encoded by the lpdA gene constitute the glycine cleavage multienzyme system, which is responsible for catalyzing the cleavage of glycine to generate carbon dioxide while generating NADH and 5,10-methylenetetrahydrofolate. As used herein, having or having enhanced glycine cleavage enzyme system activity means that the strain has or has enhanced enzyme activity that cleaves glycine to generate carbon dioxide and generates NADH and 5,10-methylenetetrahydrofolate.

如本文所用,磷酸甘油酸脱氢酶(EC 1.1.1.95)由serA基因编码,催化3-磷酸甘油酸生成3-磷酸羟基丙酮酸。本文中,具有或具有增强的磷酸甘油酸脱氢酶活性是指菌株具有或具有增强的将3-磷酸甘油酸催化生成3-磷酸羟基丙酮酸的酶活性。As used herein, phosphoglycerate dehydrogenase (EC 1.1.1.95) is encoded by the serA gene and catalyzes 3-phosphoglycerate to produce 3-phosphohydroxypyruvate. Herein, having or having enhanced phosphoglycerate dehydrogenase activity means that the strain has or has enhanced enzyme activity that catalyzes 3-phosphoglycerate to produce 3-phosphohydroxypyruvate.

如本文所用,磷酸丝氨酸磷酸化酶(EC 3.1.3.3)由SerB基因编码,催化磷酸-L-丝氨酸生成L-丝氨酸。本文中,具有或具有增强的磷酸丝氨酸磷酸化酶活性是指菌株具有或具有增强的催化磷酸-L-丝氨酸生成L-丝氨酸的酶活性。As used herein, phosphoserine phosphorylase (EC 3.1.3.3) is encoded by the SerB gene and catalyzes phospho-L-serine to produce L-serine. Herein, having or having enhanced phosphoserine phosphorylase activity means that the strain has or has enhanced enzyme activity that catalyzes phospho-L-serine to produce L-serine.

如本文所用,磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶(EC 2.6.1.52)由serC基因编码,催化3-磷酸羟基丙酮酸生成磷酸-L-丝氨酸。本文中,具有或具有增强的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶活性是指菌株具有或具有增强的催化3-磷酸羟基丙酮酸生成磷酸-L-丝氨酸的酶活性。As used herein, phosphoserine/phosphohydroxythreonine aminotransferase (EC 2.6.1.52) is encoded by the serC gene and catalyzes 3-phosphohydroxypyruvate to generate phospho-L-serine. Herein, having or having enhanced phosphoserine/phosphohydroxythreonine aminotransferase activity means that the strain has or has enhanced enzyme activity that catalyzes 3-phosphohydroxypyruvate to generate phospho-L-serine.

如本文所用,L-丝氨酸脱氨酶I(EC 4.3.1.17)由sdaA基因编码,该酶催化L-丝氨酸脱氨生成丙酮酸。本文中,降低活性的或失活的L-丝氨酸脱氨酶I是指该酶的催化L-丝氨酸脱氨生成丙酮酸的活性降低或丧失。As used herein, L-serine deaminase I (EC 4.3.1.17) is encoded by the sdaA gene, and the enzyme catalyzes the deamination of L-serine to produce pyruvate. Herein, the reduced activity or inactivated L-serine deaminase I refers to the enzyme's reduced or lost activity in catalyzing the deamination of L-serine to produce pyruvate.

如本文所用,乙酸激酶(EC 2.7.2.1)由ackA基因编码,该酶催化乙酰磷酸生成乙酸的同时生成ATP。本文中,降低活性的或失活的乙酸激酶是指该酶催化乙酰磷酸生成乙酸的活性降低或丧失。As used herein, acetate kinase (EC 2.7.2.1) is encoded by the ackA gene, and the enzyme catalyzes the conversion of acetyl phosphate to acetate while generating ATP. Herein, reduced activity or inactivated acetate kinase means that the activity of the enzyme in catalyzing the conversion of acetyl phosphate to acetate is reduced or lost.

如本文所用,丙酸激酶(EC 2.7.2.15)由tdcD基因编码,该酶催化丙酸和丙酰磷酸之间的可逆转化。本文中,降低活性的或失活的丙酸激酶是指该酶催化丙酸和丙酰磷酸之间可逆转化的活性降低或丧失。As used herein, propionate kinase (EC 2.7.2.15) is encoded by the tdcD gene, and the enzyme catalyzes the reversible conversion between propionate and propionyl phosphate. Herein, reduced activity or inactivated propionate kinase means that the activity of the enzyme catalyzing the reversible conversion between propionate and propionyl phosphate is reduced or lost.

如本文所用,甲酸乙酰转移酶(EC 2.3.1.54)由tdcE基因编码,该酶催化丙酮酸生成甲酸。本文中,降低活性的或失活的甲酸乙酰转移酶是指该酶催化丙酮酸生成甲酸的活性降低或丧失。As used herein, formate acetyltransferase (EC 2.3.1.54) is encoded by the tdcE gene, and the enzyme catalyzes pyruvate to produce formate. Herein, the reduced activity or inactivated formate acetyltransferase means that the activity of the enzyme in catalyzing pyruvate to produce formate is reduced or lost.

如本文所用,磷酸乙酰转移酶(EC 2.3.1.8)由pta基因编码,催化乙酰辅酶A生成乙酰磷酸。本文中,降低活性的或失活的磷酸乙酰转移酶是指该酶催化乙酰辅酶A生成乙酰磷酸的活性降低或丧失。As used herein, phosphate acetyltransferase (EC 2.3.1.8) is encoded by the pta gene and catalyzes the conversion of acetyl-CoA into acetyl phosphate. Herein, the reduced activity or inactivated phosphate acetyltransferase refers to a reduction or loss of the activity of the enzyme in catalyzing the conversion of acetyl-CoA into acetyl phosphate.

如本文所用,醇脱氢酶(EC 1.1.1.1)由adhE基因编码,催化乙醛生成乙醇。本文中,降低活性的或失活的醇脱氢酶是指该酶催化乙醛生成乙醇的活性降低或丧失。As used herein, alcohol dehydrogenase (EC 1.1.1.1) is encoded by adhE gene and catalyzes acetaldehyde to ethanol. Herein, alcohol dehydrogenase with reduced activity or inactivated refers to the enzyme having reduced or lost activity in catalyzing acetaldehyde to ethanol.

如本文所用,丙酮酸甲酸裂解酶(EC 2.3.1.54)由pflB基因编码,催化丙酮酸裂解生成甲酸和乙酰辅酶A。本文中,降低活性的或失活的丙酮酸甲酸裂解酶是指该酶催化丙酮酸裂解生成甲酸和乙酰辅酶A的活性降低或丧失。As used herein, pyruvate formate lyase (EC 2.3.1.54) is encoded by the pflB gene and catalyzes the cleavage of pyruvate to form formate and acetyl-CoA. Herein, reduced activity or inactivated pyruvate formate lyase means that the activity of the enzyme in catalyzing the cleavage of pyruvate to form formate and acetyl-CoA is reduced or lost.

如本文所用,富马酸还原酶(EC 1.3.5.1)由frdABCD编码,催化富马酸生成丁二酸。本文中,降低活性的或失活的富马酸还原酶是指该酶催化富马酸生成丁二酸的活性降低或丧失。As used herein, fumarate reductase (EC 1.3.5.1) is encoded by frdABCD and catalyzes fumarate to produce succinate. Herein, reduced activity or inactivated fumarate reductase means that the activity of the enzyme in catalyzing fumarate to produce succinate is reduced or lost.

如本文所用,乳酸脱氢酶(EC 1.1.1.28)由ldhA编码,催化丙酮酸生成D-乳酸。本文中,降低活性的或失活的乳酸脱氢酶是指该酶催化丙酮酸生成D-乳酸的活性降低或丧失。As used herein, lactate dehydrogenase (EC 1.1.1.28) is encoded by ldhA and catalyzes pyruvate to produce D-lactate. Herein, the activity-reduced or inactivated lactate dehydrogenase means that the activity of the enzyme in catalyzing pyruvate to produce D-lactate is reduced or lost.

如本文所用,甲基乙二醛合酶(EC 4.2.3.3)由mgsA基因编码,催化二羟丙酮磷酸生成甲基乙二醛。本文中,降低活性的或失活的甲基乙二醛合酶是指该酶催化二羟丙酮磷酸生成甲基乙二醛的活性降低或丧失。As used herein, methylglyoxal synthase (EC 4.2.3.3) is encoded by the mgsA gene and catalyzes dihydroxyacetone phosphate to produce methylglyoxal. Herein, reduced or inactivated methylglyoxal synthase means that the activity of the enzyme in catalyzing dihydroxyacetone phosphate to produce methylglyoxal is reduced or lost.

如本文所用,核糖激酶(EC 2.7.1.16)由ara基因编码,催化L-核酮糖生成5-磷酸核酮糖。本文中,降低活性的或失活的核糖激酶是指该酶催化L-核酮糖生成5-磷酸核酮糖的活性降低或丧失。As used herein, ribokinase (EC 2.7.1.16) is encoded by the ara gene and catalyzes L-ribulose to generate 5-phosphate ribulose. Herein, reduced activity or inactivated ribokinase means that the activity of the enzyme in catalyzing L-ribulose to generate 5-phosphate ribulose is reduced or lost.

如本文所用,缬氨酸-丙酮酸转氨酶(EC 2.6.1.66)由avtA基因编码,催化L-丙氨酸和3-甲基-2-酮丁酸生成丙酮酸和L-缬氨酸。本文中,降低活性的或失活的缬氨酸-丙酮酸转氨酶是指该酶催化L-丙氨酸和3-甲基-2-酮丁酸生成丙酮酸和L-缬氨酸的活性降低或丧失。As used herein, valine-pyruvate aminotransferase (EC 2.6.1.66) is encoded by avtA gene, catalyzing L-alanine and 3-methyl-2-ketobutyrate to produce pyruvate and L-valine. Herein, reduced or inactivated valine-pyruvate aminotransferase refers to the enzyme catalyzing L-alanine and 3-methyl-2-ketobutyrate to produce pyruvate and L-valine activity reduction or loss.

如本文所用,支链氨基酸氨基转移酶(EC 2.6.1.42)由ilvE基因编码,催化相应的酮酸生成三种支链氨基酸,包括L-缬氨酸、L-亮氨酸和L-异亮氨酸。本文中,降低活性的或失活的支链氨基酸氨基转移酶是指该酶催化相应的酮酸生成三种支链氨基酸的活性降低或丧失。As used herein, branched-chain amino acid aminotransferase (EC 2.6.1.42) is encoded by the ilvE gene, catalyzing the corresponding keto acid to generate three branched-chain amino acids, including L-valine, L-leucine and L-isoleucine. Herein, the reduced activity or inactivated branched-chain amino acid aminotransferase refers to the enzyme catalyzing the corresponding keto acid to generate three branched-chain amino acids. Activity is reduced or lost.

如本文所用,“具有……活性”是指与不具有该活性的参照(例如初始菌株或野生型菌株)相比,具有可检测到的活性。As used herein, "having an activity" means having a detectable activity compared to a reference (eg, an initial strain or a wild-type strain) that does not have the activity.

如本文所用,“具有增强的……活性”是指与具有该活性的参照(例如初始菌株或野生型菌株)相比,活性增加至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少100%、至少150%、至少200%、至少250%、至少300%或更高。As used herein, "having an enhanced ... activity" means that the activity is increased by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 150%, at least 200%, at least 250%, at least 300% or more compared to a reference (e.g., an initial strain or a wild-type strain) having the activity.

如本文所用,“降低活性的或失活的”是指与参照活性(例如初始菌株或野生型菌株中的相应活性)相比,活性降低至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或更多。As used herein, "reduced activity or inactivation" means that the activity is reduced by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or more compared to a reference activity (e.g., the corresponding activity in an initial strain or a wild-type strain).

如本文所用,“失活的”是指与参照活性(例如初始菌株或野生型菌株中的相应活性)相比,没有可检测到的活性。As used herein, "inactivated" means having no detectable activity compared to a reference activity (eg, a corresponding activity in an initial strain or a wild-type strain).

在本文中,所述参照可以是野生型微生物或者是进行所需遗传操作前的微生物(例如用于进行遗传操作以增加基因活性的初始微生物)。在本文中,亲代微生物和初始微生物可互换使用,指对其进行所需遗传操作(例如增强或弱化基因或蛋白活性)的微生物。In this article, the reference can be a wild-type microorganism or a microorganism before the desired genetic manipulation (e.g., for performing genetic manipulation to increase the initial microorganism of gene activity). In this article, parental microorganism and initial microorganism are used interchangeably to refer to a microorganism to which a desired genetic manipulation (e.g., enhancing or weakening gene or protein activity) is performed.

可以通过本领域已知的任何适当方式产生或增强蛋白(例如酶)的活性,例如包括但不限于在菌株中表达或过表达(例如通过载体如质粒)编码所述蛋白的相应基因、引入导致所述蛋白的活性增加的突变等。The activity of a protein (e.g., an enzyme) can be produced or enhanced by any appropriate means known in the art, including, but not limited to, expressing or overexpressing (e.g., via a vector such as a plasmid) a corresponding gene encoding the protein in a strain, introducing a mutation that results in increased activity of the protein, etc.

可以通过本领域已知的任何适当方式降低或失活蛋白(例如酶)的活性,例如包括但不限于使用弱化的或失活的编码所述蛋白的相应基因、引入导致所述蛋白的活性降低或失活的突变、使用所述蛋白的拮抗剂或抑制剂(例如抗体、配体等)。The activity of a protein (e.g., an enzyme) can be reduced or inactivated by any appropriate means known in the art, including, but not limited to, using a weakened or inactivated corresponding gene encoding the protein, introducing a mutation that results in reduced or inactivated activity of the protein, and using an antagonist or inhibitor of the protein (e.g., an antibody, a ligand, etc.).

如本文所用,“弱化或失活的基因”是指与参照(例如初始菌株或野生型菌株中的相应基因)相比,基因的活性例如表达水平(作为蛋白编码基因时)或调控性能(作为调节元件时)降低至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或更多,或甚至是不可检测到。在基因编码蛋白例如酶的情况下,“弱化或失活的基因”也涵盖,由该基因表达的蛋白的活性水平与初始菌株或野生型菌株中的相应蛋白的活性水平相比,是降低的,例如降低至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或更多,或甚至是100%。As used herein, "weakened or inactivated gene" refers to a gene activity, such as expression level (as a protein coding gene) or regulation performance (as a regulatory element) reduced by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or more, or even undetectable, compared to a reference (e.g., a corresponding gene in an initial strain or wild-type strain). In the case of a gene encoding a protein, such as an enzyme, "weakened or inactivated gene" also encompasses a protein activity level expressed by the gene that is reduced, such as reduced by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or more, or even 100%, compared to the activity level of the corresponding protein in the initial strain or wild-type strain.

如本文所用,“赋予……活性”是指在经遗传改造的2-羟基异戊酸生产菌株中产生在进行遗传改造之前的初始菌株中不存在的活性。As used herein, "imparting an activity" means producing in a genetically engineered 2-hydroxyisovaleric acid-producing strain an activity that was not present in the original strain prior to genetic engineering.

如本文所用,“增强……活性”是指增加活性,例如至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少100%、至少150%、至少200%、至少250%、至少300%或更高。As used herein, "enhancing the activity of" refers to increasing the activity, for example, by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 100%, at least 150%, at least 200%, at least 250%, at least 300% or more.

本领域已知多种用于赋予或增强所需蛋白活性的方法,例如包括但不限于表达或过表达蛋白编码基因以及增加蛋白活性的突变或其他修饰。A variety of methods are known in the art for conferring or enhancing desired protein activity, including, for example, but not limited to, expression or overexpression of protein encoding genes and mutations or other modifications that increase protein activity.

如本文所用,“过表达”是指相对于遗传操作前的水平,基因的表达水平是升高的,例如升高至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少100%、至少150%、至少200%、至少250%、至少300%或更高。过表达基因的方法是本领域熟知的,例如包括但不限于使用强启动子、增加基因拷贝数、增强子等。增加基因拷贝数可以例如但不限于通过引入一或多个拷贝的外源基因或内源基因实现,例如通过表达载体或整合进基因组中。As used herein, "overexpression" refers to an increase in the expression level of a gene relative to the level before genetic manipulation, such as an increase of at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 150%, at least 200%, at least 250%, at least 300% or more. Methods for overexpressing genes are well known in the art, such as, but not limited to, using strong promoters, increasing gene copy number, enhancers, etc. Increasing gene copy number can be, for example, but not limited to, achieved by introducing one or more copies of an exogenous gene or endogenous gene, such as, for example, by an expression vector or by integration into a genome.

如本文所用,“外源基因”是指来自另一细胞或生物体的基因,例如来自相同物种或不同物种的基因。As used herein, "foreign gene" refers to a gene from another cell or organism, such as a gene from the same species or a different species.

如本文所用,“内源基因”是指细胞或生物体自身的基因。As used herein, "endogenous gene" refers to a cell's or organism's own gene.

如本文所用,降低或失活蛋白例如酶的活性是指使得蛋白的活性降低至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或更多,或甚至是不可检测到。本领域已知多种降低或失活的手段,包括例如抑制基因表达如敲低(knockdown)(例如使用小干扰RNA)、使用弱启动子(基因是多肽编码基因时)等;基因敲除、缺失部分或全部基因或多肽序列;突变基因或多肽中某些位点例如编码序列或活性结构域以降低基因表达或调控活性或表达产物的活性;以及使用拮抗剂或抑制剂(例如包括但不限于抗体、干扰RNA等)。As used herein, reducing or inactivating the activity of a protein, such as an enzyme, refers to reducing the activity of the protein by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or more, or even undetectable. A variety of reduction or inactivation methods are known in the art, including, for example, inhibition of gene expression such as knockdown (knockdown) (e.g., using small interfering RNA), use of a weak promoter (when the gene is a polypeptide encoding gene), etc.; gene knockout, deletion of part or all of a gene or polypeptide sequence; mutation of certain sites in a gene or polypeptide, such as a coding sequence or an active domain, to reduce gene expression or regulate activity or the activity of an expression product; and use of antagonists or inhibitors (e.g., including but not limited to antibodies, interfering RNA, etc.).

如本文所用,弱化或失活基因是指使得基因的表达水平(作为蛋白编码基因时)或调控性能(作为调节元件时)降低至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或更多,或甚至是不可检测到。本领域已知多种弱化或失活基因的手段,包括例如抑制基因表达如敲低(例如使用小干扰RNA)、使用弱启动子(基因是多肽编码基因时)等;基因敲除、缺失部分或全部基因序列;突变基因中某些位点例如编码序列以降低基因表达或调控活性或表达产物的活性等。As used herein, weakening or inactivating a gene refers to reducing the expression level of the gene (when it is a protein coding gene) or the regulatory performance (when it is a regulatory element) by at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or more, or even undetectable. A variety of means of weakening or inactivating genes are known in the art, including, for example, inhibiting gene expression such as knocking down (e.g., using small interfering RNA), using a weak promoter (when the gene is a polypeptide coding gene), etc.; knocking out a gene, deleting part or all of a gene sequence; mutating certain sites in a gene, such as a coding sequence, to reduce gene expression or regulatory activity or the activity of an expression product, etc.

在一个方面,本发明提供了一种经遗传改造的产泛解酸菌株,其具有或具有增强的NADH依赖型乙酰羟基酸还原异构酶活性。In one aspect, the present invention provides a genetically engineered pantoate-producing strain having or having enhanced NADH-dependent acetohydroxyacid reductoisomerase activity.

在一个实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来源于微生物,如大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌等。在一个优选实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。In one embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is derived from a microorganism, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. In a preferred embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity.

在一个实施方案中,经遗传改造的产泛解酸菌株表达或过表达编码所述NADH依赖型乙酰羟基酸还原异构酶的基因。在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQ ID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选在强启动子例如RBS5人工调控元件(SEQ ID NO:170)的控制下。In one embodiment, the genetically modified pantoic acid producing strain expresses or overexpresses a gene encoding the NADH-dependent acetohydroxy acid reductoisomerase. In one embodiment, the gene encoding the NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO: 9, for example, comprising the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably under the control of a strong promoter such as the RBS5 artificial regulatory element (SEQ ID NO: 170).

本文中,所述经遗传改造的产泛解酸菌株除所述NADH依赖型乙酰羟基酸还原异构酶之外,还可以包含其他用于生产D-泛解酸所需的其它遗传改造,例如经改造的涉及泛解酸生产通路的其它酶或调控分子。Herein, the genetically modified pantoate-producing strain may contain, in addition to the NADH-dependent acetohydroxyacid reductoisomerase, other genetic modifications required for producing D-pantoate, such as modified enzymes or regulatory molecules involved in the pantoate production pathway.

在一个实施方案中,所述经遗传改造的产泛解酸菌株进一步具有或具有增强的:乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶的活性。In one embodiment, the genetically engineered pantothenate-producing strain further has or has enhanced activity of: acetolactate synthase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase, and phosphoserine phosphatase.

在一个实施方案中,所述乙酰乳酸合成酶包括来自枯草芽孢杆菌(Bacillussubtilis)的乙酰乳酸合成酶。特别地,所述来自枯草芽孢杆菌的乙酰乳酸合成酶包含SEQID NO:1所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶活性的氨基酸序列。In one embodiment, the acetolactate synthase comprises an acetolactate synthase from Bacillus subtilis. In particular, the acetolactate synthase from Bacillus subtilis comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase activity.

在一个实施方案中,所述乙酰乳酸合成酶包括来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III。在一个实施方案中,所述乙酰乳酸合成酶I包含SEQ ID NO:3所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶I活性的氨基酸序列。在一个实施方案中,所述乙酰乳酸合成酶II包含SEQ ID NO:5所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶II活性的氨基酸序列。在一个实施方案中,所述L-缬氨酸反馈抗性乙酰乳酸合成酶III包含SEQ ID NO:7所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有L-缬氨酸反馈抗性乙酰乳酸合成酶III活性的氨基酸序列。In one embodiment, the acetolactate synthase comprises acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli. In one embodiment, the acetolactate synthase I comprises the amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase I activity. In one embodiment, the acetolactate synthase II comprises the amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase II activity. In one embodiment, the L-valine feedback-resistant acetolactate synthase III comprises the amino acid sequence shown in SEQ ID NO:7, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having L-valine feedback-resistant acetolactate synthase III activity.

在一个实施方案中,所述乙酰乳酸合成酶包括来自枯草芽孢杆菌的乙酰乳酸合成酶,和来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和L-缬氨酸反馈抗性乙酰乳酸合成酶III。In one embodiment, the acetolactate synthase includes acetolactate synthase from Bacillus subtilis, and acetolactate synthase I, acetolactate synthase II, and L-valine feedback-resistant acetolactate synthase III from Escherichia coli.

在一个实施方案中,所述二羟酸脱水酶、2-脱氢泛酸酯-2-还原酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶来自大肠杆菌。In one embodiment, the dihydroxyacid dehydratase, 2-dehydropantothenate-2-reductase, glycine lyase system (eg, aminomethyltransferase and/or glycine decarboxylase), phosphoserine/phosphohydroxythreonine aminotransferase, and phosphoserine phosphatase are from Escherichia coli.

在一个实施方案中,所述二羟酸脱水酶包含SEQ ID NO:11所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有二羟酸脱水酶活性的氨基酸序列。In one embodiment, the dihydroxy-acid dehydratase comprises the amino acid sequence of SEQ ID NO:11, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has dihydroxy-acid dehydratase activity.

在一个实施方案中,所述2-脱氢泛酸酯-2-还原酶包含SEQ ID NO:17所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有2-脱氢泛酸酯-2-还原酶活性的氨基酸序列。In one embodiment, the 2-dehydropantothenate-2-reductase comprises the amino acid sequence of SEQ ID NO:17, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has 2-dehydropantothenate-2-reductase activity.

在一个实施方案中,所述氨甲基转移酶包含SEQ ID NO:21所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有氨甲基转移酶活性的氨基酸序列。In one embodiment, the aminomethyltransferase comprises the amino acid sequence shown in SEQ ID NO:21, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has aminomethyltransferase activity.

在一个实施方案中,所述甘氨酸脱羧酶包含SEQ ID NO:23所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有甘氨酸脱羧酶活性的氨基酸序列。In one embodiment, the glycine decarboxylase comprises the amino acid sequence shown in SEQ ID NO:23, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has glycine decarboxylase activity.

在一个实施方案中,所述磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶包含SEQ IDNO:27所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶活性的氨基酸序列。In one embodiment, the phosphoserine/phosphohydroxythreonine aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 27 or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine/phosphohydroxythreonine aminotransferase activity.

在一个实施方案中,所述磷酸丝氨酸磷酸酶包含SEQ ID NO:29所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸磷酸酶活性的氨基酸序列。In one embodiment, the phosphoserine phosphatase comprises the amino acid sequence shown in SEQ ID NO:29, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine phosphatase activity.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶包括来自谷氨酸棒杆菌和/或大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase includes 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum and/or Escherichia coli.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:13所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 13, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:15所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity.

在一个实施方案中,所述丝氨酸羟甲基转移酶包含SEQ ID NO:19所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有丝氨酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the serine hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has serine hydroxymethyltransferase activity.

在一个实施方案中,所述磷酸甘油酸脱氢酶来自谷氨酸棒杆菌。特别地,所述磷酸甘油酸脱氢酶包含SEQ ID NO:25所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸甘油酸脱氢酶活性的氨基酸序列。In one embodiment, the phosphoglycerate dehydrogenase is from Corynebacterium glutamicum. Particularly, the phosphoglycerate dehydrogenase comprises the amino acid sequence shown in SEQ ID NO:25 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homogeneity therewith and having phosphoglycerate dehydrogenase activity.

如本文所用,所述“具有或具有增强的”酶活性是指在所述经遗传改造的产泛解酸菌株中,所述酶的每一种独立地是有活性的或者是活性增强的,即其中一或多种酶可以是有活性的,而另外是活性增强的,包括全是有活性的或者全是活性增强的情况。在一个优选实施方案中,所述酶都是活性增强的。As used herein, the "enzyme activity having or having enhanced" means that in the genetically modified pantoic acid producing strain, each of the enzymes is independently active or has enhanced activity, i.e., one or more enzymes may be active, while others have enhanced activity, including all active or all have enhanced activity. In a preferred embodiment, the enzymes are all enhanced in activity.

在一些实施方案中,在本发明所述的经遗传改造的产泛解酸菌株中,一或多个拷贝的目的基因或其同源基因可以整合进基因组(例如通过同源重组),任选在基因组任意位点,(只要这种整合不显著负面影响菌株的生长和生产),例如基因组内一个拷贝的任意基因被一或多个拷贝的目的基因或其同源基因替换。本领域技术人员知道如何整合转基因以及选择整合了转基因的菌株。In some embodiments, in the genetically modified pantoate producing strains described in the present invention, one or more copies of the target gene or its homologous gene can be integrated into the genome (e.g., by homologous recombination), optionally at any site in the genome, (as long as such integration does not significantly negatively affect the growth and production of the strain), for example, one copy of any gene in the genome is replaced by one or more copies of the target gene or its homologous gene. Those skilled in the art know how to integrate transgenes and select strains that have integrated transgenes.

在一些实施方案中,通过在菌株中表达或过表达编码所述酶的基因来产生或增强所述酶的活性,这些基因可以插入菌株基因组中编码不是菌株存活以及生产泛解酸所需基因的基因座中,从而获得可以生产泛解酸的遗传改造菌株。在一些实施方案中,这些基因座包括但不限于编码如下酶的基因座:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶、支链氨基酸氨基转移酶。In some embodiments, the activity of the enzyme is produced or enhanced by expressing or overexpressing genes encoding the enzyme in the strain, which genes can be inserted into the strain genome to encode genes that are not required for strain survival and production of pantoic acid, thereby obtaining a genetically modified strain that can produce pantoic acid. In some embodiments, these loci include but are not limited to loci encoding the following enzymes: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase, branched-chain amino acid aminotransferase.

在一个实施方案中,所述编码乙酰乳酸合成酶的基因(例如包括编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因,和/或编码来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因)、编码来自Thermacetogenium phaeum菌株的NADH依赖型乙酰羟基酸还原异构酶的基因、编码二羟酸脱水酶的基因、编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和/或编码磷酸丝氨酸磷酸酶的基因掺入经遗传改造的产泛解酸菌株(例如大肠杆菌)的基因组中,例如编码如下基因的基因座中一或多个基因座的位置:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶。In one embodiment, the gene encoding acetolactate synthase (for example, including a gene encoding acetolactate synthase from Bacillus subtilis, and/or a gene encoding acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli), a gene encoding an NADH-dependent acetohydroxyacid reductoisomerase from a Thermacetogenium phaeum strain, a gene encoding a dihydroxyacid dehydratase, a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum, a gene encoding a 2-dehydropantothenate-2-reductase, a gene encoding a serine hydroxymethyltransferase, a gene encoding a glycine lyase system (for example, a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase), a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Escherichia coli, a gene encoding a phosphoglycerate. The gene encoding oleate dehydrogenase, the gene encoding phosphoserine/phosphohydroxythreonine aminotransferase and/or the gene encoding phosphoserine phosphatase are incorporated into the genome of the genetically modified pantothenate-producing strain (e.g., Escherichia coli), for example, at the location of one or more of the loci encoding the following genes: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase.

在一个实施方案中,所述经遗传改造的产泛解酸菌株进一步还具有降低活性的或失活的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶和/或支链氨基酸氨基转移酶;优选地,其中支链氨基酸氨基转移酶是弱化的。In one embodiment, the genetically engineered pantothenate-producing strain further has reduced activity or inactivated: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase and/or branched-chain amino acid aminotransferase; preferably, the branched-chain amino acid aminotransferase is weakened.

如本文所用,所述“具有降低活性的或失活的”酶是指在所述经遗传改造的产泛解酸菌株中,所述酶的每一种独立地是活性降低的或者是失活(即不具有可检测到的活性)的,即其中一或多种酶可以是活性降低的,而另外是失活的,包括全是活性降低的或者全是失活的情况。As used herein, the "enzyme with reduced activity or inactivated" means that in the genetically modified pantothenate-producing strain, each of the enzymes independently has reduced activity or is inactivated (i.e., has no detectable activity), that is, one or more enzymes may have reduced activity while others are inactivated, including situations where all have reduced activity or are all inactivated.

如本文所用,所述“支链氨基酸氨基转移酶是弱化的”或“弱化支链氨基酸氨基转移酶”是指支链氨基酸氨基转移酶的酶活性与参照活性相比降低,例如至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多。As used herein, the "branched-chain amino acid aminotransferase is attenuated" or "attenuated branched-chain amino acid aminotransferase" means that the enzymatic activity of the branched-chain amino acid aminotransferase is reduced compared to the reference activity, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99% or more.

在一个实施方案中,本发明提供了一种经遗传改造的产泛解酸菌株,其:In one embodiment, the present invention provides a genetically modified pantoate producing strain, which:

具有增强(例如过表达)的:乙酰乳酸合成酶、NADH依赖型乙酰羟基酸还原异构酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶的活性;having enhanced (e.g., overexpressed) activity of acetolactate synthase, NADH-dependent acetohydroxyacid reductoisomerase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase, and phosphoserine phosphatase;

具有弱化的支链氨基酸氨基转移酶;并且have weakened branched-chain amino acid aminotransferase; and

任选地,具有失活(例如敲除)的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶和/或磷酸乙酰转移酶。Optionally, there is inactivation (e.g., knockout) of: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase and/or phosphate acetyltransferase.

在一个实施方案中,所述弱化的支链氨基酸氨基转移酶包含SEQ ID NO:31所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有弱化的支链氨基酸氨基转移酶活性的氨基酸序列。In one embodiment, the weakened branched-chain amino acid aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 31, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has weakened branched-chain amino acid aminotransferase activity.

在一个实施方案中,本发明提供了一种经遗传改造的产泛解酸菌株,其:In one embodiment, the present invention provides a genetically modified pantoate producing strain, which:

具有增强的:来自枯草芽孢杆菌的乙酰乳酸合成酶,来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和L-缬氨酸反馈抗性乙酰乳酸合成酶III,来自Thermacetogenium phaeum的NADH依赖型乙酰羟基酸还原异构酶,二羟酸脱水酶、来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶和来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶,2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶),来自谷氨酸棒杆菌的磷酸甘油酸脱氢酶,磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶的活性;Having enhanced: acetolactate synthase from Bacillus subtilis, acetolactate synthase I, acetolactate synthase II and L-valine feedback-resistant acetolactate synthase III from Escherichia coli, NADH-dependent acetohydroxyacid reductoisomerase from Thermacetogenium phaeum, dihydroxyacid dehydratase, 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum and 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (such as aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase from Corynebacterium glutamicum, phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase activity;

任选地,具有失活(例如被敲除的)的,如果存在的话:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶和/或磷酸乙酰转移酶;并且Optionally, having inactivated (e.g., knocked out), if present: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, and/or phosphate acetyltransferase; and

具有弱化的支链氨基酸氨基转移酶。Has weakened branched-chain amino acid aminotransferase.

在一个实施方案中,所述经遗传改造的产泛解酸菌株:In one embodiment, the genetically engineered pantoate-producing strain:

表达编码弱化的支链氨基酸氨基转移酶的基因,例如SEQ ID NO:32所示的弱化的支链氨基酸氨基转移酶编码基因;和/或Expressing a gene encoding a weakened branched-chain amino acid aminotransferase, such as the weakened branched-chain amino acid aminotransferase encoding gene shown in SEQ ID NO: 32; and/or

具有过表达的:编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因,编码来自大肠杆菌的乙酰乳酸合成酶I的基因、编码来自大肠杆菌的乙酰乳酸合成酶II的基因、编码来自大肠杆菌的L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因、编码来自Thermacetogeniumphaeum菌株的NADH依赖型乙酰羟基酸还原异构酶的基因、编码二羟酸脱水酶的基因、编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和编码磷酸丝氨酸磷酸酶的基因,和/或Overexpressed genes: acetolactate synthase from Bacillus subtilis, acetolactate synthase I from Escherichia coli, acetolactate synthase II from Escherichia coli, acetolactate synthase III from Escherichia coli with L-valine feedback resistance, NADH-dependent acetohydroxyacid reductoisomerase from Thermacetogeniumphaeum strain, dihydroxyacid dehydratase, 3-carboxylic acid synthase from Corynebacterium glutamicum, a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase system, a gene encoding 3-methyl-2-oxobutyrate hydroxymethyltransferase from Escherichia coli, a gene encoding phosphoglycerate dehydrogenase, a gene encoding phosphoserine/phosphohydroxythreonine aminotransferase, and a gene encoding phosphoserine phosphatase, and/or a gene encoding a phosphoserine phosphatase.

不具有编码如下一或多种、优选全部酶的基因或者编码如下一或多种、优选全部酶的内源基因是被敲除的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶和磷酸乙酰转移酶。The gene encoding one or more, preferably all, of the following enzymes is not present or the endogenous gene encoding one or more, preferably all, of the following enzymes is knocked out: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase and phosphate acetyltransferase.

在一个实施方案中,所述编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因编码SEQ ID NO:1所示的乙酰乳酸合成酶,例如包含SEQ ID NO:2所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the acetolactate synthase from Bacillus subtilis encodes the acetolactate synthase shown in SEQ ID NO: 1, for example, comprises the nucleotide sequence shown in SEQ ID NO: 2 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter, such as the M1-93 promoter (SEQ ID NO: 169).

在一个实施方案中,所述编码来自大肠杆菌的乙酰乳酸合成酶I的基因编码SEQID NO:3所示的乙酰乳酸合成酶I大亚基ilvB,例如包含SEQ ID NO:4所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding acetolactate synthase I from Escherichia coli encodes the large subunit ilvB of acetolactate synthase I shown in SEQ ID NO:3, for example, comprises the nucleotide sequence shown in SEQ ID NO:4 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter such as the M1-93 promoter (SEQ ID NO:169).

在一个实施方案中,所述编码来自大肠杆菌的乙酰乳酸合成酶II的基因编码SEQID NO:5所示的乙酰乳酸合成酶II大亚基ilvG,例如包含SEQ ID NO:6所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding acetolactate synthase II from Escherichia coli encodes the acetolactate synthase II large subunit ilvG shown in SEQ ID NO:5, for example, comprises the nucleotide sequence shown in SEQ ID NO:6 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter such as the M1-93 promoter (SEQ ID NO:169).

在一个实施方案中,所述编码来自大肠杆菌的L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因编码SEQ ID NO:7所示的L-缬氨酸反馈抗性乙酰乳酸合成酶III,例如包含SEQID NO:8所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。In one embodiment, the gene encoding L-valine feedback-resistant acetolactate synthase III from Escherichia coli encodes the L-valine feedback-resistant acetolactate synthase III shown in SEQ ID NO: 7, for example, comprises the nucleotide sequence shown in SEQ ID NO: 8 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto.

在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBS5人工调控元件(SEQ ID NO:170)的控制下。In one embodiment, the gene encoding NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO:9, for example, comprises the nucleotide sequence shown in SEQ ID NO:10 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as the RBS5 artificial regulatory element (SEQ ID NO:170).

在一个实施方案中,所述编码二羟酸脱水酶的基因编码SEQ ID NO:11所示的二羟酸脱水酶,例如包含SEQ ID NO:12所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBSL1(SEQ ID NO:171)的控制下。In one embodiment, the gene encoding the dihydroxy-acid dehydratase encodes the dihydroxy-acid dehydratase shown in SEQ ID NO: 11, for example, comprises the nucleotide sequence shown in SEQ ID NO: 12 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as RBSL1 (SEQ ID NO: 171).

在一个实施方案中,所述编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因编码SEQ ID NO:13所示的3-甲基-2-氧代丁酸羟甲基转移酶,例如包含SEQ IDNO:14所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum encodes the 3-methyl-2-oxobutanoate hydroxymethyltransferase shown in SEQ ID NO: 13, for example, comprising the nucleotide sequence shown in SEQ ID NO: 14 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因编码SEQ ID NO:15所示的氨基酸序列,例如包含SEQ ID NO:16所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli encodes the amino acid sequence shown in SEQ ID NO: 15, for example, comprises the nucleotide sequence shown in SEQ ID NO: 16 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码2-脱氢泛酸酯-2-还原酶的基因编码SEQ ID NO:17所示的2-脱氢泛酸酯-2-还原酶,例如包含SEQ ID NO:18所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBSL2(SEQ ID NO:172)的控制下。In one embodiment, the gene encoding 2-dehydropantothenate-2-reductase encodes the 2-dehydropantothenate-2-reductase shown in SEQ ID NO:17, for example, comprises the nucleotide sequence shown in SEQ ID NO:18 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as RBSL2 (SEQ ID NO:172).

在一个实施方案中,所述编码丝氨酸羟甲基转移酶的基因编码SEQ ID NO:19所示的丝氨酸羟甲基转移酶,例如包含SEQ ID NO:20所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-46(SEQ ID NO:173)的控制下。In one embodiment, the gene encoding serine hydroxymethyltransferase encodes the serine hydroxymethyltransferase shown in SEQ ID NO: 19, for example, comprises the nucleotide sequence shown in SEQ ID NO: 20 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-46 (SEQ ID NO: 173).

在一个实施方案中,所述编码氨甲基转移酶的基因编码SEQ ID NO:21所示的氨甲基转移酶,例如包含SEQ ID NO:22所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the aminomethyltransferase encodes the aminomethyltransferase shown in SEQ ID NO:21, for example, comprises the nucleotide sequence shown in SEQ ID NO:22 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码甘氨酸脱羧酶的基因编码SEQ ID NO:23所示的甘氨酸脱羧酶,例如包含SEQ ID NO:24所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding glycine decarboxylase encodes the glycine decarboxylase shown in SEQ ID NO:23, for example, comprises the nucleotide sequence shown in SEQ ID NO:24 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码磷酸甘油酸脱氢酶的基因编码SEQ ID NO:25所示的磷酸甘油酸脱氢酶,例如包含SEQ ID NO:26所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding phosphoglycerate dehydrogenase encodes the phosphoglycerate dehydrogenase shown in SEQ ID NO:25, for example, comprises the nucleotide sequence shown in SEQ ID NO:26 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因编码SEQ ID NO:27所示的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶,例如包含SEQ ID NO:28所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding phosphoserine/phosphohydroxythreonine aminotransferase encodes the phosphoserine/phosphohydroxythreonine aminotransferase shown in SEQ ID NO: 27, for example, comprises the nucleotide sequence shown in SEQ ID NO: 28 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码磷酸丝氨酸磷酸酶的基因编码SEQ ID NO:29所示的磷酸丝氨酸磷酸酶,例如包含SEQ ID NO:30所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the phosphoserine phosphatase encodes the phosphoserine phosphatase shown in SEQ ID NO:29, for example, comprises the nucleotide sequence shown in SEQ ID NO:30 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述经遗传改造的产泛解酸(例如大肠杆菌)菌株:In one embodiment, the genetically engineered pantoate-producing (eg, E. coli) strain:

表达包含SEQ ID NO:31所示氨基酸序列的酶,例如表达包含SEQ ID NO:32所示核苷酸序列的基因;expressing an enzyme comprising the amino acid sequence shown in SEQ ID NO: 31, for example, expressing a gene comprising the nucleotide sequence shown in SEQ ID NO: 32;

过表达分别包含SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27和29所示氨基酸序列的酶,例如过表达分别包含SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28和30所示核苷酸序列的基因;以及Overexpression of enzymes comprising the amino acid sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29, respectively, such as overexpression of genes comprising the nucleotide sequences of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30, respectively; and

任选地,不具有编码如下一或多种、优选全部酶的基因或者编码如下一或多种、优选全部酶的内源基因是被敲除的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶。Optionally, there is no gene encoding one or more, preferably all of the following enzymes or endogenous genes encoding one or more, preferably all of the following enzymes are knocked out: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase, phosphate acetyltransferase.

在一个实施方案中,所述产泛解酸菌株选自埃希氏菌属(Escherichia)、肠杆菌属(Enterobacter)、谷氨酸棒杆菌、枯草芽孢杆菌和酵母菌,优选大肠杆菌。In one embodiment, the pantoate-producing strain is selected from the group consisting of Escherichia, Enterobacter, Corynebacterium glutamicum, Bacillus subtilis and yeast, preferably Escherichia coli.

在一个实施方案中,所述经遗传改造的产泛解酸菌株为保藏在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCC No.26276的大肠杆菌。In one embodiment, the genetically modified pantoate-producing strain is Escherichia coli deposited in the General Microbiological Center of China Microorganism Culture Collection Committee (CGMCC) in Beijing, China, with the deposit number of CGMCC No. 26276.

在一个方面,本发明提供了一种产生经遗传改造的产泛解酸菌株的方法,包括:在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶活性。In one aspect, the present invention provides a method for producing a genetically modified pantoate-producing strain, comprising: imparting or enhancing NADH-dependent acetohydroxyacid reductoisomerase activity in the pantoate-producing strain.

在一个实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来源于微生物,如大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌等。在一个优选实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。In one embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is derived from a microorganism, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. In a preferred embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity.

在一个实施方案中,所述方法包括在产泛解酸菌株中表达或过表达编码所述NADH依赖型乙酰羟基酸还原异构酶的基因。在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQ ID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选在强启动子例如RBS5人工调控元件(SEQ ID NO:170)的控制下。In one embodiment, the method comprises expressing or overexpressing a gene encoding the NADH-dependent acetohydroxy acid reductoisomerase in a pantoic acid producing strain. In one embodiment, the gene encoding the NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO: 9, for example, comprising the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably under the control of a strong promoter such as the RBS5 artificial regulatory element (SEQ ID NO: 170).

在一个实施方案中,所述方法包括,在产泛解酸菌株中:表达或过表达编码所述NADH依赖型乙酰羟基酸还原异构酶的基因。In one embodiment, the method comprises, in a pantoate-producing strain: expressing or overexpressing a gene encoding the NADH-dependent acetohydroxyacid reductoisomerase.

所述产泛解酸菌株可以是本领域已知的菌株或者通过本领域技术知识可以获得的菌株。The pantoate-producing strain may be a strain known in the art or a strain obtainable through technical knowledge in the art.

除赋予或增强所述NADH依赖型乙酰羟基酸还原异构酶之外,所述方法还可以包含在所述经遗传改造的产泛解酸菌株中进行用于生产D-泛解酸所需的其它遗传改造,例如改造涉及泛解酸生产通路的其它酶或调控分子。例如,可以在合适的菌株(例如不产生可检测量的D-泛解酸积累的菌株中)进行其它遗传改造以及赋予或增强所述NADH依赖型乙酰羟基酸还原异构酶,使其产生产生可检测量的D-泛解酸积累。In addition to conferring or enhancing the NADH-dependent acetohydroxy acid reductoisomerase, the method may also include performing other genetic modifications required for producing D-pantoic acid in the genetically modified pantoic acid-producing strain, such as modifying other enzymes or regulatory molecules involved in the pantoic acid production pathway. For example, other genetic modifications and conferring or enhancing the NADH-dependent acetohydroxy acid reductoisomerase may be performed in a suitable strain (e.g., a strain that does not produce a detectable amount of D-pantoic acid accumulation) to produce a detectable amount of D-pantoic acid accumulation.

例如,在一个实施方案中,本发明提供了一种产生经遗传改造的产泛解酸菌株的方法,包括:在菌株中赋予或增强:NADH依赖型乙酰羟基酸还原异构酶、乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶活性。For example, in one embodiment, the present invention provides a method for producing a genetically modified pantothenate-producing strain, comprising: conferring or enhancing in the strain: NADH-dependent acetohydroxyacid reductoisomerase, acetolactate synthetase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase activities.

在一个实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来源于微生物,如大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌等。在一个优选实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。In one embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is derived from a microorganism, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. In a preferred embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity.

在一个实施方案中,所述方法包括在产泛解酸菌株中表达或过表达编码所述NADH依赖型乙酰羟基酸还原异构酶的基因。在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQ ID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选在强启动子例如RBS5人工调控元件(SEQ ID NO:170)的控制下。In one embodiment, the method comprises expressing or overexpressing a gene encoding the NADH-dependent acetohydroxy acid reductoisomerase in a pantoic acid producing strain. In one embodiment, the gene encoding the NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO: 9, for example, comprising the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably under the control of a strong promoter such as the RBS5 artificial regulatory element (SEQ ID NO: 170).

在一个实施方案中,所述乙酰乳酸合成酶包括来自枯草芽孢杆菌的乙酰乳酸合成酶。特别地,所述乙酰乳酸合成酶包含SEQ ID NO:1所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶活性的氨基酸序列。In one embodiment, the acetolactate synthase comprises an acetolactate synthase from Bacillus subtilis. In particular, the acetolactate synthase comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase activity.

在一个实施方案中,所述乙酰乳酸合成酶包括来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III。在一个实施方案中,所述乙酰乳酸合成酶I包含SEQ ID NO:3所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶I活性的氨基酸序列。在一个实施方案中,所述乙酰乳酸合成酶II包含SEQ ID NO:5所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶II活性的氨基酸序列。在一个实施方案中,所述L-缬氨酸反馈抗性乙酰乳酸合成酶III包含SEQ ID NO:7所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有L-缬氨酸反馈抗性乙酰乳酸合成酶III活性的氨基酸序列。In one embodiment, the acetolactate synthase comprises acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli. In one embodiment, the acetolactate synthase I comprises the amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase I activity. In one embodiment, the acetolactate synthase II comprises the amino acid sequence shown in SEQ ID NO: 5, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase II activity. In one embodiment, the L-valine feedback-resistant acetolactate synthase III comprises the amino acid sequence shown in SEQ ID NO:7, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having L-valine feedback-resistant acetolactate synthase III activity.

在一个实施方案中,所述方法包括在菌株中赋予或增强来自枯草芽孢杆菌的乙酰乳酸合成酶和来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和L-缬氨酸反馈抗性乙酰乳酸合成酶III的活性。In one embodiment, the method comprises conferring or enhancing the activities of acetolactate synthase from Bacillus subtilis and acetolactate synthase I, acetolactate synthase II and L-valine feedback-resistant acetolactate synthase III from Escherichia coli in the strain.

在一个实施方案中,所述二羟酸脱水酶、2-脱氢泛酸酯-2-还原酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶来自大肠杆菌。In one embodiment, the dihydroxyacid dehydratase, 2-dehydropantothenate-2-reductase, glycine lyase system (eg, aminomethyltransferase and/or glycine decarboxylase), phosphoserine/phosphohydroxythreonine aminotransferase, and phosphoserine phosphatase are from Escherichia coli.

在一个实施方案中,所述二羟酸脱水酶包含SEQ ID NO:11所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有二羟酸脱水酶活性的氨基酸序列。In one embodiment, the dihydroxy-acid dehydratase comprises the amino acid sequence of SEQ ID NO:11, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has dihydroxy-acid dehydratase activity.

在一个实施方案中,所述2-脱氢泛酸酯-2-还原酶包含SEQ ID NO:17所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有2-脱氢泛酸酯-2-还原酶活性的氨基酸序列。In one embodiment, the 2-dehydropantothenate-2-reductase comprises the amino acid sequence of SEQ ID NO:17, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has 2-dehydropantothenate-2-reductase activity.

在一个实施方案中,所述丝氨酸羟甲基转移酶包含SEQ ID NO:19所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有丝氨酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the serine hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 19, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has serine hydroxymethyltransferase activity.

在一个实施方案中,所述氨甲基转移酶包含SEQ ID NO:21所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有氨甲基转移酶活性的氨基酸序列。In one embodiment, the aminomethyltransferase comprises the amino acid sequence shown in SEQ ID NO:21, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has aminomethyltransferase activity.

在一个实施方案中,所述甘氨酸脱羧酶包含SEQ ID NO:23所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有甘氨酸脱羧酶活性的氨基酸序列。In one embodiment, the glycine decarboxylase comprises the amino acid sequence shown in SEQ ID NO:23, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has glycine decarboxylase activity.

在一个实施方案中,所述磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶包含SEQ IDNO:27所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶活性的氨基酸序列。In one embodiment, the phosphoserine/phosphohydroxythreonine aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 27 or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine/phosphohydroxythreonine aminotransferase activity.

在一个实施方案中,所述磷酸丝氨酸磷酸酶包含SEQ ID NO:29所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸磷酸酶活性的氨基酸序列。In one embodiment, the phosphoserine phosphatase comprises the amino acid sequence shown in SEQ ID NO:29, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine phosphatase activity.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶包括来自谷氨酸棒杆菌和/或大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase includes 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum and/or Escherichia coli.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶来自谷氨酸棒杆菌。特别地,所述3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:13所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase is from Corynebacterium glutamicum. In particular, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 13 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homogeneity therewith and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity.

在一个实施方案中,所述3-甲基-2-氧代丁酸羟甲基转移酶来自大肠杆菌。特别地,所述3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:15所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列。In one embodiment, the 3-methyl-2-oxobutanoate hydroxymethyltransferase is from Escherichia coli. In particular, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises the amino acid sequence shown in SEQ ID NO: 15 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity.

在一个实施方案中,所述磷酸甘油酸脱氢酶来自谷氨酸棒杆菌。特别地,所述磷酸甘油酸脱氢酶包含SEQ ID NO:25所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸甘油酸脱氢酶活性的氨基酸序列。In one embodiment, the phosphoglycerate dehydrogenase is from Corynebacterium glutamicum. Particularly, the phosphoglycerate dehydrogenase comprises the amino acid sequence shown in SEQ ID NO:25 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homogeneity therewith and having phosphoglycerate dehydrogenase activity.

如本文所用,所述“赋予或增强”是指在所述产泛解酸菌株中,具有所述酶中的一或多种的活性,而另外的酶的活性是增强的,包括全部酶都是活性增强的情况。在一个优选实施方案中,所述酶都是活性增强的。As used herein, the term "conferring or enhancing" means that in the pantoic acid producing strain, one or more of the enzymes have an activity, while the activity of another enzyme is enhanced, including the case where all enzymes have enhanced activity. In a preferred embodiment, all enzymes have enhanced activity.

为赋予或增强一或多种酶活性,可以将一或多个拷贝的目的基因或其同源基因整合进基因组(例如通过同源重组),任选在基因组任意位点,(只要这种整合不显著负面影响菌株的生长和生产所需化合物如D-泛解酸),例如基因组内一个拷贝的任意基因被一或多个拷贝的目的基因或其同源基因替换。本领域技术人员知道如何整合转基因以及在菌株中选择整合所需转基因的基因座位置。To confer or enhance one or more enzyme activities, one or more copies of the target gene or its homologous gene can be integrated into the genome (e.g., by homologous recombination), optionally at any site in the genome, (as long as such integration does not significantly negatively affect the growth of the strain and the production of desired compounds such as D-pantoic acid), for example, one copy of any gene in the genome is replaced by one or more copies of the target gene or its homologous gene. Those skilled in the art know how to integrate transgenes and select the locus position of the desired transgene for integration in the strain.

通过在菌株中表达或过表达编码本文所述酶的基因来产生或增强所述酶的活性,这些基因可以插入菌株基因组中编码不是菌株存活以及生产泛解酸所需基因的基因座中,从而获得可以生产泛解酸的遗传改造菌株。这些基因座包括但不限于编码如下酶的基因座:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶、支链氨基酸氨基转移酶。Genes encoding enzymes described herein are expressed or overexpressed to produce or enhance the activity of the enzymes, which can be inserted into the gene loci encoding the strain genome that are not required for strain survival and production of pantoic acid, thereby obtaining genetically modified strains that can produce pantoic acid. These loci include but are not limited to the loci encoding the following enzymes: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase, branched-chain amino acid aminotransferase.

在一个实施方案中,所述方法包括进一步降低或失活如下一或多种酶的活性:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶、支链氨基酸氨基转移酶;优选地,弱化支链氨基酸氨基转移酶的酶活性。In one embodiment, the method comprises further reducing or inactivating the activity of one or more of the following enzymes: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase, branched-chain amino acid aminotransferase; preferably, the enzymatic activity of branched-chain amino acid aminotransferase is weakened.

如本文所用,所述“降低或失活”是指在所述经遗传改造的产泛解酸菌株中,如果存在所述酶,则所述酶的活性被降低或者失活(即至不可检测到的活性),即其中一或多种酶可以是活性降低的,而另外是失活的,包括全是活性降低的或者全是失活的情况。As used herein, the "reduction or inactivation" means that in the genetically modified pantoate-producing strain, if the enzyme exists, the activity of the enzyme is reduced or inactivated (i.e., to undetectable activity), that is, one or more enzymes may have reduced activity while others are inactivated, including situations where all have reduced activity or all are inactivated.

在一个实施方案中,经弱化的支链氨基酸氨基转移酶包含SEQ ID NO:31所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有弱化的支链氨基酸氨基转移酶活性的氨基酸序列。In one embodiment, the attenuated branched-chain amino acid aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 31, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has attenuated branched-chain amino acid aminotransferase activity.

在一个实施方案中,所述方法包括:In one embodiment, the method comprises:

表达或过表达、优选过表达:编码所述NADH依赖型乙酰羟基酸还原异构酶的基因、编码乙酰乳酸合成酶的基因、编码二羟酸脱水酶的基因、编码3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和编码磷酸丝氨酸磷酸酶的基因;Expression or overexpression, preferably overexpression: a gene encoding the NADH-dependent acetohydroxyacid reductoisomerase, a gene encoding acetolactate synthase, a gene encoding a dihydroxyacid dehydratase, a gene encoding 3-methyl-2-oxobutyrate hydroxymethyltransferase, a gene encoding 2-dehydropantothenate-2-reductase, a gene encoding a serine hydroxymethyltransferase, a gene encoding a glycine lyase system (e.g., a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase), a gene encoding a phosphoglycerate dehydrogenase, a gene encoding a phosphoserine/phosphohydroxythreonine aminotransferase, and a gene encoding a phosphoserine phosphatase;

任选地,敲除编码如下一或多种、优选全部酶的基因,如果存在的话:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶。Optionally, genes encoding one or more, preferably all, of the following enzymes are knocked out, if present: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase, phosphate acetyltransferase.

在一个实施方案中,所述产生经遗传改造的产泛解酸菌株的方法包括,在所述菌株中:In one embodiment, the method of producing a genetically engineered pantoate-producing strain comprises, in the strain:

表达弱化的支链氨基酸氨基转移酶,例如表达SEQ ID NO:31所示的蛋白质,特别地,表达包含SEQ ID NO:32所示核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列的基因;和/或Expression of a weakened branched-chain amino acid aminotransferase, for example, expression of the protein shown in SEQ ID NO: 31, in particular, expression of a gene comprising the nucleotide sequence shown in SEQ ID NO: 32 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto; and/or

过表达:编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因,编码来自大肠杆菌的乙酰乳酸合成酶I的基因、编码来自大肠杆菌的乙酰乳酸合成酶II的基因、编码来自大肠杆菌的L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因、编码来自Thermacetogenium phaeum菌株的NADH依赖型乙酰羟基酸还原异构酶的基因、编码二羟酸脱水酶的基因、编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和编码磷酸丝氨酸磷酸酶的基因,和/或Overexpression: Gene encoding acetolactate synthase from Bacillus subtilis, gene encoding acetolactate synthase I from Escherichia coli, gene encoding acetolactate synthase II from Escherichia coli, gene encoding L-valine feedback-resistant acetolactate synthase III from Escherichia coli, gene encoding acetolactate synthase II from Thermacetogenium phaeum strain, a gene encoding a NADH-dependent acetohydroxyacid reductoisomerase, a gene encoding a dihydroxyacid dehydratase, a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum, a gene encoding a 2-dehydropantothenate-2-reductase, a gene encoding a serine hydroxymethyltransferase, a gene encoding a glycine lyase system (e.g., a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase), a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Escherichia coli, a gene encoding a phosphoglycerate dehydrogenase, a gene encoding a phosphoserine/phosphohydroxythreonine aminotransferase, and a gene encoding a phosphoserine phosphatase, and/or

任选地,敲除编码如下一或多种、优选全部酶的基因,如果存在的话:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶。Optionally, the genes encoding one or more, preferably all, of the following enzymes are knocked out, if present: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase, phosphate acetyltransferase.

在一个实施方案中,所述编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因编码SEQ ID NO:1所示的乙酰乳酸合成酶,例如包含SEQ ID NO:2所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the acetolactate synthase from Bacillus subtilis encodes the acetolactate synthase shown in SEQ ID NO: 1, for example, comprises the nucleotide sequence shown in SEQ ID NO: 2 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter, such as the M1-93 promoter (SEQ ID NO: 169).

在一个实施方案中,所述编码来自大肠杆菌的乙酰乳酸合成酶I的基因编码SEQID NO:3所示的乙酰乳酸合成酶I大亚基ilvB,例如包含SEQ ID NO:4所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding acetolactate synthase I from Escherichia coli encodes the large subunit ilvB of acetolactate synthase I shown in SEQ ID NO:3, for example, comprises the nucleotide sequence shown in SEQ ID NO:4 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter such as the M1-93 promoter (SEQ ID NO:169).

在一个实施方案中,所述编码来自大肠杆菌的乙酰乳酸合成酶II的基因编码SEQID NO:5所示的乙酰乳酸合成酶II大亚基ilvG,例如包含SEQ ID NO:6所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,并且优选置于强启动子例如M1-93启动子(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding acetolactate synthase II from Escherichia coli encodes the acetolactate synthase II large subunit ilvG shown in SEQ ID NO:5, for example, comprises the nucleotide sequence shown in SEQ ID NO:6 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and is preferably placed under the control of a strong promoter such as the M1-93 promoter (SEQ ID NO:169).

在一个实施方案中,所述编码来自大肠杆菌的L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因编码SEQ ID NO:7所示的L-缬氨酸反馈抗性乙酰乳酸合成酶III,例如包含SEQID NO:8所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。In one embodiment, the gene encoding L-valine feedback-resistant acetolactate synthase III from Escherichia coli encodes the L-valine feedback-resistant acetolactate synthase III shown in SEQ ID NO: 7, for example, comprises the nucleotide sequence shown in SEQ ID NO: 8 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto.

在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBS5人工调控元件(SEQ ID NO:170)的控制下。In one embodiment, the gene encoding NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO:9, for example, comprises the nucleotide sequence shown in SEQ ID NO:10 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as the RBS5 artificial regulatory element (SEQ ID NO:170).

在一个实施方案中,所述编码二羟酸脱水酶的基因编码SEQ ID NO:11所示的二羟酸脱水酶,例如包含SEQ ID NO:12所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBSL1(SEQ ID NO:171)的控制下。In one embodiment, the gene encoding the dihydroxy-acid dehydratase encodes the dihydroxy-acid dehydratase shown in SEQ ID NO: 11, for example, comprises the nucleotide sequence shown in SEQ ID NO: 12 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as RBSL1 (SEQ ID NO: 171).

在一个实施方案中,所述编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因编码SEQ ID NO:13所示的3-甲基-2-氧代丁酸羟甲基转移酶,例如包含SEQ IDNO:14所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum encodes the 3-methyl-2-oxobutanoate hydroxymethyltransferase shown in SEQ ID NO: 13, for example, comprising the nucleotide sequence shown in SEQ ID NO: 14 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因编码SEQ ID NO:15所示的3-甲基-2-氧代丁酸羟甲基转移酶,例如包含SEQ ID NO:16所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli encodes the 3-methyl-2-oxobutanoate hydroxymethyltransferase shown in SEQ ID NO: 15, for example, comprises the nucleotide sequence shown in SEQ ID NO: 16 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码2-脱氢泛酸酯-2-还原酶的基因编码SEQ ID NO:17所示的2-脱氢泛酸酯-2-还原酶,例如包含SEQ ID NO:18所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如RBSL2(SEQ ID NO:172)的控制下。In one embodiment, the gene encoding 2-dehydropantothenate-2-reductase encodes the 2-dehydropantothenate-2-reductase shown in SEQ ID NO:17, for example, comprises the nucleotide sequence shown in SEQ ID NO:18 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as RBSL2 (SEQ ID NO:172).

在一个实施方案中,所述编码丝氨酸羟甲基转移酶的基因编码SEQ ID NO:19所示的丝氨酸羟甲基转移酶,例如包含SEQ ID NO:20所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-46(SEQ ID NO:173)的控制下。In one embodiment, the gene encoding serine hydroxymethyltransferase encodes the serine hydroxymethyltransferase shown in SEQ ID NO: 19, for example, comprises the nucleotide sequence shown in SEQ ID NO: 20 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-46 (SEQ ID NO: 173).

在一个实施方案中,所述编码氨甲基转移酶的基因编码SEQ ID NO:21所示的氨甲基转移酶,例如包含SEQ ID NO:22所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the aminomethyltransferase encodes the aminomethyltransferase shown in SEQ ID NO:21, for example, comprises the nucleotide sequence shown in SEQ ID NO:22 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码甘氨酸脱羧酶的基因编码SEQ ID NO:23所示的甘氨酸脱羧酶,例如包含SEQ ID NO:24所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding glycine decarboxylase encodes the glycine decarboxylase shown in SEQ ID NO:23, for example, comprises the nucleotide sequence shown in SEQ ID NO:24 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码磷酸甘油酸脱氢酶的基因编码SEQ ID NO:25所示的磷酸甘油酸脱氢酶,例如包含SEQ ID NO:26所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding phosphoglycerate dehydrogenase encodes the phosphoglycerate dehydrogenase shown in SEQ ID NO:25, for example, comprises the nucleotide sequence shown in SEQ ID NO:26 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因编码SEQ ID NO:27所示的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶,例如包含SEQ ID NO:28所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding phosphoserine/phosphohydroxythreonine aminotransferase encodes the phosphoserine/phosphohydroxythreonine aminotransferase shown in SEQ ID NO: 27, for example, comprises the nucleotide sequence shown in SEQ ID NO: 28 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO: 169).

在一个实施方案中,所述编码磷酸丝氨酸磷酸酶的基因编码SEQ ID NO:29所示的磷酸丝氨酸磷酸酶,例如包含SEQ ID NO:30所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,优选在强启动子例如M1-93(SEQ ID NO:169)的控制下。In one embodiment, the gene encoding the phosphoserine phosphatase encodes the phosphoserine phosphatase shown in SEQ ID NO:29, for example, comprises the nucleotide sequence shown in SEQ ID NO:30 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, preferably under the control of a strong promoter such as M1-93 (SEQ ID NO:169).

在一个实施方案中,所述方法包括在产泛解酸(例如大肠杆菌)菌株中:In one embodiment, the method comprises in a pantoate producing (eg, E. coli) strain:

表达包含SEQ ID NO:31所示氨基酸序列的酶,例如表达包含SEQ ID NO:32所示核苷酸序列的基因;expressing an enzyme comprising the amino acid sequence shown in SEQ ID NO: 31, for example, expressing a gene comprising the nucleotide sequence shown in SEQ ID NO: 32;

过表达分别包含SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27和29所示氨基酸序列的酶,例如过表达分别包含SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28和30所示核苷酸序列的基因;以及Overexpression of enzymes comprising the amino acid sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29, respectively, such as overexpression of genes comprising the nucleotide sequences of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30, respectively; and

任选地,敲除有编码如下酶的基因:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶和/或磷酸乙酰转移酶。Optionally, genes encoding the following enzymes are knocked out: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase and/or phosphate acetyltransferase.

在一个实施方案中,所述方法是在选自埃希氏菌属、肠杆菌属、谷氨酸棒杆菌、枯草芽孢杆菌和酵母菌中的菌株进行所述赋予或增强所述酶活性和任选地降低或失活所述酶活性的步骤,以获得所述经遗传改造的产泛解酸菌株。In one embodiment, the method is to carry out the steps of imparting or enhancing the enzyme activity and optionally reducing or inactivating the enzyme activity in a strain selected from the genus Escherichia, Enterobacter, Corynebacterium glutamicum, Bacillus subtilis and yeast to obtain the genetically modified pantoate-producing strain.

在一个实施方案中,所述方法是在大肠杆菌菌株例如大肠杆菌ATCC 8739中进行所述赋予或增强酶活性和降低或失活酶活性的步骤,以获得所述经遗传改造的产泛解酸菌株。In one embodiment, the method comprises carrying out the steps of imparting or enhancing enzyme activity and reducing or inactivating enzyme activity in an Escherichia coli strain such as Escherichia coli ATCC 8739 to obtain the genetically modified pantoate-producing strain.

在一个实施方案中,所述方法包括在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCC No.21699的大肠杆菌中,用编码NADH依赖型乙酰羟基酸还原异构酶的基因替代NADPH依赖型乙酰羟基酸还原异构酶(例如SEQ ID NO:167所示)编码基因(例如SEQ ID NO:168所示)以获得所述经遗传改造的产泛解酸菌株。优选地,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum菌株,例如包含SEQID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。In one embodiment, the method comprises replacing a gene encoding a NADPH-dependent acetohydroxy acid reductoisomerase (e.g., as shown in SEQ ID NO: 167) with a gene encoding a NADH-dependent acetohydroxy acid reductoisomerase in Escherichia coli with a deposit number of CGMCC No. 21699 in Beijing, China, to obtain the genetically modified pantoate-producing strain. Preferably, the NADH-dependent acetohydroxy acid reductoisomerase is from a Thermacetogenium phaeum strain, for example, comprising an amino acid sequence as shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity.

在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因包含SEQID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。In one embodiment, the gene encoding NADH-dependent acetohydroxyacid reductoisomerase comprises the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto.

在一个实施方案中,通过所述方法获得的经遗传改造的产泛解酸菌株为保藏在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCCNo.26276的大肠杆菌。In one embodiment, the genetically modified pantoate-producing strain obtained by the method is Escherichia coli deposited in the General Microbiological Center of China Microorganism Culture Collection Committee (CGMCC) in Beijing, China, with a deposit number of CGMCC No. 26276.

在一个方面,本发明提供了一种生产D-泛解酸的方法,包括在适于发酵生产D-泛解酸的条件下培养本发明所述的经遗传改造的泛解酸生产菌株或者根据本发明所述的产生经遗传改造的泛解酸生产菌株的方法制备的经遗传改造的泛解酸生产菌株,任选包括分离纯化产生的D-泛解酸。In one aspect, the present invention provides a method for producing D-pantoic acid, comprising culturing the genetically modified pantoic acid-producing strain of the present invention or the genetically modified pantoic acid-producing strain prepared according to the method for producing a genetically modified pantoic acid-producing strain of the present invention under conditions suitable for the fermentation production of D-pantoic acid, optionally comprising isolating and purifying the produced D-pantoic acid.

本领域已知发酵培养泛解酸生产菌株用于发酵生产D-泛解酸的条件,包括例如但不限于pH、温度、培养基成分、发酵时间等。The conditions for fermentation and culturing pantoic acid-producing strains for the production of D-pantoic acid are known in the art, including, for example, but not limited to, pH, temperature, medium components, fermentation time, and the like.

本领域已知用于泛解酸生产菌株发酵生产D-泛解酸的温度,例如约25-37℃,例如约25℃、约26℃、约27℃、约28℃、约29℃、约30℃、约31℃、约32℃、约33℃、约34℃、约35℃、约36℃、约37℃。在一个实施方案中,本发明所述泛解酸生产酵母菌株在37℃进行发酵以生产D-泛解酸。Temperatures for fermentation of D-pantoic acid by pantoic acid producing strains are known in the art, such as about 25-37° C., such as about 25° C., about 26° C., about 27° C., about 28° C., about 29° C., about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., about 37° C. In one embodiment, the pantoic acid producing yeast strain of the present invention is fermented at 37° C. to produce D-pantoic acid.

本发明所述泛解酸生产菌株可以在本领域已知的合适的pH值进行发酵,例如pH约6.5-7.5。在一个实施方案中,本发明所述泛解酸生产菌株在pH约7.0进行发酵以生产D-泛解酸。The pantoic acid producing strain of the present invention can be fermented at a suitable pH value known in the art, such as pH about 6.5-7.5. In one embodiment, the pantoic acid producing strain of the present invention is fermented at pH about 7.0 to produce D-pantoic acid.

为生产D-泛解酸,本发明所述泛解酸生产菌株可以发酵合适的时间,例如约12-96小时,如约12小时、约24小时、约36小时、约48小时、约60小时、约72小时、约96、约120、约144、约168小时。To produce D-pantoic acid, the pantoic acid-producing strain of the present invention can be fermented for a suitable time, for example, about 12-96 hours, such as about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 60 hours, about 72 hours, about 96, about 120, about 144, about 168 hours.

在一个方面,本发明提供了本发明所述的经遗传改造的泛解酸生产菌株或者根据本发明所述的产生经遗传改造的泛解酸生产菌株的方法制备的经遗传改造的泛解酸生产菌株在生产D-泛解酸中的应用。In one aspect, the present invention provides the use of the genetically modified pantoic acid producing strain of the present invention or the genetically modified pantoic acid producing strain prepared according to the method for producing a genetically modified pantoic acid producing strain of the present invention in producing D-pantoic acid.

在一个方面,本发明提供了提高产泛解酸菌株的D-泛解酸生产的方法,包括:在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶的活性。In one aspect, the present invention provides a method for improving the production of D-pantoic acid in a pantoic acid-producing strain, comprising: imparting or enhancing the activity of NADH-dependent acetohydroxyacid reductoisomerase in the pantoic acid-producing strain.

在一个实施方案中,所述产泛解酸菌株不具有NADH依赖型乙酰羟基酸还原异构酶,例如具有NADPH依赖型乙酰羟基酸还原异构酶。In one embodiment, the pantoate-producing strain does not have an NADH-dependent acetohydroxyacid reductoisomerase, for example, has an NADPH-dependent acetohydroxyacid reductoisomerase.

在一个实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来源于微生物,如大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌等。在一个优选实施方案中,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。In one embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is derived from a microorganism, such as Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, etc. In a preferred embodiment, the NADH-dependent acetohydroxy acid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity.

在一个实施方案中,所述方法包括使用NADH依赖型乙酰羟基酸还原异构酶替换具有NADPH依赖型乙酰羟基酸还原异构酶的产泛解酸菌株中的NADPH依赖型乙酰羟基酸还原异构酶,从而提高该菌株的D-泛解酸生产能力。所述替换可以使用本领域已知的任何合适方法进行,例如通过同源重组,使用编码NADH依赖型乙酰羟基酸还原异构酶的基因置换菌株中编码NADPH依赖型乙酰羟基酸还原异构酶的基因。In one embodiment, the method comprises replacing the NADPH-dependent acetohydroxy acid reductoisomerase in a pantoate-producing strain having an NADPH-dependent acetohydroxy acid reductoisomerase with an NADH-dependent acetohydroxy acid reductoisomerase, thereby improving the D-pantoate production capacity of the strain. The replacement can be performed using any suitable method known in the art, such as by homologous recombination, using a gene encoding the NADH-dependent acetohydroxy acid reductoisomerase to replace the gene encoding the NADPH-dependent acetohydroxy acid reductoisomerase in the strain.

引入所述菌株中的编码NADH依赖型乙酰羟基酸还原异构酶的基因可以置于适当启动子例如强启动子(例如RBS5人工调控元件(SEQ ID NO:170))的控制下,使得所述基因在菌株中表达或过表达,优选过表达。在一个实施方案中,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因编码SEQ ID NO:9所示的NADH依赖型乙酰羟基酸还原异构酶,例如包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。The gene encoding the NADH-dependent acetohydroxy acid reductoisomerase introduced into the strain can be placed under the control of an appropriate promoter, such as a strong promoter (e.g., RBS5 artificial regulatory element (SEQ ID NO: 170)), so that the gene is expressed or overexpressed in the strain, preferably overexpressed. In one embodiment, the gene encoding the NADH-dependent acetohydroxy acid reductoisomerase encodes the NADH-dependent acetohydroxy acid reductoisomerase shown in SEQ ID NO: 9, for example, comprising the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto.

在一个实施方案中,所述方法包括用编码NADH依赖型乙酰羟基酸还原异构酶的基因替代保藏在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCC No.21699的大肠杆菌的NADPH依赖型乙酰羟基酸还原异构酶编码基因,以提高CGMCC No.21699的大肠杆菌的泛解酸生产。In one embodiment, the method includes replacing the NADPH-dependent acetohydroxy acid reductoisomerase encoding gene of Escherichia coli deposited in the General Microbiological Center of China Microorganism Culture Collection Administration Committee (CGMCC) in Beijing, China with the deposit number CGMCC No. 21699 with a gene encoding NADH-dependent acetohydroxy acid reductoisomerase to improve the pantoate production of the Escherichia coli of CGMCC No. 21699.

如本文所用,“任选”或“任选地”是指随后描述的事件或情况发生或不发生,该描述包括其中所述事件或情况发生及不发生的情况。例如,任选包括的步骤是指该步骤存在或不存在。As used herein, "optional" or "optionally" means that the subsequently described event or circumstance occurs or does not occur, and the description includes instances where the event or circumstance occurs and instances where it does not occur. For example, an optionally included step means that the step exists or does not exist.

如本文所用,术语“约”是指包括具体数值的数值范围,本领域技术人员可以合理认为其类似于具体数值。在一些实施方案中,术语“约”是指在使用本领域通常接受的测量的标准误差内。在一些实施方案中,约是指到具体数值的+/-10%。As used herein, the term "about" refers to a numerical range that includes a specific value that a person skilled in the art would reasonably consider to be similar to the specific value. In some embodiments, the term "about" refers to within the standard error of measurement using commonly accepted measurements in the art. In some embodiments, approximately refers to +/-10% of a specific value.

本文提及“一或多个”时应理解相应公开了具体的各种组合,例如A、B、C中的一或多个应认为公开了具体的A、B、C、AB、AC、BC和ABC等各个具体特定组合。When "one or more" is mentioned herein, it should be understood that various specific combinations are disclosed accordingly. For example, one or more of A, B, and C should be considered to disclose specific specific combinations such as A, B, C, AB, AC, BC, and ABC.

本文公开的范围应该认为也具体公开了所有可能的子范围以及该范围内的各个数值。例如,对范围从1到6的描述应视为已明确公开了从1到3,从1到4,从1到5,从2到4,从2到6,从3至6等的子范围,以及该范围内的单个数字,例如1、2、3、4、5和6。Ranges disclosed herein should be considered to have specifically disclosed all possible subranges and individual numerical values within the range. For example, the description of a range from 1 to 6 should be considered to have specifically disclosed subranges from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., as well as individual numbers within the range, such as 1, 2, 3, 4, 5, and 6.

生物材料保藏说明Description of biological material deposit

分类命名:大肠杆菌(Escherichia coli)Classification name: Escherichia coli

菌株编号:Span050Strain ID: Span050

保藏单位名称:中国微生物菌种保藏管理委员会普通微生物中心Name of depository: China National Microbiological Culture Collection Administration General Microbiology Center

保藏单位简称:CGMCCAbbreviation of depository unit: CGMCC

保藏单位地址:北京市朝阳区北辰西路1号院3号,邮政编码:100101Address of the depository: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Postal Code: 100101

保藏日期:2021年01月22日Date of deposit: January 22, 2021

保藏中心登记入册编号:CGMCC No.21699CGMCC Registration Number: CGMCC No.21699

分类命名:大肠杆菌(Escherichia coli)Classification name: Escherichia coli

菌株编号:Span096Strain ID: Span096

保藏单位名称:中国微生物菌种保藏管理委员会普通微生物中心Name of depository: China National Microbiological Culture Collection Administration General Microbiology Center

保藏单位简称:CGMCCAbbreviation of depository unit: CGMCC

保藏单位地址:北京市朝阳区北辰西路1号院3号,邮政编码:100101Address of the depository: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Postal Code: 100101

保藏日期:2022年12月26日Date of deposit: December 26, 2022

保藏中心登记入册编号:CGMCC No.26276CGMCC Registration Number: CGMCC No.26276

实施例Example

本发明通过下述实施例进一步阐明,但任何实施例或其组合不应当理解为对本发明的范围或实施方式的限制。本发明的范围由所附权利要求书限定,结合本说明书和本领域一般常识,本领域普通技术人员可以清楚地明白权利要求书所限定的范围。在不偏离本发明的精神和范围的前提下,本领域技术人员可以对本发明的技术方案进行任何修改或改变,这种修改和改变也包含在本发明的范围内。The present invention is further illustrated by the following examples, but any example or combination thereof should not be construed as limiting the scope or implementation of the present invention. The scope of the present invention is defined by the appended claims. In combination with this specification and common knowledge in the art, a person of ordinary skill in the art can clearly understand the scope defined by the claims. Without departing from the spirit and scope of the present invention, a person of ordinary skill in the art can make any modification or change to the technical solution of the present invention, and such modification and change are also included in the scope of the present invention.

下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods used in the following examples are conventional methods unless otherwise specified. The materials, reagents, etc. used in the following examples are all commercially available unless otherwise specified.

表1:本发明所用的菌株和质粒Table 1: Strains and plasmids used in the present invention

注:表1中,ATCC 8739、M1-93和M1-46均为大肠杆菌。表2:本发明所用的引物Note: In Table 1, ATCC 8739, M1-93 and M1-46 are all Escherichia coli. Table 2: Primers used in the present invention

下文中,利用“/”隔开的两条引物组成相应的引物对用于扩增目标片段。Hereinafter, two primers separated by "/" are used to form a corresponding primer pair for amplifying the target fragment.

实施例1:乙酰乳酸合成酶基因alsS在ATCC 8739菌株中丙酸激酶编码基因tdcD和甲酸乙酰转移酶编码基因tdcE位点的插入与tdcDE操纵子的敲除Example 1: Insertion of the acetolactate synthase gene alsS into the ATCC 8739 strain at the loci of the propionate kinase encoding gene tdcD and the formate acetyltransferase encoding gene tdcE and knockout of the tdcDE operon

从大肠杆菌ATCC 8739出发,采用两步同源重组的方法将来自枯草芽孢杆菌(Bacillus subtilis)168(来自ATCC,编号23857)的乙酰乳酸合成酶基因alsS插入染色体上丙酸激酶编码基因tdcD和甲酸乙酰转移酶编码基因tdcE位点,具体步骤如下:Starting from Escherichia coli ATCC 8739, the acetolactate synthase gene alsS from Bacillus subtilis 168 (from ATCC, No. 23857) was inserted into the propionate kinase encoding gene tdcD and formate acetyltransferase encoding gene tdcE on the chromosome using a two-step homologous recombination method. The specific steps are as follows:

第一步,以pXZ-CS(Tan,et al.,Appl Environ Microbiol,2013,79:4838-4844)质粒DNA为模板,使用引物tdcDE-incs-up/tdcDE-incs-down扩增出2719bp的DNA片段I,该片段包含tdcDE上游同源臂50bp,氯霉素基因(cat)和果聚糖蔗糖转移酶基因(sacB)DNA的cat-sacB片段2619bp,和tdcDE基因下游同源臂50bp,用于第一步同源重组。In the first step, pXZ-CS (Tan, et al., Appl Environ Microbiol, 2013, 79: 4838-4844) plasmid DNA was used as a template and primers tdcDE-incs-up/tdcDE-incs-down were used to amplify a 2719 bp DNA fragment I, which contained a 50 bp upstream homologous arm of tdcDE, a 2619 bp cat-sacB fragment of chloramphenicol gene (cat) and fructan sacrose transferase gene (sacB) DNA, and a 50 bp downstream homologous arm of tdcDE gene for the first step of homologous recombination.

扩增体系为:Phusion 5X缓冲液(NewEngland Biolabs)10μl、dNTP(每种dNTP各10mM)1μl、DNA模板20ng、引物(10μM)各2μl、Phusion High-Fidelity DNA聚合酶(2.5U/μl)0.5μl、蒸馏水33.5μl,总体积为50μl。The amplification system was: Phusion 5X buffer (New England Biolabs) 10 μl, dNTP (10 mM each) 1 μl, DNA template 20 ng, primers (10 μM) 2 μl each, Phusion High-Fidelity DNA polymerase (2.5 U/μl) 0.5 μl, distilled water 33.5 μl, and the total volume was 50 μl.

扩增条件为98℃预变性2分钟(1个循环);98℃变性10秒、56℃退火10秒、72℃延伸2分钟(30个循环);72℃延伸10分钟(1个循环)。The amplification conditions were pre-denaturation at 98°C for 2 minutes (1 cycle); denaturation at 98°C for 10 seconds, annealing at 56°C for 10 seconds, and extension at 72°C for 2 minutes (30 cycles); and extension at 72°C for 10 minutes (1 cycle).

将上述DNA片段I用于第一次同源重组:首先将pKD46质粒(美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌ATCC 8739,然后将DNA片段I电转至带有pKD46的大肠杆菌ATCC 8739。The above DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid (CGSC Escherichia coli Collection Center of Yale University, USA, CGSC#7739) was transformed into Escherichia coli ATCC 8739 by electroporation, and then the DNA fragment I was electroporated into Escherichia coli ATCC 8739 carrying pKD46.

电转条件为:首先准备带有pKD46质粒的大肠杆菌ATCC 8739的电转化感受态细胞(准备方法按照Dower et al.,1988,Nucleic Acids Res 16:6127-6145);将50μl感受态细胞置于冰上,加入50ng DNA片段I,冰上放置2分钟,转移至0.2cm的Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1ml LB培养基转移至电击杯中,吹打5次后转移至试管中,75rpm,30℃孵育2小时。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,所用引物XZ-tdcDE-up/XZ-tdcDE-down,正确的菌落扩增产物为3615bp的片段,包含tdcDE上游同源臂845Bp,cat-sacB片段2619bp和tdcDE下游同源臂151bp。挑选一个正确的单菌落,命名为Span001。The electroporation conditions are as follows: first prepare electroporation competent cells of Escherichia coli ATCC 8739 carrying the pKD46 plasmid (preparation method according to Dower et al., 1988, Nucleic Acids Res 16: 6127-6145); place 50 μl of competent cells on ice, add 50 ng of DNA fragment I, place on ice for 2 minutes, and transfer to a 0.2 cm Bio-Rad electroporation cup. Use MicroPulser (Bio-Rad) electroporator, and the electroporation parameters are 2.5 kV. After electroporation, quickly transfer 1 ml of LB culture medium to the electroporation cup, pipette 5 times, and then transfer to a test tube, incubate at 75 rpm and 30°C for 2 hours. Take 200 μl of bacterial solution and apply it on LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select single colonies for PCR verification. The primers used are XZ-tdcDE-up/XZ-tdcDE-down. The amplification product of the correct colony is a 3615 bp fragment, including 845 bp of tdcDE upstream homology arm, 2619 bp of cat-sacB fragment and 151 bp of tdcDE downstream homology arm. Select a correct single colony and name it Span001.

第二步,以野生型枯草芽孢杆菌(Bacillus subtilis)168基因组DNA为模板,用引物tdcDE-alsSin-up/tdcDE-alsSin-down扩增出1826bp的DNA片段II,包括tdcDE上游同源臂50bp,alsS基因1716bp和sacI的酶切位点及保护碱基共10bp,和tdcDE下游同源臂50bp。DNA片段II用于第二次同源重组。扩增条件和体系同第一步中所述。将DNA片段II电转至菌株Span001。In the second step, wild-type Bacillus subtilis 168 genomic DNA was used as a template and primers tdcDE-alsSin-up/tdcDE-alsSin-down were used to amplify a 1826 bp DNA fragment II, including a 50 bp upstream homology arm of tdcDE, 1716 bp of alsS gene and a total of 10 bp of the restriction site and protective base of sacI, and a 50 bp downstream homology arm of tdcDE. DNA fragment II was used for the second homologous recombination. The amplification conditions and system were the same as those described in the first step. DNA fragment II was electroporated into strain Span001.

电转条件为:首先准备带有pKD46质粒的Span001的电转化感受态细胞;将50μl感受态细胞置于冰上,加入50ng DNA片段II,冰上放置2分钟,转移至0.2cm的Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1ml LB培养基转移至电击杯中,吹打5次后转移至试管中,75rpm,30℃孵育4小时。将菌液转移至含有10%蔗糖的没有氯化钠的LB液体培养基(250ml烧瓶中装50ml培养基),培养24小时后在含有6%蔗糖的没有氯化钠的LB固体培养基上划线培养。经过PCR验证,所用引物为XZ-tdcDE-up/XZ-tdcDE-down,正确的菌落扩增产物为2722bp的片段,包括tdcDE上游同源臂845bp,alsS基因和sacI酶切位点共1726bp和tdcDE下游同源臂151bp。挑选一个正确的单菌落,将其命名为Span002。The electroporation conditions are as follows: first prepare electroporation competent cells of Span001 with pKD46 plasmid; place 50 μl competent cells on ice, add 50 ng DNA fragment II, place on ice for 2 minutes, and transfer to a 0.2 cm Bio-Rad electroporation cup. Use MicroPulser (Bio-Rad) electroporator, and the electroporation parameters are 2.5 kV. After electroporation, quickly transfer 1 ml LB culture medium to the electroporation cup, blow 5 times and then transfer to a test tube, incubate at 75 rpm and 30°C for 4 hours. Transfer the bacterial liquid to LB liquid culture medium without sodium chloride containing 10% sucrose (50 ml culture medium in a 250 ml flask), and after culturing for 24 hours, streak culture on LB solid culture medium without sodium chloride containing 6% sucrose. After PCR verification, the primers used were XZ-tdcDE-up/XZ-tdcDE-down, and the correct colony amplification product was a 2722bp fragment, including 845bp of the upstream homology arm of tdcDE, 1726bp of the alsS gene and sacI restriction site, and 151bp of the downstream homology arm of tdcDE. A correct single colony was selected and named Span002.

Span002是将乙酰乳酸合成酶基因(alsS基因,核苷酸序列是序列表中SEQ ID NO:2,编码SEQ ID NO:1所示的alsS蛋白质)整合到大肠杆菌ATCC 8739的丙酸激酶编码基因tdcD和甲酸乙酰转移酶编码基因tdcE位点得到的重组菌,该重组菌中丙酸激酶编码基因tdcD(编码的蛋白质序列为NCBI ACA76259.1,coded_by=CP000946.1:626900..628108)和甲酸乙酰转移酶编码基因tdcE(编码的蛋白质序列为NCBI ACA76260.1,coded_by=CP000946.1:628142..630436)同时被敲除。Span002 is a recombinant bacterium obtained by integrating the acetolactate synthase gene (alsS gene, the nucleotide sequence is SEQ ID NO: 2 in the sequence list, encoding the alsS protein shown in SEQ ID NO: 1) into the propionate kinase encoding gene tdcD and formate acetyltransferase encoding gene tdcE sites of Escherichia coli ATCC 8739, in which the propionate kinase encoding gene tdcD (the encoded protein sequence is NCBI ACA76259.1, coded_by=CP000946.1:626900..628108) and the formate acetyltransferase encoding gene tdcE (the encoded protein sequence is NCBI ACA76260.1, coded_by=CP000946.1:628142..630436) are simultaneously knocked out.

实施例2:乙酰乳酸合成酶基因alsS的调控Example 2: Regulation of the acetolactate synthase gene alsS

从Span002出发,使用人工调控元件调控整合在tdcDE位点的乙酰乳酸合成酶编码基因alsS的表达,具体步骤如下:Starting from Span002, artificial regulatory elements were used to regulate the expression of the acetolactate synthase encoding gene alsS integrated in the tdcDE site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物tdcDE-incs-up/alsSPro-CS-down扩增出2719bp的DNA片段I,包括tdcDE上游同源臂50bp,cat-sacB片段2619bp和alsS基因下游同源臂50bp,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span002。In the first step, using pXZ-CS plasmid DNA as a template, primers tdcDE-incs-up/alsSPro-CS-down were used to amplify a 2719 bp DNA fragment I, including a 50 bp upstream homology arm of tdcDE, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the alsS gene, for the first step of homologous recombination. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electroporated to Span002.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span002,然后将DNA片段I电转至带有pKD46的大肠杆菌Span002。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span002 by electroporation, and then DNA fragment I was electroporated into E. coli Span002 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-tdcDE-up/tdcDE-YZ285-down进行验证,正确的PCR产物应该3749bp,包括tdcDE上游同源臂845bp,cat-sacB片段2619bp和alsS下游同源臂285bp,挑选一个正确的单菌落,命名为Span003。The electroporation conditions and steps were consistent with the first step of the method for integrating alsS at the tdcDE site described in Example 1. 200 μl of bacterial solution was applied to an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, a single colony was selected for PCR verification using primers XZ-tdcDE-up/tdcDE-YZ285-down. The correct PCR product should be 3749 bp, including 845 bp of the upstream homology arm of tdcDE, 2619 bp of the cat-sacB fragment, and 285 bp of the downstream homology arm of alsS. A correct single colony was selected and named Span003.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物alsS-Pro-up/alsS-Pro-down扩增出188bp的DNA片段II,包括tdcDE上游同源臂50bp,M1-93启动子88bp和alsS下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span003。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template, and the primers alsS-Pro-up/alsS-Pro-down were used to amplify the 188 bp DNA fragment II, including 50 bp of the upstream homology arm of tdcDE, 88 bp of the M1-93 promoter, and 50 bp of the downstream homology arm of alsS. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span003.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-tdcDE-up/tdcDE-YZ285-down,正确的菌落扩增产物为1218bp的片段,包括tdcDE上游同源臂8454bp,M1-93启动子序列88bp和alsS下游同源臂285bp,挑选一个正确的单菌落,将其命名为Span004。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-tdcDE-up/tdcDE-YZ285-down. The correct colony amplification product was a 1218 bp fragment, including 8454 bp of the upstream homology arm of tdcDE, 88 bp of the M1-93 promoter sequence, and 285 bp of the downstream homology arm of alsS. A correct single colony was selected and named Span004.

Span004是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span002的alsS基因上游得到的重组菌,该重组菌中M1-93启动子驱动alsS基因的表达。Span004 is a recombinant bacterium obtained by integrating M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of alsS gene of Escherichia coli Span002. In the recombinant bacterium, M1-93 promoter drives the expression of alsS gene.

实施例3:乙酰乳酸合成酶基因ilvB的调控Example 3: Regulation of the acetolactate synthase gene ilvB

使用人工调控元件M1-93通过两步同源重组的方法调控乙酰乳酸合成酶I大亚基基因ilvB的表达,具体步骤如下:The expression of the acetolactate synthase I large subunit gene ilvB was regulated by the artificial regulatory element M1-93 through a two-step homologous recombination method. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ilvB pro-catup/ilvB pro-catdown扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ilvB上游同源臂50bp,cat-sacB片段2619bp和ilvB下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。In the first step, using pXZ-CS plasmid DNA as a template, primers ilvB pro-catup/ilvB pro-catdown were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of the upstream homology arm of ilvB, 2619 bp of the cat-sacB fragment, and 50 bp of the downstream homology arm of ilvB. The amplification system and amplification conditions were the same as those described in Example 1.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span004,然后将DNA片段I电转至带有pKD46的大肠杆菌Span004。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span004 by electroporation, and then DNA fragment I was electroporated into E. coli Span004 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvB pro-YZup/ilvB pro-YZdown进行验证,正确的PCR产物应该2996bp,包含ilvB上游同源臂123bp,cat-sacB片段2619bp和ilvB下游同源臂254bp。挑选一个正确的单菌落,命名为Span005。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers ilvB pro-YZup/ilvB pro-YZdown. The correct PCR product should be 2996 bp, including ilvB upstream homology arm 123 bp, cat-sacB fragment 2619 bp and ilvB downstream homology arm 254 bp. Select a correct single colony and name it Span005.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物ilvB pro-up/ilvB pro-down扩增出188bp的DNA片段II。DNA片段II包括ilvB上游同源臂50bp,M1-93启动子88bp和ilvB下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span005。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers ilvB pro-up/ilvB pro-down were used to amplify a 188 bp DNA fragment II. DNA fragment II includes 50 bp of the upstream homology arm of ilvB, 88 bp of the M1-93 promoter, and 50 bp of the downstream homology arm of ilvB. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span005.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvB pro-YZup/ilvB pro-YZdown,正确的菌落扩增产物为465bp的片段,包括ilvB上游同源臂123bp,M1-93启动子88bp和ilvB下游同源臂254bp。挑选一个正确的单菌落,将其命名为Span006。The electroporation conditions and steps were the same as those described in Example 1 for the second step of alsS integration at the tdcDE site. The clones were verified by colony PCR, and the primers used were ilvB pro-YZup/ilvB pro-YZdown. The correct colony amplification product was a 465 bp fragment, including 123 bp of the upstream homology arm of ilvB, 88 bp of the M1-93 promoter, and 254 bp of the downstream homology arm of ilvB. A correct single colony was selected and named Span006.

Span006是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span004的乙酰乳酸合成酶基因ilvB(编码的蛋白质序列为SEQ ID NO:3,NCBIACA75715.1,coded_by=CP000946.1:28583..30271)的上游得到的重组菌,该重组菌中,M1-93启动子可以驱动ilvB基因的表达。Span006 is a recombinant bacterium obtained by integrating the M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of the acetolactate synthase gene ilvB (the encoded protein sequence is SEQ ID NO: 3, NCBIACA75715.1, coded_by=CP000946.1:28583..30271) of Escherichia coli Span004. In this recombinant bacterium, the M1-93 promoter can drive the expression of the ilvB gene.

实施例4:乙酰乳酸合成酶基因ilvG的调控Example 4: Regulation of the acetolactate synthase gene ilvG

使用人工调控元件M1-93通过两步同源重组的方法调控乙酰乳酸合成酶II大亚基基因ilvG的表达,具体步骤如下:The expression of the acetolactate synthase II large subunit gene ilvG was regulated by the artificial regulatory element M1-93 through a two-step homologous recombination method. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ilvG pro-catup/ilvG pro-catdown扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ilvG上游同源臂50bp,cat-sacB片段2619bp和ilvG下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。In the first step, using pXZ-CS plasmid DNA as a template, primers ilvG pro-catup/ilvG pro-catdown were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of ilvG upstream homology arm, 2619 bp of cat-sacB fragment and 50 bp of ilvG downstream homology arm. The amplification system and amplification conditions were the same as those described in Example 1.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span006,然后将DNA片段I电转至带有pKD46的大肠杆菌Span006。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span006 by electroporation, and then DNA fragment I was electroporated into E. coli Span006 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvG pro-YZup/ilvG p-YZdown进行验证,正确的PCR产物应该2993bp,包括ilvG上游同源臂179bp,cat-sacB片段2619bp和ilvG下游同源臂195bp。挑选一个正确的单菌落,命名为Span007。The electroporation conditions and steps were the same as the first step of the method for integration of alsS at the tdcDE site described in Example 1. 200 μl of bacterial solution was applied to an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, a single colony was selected for PCR verification using primers ilvG pro-YZup/ilvG p-YZdown. The correct PCR product should be 2993 bp, including ilvG upstream homology arm 179 bp, cat-sacB fragment 2619 bp and ilvG downstream homology arm 195 bp. A correct single colony was selected and named Span007.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA质粒DNA为模板,用引物ilvG pro-up/ilvG pro-down扩增出188bp的DNA片段II。DNA片段II包括ilvG上游同源臂50bp,M1-93启动子88bp和ilvG下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span007。In the second step, the genomic DNA plasmid DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers ilvG pro-up/ilvG pro-down were used to amplify the 188 bp DNA fragment II. The DNA fragment II includes 50 bp of the upstream homology arm of ilvG, 88 bp of the M1-93 promoter and 50 bp of the downstream homology arm of ilvG. The DNA fragment II was used for the second homologous recombination. The DNA fragment II was electroporated into the strain Span007.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvG pro-YZup/ilvG p-YZdown,正确的菌落扩增产物为462bp的片段,包括ilvG上游同源臂179bp,M1-93片段88bp和ilvG下游同源臂195bp。挑选一个正确的单菌落,将其命名为Span008。The electroporation conditions and steps were the same as the second step method for alsS integration at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were ilvG pro-YZup/ilvG p-YZdown. The correct colony amplification product was a 462 bp fragment, including 179 bp of the upstream homology arm of ilvG, 88 bp of the M1-93 fragment, and 195 bp of the downstream homology arm of ilvG. A correct single colony was selected and named Span008.

Span008是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span006的乙酰乳酸合成酶基因ilvG(编码的蛋白质序列为SEQ ID NO:5,NCBIACA79830.1,coded_by=CP000946.1:4677780..4679426)的上游得到的重组菌,该重组菌中,M1-93启动子可以驱动ilvG基因的表达。Span008 is a recombinant bacterium obtained by integrating the M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of the acetolactate synthase gene ilvG (the encoded protein sequence is SEQ ID NO: 5, NCBIACA79830.1, coded_by=CP000946.1:4677780..4679426) of Escherichia coli Span006. In this recombinant bacterium, the M1-93 promoter can drive the expression of the ilvG gene.

实施例5:乙酰乳酸合成酶基因ilvH的突变Example 5: Mutation of the acetolactate synthase gene ilvH

通过两步同源重组的方法在乙酰乳酸合成酶III调控亚基基因ilvH基因中引入突变解除L-缬氨酸的反馈抑制,具体步骤如下:A two-step homologous recombination method was used to introduce a mutation into the ilvH gene, a regulatory subunit gene of acetolactate synthase III, to relieve the feedback inhibition of L-valine. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ilvH*-cat-up/ilvH*-cat-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ilvH上游同源臂50bp,cat-sacB片段2619bp和ilvH下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。In the first step, using pXZ-CS plasmid DNA as a template, primers ilvH*-cat-up/ilvH*-cat-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of the upstream homology arm of ilvH, 2619 bp of the cat-sacB fragment, and 50 bp of the downstream homology arm of ilvH. The amplification system and amplification conditions were the same as those described in Example 1.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span008,然后将DNA片段I电转至带有pKD46的大肠杆菌Span008。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span008 by electroporation, and then DNA fragment I was electroporated into E. coli Span008 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvH*-mutYZ-up/ilvH*-mut-down进行验证,正确的PCR产物应该3165bp,包括ilvH上游同源臂202bp,cat-sacB片段2619bp和ilvH下游同源臂344bp。挑选一个正确的单菌落,命名为Span009。The electroporation conditions and steps were the same as the first step of the method for integration of alsS at the tdcDE site described in Example 1. 200 μl of bacterial solution was applied to an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, a single colony was selected for PCR verification using primers ilvH*-mutYZ-up/ilvH*-mut-down. The correct PCR product should be 3165 bp, including 202 bp of the upstream homology arm of ilvH, 2619 bp of the cat-sacB fragment, and 344 bp of the downstream homology arm of ilvH. A correct single colony was selected and named Span009.

第二步,以野生型大肠杆菌ATCC 8739的DNA为模板,用引物ilvH*-mut-up/ilvH*-mut-down扩增出467bp的DNA片段II。DNA片段II为含有突变的ilvH基因。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span009。In the second step, the DNA of wild-type E. coli ATCC 8739 was used as a template and the primers ilvH*-mut-up/ilvH*-mut-down were used to amplify a 467 bp DNA fragment II. DNA fragment II contained the mutated ilvH gene. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span009.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvH*-mutYZ-up/ilvH*-mut-down,正确的菌落扩增产物为619bp的片段,包括ilvH基因上游163bp和ilvH基因456bp。挑选一个正确的单菌落,将其命名为Span010。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were ilvH*-mutYZ-up/ilvH*-mut-down. The correct colony amplification product was a 619 bp fragment, including 163 bp upstream of the ilvH gene and 456 bp of the ilvH gene. A correct single colony was selected and named Span010.

Span010是将大肠杆菌Span008的乙酰乳酸合成酶基因ilvH突变为ilvH*基因(即ilvH突变基因)得到的重组菌,该重组菌中,ilvH*基因的序列为序列表中SEQ ID NO:8,编码SEQ ID NO:7所示的ilvH*蛋白质。Span010 is a recombinant bacterium obtained by mutating the acetolactate synthase gene ilvH of Escherichia coli Span008 into an ilvH* gene (i.e., an ilvH mutant gene). In the recombinant bacterium, the sequence of the ilvH* gene is SEQ ID NO: 8 in the sequence listing, encoding the ilvH* protein shown in SEQ ID NO: 7.

实施例6:乙酰羟基酸还原异构酶编码基因ilvC在醇脱氢酶adhE位点的整合和adhE基因的敲除Example 6: Integration of the acetohydroxyacid reductoisomerase encoding gene ilvC into the alcohol dehydrogenase adhE site and knockout of the adhE gene

从Span010出发,通过两步同源重组的方法将来自大肠杆菌的乙酰羟基酸还原异构酶编码基因ilvC整合到醇脱氢酶adhE位点,具体步骤包括:Starting from Span010, the ilvC gene encoding acetohydroxy acid reductoisomerase from Escherichia coli was integrated into the alcohol dehydrogenase adhE site by a two-step homologous recombination method. The specific steps include:

第一步,以pXZ-CS质粒DNA为模板,使用引物adhE-CS-up/adhE-CS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括adhE上游同源臂50bp,cat-sacB片段2619bp和adhE下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span010。In the first step, using pXZ-CS plasmid DNA as a template, primers adhE-CS-up/adhE-CS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of adhE, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of adhE. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span010.

将DNA片段I用于第一次同源重组:首先将pKD46质粒(Datsenko and Wanner2000,Proc Natl Acad Sci USA 97:6640-6645;质粒购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌Span010,然后将DNA片段I电转至带有pKD46的大肠杆菌Span010。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97: 6640-6645; the plasmid was purchased from the CGSC Escherichia coli Collection Center of Yale University, USA, CGSC#7739) was transformed into Escherichia coli Span010 by electroporation, and then DNA fragment I was electroporated into Escherichia coli Span010 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-adhE-up/XZ-adhE-down进行验证,正确的PCR产物应该3167bp,包括adhE上游同源臂221bp,cat-sacB片段2619bp和adhE下游同源臂327bp。挑选一个正确的单菌落,命名为Span011。The electroporation conditions and steps are consistent with the first step of the method for integrating alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-adhE-up/XZ-adhE-down. The correct PCR product should be 3167 bp, including 221 bp of the upstream homology arm of adhE, 2619 bp of the cat-sacB fragment, and 327 bp of the downstream homology arm of adhE. Select a correct single colony and name it Span011.

第二步,以野生型大肠杆菌ATCC 8739的基因组DNA为模板,用引物adhE-ilvC-up/adhE-ilvC-down扩增出1576bp的DNA片段II。DNA片段II包括adhE上游同源臂50bp,ilvC基因1476bp和adhE下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span011。In the second step, the genomic DNA of wild-type Escherichia coli ATCC 8739 was used as a template and the primers adhE-ilvC-up/adhE-ilvC-down were used to amplify a 1576 bp DNA fragment II. DNA fragment II includes a 50 bp upstream homology arm of adhE, 1476 bp of ilvC gene and 50 bp downstream homology arm of adhE. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span011.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-adhE-up/XZ-adhE-down,正确的菌落扩增产物为2024bp的片段,包括adhE上游同源臂221bp,ilvC基因1476bp和adhE下游同源臂327bp。挑选一个正确的单菌落,将其命名为Span012。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-adhE-up/XZ-adhE-down. The correct colony amplification product was a 2024 bp fragment, including 221 bp of the upstream homology arm of adhE, 1476 bp of the ilvC gene, and 327 bp of the downstream homology arm of adhE. A correct single colony was selected and named Span012.

Span012是将乙酰羟基酸还原异构酶编码基因ilvC(编码的蛋白质序列为SEQ IDNO:167,NCBI ACA79824.1,coded_by=CP000946.1:4670539..4672014)整合到大肠杆菌Span010的adhE位点得到的重组菌,该重组菌中醇脱氢酶基因adhE(编码的蛋白质序列为NCBI ACA78022.1,coded_by=CP000946.1:2627307..2629982)同时被敲除。Span012 is a recombinant bacterium obtained by integrating the acetohydroxyacid reductoisomerase encoding gene ilvC (the encoded protein sequence is SEQ ID NO: 167, NCBI ACA79824.1, coded_by=CP000946.1:4670539..4672014) into the adhE site of Escherichia coli Span010, and the alcohol dehydrogenase gene adhE (the encoded protein sequence is NCBI ACA78022.1, coded_by=CP000946.1:2627307..2629982) in the recombinant bacterium is knocked out at the same time.

实施例7:乙酰羟基酸还原异构酶编码基因ilvC的调控Example 7: Regulation of the acetohydroxyacid reductoisomerase encoding gene ilvC

从Span012出发,使用人工调控元件调控整合在醇脱氢酶基因adhE位点的乙酰羟基酸还原异构酶编码基因ilvC的表达,具体步骤如下:Starting from Span012, an artificial regulatory element was used to regulate the expression of the acetohydroxyacid reductoisomerase encoding gene ilvC integrated in the adhE site of the alcohol dehydrogenase gene. The specific steps are as follows:

第一步,以pXZ-CS质粒(Tan,et al.,Appl Environ Microbiol,2013,79:4838-4844)DNA为模板,使用引物adhE-cs-up/ilvC-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括adhE上游同源臂50bp,cat-sacB片段2619bp和ilvC下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span012。In the first step, pXZ-CS plasmid (Tan, et al., Appl Environ Microbiol, 2013, 79: 4838-4844) DNA was used as a template and primers adhE-cs-up/ilvC-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of adhE, a 2619 bp cat-sacB fragment and a 50 bp downstream homology arm of ilvC. The amplification system and amplification conditions are the same as those described in Example 1. DNA fragment I was electroporated to Span012.

将DNA片段I用于第一次同源重组:首先将pKD46质粒(Datsenko and Wanner2000,Proc Natl Acad Sci USA 97:6640-6645;质粒购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌Span012,然后将DNA片段I电转至带有pKD46的大肠杆菌Span012。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97: 6640-6645; the plasmid was purchased from the CGSC Escherichia coli Collection Center of Yale University, USA, CGSC#7739) was transformed into Escherichia coli Span012 by electroporation, and then DNA fragment I was electroporated into Escherichia coli Span012 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-adhE-up/ilvC-YZ347-down进行验证,正确的PCR产物应该3187bp,包括adhE上游同源臂221bp,cat-sacB片段2619bp和ilvC下游同源臂347bp。挑选一个正确的单菌落,命名为Span013。The electroporation conditions and steps are consistent with the first step of the method for integrating alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-adhE-up/ilvC-YZ347-down. The correct PCR product should be 3187 bp, including 221 bp of adhE upstream homology arm, 2619 bp of cat-sacB fragment and 347 bp of ilvC downstream homology arm. Select a correct single colony and name it Span013.

第二步,以M1-46(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物ilvC-Pro-up/ilvC-Pro-down扩增出188bp的DNA片段II。DNA片段II包括adhE上游同源臂50bp,M1-46启动子序列88bp和ilvC下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span013。In the second step, the genomic DNA of M1-46 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers ilvC-Pro-up/ilvC-Pro-down were used to amplify the 188 bp DNA fragment II. DNA fragment II includes 50 bp of upstream homology arm of adhE, 88 bp of M1-46 promoter sequence and 50 bp of downstream homology arm of ilvC. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span013.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-adhE-up/ilvC-YZ347-down,正确的菌落扩增产物为656bp的片段,包括adhE上游同源臂221bp,M1-46启动子88bp和ilvC下游同源臂347bp。挑选一个正确的单菌落,将其命名为Span014。The electroporation conditions and steps were the same as the second step method for alsS integration at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-adhE-up/ilvC-YZ347-down. The correct colony amplification product was a 656 bp fragment, including 221 bp of the upstream homology arm of adhE, 88 bp of the M1-46 promoter, and 347 bp of the downstream homology arm of ilvC. A correct single colony was selected and named Span014.

Span014是将M1-46启动子(核苷酸序列是序列表中SEQ ID NO:173)整合到大肠杆菌Span012的ilvC基因上游得到的重组菌,该重组菌中M1-46启动子驱动ilvC基因的表达。Span014 is a recombinant bacterium obtained by integrating the M1-46 promoter (nucleotide sequence is SEQ ID NO: 173 in the sequence list) into the upstream of the ilvC gene of Escherichia coli Span012. In the recombinant bacterium, the M1-46 promoter drives the expression of the ilvC gene.

实施例8:二羟酸脱水酶编码基因ilvD在丙酮酸甲酸裂解酶编码基因pflB位点的整合和pflB基因的敲除Example 8: Integration of the dihydroxyacid dehydratase encoding gene ilvD into the pyruvate formate lyase encoding gene pflB site and knockout of the pflB gene

从Span014出发,通过两步同源重组的方法将来自大肠杆菌的二羟酸脱水酶编码基因ilvD整合到丙酮酸甲酸裂解酶编码基因pflB位点并敲除pflB基因,具体步骤如下:Starting from Span014, the dihydroxyacid dehydratase encoding gene ilvD from Escherichia coli was integrated into the pyruvate formate lyase encoding gene pflB site by a two-step homologous recombination method and the pflB gene was knocked out. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物pflB-CS-up/pflB-CS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括pflB上游同源臂50bp,cat-sacB片段2619bp和pflB下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span014。In the first step, using pXZ-CS plasmid DNA as a template, primers pflB-CS-up/pflB-CS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of pflB, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of pflB. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span014.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span014,然后将DNA片段I电转至带有pKD46的大肠杆菌Span014。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span014 by electroporation, and then DNA fragment I was electroporated into E. coli Span014 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-pflB-up600/XZ-pflB-down进行验证,正确的PCR产物应该3675bp,包括pflB上游同源臂641bp,cat-sacB片段2619bp和pflB下游同源臂415bp。挑选一个正确的单菌落,命名为Span015。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-pflB-up600/XZ-pflB-down. The correct PCR product should be 3675 bp, including 641 bp of pflB upstream homology arm, 2619 bp of cat-sacB fragment and 415 bp of pflB downstream homology arm. Select a correct single colony and name it Span015.

第二步,以大肠杆菌MG1655(来自ATCC,编号700926)的基因,用引物pflB-ilvD-up/pflB-ilvD-down扩增出1951bp的DNA片段I。DNA片段II包括pflB上游同源臂50bp,ilvD基因1851bp和pflB下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span015。In the second step, the 1951 bp DNA fragment I was amplified from the gene of Escherichia coli MG1655 (from ATCC, No. 700926) using primers pflB-ilvD-up/pflB-ilvD-down. DNA fragment II includes 50 bp of pflB upstream homology arm, 1851 bp of ilvD gene and 50 bp of pflB downstream homology arm. DNA fragment II was used for the second homologous recombination. DNA fragment II was electrotransferred to strain Span015.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-pflB-up600/XZ-pflB-down,正确的菌落扩增产物为2996bp的片段,包括pflB上游同源臂641bp,ilvD基因1851bp和pflB下游同源臂415bp。挑选一个正确的单菌落,将其命名为Span016。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-pflB-up600/XZ-pflB-down. The correct colony amplification product was a 2996 bp fragment, including 641 bp of the upstream homology arm of pflB, 1851 bp of the ilvD gene, and 415 bp of the downstream homology arm of pflB. A correct single colony was selected and named Span016.

Span016是将二羟酸脱水酶编码基因ilvD(SEQ ID NO:12)(编码的蛋白质序列为SEQ ID NO:11,NCBI QPA17447.1,coded_by=CP032679.1:3943375..3945225)整合到大肠杆菌Span014的pflB位点得到的重组菌,该重组菌中丙酮酸甲酸裂解酶编码基因pflB(编码的蛋白质序列为NCBI ACA78322.1,coded_by=CP000946.1:2956804..2959086)同时被敲除。Span016 is a recombinant bacterium obtained by integrating the dihydroxy-acid dehydratase encoding gene ilvD (SEQ ID NO: 12) (the encoded protein sequence is SEQ ID NO: 11, NCBI QPA17447.1, coded_by=CP032679.1:3943375..3945225) into the pflB site of Escherichia coli Span014, and the pyruvate formate lyase encoding gene pflB (the encoded protein sequence is NCBI ACA78322.1, coded_by=CP000946.1:2956804..2959086) in the recombinant bacterium is simultaneously knocked out.

实施例9:二羟酸脱水酶编码基因ilvD的表达调控Example 9: Expression regulation of the dihydroxyacid dehydratase encoding gene ilvD

从Span016出发,使用人工调控元件调控整合在丙酮酸甲酸裂解酶编码基因pflB位点的二羟酸脱水酶编码基因ilvD的表达,具体步骤如下:Starting from Span016, an artificial regulatory element was used to regulate the expression of the dihydroxyacid dehydratase encoding gene ilvD integrated in the pyruvate formate lyase encoding gene pflB site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物pflB-CS-up/pflB-Pcs-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括pflB上游同源臂50bp,cat-sacB片段2619bp和ilvD下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span016。In the first step, pXZ-CS plasmid DNA was used as a template and primers pflB-CS-up/pflB-Pcs-down were used to amplify a 2719 bp DNA fragment I for homologous recombination in the first step. DNA fragment I includes a 50 bp upstream homology arm of pflB, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of ilvD. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span016.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span016,然后将DNA片段I电转至带有pKD46的大肠杆菌Span016。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span016 by electroporation, and then DNA fragment I was electroporated into E. coli Span016 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-pflB-up600/ilvD-YZ496-down进行验证,正确的PCR产物应该3756bp,包括pflB上游同源臂641bp,cat-sacB片段2619bp和ilvD下游同源臂496bp。挑选一个正确的单菌落,命名为Span017。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-pflB-up600/ilvD-YZ496-down. The correct PCR product should be 3756 bp, including 641 bp of pflB upstream homology arm, 2619 bp of cat-sacB fragment and 496 bp of ilvD downstream homology arm. Select a correct single colony and name it Span017.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物pflB-Pro-up/ilvD-Pro-down扩增出189bp的DNA片段II。DNA片段II包括pflB上游同源臂50bp,人工调控元件RBSL1序列89bp和ilvD下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span017。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers pflB-Pro-up/ilvD-Pro-down were used to amplify the 189 bp DNA fragment II. The DNA fragment II includes a 50 bp upstream homology arm of pflB, an 89 bp sequence of the artificial regulatory element RBSL1 and a 50 bp downstream homology arm of ilvD. The DNA fragment II was used for the second homologous recombination. The DNA fragment II was electroporated into the strain Span017.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-pflB-up600/ilvD-YZ496-down,正确的菌落扩增产物为1226bp的片段,包括pflB上游同源臂641bp,RBSL1序列89bp和ilvD下游同源臂496bp。挑选一个正确的单菌落,将其命名为Span018。The electroporation conditions and steps were the same as the second step method for alsS integration at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-pflB-up600/ilvD-YZ496-down. The correct colony amplification product was a 1226 bp fragment, including 641 bp of pflB upstream homology arm, 89 bp of RBSL1 sequence, and 496 bp of ilvD downstream homology arm. A correct single colony was selected and named Span018.

Span018是将RBSL1启动子(核苷酸序列是序列表中SEQ ID NO:171)整合到大肠杆菌Span016的ilvD基因上游得到的重组菌,该重组菌中RBSL1启动子驱动ilvD基因的表达。Span018 is a recombinant bacterium obtained by integrating the RBSL1 promoter (nucleotide sequence is SEQ ID NO: 171 in the sequence list) into the upstream of the ilvD gene of Escherichia coli Span016. In the recombinant bacterium, the RBSL1 promoter drives the expression of the ilvD gene.

实施例10:3-甲基-2-氧代丁酸羟甲基转移酶基因panB在富马酸还原酶编码基因frd位点的整合和frd位点的敲除Example 10: Integration of the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB into the fumarate reductase encoding gene frd site and knockout of the frd site

从Span018出发,将3-甲基-2-氧代丁酸羟甲基转移酶编码基因panB整合到富马酸还原酶编码基因frd位点,具体步骤如下:Starting from Span018, the 3-methyl-2-oxobutyrate hydroxymethyltransferase encoding gene panB was integrated into the fumarate reductase encoding gene frd site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物frd-cs-up/frd-cs-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括frd上游同源臂50bp,cat-sacB片段2619bp和frd下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span018。In the first step, pXZ-CS plasmid DNA was used as a template and primers frd-cs-up/frd-cs-down were used to amplify a 2719 bp DNA fragment I for homologous recombination in the first step. DNA fragment I includes a 50 bp upstream homology arm of frd, a 2619 bp cat-sacB fragment and a 50 bp downstream homology arm of frd. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span018.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span018,然后将DNA片段I电转至带有pKD46的大肠杆菌Span018。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span018 by electroporation, and then DNA fragment I was electroporated into E. coli Span018 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-frd-up/XZ-frd-down进行验证,正确的PCR产物应该3440bp,包括frd上游同源臂426bp,cat-sacB片段2619bp和frd下游同源臂395bp。挑选一个正确的单菌落,命名为Span019。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-frd-up/XZ-frd-down. The correct PCR product should be 3440 bp, including 426 bp of frd upstream homology arm, 2619 bp of cat-sacB fragment and 395 bp of frd downstream homology arm. Select a correct single colony and name it Span019.

第二步,以大肠杆菌MG1655(来自ATCC,编号700926)的基因组DNA为模板,用引物frd-panB-up/frd-panB-down扩增出895bp的DNA片段II。DNA片段II包括frd上游同源臂50bp,panB基因795bp和frd下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span019。In the second step, the genomic DNA of Escherichia coli MG1655 (from ATCC, No. 700926) was used as a template, and the primers frd-panB-up/frd-panB-down were used to amplify the 895bp DNA fragment II. The DNA fragment II includes 50bp of the upstream homology arm of frd, 795bp of the panB gene, and 50bp of the downstream homology arm of frd. The DNA fragment II was used for the second homologous recombination. The DNA fragment II was electroporated into the strain Span019.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-frd-up/XZ-frd-down,正确的菌落扩增产物为1661bp的片段,包括frd上游同源臂426bp,panB基因795bp和frd下游同源臂395bp。挑选一个正确的单菌落,将其命名为Span020。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-frd-up/XZ-frd-down. The correct colony amplification product was a 1661 bp fragment, including 426 bp of the upstream homology arm of frd, 795 bp of the panB gene, and 395 bp of the downstream homology arm of frd. A correct single colony was selected and named Span020.

Span020是将3-甲基-2-氧代丁酸羟甲基转移酶基因panB(编码的蛋白质序列为SEQ ID NO:15,NCBI QPA14045.1,coded_by=CP032679.1:148806..149600)整合到大肠杆菌Span018的frd位点得到的重组菌,该重组菌中富马酸还原酶编码基因frd(编码的蛋白质序列为NCBI ACA79462.1,coded_by=CP000946.1:4217304..4217699)同时被敲除。Span020 is a recombinant bacterium obtained by integrating the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB (the encoded protein sequence is SEQ ID NO: 15, NCBI QPA14045.1, coded_by=CP032679.1:148806..149600) into the frd site of Escherichia coli Span018, and the fumarate reductase encoding gene frd (the encoded protein sequence is NCBI ACA79462.1, coded_by=CP000946.1:4217304..4217699) in the recombinant bacterium is knocked out at the same time.

实施例11:3-甲基-2-氧代丁酸羟甲基转移酶基因panB的表达调控Example 11: Expression regulation of 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB

从Span020出发,使用人工调控元件调控整合在富马酸还原酶编码基因frd位点的3-甲基-2-氧代丁酸羟甲基转移酶基因panB的表达,具体步骤如下:Starting from Span020, an artificial regulatory element was used to regulate the expression of the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB integrated in the frd site of the fumarate reductase encoding gene. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物frd-cs-up/panB-Pcs-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括frd上游同源臂50bp,cat-sacB片段2619bp和panB下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span020。In the first step, using pXZ-CS plasmid DNA as a template, primers frd-cs-up/panB-Pcs-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of frd, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of panB. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span020.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span020,然后将DNA片段I电转至带有pKD46的大肠杆菌Span020。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span020 by electroporation, and then DNA fragment I was electroporated into E. coli Span020 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-frd-up/panB-YZ130-down进行验证,正确的PCR产物应该3175bp,包括frd上游同源臂426bp,cat-sacB片段2619bp和panB下游同源臂130bp。挑选一个正确的单菌落,命名为Span021。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-frd-up/panB-YZ130-down. The correct PCR product should be 3175 bp, including 426 bp of frd upstream homology arm, 2619 bp of cat-sacB fragment and 130 bp of panB downstream homology arm. Select a correct single colony and name it Span021.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物panB-Pro-up/panB-Pro-down扩增出188bp的DNA片段II。DNA片段II包括frd上游同源臂50bp,M1-93启动子序列88bp和panB下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span021。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers panB-Pro-up/panB-Pro-down were used to amplify the 188 bp DNA fragment II. DNA fragment II includes 50 bp of the upstream homology arm of frd, 88 bp of the M1-93 promoter sequence and 50 bp of the downstream homology arm of panB. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span021.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-frd-up/panB-YZ130-down,正确的菌落扩增产物为644bp的片段,包括frd上游同源臂426bp,M1-93启动子序列88bp和panB下游同源臂130bp。挑选一个正确的单菌落,将其命名为Span022。The electroporation conditions and steps were the same as those described in Example 1 for the second step of alsS integration at the tdcDE site. The clones were verified by colony PCR, and the primers used were XZ-frd-up/panB-YZ130-down. The correct colony amplification product was a 644 bp fragment, including 426 bp of frd upstream homology arm, 88 bp of M1-93 promoter sequence, and 130 bp of panB downstream homology arm. A correct single colony was selected and named Span022.

Span022是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span020的panB基因上游得到的重组菌,该重组菌中M1-93启动子驱动panB基因的表达。Span022 is a recombinant bacterium obtained by integrating M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of panB gene of Escherichia coli Span020. In the recombinant bacterium, M1-93 promoter drives the expression of panB gene.

实施例12:2-脱氢泛酸酯-2-还原酶基因panE在乳酸脱氢酶ldhA位点的整合和ldhA位点的敲除Example 12: Integration of the 2-dehydropantothenate-2-reductase gene panE into the lactate dehydrogenase ldhA site and knockout of the ldhA site

从Span022出发,将2-脱氢泛酸酯-2-还原酶基因panE整合到乳酸脱氢酶基因ldhA位点,具体步骤如下:Starting from Span022, the 2-dehydropantothenate-2-reductase gene panE was integrated into the lactate dehydrogenase gene ldhA site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ldhA-csin-up/ldhA-csin-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ldhA上游同源臂50bp,cat-sacB片段2619bp和ldhA下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span022。In the first step, using pXZ-CS plasmid DNA as a template, primers ldhA-csin-up/ldhA-csin-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of the upstream homology arm of ldhA, 2619 bp of the cat-sacB fragment, and 50 bp of the downstream homology arm of ldhA. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span022.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span022,然后将DNA片段I电转至带有pKD46的大肠杆菌Span022。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span022 by electroporation, and then DNA fragment I was electroporated into E. coli Span022 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ldhA-up/XZ-ldhA-down进行验证,正确的PCR产物应该3415bp,包括ldhA上游同源臂380bp,cat-sacB片段2619bp和ldhA下游同源臂416bp。挑选一个正确的单菌落,命名为Span023。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-ldhA-up/XZ-ldhA-down. The correct PCR product should be 3415 bp, including ldhA upstream homology arm 380 bp, cat-sacB fragment 2619 bp and ldhA downstream homology arm 416 bp. Select a correct single colony and name it Span023.

第二步,以大肠杆菌MG1655(来自ATCC,编号700926)的基因组DNA为模板,用引物ldhA-panE-up/ldhA-panE-down扩增出1012bp的DNA片段II。DNA片段II包括ldhA上游同源臂50bp,panE基因912bp和ldhA下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span023。In the second step, the genomic DNA of Escherichia coli MG1655 (from ATCC, No. 700926) was used as a template, and the primers ldhA-panE-up/ldhA-panE-down were used to amplify a 1012bp DNA fragment II. DNA fragment II includes 50bp of the upstream homology arm of ldhA, 912bp of the panE gene, and 50bp of the downstream homology arm of ldhA. DNA fragment II was used for the second homologous recombination. DNA fragment II was electrotransferred to strain Span023.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ldhA-up/XZ-ldhA-down,正确的菌落扩增产物为1708bp的片段,包括ldhA上游同源臂380bp,panE基因912bp和ldhA下游同源臂416bp。挑选一个正确的单菌落,将其命名为Span024。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-ldhA-up/XZ-ldhA-down. The correct colony amplification product was a 1708 bp fragment, including 380 bp of the upstream homology arm of ldhA, 912 bp of the panE gene, and 416 bp of the downstream homology arm of ldhA. A correct single colony was selected and named Span024.

Span024是将2-脱氢泛酸酯-2-还原酶基因panE(编码的蛋白质序列为SEQ ID NO:17,NCBI QPA14304.1,coded_by=CP032679.1:443607..444518)整合到大肠杆菌Span022的ldhA位点得到的重组菌,该重组菌中乳酸脱氢酶基因ldhA(编码的蛋白质序列为NCBIACA77911.1,coded_by=CP000946.1:2508048..2509037)同时被敲除。Span024 is a recombinant bacterium obtained by integrating the 2-dehydropantothenate-2-reductase gene panE (the protein sequence encoded is SEQ ID NO: 17, NCBI QPA14304.1, coded_by=CP032679.1:443607..444518) into the ldhA site of Escherichia coli Span022, and the lactate dehydrogenase gene ldhA (the protein sequence encoded is NCBI ACA77911.1, coded_by=CP000946.1:2508048..2509037) in the recombinant bacterium is knocked out at the same time.

实施例13:2-脱氢泛酸酯-2-还原酶基因panE的表达调控Example 13: Expression regulation of 2-dehydropantothenate-2-reductase gene panE

从Span024出发,使用人工调控元件调控整合在乳酸脱氢酶基因ldhA位点的2-脱氢泛酸酯-2-还原酶基因panE的表达,具体步骤如下:Starting from Span024, an artificial regulatory element was used to regulate the expression of the 2-dehydropantothenate-2-reductase gene panE integrated in the ldhA site of the lactate dehydrogenase gene. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ldhA-csin-up/panE-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ldhA上游同源臂50bp,cat-sacB片段2619bp和panE下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span024。In the first step, using pXZ-CS plasmid DNA as a template, primers ldhA-csin-up/panE-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of the upstream homology arm of ldhA, 2619 bp of the cat-sacB fragment, and 50 bp of the downstream homology arm of panE. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span024.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span024,然后将DNA片段I电转至带有pKD46的大肠杆菌Span024。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span024 by electroporation, and then DNA fragment I was electroporated into E. coli Span024 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ldhA-up/panE-YZ245-down进行验证,正确的PCR产物应该3244bp,包括ldhA上游同源臂380bp,cat-sacB片段2619bp和panE下游同源臂245bp。挑选一个正确的单菌落,命名为Span025。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-ldhA-up/panE-YZ245-down. The correct PCR product should be 3244 bp, including ldhA upstream homology arm 380 bp, cat-sacB fragment 2619 bp and panE downstream homology arm 245 bp. Select a correct single colony and name it Span025.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物panE-Pro-up/panE-Pro-down扩增出189bp的DNA片段II。DNA片段II包括ldhA上游同源臂50bp,人工启动子RBSL2序列89bp和panE下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span025。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers panE-Pro-up/panE-Pro-down were used to amplify the 189 bp DNA fragment II. The DNA fragment II includes 50 bp of the upstream homology arm of ldhA, 89 bp of the artificial promoter RBSL2 sequence and 50 bp of the downstream homology arm of panE. The DNA fragment II was used for the second homologous recombination. The DNA fragment II was electroporated into the strain Span025.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ldhA-up/panE-YZ245-down,正确的菌落扩增产物为714bp的片段,包括ldhA上游同源臂380bp,人工启动子RBSL2序列89bp和panE下游同源臂245bp。挑选一个正确的单菌落,将其命名为Span026。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-ldhA-up/panE-YZ245-down. The correct colony amplification product was a 714 bp fragment, including 380 bp of the upstream homology arm of ldhA, 89 bp of the artificial promoter RBSL2 sequence, and 245 bp of the downstream homology arm of panE. A correct single colony was selected and named Span026.

Span026是将RBSL2启动子(核苷酸序列是序列表中SEQ ID NO:172)整合到大肠杆菌Span024的panE基因上游得到的重组菌,该重组菌中RBSL2启动子驱动panE基因的表达。Span026 is a recombinant bacterium obtained by integrating the RBSL2 promoter (nucleotide sequence is SEQ ID NO: 172 in the sequence list) into the upstream of the panE gene of Escherichia coli Span024. In the recombinant bacterium, the RBSL2 promoter drives the expression of the panE gene.

实施例14:丝氨酸羟甲基转移酶基因glyA在甲基乙二醛合酶基因mgsA位点的整合和mgsA位点的敲除Example 14: Integration of the serine hydroxymethyltransferase gene glyA at the methylglyoxal synthase gene mgsA site and knockout of the mgsA site

从Span026出发,将丝氨酸羟甲基转移酶基因glyA在甲基乙二醛合酶基因mgsA位点,具体步骤如下:Starting from Span026, the serine hydroxymethyltransferase gene glyA was inserted into the methylglyoxal synthase gene mgsA site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物mgsA-cs-up/mgsA-cs-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括mgsA上游同源臂50bp,cat-sacB片段2619bp和mgsA下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span026。In the first step, using pXZ-CS plasmid DNA as a template, primers mgsA-cs-up/mgsA-cs-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of mgsA, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of mgsA. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span026.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span026,然后将DNA片段I电转至带有pKD46的大肠杆菌Span026。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span026 by electroporation, and then DNA fragment I was electroporated into E. coli Span026 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-mgsA-up/XZ-mgsA-down进行验证,正确的PCR产物应该3646bp,包括mgsA上游同源臂516bp,cat-sacB片段2619bp和mgsA下游同源臂511bp。挑选一个正确的单菌落,命名为Span027。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-mgsA-up/XZ-mgsA-down. The correct PCR product should be 3646 bp, including 516 bp of mgsA upstream homology arm, 2619 bp of cat-sacB fragment and 511 bp of mgsA downstream homology arm. Select a correct single colony and name it Span027.

第二步,以野生型大肠杆菌ATCC8739的基因组DNA为模板,用引物mgsA-glyA-up/mgsA-glyA-down扩增出1354bp的DNA片段II。DNA片段II包括mgsA上游同源臂50bp,glyA片段1254bp和mgsA下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span027。In the second step, the genomic DNA of wild-type Escherichia coli ATCC8739 was used as a template and the primers mgsA-glyA-up/mgsA-glyA-down were used to amplify a 1354 bp DNA fragment II. DNA fragment II includes a 50 bp upstream homology arm of mgsA, a 1254 bp glyA fragment, and a 50 bp downstream homology arm of mgsA. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span027.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-mgsA-up/XZ-mgsA-down,正确的菌落扩增产物为2281bp的片段,包括mgsA上游同源臂516bp,glyA片段1254bp和mgsA下游同源臂511bp。挑选一个正确的单菌落,将其命名为Span028。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-mgsA-up/XZ-mgsA-down. The correct colony amplification product was a 2281 bp fragment, including a 516 bp upstream homology arm of mgsA, a 1254 bp glyA fragment, and a 511 bp downstream homology arm of mgsA. A correct single colony was selected and named Span028.

Span028是将丝氨酸羟甲基转移酶基因glyA(编码的蛋白质序列为SEQ ID NO:19,NCBI ACA76793.1,coded_by=CP000946.1:1227416..1228669)整合到大肠杆菌Span026的mgsA位点得到的重组菌,该重组菌中mgsA基因(编码的蛋白质序列为NCBIACA78263.1,coded_by=CP000946.1:2883345..2883803)同时被敲除。Span028 is a recombinant bacterium obtained by integrating the serine hydroxymethyltransferase gene glyA (the protein sequence encoded is SEQ ID NO: 19, NCBI ACA76793.1, coded_by=CP000946.1:1227416..1228669) into the mgsA site of Escherichia coli Span026, and the mgsA gene (the protein sequence encoded is NCBI ACA78263.1, coded_by=CP000946.1:2883345..2883803) in the recombinant bacterium is knocked out at the same time.

实施例15:丝氨酸羟甲基转移酶基因glyA的调控Example 15: Regulation of serine hydroxymethyltransferase gene glyA

从Span028出发,使用人工调控元件调控整合在mgsA位点的丝氨酸羟甲基转移酶基因glyA的表达,具体步骤如下:Starting from Span028, artificial regulatory elements were used to regulate the expression of the serine hydroxymethyltransferase gene glyA integrated at the mgsA site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物mgsA-cs-up/glyA-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括mgsA上游同源臂50bp,cat-sacB片段2619bp和glyA下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span028。In the first step, using pXZ-CS plasmid DNA as a template, primers mgsA-cs-up/glyA-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of mgsA, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of glyA. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span028.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span028,然后将DNA片段I电转至带有pKD46的大肠杆菌Span028。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span028 by electroporation, and then DNA fragment I was electroporated into E. coli Span028 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-mgsA-up/glyA-YZ364-down进行验证,正确的PCR产物应该3499bp,包括mgsA上游同源臂516bp,cat-sacB片段2619bp和glyA下游同源臂364bp。挑选一个正确的单菌落,命名为Span029。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-mgsA-up/glyA-YZ364-down. The correct PCR product should be 3499 bp, including 516 bp of mgsA upstream homology arm, 2619 bp of cat-sacB fragment and 364 bp of glyA downstream homology arm. Select a correct single colony and name it Span029.

第二步,以M1-46(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物glyA-Pro-up/glyA-Pro-down扩增出188bp的DNA片段II。DNA片段II包括mgsA上游同源臂50bp,M1-46启动子88bp和glyA下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span029。In the second step, the genomic DNA of M1-46 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers glyA-Pro-up/glyA-Pro-down were used to amplify a 188 bp DNA fragment II. DNA fragment II includes 50 bp of the upstream homology arm of mgsA, 88 bp of the M1-46 promoter, and 50 bp of the downstream homology arm of glyA. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span029.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-mgsA-up/glyA-YZ364-down,正确的菌落扩增产物为968bp的片段,包括mgsA上游同源臂516bp,M1-46启动子88bp和glyA下游同源臂364bp。挑选一个正确的单菌落,将其命名为Span030。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-mgsA-up/glyA-YZ364-down. The correct colony amplification product was a 968 bp fragment, including 516 bp of mgsA upstream homology arm, 88 bp of M1-46 promoter, and 364 bp of glyA downstream homology arm. A correct single colony was selected and named Span030.

Span030是将M1-46启动子(核苷酸序列是序列表中SEQ ID NO:173)整合到Span028的glyA基因上游得到的重组菌,该重组菌中M1-46启动子驱动glyA基因的表达。Span030 is a recombinant bacterium obtained by integrating the M1-46 promoter (nucleotide sequence is SEQ ID NO: 173 in the sequence list) into the upstream of the glyA gene of Span028. In the recombinant bacterium, the M1-46 promoter drives the expression of the glyA gene.

实施例16:大肠杆菌野生型氨甲基转移酶基因gcvT的调控Example 16: Regulation of the wild-type aminomethyltransferase gene gcvT of Escherichia coli

从Span030出发,使用人工调控元件调控大肠杆菌野生型氨甲基转移酶基因gcvT的表达,具体步骤如下:Starting from Span030, the expression of the wild-type aminomethyltransferase gene gcvT of Escherichia coli was regulated using artificial regulatory elements. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物gcvT-Pcat-up/gcvT-PsacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括gcvT基因上游同源臂50bp,cat-sacB片段2619bp和gcvT下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span030。In the first step, using pXZ-CS plasmid DNA as a template, primers gcvT-Pcat-up/gcvT-PsacB-down were used to amplify a 2719 bp DNA fragment I for homologous recombination in the first step. DNA fragment I includes a 50 bp upstream homology arm of the gcvT gene, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of gcvT. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span030.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span030,然后将DNA片段I电转至带有pKD46的大肠杆菌Span030。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span030 by electroporation, and then DNA fragment I was electroporated into E. coli Span030 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物gcvT-up-500/gcvT-350-down进行验证,正确的PCR产物应该3197bp,包括gcvT基因上游同源臂228bp,cat-sacB片段2619bp和gcvT下游同源臂350bp。挑选一个正确的单菌落,命名为Span031。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers gcvT-up-500/gcvT-350-down. The correct PCR product should be 3197 bp, including 228 bp of the upstream homology arm of the gcvT gene, 2619 bp of the cat-sacB fragment, and 350 bp of the downstream homology arm of gcvT. Select a correct single colony and name it Span031.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物gcvT-M93-up/gcvT-M93-down扩增出188bp的DNA片段II。DNA片段II包括gcvT基因上游同源臂50bp,M1-93启动子88bp和gcvT下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span031。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers gcvT-M93-up/gcvT-M93-down were used to amplify the 188 bp DNA fragment II. DNA fragment II includes 50 bp of the upstream homology arm of the gcvT gene, 88 bp of the M1-93 promoter, and 50 bp of the downstream homology arm of gcvT. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span031.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为gcvT-up-500/gcvT-350-down,正确的菌落扩增产物为666bp的片段,包括gcvT基因上游同源臂228bp,M1-93启动子88bp和gcvT下游同源臂350bp。挑选一个正确的单菌落,将其命名为Span032。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were gcvT-up-500/gcvT-350-down. The correct colony amplification product was a 666bp fragment, including 228bp of the upstream homology arm of the gcvT gene, 88bp of the M1-93 promoter, and 350bp of the downstream homology arm of gcvT. A correct single colony was selected and named Span032.

Span032是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span030的氨甲基转移酶基因gcvT(编码的蛋白质序列为SEQ ID NO:21,NCBIACA76476.1,coded_by=CP000946.1:862077..863171)的上游得到的重组菌,该重组菌中,M1-93启动子可以驱动gcvT基因的表达。Span032 is a recombinant bacterium obtained by integrating the M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of the aminomethyltransferase gene gcvT (encoded protein sequence is SEQ ID NO: 21, NCBIACA76476.1, coded_by=CP000946.1:862077..863171) of Escherichia coli Span030. In this recombinant bacterium, the M1-93 promoter can drive the expression of the gcvT gene.

实施例17:大肠杆菌野生型甘氨酸脱羧酶基因gcvP的调控Example 17: Regulation of the wild-type glycine decarboxylase gene gcvP in Escherichia coli

从Span032出发,使用人工调控元件调控大肠杆菌野生型甘氨酸脱羧酶基因gcvP的表达,具体步骤如下:Starting from Span032, the expression of the wild-type glycine decarboxylase gene gcvP of Escherichia coli was regulated using artificial regulatory elements. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物gcvP-Pcat-up/gcvP-PsacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括gcvP基因上游同源臂50bp,cat-sacB片段2619bp和gcvP下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span032。In the first step, using pXZ-CS plasmid DNA as a template, primers gcvP-Pcat-up/gcvP-PsacB-down were used to amplify a 2719 bp DNA fragment I for homologous recombination in the first step. DNA fragment I includes a 50 bp upstream homology arm of the gcvP gene, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of gcvP. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span032.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span032,然后将DNA片段I电转至带有pKD46的大肠杆菌Span032。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span032 by electroporation, and then DNA fragment I was electroporated into E. coli Span032 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物gcvH-up/gcvP-390-down进行验证,正确的PCR产物应该3399bp,包括gcvP基因上游同源臂390bp,cat-sacB片段2619bp和gcvP下游同源臂390bp。挑选一个正确的单菌落,命名为Span033。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers gcvH-up/gcvP-390-down. The correct PCR product should be 3399 bp, including 390 bp of the upstream homology arm of the gcvP gene, 2619 bp of the cat-sacB fragment, and 390 bp of the downstream homology arm of gcvP. Select a correct single colony and name it Span033.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物gcvP-M93-up/gcvP-M93-down扩增出188bp的DNA片段II。DNA片段II包括gcvP基因上游同源臂50bp,M1-93启动子88bp和gcvP下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span033。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers gcvP-M93-up/gcvP-M93-down were used to amplify the 188bp DNA fragment II. DNA fragment II includes 50bp of the upstream homologous arm of the gcvP gene, 88bp of the M1-93 promoter, and 50bp of the downstream homologous arm of gcvP. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span033.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为gcvH-up/gcvP-390-down,正确的菌落扩增产物为868bp的片段,包括gcvP基因上游同源臂390bp,M1-93启动子88bp和gcvP下游同源臂390bp。挑选一个正确的单菌落,将其命名为Span034。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were gcvH-up/gcvP-390-down. The correct colony amplification product was a 868 bp fragment, including 390 bp of the upstream homology arm of the gcvP gene, 88 bp of the M1-93 promoter, and 390 bp of the downstream homology arm of gcvP. A correct single colony was selected and named Span034.

Span034是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span032的甘氨酸脱羧酶基因gcvP(编码的蛋白质序列为SEQ ID NO:23,NCBIACA76478.1,coded_by=CP000946.1:863703..866576)的上游得到的重组菌,该重组菌中,M1-93启动子可以驱动gcvP基因的表达。Span034 is a recombinant bacterium obtained by integrating the M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of the glycine decarboxylase gene gcvP (the encoded protein sequence is SEQ ID NO: 23, NCBIACA76478.1, coded_by=CP000946.1:863703..866576) of Escherichia coli Span032. In this recombinant bacterium, the M1-93 promoter can drive the expression of the gcvP gene.

实施例18:来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶基因panB在磷酸乙酰转移酶编码基因pta和乙酸激酶编码基因ackA位点的整合及ackA-pta位点的敲除Example 18: Integration of the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB from Corynebacterium glutamicum at the phosphate acetyltransferase encoding gene pta and the acetate kinase encoding gene ackA site and knockout of the ackA-pta site

从Span034出发,将来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶基因panB在磷酸乙酰转移酶编码基因pta和乙酸激酶编码基因ackA位点,具体步骤如下:Starting from Span034, the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB from Corynebacterium glutamicum was inserted into the phosphate acetyltransferase encoding gene pta and the acetate kinase encoding gene ackA sites. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ackA-cs-up/pta-cs-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ackA-pta基因上游同源臂50bp,cat-sacB片段2619bp和ackA-pta下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span034。In the first step, using pXZ-CS plasmid DNA as a template, primers ackA-cs-up/pta-cs-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of upstream homology arm of ackA-pta gene, 2619 bp of cat-sacB fragment and 50 bp of downstream homology arm of ackA-pta. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span034.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span034,然后将DNA片段I电转至带有pKD46的大肠杆菌Span034。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span034 by electroporation, and then DNA fragment I was electroporated into E. coli Span034 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ackA-up/XZ-pta-down进行验证,正确的PCR产物应该3350bp,包括ackA-pta基因上游同源臂320bp,cat-sacB片段2619bp和ackA-pta下游同源臂411bp。挑选一个正确的单菌落,命名为Span035。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-ackA-up/XZ-pta-down. The correct PCR product should be 3350 bp, including 320 bp of the upstream homology arm of the ackA-pta gene, 2619 bp of the cat-sacB fragment, and 411 bp of the downstream homology arm of the ackA-pta gene. Select a correct single colony and name it Span035.

第二步,以谷氨酸棒杆菌ATCC13032(ATCC产品)的基因组DNA为模板,用引物ackA-panBC-up/ackA-panBC-down扩增出916bp的DNA片段II。DNA片段II包括ackA-pta基因上游同源臂50bp,来自谷棒的panB基因816bp和ackA-pta下游同源臂50bp。用于第二次同源重组。将DNA片段II电转至菌株Span035。In the second step, the genomic DNA of Corynebacterium glutamicum ATCC13032 (ATCC product) was used as a template, and a 916bp DNA fragment II was amplified with primers ackA-panBC-up/ackA-panBC-down. DNA fragment II includes 50bp of homology arms upstream of the ackA-pta gene, 816bp of the panB gene from the glutamicum and 50bp of homology arms downstream of the ackA-pta. It was used for the second homologous recombination. DNA fragment II was electrotransferred to strain Span035.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ackA-up/XZ-pta-down,正确的菌落扩增产物为1547bp的片段,包括ackA-pta基因上游同源臂320bp,来自谷棒的panB基因816bp和ackA-pta下游同源臂411bp。挑选一个正确的单菌落,将其命名为Span036。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were XZ-ackA-up/XZ-pta-down. The correct colony amplification product was a 1547 bp fragment, including 320 bp of the upstream homology arm of the ackA-pta gene, 816 bp of the panB gene from Gubang, and 411 bp of the downstream homology arm of ackA-pta. A correct single colony was selected and named Span036.

Span036是将谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶基因panB(panB基因,核苷酸序列是序列表中SEQ ID NO:14,编码SEQ ID NO:13所示的panB蛋白质)整合到大肠杆菌Span034的磷酸乙酰转移酶编码基因pta和乙酸激酶编码基因ackA位点得到的重组菌,该重组菌中pta基因(编码的蛋白质序列为NCBI ACA77021.1,coded_by=CP000946.1:1484032..1486176)和ackA基因(编码的蛋白质序列为NCBI ACA77022.1,coded_by=CP000946.1:1486251..1487453)同时被敲除。Span036 is a recombinant bacterium obtained by integrating the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB (panB gene, the nucleotide sequence is SEQ ID NO: 14 in the sequence list, encoding the panB protein shown in SEQ ID NO: 13) of Corynebacterium glutamicum into the phosphate acetyltransferase encoding gene pta and the acetate kinase encoding gene ackA sites of Escherichia coli Span034, in which the pta gene (the protein sequence encoded is NCBI ACA77021.1, coded_by=CP000946.1:1484032..1486176) and the ackA gene (the protein sequence encoded is NCBI ACA77022.1, coded_by=CP000946.1:1486251..1487453) are knocked out at the same time.

实施例19:谷氨酸棒杆菌来源的3-甲基-2-氧代丁酸羟甲基转移酶基因panB的调控Example 19: Regulation of the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB from Corynebacterium glutamicum

从Span036出发,使用人工调控元件调控整合在ackA-pta位点的3-甲基-2-氧代丁酸羟甲基转移酶基因panB的表达,具体步骤如下:Starting from Span036, an artificial regulatory element was used to regulate the expression of the 3-methyl-2-oxobutyrate hydroxymethyltransferase gene panB integrated at the ackA-pta site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ackA-cs-up/panBC-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ackA-pta基因上游同源臂50bp,cat-sacB片段2619bp和来自谷棒的panB基因下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span036。In the first step, using pXZ-CS plasmid DNA as a template, primers ackA-cs-up/panBC-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes 50 bp of upstream homology arm of ackA-pta gene, 2619 bp of cat-sacB fragment and 50 bp of downstream homology arm of panB gene from Gubang. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span036.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span036,然后将DNA片段I电转至带有pKD46的大肠杆菌Span036。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span036 by electroporation, and then DNA fragment I was electroporated into E. coli Span036 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ackA-up/panBC-YZ425-down进行验证,正确的PCR产物应该3364bp,包括ackA-pta基因上游同源臂320bp,cat-sacB片段2619bp和panB下游同源臂425bp。挑选一个正确的单菌落,命名为Span037。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers XZ-ackA-up/panBC-YZ425-down. The correct PCR product should be 3364 bp, including 320 bp of the upstream homology arm of the ackA-pta gene, 2619 bp of the cat-sacB fragment, and 425 bp of the downstream homology arm of panB. Select a correct single colony and name it Span037.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物panBC-Pro-up/panBC-Pro-down扩增出188bp的DNA片段II。DNA片段II包括ackA-pta基因上游同源臂50bp,M1-93启动子88bp和panB下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span037。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers panBC-Pro-up/panBC-Pro-down were used to amplify the 188 bp DNA fragment II. DNA fragment II includes 50 bp of the upstream homology arm of the ackA-pta gene, 88 bp of the M1-93 promoter, and 50 bp of the downstream homology arm of panB. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span037.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ackA-up/panBC-YZ425-down,正确的菌落扩增产物为833bp的片段,包括ackA-pta基因上游同源臂320bp,M1-93启动子88bp和panB下游同源臂425bp。挑选一个正确的单菌落,将其命名为Span038。The electroporation conditions and steps were the same as those described in Example 1 for the second step of alsS integration at the tdcDE site. The clones were verified by colony PCR, and the primers used were XZ-ackA-up/panBC-YZ425-down. The correct colony amplification product was a 833 bp fragment, including 320 bp of the upstream homology arm of the ackA-pta gene, 88 bp of the M1-93 promoter, and 425 bp of the downstream homology arm of panB. A correct single colony was selected and named Span038.

Span038是将M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span036的panB基因上游得到的重组菌,该重组菌中M1-93启动子驱动panB基因的表达。Span038 is a recombinant bacterium obtained by integrating M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of panB gene of Escherichia coli Span036. In the recombinant bacterium, M1-93 promoter drives the expression of panB gene.

实施例20:支链氨基酸氨基转移酶基因ilvE的表达弱化Example 20: Weakened expression of branched-chain amino acid aminotransferase gene ilvE

从Span038出发,将支链氨基酸氨基转移酶基因ilvE的表达弱化,具体步骤如下:Starting from Span038, the expression of the branched-chain amino acid aminotransferase gene ilvE was weakened. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物ilvE-cat-up/ilvE-sacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ilvE基因上游同源臂50bp,cat-sacB片段2619bp和ilvE基因下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span038。In the first step, pXZ-CS plasmid DNA was used as a template and primers ilvE-cat-up/ilvE-sacB-down were used to amplify a 2719 bp DNA fragment I for homologous recombination in the first step. DNA fragment I included a 50 bp upstream homology arm of the ilvE gene, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the ilvE gene. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span038.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span038,然后将DNA片段I电转至带有pKD46的大肠杆菌Span038。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span038 by electroporation, and then DNA fragment I was electroporated into E. coli Span038 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvM-up/ilvE-down进行验证,正确的PCR产物应该3832bp,包括ilvE基因上游同源臂283bp,cat-sacB片段2619bp和ilvE基因下游同源臂930bp。挑选一个正确的单菌落,命名为Span039。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers ilvM-up/ilvE-down. The correct PCR product should be 3832 bp, including 283 bp of the upstream homology arm of the ilvE gene, 2619 bp of the cat-sacB fragment, and 930 bp of the downstream homology arm of the ilvE gene. Select a correct single colony and name it Span039.

第二步,以野生型大肠杆菌ATCC 8739的基因组DNA为模板,用引物ilvEGTG-up/ilvE-down扩增出980bp的DNA片段II。DNA片段II包括将起始密码子ATG更改为GTG的ilvE基因。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span039。In the second step, the genomic DNA of wild-type E. coli ATCC 8739 was used as a template and the primers ilvEGTG-up/ilvE-down were used to amplify a 980 bp DNA fragment II. DNA fragment II includes the ilvE gene with the start codon ATG changed to GTG. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span039.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvM-up/ilvE-down,正确的菌落扩增产物为1213bp的片段,包括ilvE基因上游同源臂283bp和将起始密码子ATG更换为GTG的ilvE共930bp。挑选一个正确的单菌落,将其命名为Span040。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were ilvM-up/ilvE-down. The correct colony amplification product was a 1213 bp fragment, including 283 bp of the upstream homology arm of the ilvE gene and 930 bp of ilvE with the start codon ATG replaced by GTG. A correct single colony was selected and named Span040.

Span040是将Span038的ilvE的起始密码子ATG突变为GTG得到的重组菌,将突变后的基因记为ilvE*基因(其序列为序列表中SEQ ID NO:32),ilvE*基因编码ilvE*蛋白质(其序列为序列表中SEQ ID NO:31)。Span040 is a recombinant bacterium obtained by mutating the start codon ATG of ilvE of Span038 to GTG. The mutated gene is recorded as ilvE* gene (its sequence is SEQ ID NO: 32 in the sequence list), and the ilvE* gene encodes the ilvE* protein (its sequence is SEQ ID NO: 31 in the sequence list).

实施例21:来自谷氨酸棒杆菌的磷酸甘油酸脱氢酶基因serA在核糖激酶ara位点的整合及ara位点的敲除Example 21: Integration of the phosphoglycerate dehydrogenase gene serA from Corynebacterium glutamicum into the ara site of ribokinase and knockout of the ara site

从Span040出发,将来自谷氨酸棒杆菌的磷酸甘油酸脱氢酶基因serA整合在核糖激酶ara位点,具体步骤如下:Starting from Span040, the phosphoglycerate dehydrogenase gene serA from Corynebacterium glutamicum was integrated into the ara site of ribokinase. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物araBCD-CS-up/araBCD-CS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ara位点上游同源臂50bp,cat-sacB片段2619bp和ara位点下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span041。In the first step, using pXZ-CS plasmid DNA as a template, primers araBCD-CS-up/araBCD-CS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of the ara site, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the ara site. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span041.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span041,然后将DNA片段I电转至带有pKD46的大肠杆菌Span041。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span041 by electroporation, and then DNA fragment I was electroporated into E. coli Span041 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物araBCD-YZ300-up/araBCD-YZ468-down进行验证,正确的PCR产物应该3378bp,包括ara位点上游同源臂291bp,cat-sacB片段2619bp和ara位点下游同源臂468bp。挑选一个正确的单菌落,命名为Span041。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers araBCD-YZ300-up/araBCD-YZ468-down. The correct PCR product should be 3378 bp, including 291 bp of the upstream homology arm of the ara site, 2619 bp of the cat-sacB fragment, and 468 bp of the downstream homology arm of the ara site. Select a correct single colony and name it Span041.

第二步,以谷氨酸棒杆菌ATCC13032(ATCC产品)的基因组DNA为模板,用引物araBCD-serA197-up/araBCD-serA197-down扩增出1102bp的DNA片段II。DNA片段II包括ara位点上游同源臂50bp,serA基因1002bp和ara位点下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span041。In the second step, the genomic DNA of Corynebacterium glutamicum ATCC13032 (ATCC product) was used as a template, and a 1102bp DNA fragment II was amplified with primers araBCD-serA197-up/araBCD-serA197-down. DNA fragment II includes 50bp of homology arms upstream of the ara site, 1002bp of serA gene and 50bp of homology arms downstream of the ara site. DNA fragment II is used for the second homologous recombination. DNA fragment II is electrotransferred to bacterial strain Span041.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为araBCD-YZ300-up/araBCD-YZ468-down,正确的菌落扩增产物为1761bp的片段,包括包括ara位点上游同源臂291bp,serA基因1002bp和ara位点下游同源臂468bp。挑选一个正确的单菌落,将其命名为Span042。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were araBCD-YZ300-up/araBCD-YZ468-down. The correct colony amplification product was a 1761 bp fragment, including 291 bp of the upstream homology arm of the ara site, 1002 bp of the serA gene, and 468 bp of the downstream homology arm of the ara site. A correct single colony was selected and named Span042.

Span042是将谷氨酸棒杆菌的磷酸甘油酸脱氢酶基因serA(serA基因,核苷酸序列是SEQ ID NO:26,编码SEQ ID NO:25所示的serA蛋白质)整合到大肠杆菌Span040的ara位点得到的重组菌,该重组菌中ara基因(编码的蛋白质序列为NCBI ACA79208.1,coded_by=CP000946.1:3929533..3931233,编码的蛋白质序列为NCBI ACA79209.1,coded_by=CP000946.1:3931244..3932746)同时被敲除。Span042 is a recombinant bacterium obtained by integrating the phosphoglycerate dehydrogenase gene serA (serA gene, nucleotide sequence is SEQ ID NO: 26, encoding the serA protein shown in SEQ ID NO: 25) of Corynebacterium glutamicum into the ara site of Escherichia coli Span040, and the ara gene (the encoded protein sequence is NCBI ACA79208.1, coded_by=CP000946.1:3929533..3931233, the encoded protein sequence is NCBI ACA79209.1, coded_by=CP000946.1:3931244..3932746) in the recombinant bacterium is knocked out at the same time.

实施例22:来自谷氨酸棒杆菌的磷酸甘油酸脱氢酶基因serA的调控Example 22: Regulation of the phosphoglycerate dehydrogenase gene serA from Corynebacterium glutamicum

从Span042出发,使用人工调控元件调控整合在ara位点的磷酸甘油酸脱氢酶基因serA的表达,具体步骤如下:Starting from Span042, artificial regulatory elements were used to regulate the expression of the phosphoglycerate dehydrogenase gene serA integrated at the ara site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物araBCD-CS-up/serA197-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括ara位点上游同源臂50bp,cat-sacB片段2619bp和serA位点下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span042。In the first step, using pXZ-CS plasmid DNA as a template, primers araBCD-CS-up/serA197-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of the ara site, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the serA site. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span042.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span042,然后将DNA片段I电转至带有pKD46的大肠杆菌Span042。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span042 by electroporation, and then DNA fragment I was electroporated into E. coli Span042 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物araBCD-YZ300-up/SerA197-YZ358-down进行验证,正确的PCR产物应该3268bp,包括ara位点上游同源臂291bp,cat-sacB片段2619bp和serA位点下游同源臂358bp。挑选一个正确的单菌落,命名为Span043。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers araBCD-YZ300-up/SerA197-YZ358-down. The correct PCR product should be 3268 bp, including 291 bp of the upstream homology arm of the ara site, 2619 bp of the cat-sacB fragment, and 358 bp of the downstream homology arm of the serA site. Select a correct single colony and name it Span043.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物serA197-Pro-up/serA197-Pro-down扩增出188bp的DNA片段II。DNA片段II包括ara位点上游同源臂50bp,M1-93启动子88bp和serA基因下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span043。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers serA197-Pro-up/serA197-Pro-down were used to amplify the 188 bp DNA fragment II. The DNA fragment II includes a 50 bp upstream homology arm of the ara site, 88 bp of the M1-93 promoter, and 50 bp of the downstream homology arm of the serA gene. The DNA fragment II was used for the second homologous recombination. The DNA fragment II was electroporated into the strain Span043.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为araBCD-YZ300-up/SerA197-YZ358-down,正确的菌落扩增产物为737bp的片段,包括ara位点上游同源臂291bp,M1-93启动子88bp和serA位点下游同源臂358bp。挑选一个正确的单菌落,将其命名为Span044。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were araBCD-YZ300-up/SerA197-YZ358-down. The correct colony amplification product was a 737 bp fragment, including 291 bp of the upstream homology arm of the ara site, 88 bp of the M1-93 promoter, and 358 bp of the downstream homology arm of the serA site. A correct single colony was selected and named Span044.

Span044是M1-93启动子(核苷酸序列是序列表中SEQ ID NO:169)整合到大肠杆菌Span042的serA基因上游得到的重组菌,该重组菌中M1-93启动子驱动serA基因的表达。Span044 is a recombinant bacterium obtained by integrating the M1-93 promoter (nucleotide sequence is SEQ ID NO: 169 in the sequence list) into the upstream of the serA gene of Escherichia coli Span042. In the recombinant bacterium, the M1-93 promoter drives the expression of the serA gene.

实施例23:来自大肠杆菌的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶基因serC和磷酸丝氨酸磷酸酶基因serB在缬氨酸-丙酮酸转氨酶基因avtA位点的整合及avtA位点的敲除Example 23: Integration of the phosphoserine/phosphohydroxythreonine aminotransferase gene serC and the phosphoserine phosphatase gene serB from Escherichia coli into the valine-pyruvate aminotransferase gene avtA site and knockout of the avtA site

从Span044出发,将来自大肠杆菌的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶基因serC和磷酸丝氨酸磷酸酶基因serB整合到缬氨酸-丙酮酸转氨酶基因avtA位点,具体步骤如下:Starting from Span044, the phosphoserine/phosphohydroxythreonine aminotransferase gene serC and the phosphoserine phosphatase gene serB from Escherichia coli were integrated into the valine-pyruvate aminotransferase gene avtA site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物avtA-CS-up/avtA-CS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括avtA位点上游同源臂50bp,cat-sacB片段2619bp和avtA位点下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span044。In the first step, using pXZ-CS plasmid DNA as a template, primers avtA-CS-up/avtA-CS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of the avtA site, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the avtA site. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span044.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span044,然后将DNA片段I电转至带有pKD46的大肠杆菌Span044。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span044 by electroporation, and then DNA fragment I was electroporated into E. coli Span044 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物avtA-YZ-up/avtA-YZ-down进行验证,正确的PCR产物应该3454bp,包括avtA位点上游同源臂416bp,cat-sacB片段2619bp和avtA位点下游同源臂419bp。挑选一个正确的单菌落,命名为Span045。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of bacterial solution and apply it on LB plates containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers avtA-YZ-up/avtA-YZ-down. The correct PCR product should be 3454 bp, including 416 bp of homology arm upstream of the avtA site, 2619 bp of cat-sacB fragment and 419 bp of homology arm downstream of the avtA site. Select a correct single colony and name it Span045.

第二步,以大肠杆菌MG1655(来自ATCC,编号700926)的基因组DNA为模板,用引物avtA-serCB-up/serC-down扩增出1181的片段II。以大肠杆菌MG1655(来自ATCC,编号700926)的基因组DNA为模板,使用引物serB-up/avtA-serCB-down扩增出1062bp的片段III。以引物avtA-serCB-up/avtA-serCB-down进行PCR扩增,模板为等摩尔的片段II和片段III,扩增体系和条件同实施例1中所述进行融合PCR获得片段IV。片段IV为2179bp的DNA片段,将其用于第二次同源重组。片段IV包括avtA上游同源臂50bp,serC基因1089bp,用于serB基因翻译起始的RBS序列21bp和serB基因969bp,以及avtA下游同源臂50bp。将DNA片段IV电转至菌株Span045。In the second step, the genomic DNA of Escherichia coli MG1655 (from ATCC, No. 700926) was used as a template, and the primers avtA-serCB-up/serC-down were used to amplify the 1181 bp fragment II. The genomic DNA of Escherichia coli MG1655 (from ATCC, No. 700926) was used as a template, and the primers serB-up/avtA-serCB-down were used to amplify the 1062 bp fragment III. PCR amplification was performed with primers avtA-serCB-up/avtA-serCB-down, and the template was equimolar fragment II and fragment III. The amplification system and conditions were the same as those described in Example 1 to perform fusion PCR to obtain fragment IV. Fragment IV is a 2179 bp DNA fragment, which is used for the second homologous recombination. Fragment IV includes 50 bp of avtA upstream homology arm, 1089 bp of serC gene, 21 bp of RBS sequence for serB gene translation initiation and 969 bp of serB gene, and 50 bp of avtA downstream homology arm. DNA fragment IV was electroporated into strain Span045.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为avtA-YZ-up/avtA-YZ-down,正确的菌落扩增产物为2914bp的片段,包括avtA位点上游同源臂416bp,serC基因1089bp,用于serB基因翻译起始的RBS序列21bp和serB基因969bp,以及avtA位点下游同源臂419bp。挑选一个正确的单菌落,将其命名为Span046。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were avtA-YZ-up/avtA-YZ-down. The correct colony amplification product was a 2914 bp fragment, including 416 bp of homology arm upstream of the avtA site, 1089 bp of serC gene, 21 bp of RBS sequence for translation initiation of serB gene and 969 bp of serB gene, and 419 bp of homology arm downstream of the avtA site. A correct single colony was selected and named Span046.

Span046是将大肠杆菌的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶基因serC和磷酸丝氨酸磷酸酶基因serB(serCB基因簇,核苷酸序列是序列表中SEQ ID NO:174,serCB基因簇编码SEQ ID NO:27所示的serC蛋白质和SEQ ID NO:29所示的serB蛋白质)整合到大肠杆菌Span044的avtA位点得到的重组菌,该重组菌中avtA基因(编码的蛋白质序列为NCBIACA75824.1,coded_by=CP000946.1:153868..155121)同时被敲除。Span046 is a recombinant bacterium obtained by integrating the Escherichia coli phosphoserine/phosphohydroxythreonine aminotransferase gene serC and the phosphoserine phosphatase gene serB (serCB gene cluster, the nucleotide sequence is SEQ ID NO: 174 in the sequence list, the serCB gene cluster encodes the serC protein shown in SEQ ID NO: 27 and the serB protein shown in SEQ ID NO: 29) into the avtA site of Escherichia coli Span044, and the avtA gene (the encoded protein sequence is NCBIACA75824.1, coded_by=CP000946.1:153868..155121) in the recombinant bacterium is knocked out at the same time.

SEQ ID NO:174中,第1-88位为M1-93启动子序列,第89-1177位为serC基因序列,第1178-1198位为用于serB基因翻译起始的RBS序列,第1199-2167位为serB基因的序列。In SEQ ID NO: 174, positions 1-88 are the M1-93 promoter sequence, positions 89-1177 are the serC gene sequence, positions 1178-1198 are the RBS sequence for serB gene translation initiation, and positions 1199-2167 are the sequence of the serB gene.

实施例24:整合在avtA位点的serCB基因簇的表达调控Example 24: Expression regulation of the serCB gene cluster integrated at the avtA site

从Span046出发,使用人工调控元件调控整合在avtA位点的来自大肠杆菌的磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶基因serC和磷酸丝氨酸磷酸酶基因serB基因簇的表达,具体步骤如下:Starting from Span046, artificial regulatory elements were used to regulate the expression of the phosphoserine/phosphohydroxythreonine aminotransferase gene serC and the phosphoserine phosphatase gene serB from Escherichia coli integrated at the avtA site. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物avtA-CS-up/serCB-ProCS-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括avtA位点上游同源臂50bp,cat-sacB片段2619bp和serC基因下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span046。In the first step, using pXZ-CS plasmid DNA as a template, primers avtA-CS-up/serCB-ProCS-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of the avtA site, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the serC gene. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span046.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span046,然后将DNA片段I电转至带有pKD46的大肠杆菌Span046。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span046 by electroporation, and then DNA fragment I was electroporated into E. coli Span046 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物avtA-YZ-up/serCB-YZ317-down进行验证,正确的PCR产物应该3456bp,包括avtA位点上游同源臂416bp,cat-sacB片段2619bp和serC基因下游同源臂421bp。挑选一个正确的单菌落,命名为Span047。The electroporation conditions and steps are consistent with the first step of the method for integration of alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers avtA-YZ-up/serCB-YZ317-down. The correct PCR product should be 3456 bp, including 416 bp of homology arm upstream of the avtA site, 2619 bp of cat-sacB fragment and 421 bp of homology arm downstream of the serC gene. Select a correct single colony and name it Span047.

第二步,以M1-93(Lu,et al.,Appl Microbiol Biotechnol,2012,93:2455-2462)的基因组DNA为模板,用引物serCB-Pro-up/serCB-Pro-down扩增出188bp的DNA片段II。DNA片段II包括avtA位点上游同源臂50bp,M1-93启动子序列88bp和serC基因下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span047。In the second step, the genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93: 2455-2462) was used as a template and the primers serCB-Pro-up/serCB-Pro-down were used to amplify the 188 bp DNA fragment II. DNA fragment II includes 50 bp of homology arm upstream of the avtA site, 88 bp of M1-93 promoter sequence and 50 bp of homology arm downstream of the serC gene. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span047.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为avtA-YZ-up/serCB-YZ317-down,正确的菌落扩增产物为925bp的片段,包括avtA位点上游同源臂416bp,M1-93启动子序列88bp和serC基因下游同源臂421bp。挑选一个正确的单菌落,将其命名为Span048。The electroporation conditions and steps were consistent with the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were avtA-YZ-up/serCB-YZ317-down. The correct colony amplification product was a 925 bp fragment, including 416 bp of the upstream homology arm of the avtA site, 88 bp of the M1-93 promoter sequence, and 421 bp of the downstream homology arm of the serC gene. A correct single colony was selected and named Span048.

Span048是将M1-93启动子整合到大肠杆菌Span046的serCB基因簇上游得到的重组菌,含有SEQ ID NO:174所示的serCB基因簇表达盒,该重组菌中M1-93启动子(核苷酸序列是序列表中SEQ ID NO:174的第1-88位)驱动serCB基因簇中serC和serB基因的表达。Span048 is a recombinant bacterium obtained by integrating the M1-93 promoter into the upstream of the serCB gene cluster of Escherichia coli Span046, and contains the serCB gene cluster expression cassette shown in SEQ ID NO: 174. The M1-93 promoter (nucleotide sequence is positions 1-88 of SEQ ID NO: 174 in the sequence list) in the recombinant bacterium drives the expression of serC and serB genes in the serCB gene cluster.

实施例25:L-丝氨酸脱氨酶I基因sdaA的敲除Example 25: Knockout of L-serine deaminase I gene sdaA

从Span048出发,敲除L-丝氨酸脱氨酶I的编码基因sdaA,具体步骤如下:Starting from Span048, the coding gene sdaA of L-serine deaminase I was knocked out. The specific steps are as follows:

第一步,以pXZ-CS质粒DNA为模板,使用引物sdaA-delcat-up/sdaA-delsacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。DNA片段I包括sdaA位点上游同源臂50bp,cat-sacB片段2619bp和sdaA基因下游同源臂50bp。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Span048。In the first step, using pXZ-CS plasmid DNA as a template, primers sdaA-delcat-up/sdaA-delsacB-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination. DNA fragment I includes a 50 bp upstream homology arm of the sdaA site, a 2619 bp cat-sacB fragment, and a 50 bp downstream homology arm of the sdaA gene. The amplification system and amplification conditions were the same as those described in Example 1. DNA fragment I was electrotransferred to Span048.

将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌Span048,然后将DNA片段I电转至带有pKD46的大肠杆菌Span048。DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid was transformed into E. coli Span048 by electroporation, and then DNA fragment I was electroporated into E. coli Span048 carrying pKD46.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物sdaA-YZ-up/sdaA-YZ-down进行验证,正确的PCR产物应该3428bp,包括sdaA位点上游同源臂383bp,cat-sacB片段2619bp和sdaA基因下游同源臂426bp。挑选一个正确的单菌落,命名为Span049。The electroporation conditions and steps are consistent with the first step of the method for integrating alsS at the tdcDE site described in Example 1. Take 200 μl of the bacterial solution and apply it on an LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select a single colony for PCR verification using primers sdaA-YZ-up/sdaA-YZ-down. The correct PCR product should be 3428 bp, including 383 bp of the upstream homology arm of the sdaA site, 2619 bp of the cat-sacB fragment, and 426 bp of the downstream homology arm of the sdaA gene. Select a correct single colony and name it Span049.

第二步,以大肠杆菌ATCC 8739的基因组DNA为模板,用引物sdaA-YZ-up/SdaAdel-down扩增出433bp的DNA片段II。DNA片段II包括sdaA上游同源臂383bp和下游同源臂50bp。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Span049。In the second step, the genomic DNA of E. coli ATCC 8739 was used as a template and the primers sdaA-YZ-up/SdaAdel-down were used to amplify a 433 bp DNA fragment II. DNA fragment II includes a 383 bp upstream homology arm and a 50 bp downstream homology arm of sdaA. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated into strain Span049.

电转条件和步骤同实施例1中所述用于alsS在tdcDE位点整合的第二步方法一致。菌落PCR对克隆进行验证,所用引物为sdaA-YZ-up/sdaA-YZ-down,正确的菌落扩增产物为809bp的片段,包括sdaA位点上游同源臂383bp和sdaA基因下游同源臂426bp。挑选一个正确的单菌落,将其命名为Span050。The electroporation conditions and steps were the same as the second step method for integration of alsS at the tdcDE site described in Example 1. The clones were verified by colony PCR, and the primers used were sdaA-YZ-up/sdaA-YZ-down. The correct colony amplification product was a 809 bp fragment, including 383 bp of the upstream homology arm of the sdaA site and 426 bp of the downstream homology arm of the sdaA gene. A correct single colony was selected and named Span050.

Span050是将大肠杆菌Span048的L-丝氨酸脱氨酶I基因sdaA(编码的蛋白质序列为NCBI ACA77468.1,coded_by=CP000946.1:2018393..2019757)敲除得到的重组菌,该重组菌中不含有sdaA基因。Span050 is a recombinant bacterium obtained by knocking out the L-serine deaminase I gene sdaA (the encoded protein sequence is NCBI ACA77468.1, coded_by=CP000946.1:2018393..2019757) of Escherichia coli Span048, and the recombinant bacterium does not contain the sdaA gene.

Span050已于2021年01月22日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.21699。Span050 was deposited in the General Microbiology Center of China Microorganism Culture Collection Administration on January 22, 2021, with the deposit number CGMCC No.21699.

实施例26:使用Span050生产泛解酸Example 26: Production of pantoic acid using Span050

种子培养基由以下成分组成(溶剂为水):The seed culture medium consists of the following components (the solvent is water):

大量元素:葡萄糖20g/L、(NH4)2HPO4 3.5g/L、KH2PO4 3.91g/L、K2HPO4 4.48g/L、MgSO4·7H2O 0.18g/L、甜菜碱-HCl 0.15g/L;Macroelements: glucose 20g/L, (NH4)2HPO4 3.5g/L, KH2PO4 3.91g/L, K2HPO4 4.48g/L, MgSO4·7H2O 0.18g/L, betaine-HCl 0.15g/L;

微量元素:FeCl3·6H2O 1.5μg/L、CoCl2·6H2O 0.1μg/L、CuCl2·2H2O 0.1μg/L、ZnCl2 0.1μg/L、Na2MoO4·2H2O 0.1μg/L、MnCl2·4H2O 0.2μg/L,H3BO3 0.05μg/L。Trace elements: FeCl3·6H2O 1.5μg/L, CoCl2·6H2O 0.1μg/L, CuCl2·2H2O 0.1μg/L, ZnCl2 0.1μg/L, Na2MoO4·2H2O 0.1μg/L, MnCl2·4H2O 0.2μg/L, H3BO3 0.05μg/L.

发酵培养基大部分和种子培养基相同,区别是葡萄糖浓度为50g/L,发酵培养基还含有5g/L丝氨酸。The fermentation medium is mostly the same as the seed medium, except that the glucose concentration is 50 g/L and the fermentation medium also contains 5 g/L serine.

Span050的发酵包括以下步骤:The fermentation of Span050 includes the following steps:

(1)种子培养:将LB平板上新鲜的克隆接种到含有4ml种子培养基的试管中,37℃,250rpm振荡培养过夜。然后,按照2%(V/V)的接种量将培养物转接到含有30ml种子培养基的250ml三角瓶中,在37℃,250rpm振荡培养12小时得到种子培养液用于发酵培养基接种。(1) Seed culture: Fresh clones from the LB plate were inoculated into a test tube containing 4 ml of seed culture medium and cultured overnight at 37°C, 250 rpm with shaking. Then, the culture was transferred to a 250 ml Erlenmeyer flask containing 30 ml of seed culture medium at an inoculum volume of 2% (V/V) and cultured at 37°C, 250 rpm with shaking for 12 hours to obtain a seed culture solution for inoculation of the fermentation medium.

(2)发酵培养:250ml三角瓶中发酵培养基体积为25ml,将种子培养液按照终浓度OD550=0.1的接种量接种于发酵培养基,37℃,250rpm,发酵60小时,得到发酵液。(2) Fermentation culture: The volume of the fermentation medium in a 250 ml Erlenmeyer flask was 25 ml. The seed culture solution was inoculated into the fermentation medium at an inoculum amount of a final concentration of OD550 = 0.1, and fermented at 37° C., 250 rpm, for 60 hours to obtain a fermentation solution.

分析方法:使用安捷伦(Agilent-1260)高效液相色谱仪对发酵3天的发酵液中的组分进行测定。发酵液中的葡萄糖和泛解酸浓度测定采用伯乐(Biorad)公司的AminexHPX–87H有机酸分析柱。Analysis method: Agilent-1260 high performance liquid chromatograph was used to determine the components in the fermentation broth after 3 days of fermentation. The concentrations of glucose and pantoic acid in the fermentation broth were determined using Biorad's Aminex HPX-87H organic acid analysis column.

结果发现:Span050菌株发酵3天,能够生产1.2g/L的泛解酸,由此可知,Span050菌株中泛解酸合成途径已打通并可以发酵过程中实现泛解酸的积累。The results showed that the Span050 strain could produce 1.2 g/L of pantoic acid after 3 days of fermentation. This showed that the pantoic acid synthesis pathway in the Span050 strain had been opened and pantoic acid accumulation could be achieved during the fermentation process.

实施例27:Span050在5L罐中的发酵Example 27: Fermentation of Span050 in a 5L tank

种子培养基的组成和配制、分析方法同实施例26中所述相同。The composition, preparation and analysis method of the seed culture medium are the same as those described in Example 26.

发酵培养基:葡萄糖30g/L、硫酸镁5g/L、磷酸二氢钾10.5g/L、酵母粉20g/L、磷酸氢二铵6g/L、一水柠檬酸1.84g/L,微量元素同实施例26发酵培养基,溶剂为水。Fermentation medium: glucose 30 g/L, magnesium sulfate 5 g/L, potassium dihydrogen phosphate 10.5 g/L, yeast powder 20 g/L, diammonium hydrogen phosphate 6 g/L, citric acid monohydrate 1.84 g/L, trace elements are the same as the fermentation medium in Example 26, and the solvent is water.

补料培养基:600g/L葡萄糖,溶剂为水。Feed medium: 600 g/L glucose, solvent is water.

发酵在5L发酵罐(上海保兴,BIOTECH-5BG)中进行,包括以下步骤:Fermentation was carried out in a 5L fermenter (BIOTECH-5BG, Shanghai Baoxing), including the following steps:

(1)种子培养:500m L三角瓶中种子培养基为50m L,115℃灭菌15min。冷却后将重组大肠杆菌Span050按照1%(V/V)的接种量接种于种子培养基,在37℃和250rpm的条件下培养12小时得到种子液,用于发酵培养基接种。(1) Seed culture: 50 mL of seed culture medium was placed in a 500 mL Erlenmeyer flask and sterilized at 115°C for 15 min. After cooling, the recombinant E. coli Span050 was inoculated into the seed culture medium at a rate of 1% (V/V) and cultured at 37°C and 250 rpm for 12 hours to obtain a seed solution for inoculation of the fermentation medium.

(2)发酵培养:5L发酵罐中发酵培养基体积为3L,115℃灭菌25min。将种子液按照终浓度OD550=0.2的接种量接种于发酵培养基,溶氧维持30%,用氨水作中和剂pH维持7.0,通过补料培养基将罐内葡萄糖浓度控制在5g/L以下,37℃培养3天,得到发酵液。发酵液为发酵罐内所有物质。(2) Fermentation culture: The volume of the fermentation medium in a 5L fermenter is 3L, and sterilized at 115°C for 25 min. The seed solution is inoculated into the fermentation medium at a final concentration of OD550 = 0.2, the dissolved oxygen is maintained at 30%, and the pH is maintained at 7.0 using ammonia water as a neutralizer. The glucose concentration in the tank is controlled below 5g/L by feeding the medium, and the culture is carried out at 37°C for 3 days to obtain the fermentation broth. The fermentation broth is all the substances in the fermenter.

结果发现:Span050发酵3天后,泛解酸产量达到22g/L,具有很好的工业应用潜力。The results showed that after 3 days of fermentation, the production of pantoic acid in Span050 reached 22 g/L, which has great potential for industrial application.

实施例28:Span096菌株的构建Example 28: Construction of Span096 strain

从Span050出发,使用外源NADH依赖型的乙酰羟基酸还原异构酶KARI(SEQ ID NO:9)替代大肠杆菌NADPH依赖型的IlvC(SEQ ID NO:167)并获得一种新的生产D-泛解酸的重组大肠杆菌Span096。菌株构建过程如下:Starting from Span050, an exogenous NADH-dependent acetohydroxy acid reductoisomerase KARI (SEQ ID NO: 9) was used to replace the NADPH-dependent IlvC (SEQ ID NO: 167) of Escherichia coli to obtain a new recombinant Escherichia coli Span096 that produces D-pantoic acid. The strain construction process is as follows:

第一步,以pXZ-CS质粒(Tan,et al.,Appl Environ Microbiol,2013,79:4838-4844)DNA为模板,使用引物adhE-cs-up/adhE-cs-down扩增出2719bp的DNA片段I,用于第一步同源重组。In the first step, pXZ-CS plasmid (Tan, et al., Appl Environ Microbiol, 2013, 79: 4838-4844) DNA was used as a template and primers adhE-cs-up/adhE-cs-down were used to amplify a 2719 bp DNA fragment I for the first step of homologous recombination.

扩增体系为:NewEngland Biolabs Phusion 5X缓冲液10μl、dNTP(每种dNTP各10mM)1μl、DNA模板20ng、引物(10μM)各2μl、Phusion High-Fidelity DNA聚合酶(2.5U/μl)0.5μl、蒸馏水33.5μl,总体积为50μl。The amplification system was: NewEngland Biolabs Phusion 5X buffer 10 μl, dNTP (10 mM each) 1 μl, DNA template 20 ng, primers (10 μM) 2 μl each, Phusion High-Fidelity DNA polymerase (2.5 U/μl) 0.5 μl, distilled water 33.5 μl, and the total volume was 50 μl.

扩增条件为98℃预变性2分钟(1个循环);98℃变性10秒、56℃退火10秒、72℃延伸2分钟(30个循环);72℃延伸10分钟(1个循环)。The amplification conditions were pre-denaturation at 98°C for 2 minutes (1 cycle); denaturation at 98°C for 10 seconds, annealing at 56°C for 10 seconds, and extension at 72°C for 2 minutes (30 cycles); and extension at 72°C for 10 minutes (1 cycle).

将上述DNA片段I用于第一次同源重组:首先将pKD46质粒(Datsenko andWanner2000,Proc Natl Acad Sci USA97:6640-6645;质粒购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至Span050,然后将DNA片段I电转至带有pKD46的Span050。The above DNA fragment I was used for the first homologous recombination: first, the pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97: 6640-6645; the plasmid was purchased from the CGSC Escherichia coli Collection Center of Yale University, USA, CGSC#7739) was transformed into Span050 by electroporation, and then the DNA fragment I was electroporated into Span050 carrying pKD46.

电转条件为:首先准备带有pKD46质粒的重组大肠杆菌Span050的电转化感受态细胞(Dower et al.,1988,Nucleic Acids Res 16:6127-6145);将50μl感受态细胞置于冰上,加入50ng DNA片段I,冰上放置2分钟,转移至0.2cm的Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1ml LB培养基转移至电击杯中,吹打5次后转移至试管中,75rpm,30℃孵育2小时。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,所用引物XZ-adhE-up/XZ-adhE-down,正确的菌落扩增产物为3167bp的片段,挑选一个正确的单菌落,命名为Span050-CS。The electroporation conditions are as follows: first prepare electroporation competent cells of recombinant Escherichia coli Span050 carrying pKD46 plasmid (Dower et al., 1988, Nucleic Acids Res 16: 6127-6145); place 50 μl competent cells on ice, add 50 ng DNA fragment I, place on ice for 2 minutes, and transfer to a 0.2 cm Bio-Rad electroporation cup. Use MicroPulser (Bio-Rad) electroporator, and the electroporation parameters are 2.5 kV. After electroporation, quickly transfer 1 ml of LB culture medium to the electroporation cup, pipette 5 times, and then transfer to a test tube, incubate at 75 rpm and 30°C for 2 hours. Take 200 μl of bacterial solution and spread it on LB plate containing ampicillin (final concentration of 100 μg/ml) and chloramphenicol (final concentration of 34 μg/ml). After overnight culture at 30°C, select single colonies for PCR verification. The primers used are XZ-adhE-up/XZ-adhE-down. The correct colony amplification product is a fragment of 3167 bp. Select a correct single colony and name it Span050-CS.

第二步,在Span050-CS工程菌中整合乙酰羟基酸还原异构酶kari基因。乙酰羟基酸还原异构酶编码基因kari是根据文献报道(Brinkmann-Chen,S.,Ca hn,J.K.B.&Arnold,F.H.Un co ve ring ra re N ADH-pref e rring ke tol-a cidreductoisomerases.Metab Eng 26,17-22,doi:10.1016/j.ymben.2014.08.003(2014).)的来自Thermacetogenium phaeum菌株的kari序列并经过密码子优化后通过全基因合成获得的(SEQ ID NO:10),合成时在kari基因前加上RBS5人工调控元件(SEQ ID NO:170)用于启动kari基因的表达,插入pUC57载体,构建获得质粒pUC57-RBS5-kari(南京金斯瑞生物科技有限公司完成基因合成和载体构建)。将RBS5人工调控元件和kari基因一起整合到Span050-CS工程菌中并实现kari基因的表达。The second step was to integrate the acetohydroxyacid reductoisomerase kari gene into the Span050-CS engineered bacteria. The acetohydroxyacid reductoisomerase encoding gene kari was obtained by whole gene synthesis based on the kari sequence from Thermacetogenium phaeum strain reported in the literature (Brinkmann-Chen, S., Cahn, J.K.B. & Arnold, F.H. Uncovering rare NADH-preferring key-acid reductoisomerases. Metab Eng 26, 17-22, doi: 10.1016/j.ymben.2014.08.003 (2014).) and after codon optimization (SEQ ID NO: 10). During the synthesis, the RBS5 artificial regulatory element (SEQ ID NO: 170) was added in front of the kari gene to promote the expression of the kari gene, and the gene was inserted into the pUC57 vector to construct the plasmid pUC57-RBS5-kari (gene synthesis and vector construction were completed by Nanjing GenScript Biotechnology Co., Ltd.). The RBS5 artificial regulatory element and the kari gene were integrated into the Span050-CS engineered bacteria to achieve the expression of the kari gene.

以pUC57-RBS5-kari质粒DNA为模板,用引物adhE-RBS5-up/adhE-kari-down扩增出1188bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至Span050-CS。电转条件为:首先使用同第一步相同的步骤准备带有pKD46质粒的Span050-CS的电转化感受态细胞。然后,将50μl感受态细胞置于冰上,加入50ng DNA片段II,冰上放置2分钟,转移至0.2cm的Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1ml LB培养基转移至电击杯中,吹打5次后转移至试管中,75转,30℃孵育4小时。将菌液转移至含有10%蔗糖的没有氯化钠的LB液体培养基,培养24小时后在含有6%蔗糖的没有氯化钠的LB固体培养基上划线培养。使用XZ-adhE-up/XZ-adhE-down进行PCR验证,正确的菌落扩增产物为1454bp的片段,将PCR产物进行测序并挑选一个正确的单菌落,将其命名为Span096。Using pUC57-RBS5-kari plasmid DNA as a template, primers adhE-RBS5-up/adhE-kari-down were used to amplify 1188bp DNA fragment II. DNA fragment II was used for the second homologous recombination. DNA fragment II was electroporated to Span050-CS. The electroporation conditions were as follows: First, prepare electroporation competent cells of Span050-CS with pKD46 plasmid using the same steps as in the first step. Then, place 50μl competent cells on ice, add 50ng DNA fragment II, place on ice for 2 minutes, and transfer to a 0.2cm Bio-Rad electroporation cup. Use MicroPulser (Bio-Rad) electroporator with an electroporation parameter of 2.5kv. After electroporation, quickly transfer 1ml LB culture medium to the electroporation cup, blow 5 times, transfer to a test tube, 75 rpm, and incubate at 30°C for 4 hours. The bacterial liquid was transferred to LB liquid medium without sodium chloride containing 10% sucrose, and after culturing for 24 hours, it was streaked on LB solid medium without sodium chloride containing 6% sucrose. PCR verification was performed using XZ-adhE-up/XZ-adhE-down. The correct colony amplification product was a 1454 bp fragment. The PCR product was sequenced and a correct single colony was selected and named Span096.

Span096菌株以保藏号CGMCC No.26276保藏于CGMCC。The Span096 strain was deposited in CGMCC with the accession number CGMCC No.26276.

实施例29:使用Span096生产泛解酸Example 29: Production of pantoate using Span096

种子培养基由以下成分组成(溶剂为水):The seed culture medium consists of the following components (the solvent is water):

大量元素:葡萄糖20g/L、(NH4)2HPO4 3.5g/L、KH2PO4 3.91g/L、K2HPO4 4.48g/L、MgSO4·7H2O 0.18g/L、甜菜碱-HCl 0.15g/L;Macroelements: glucose 20g/L, (NH4)2HPO4 3.5g/L, KH2PO4 3.91g/L, K2HPO4 4.48g/L, MgSO4·7H2O 0.18g/L, betaine-HCl 0.15g/L;

微量元素:FeCl3·6H2O 1.5μg/L、CoCl2·6H2O 0.1μg/L、CuCl2·2H2O 0.1μg/L、ZnCl2 0.1μg/L、Na2MoO4·2H2O 0.1μg/L、MnCl2·4H2O 0.2μg/L,H3BO3 0.05μg/L。Trace elements: FeCl3·6H2O 1.5μg/L, CoCl2·6H2O 0.1μg/L, CuCl2·2H2O 0.1μg/L, ZnCl2 0.1μg/L, Na2MoO4·2H2O 0.1μg/L, MnCl2·4H2O 0.2μg/L, H3BO3 0.05μg/L.

发酵培养基大部分和种子培养基相同,区别是葡萄糖浓度为50g/L,发酵培养基还含有5g/L丝氨酸。The fermentation medium is mostly the same as the seed medium, except that the glucose concentration is 50 g/L and the fermentation medium also contains 5 g/L serine.

Span096的发酵包括以下步骤:The fermentation of Span096 includes the following steps:

(1)种子培养:将LB平板上新鲜的克隆接种到含有4ml种子培养基的试管中,37℃,250rpm振荡培养过夜。然后,按照2%(V/V)的接种量将培养物转接到含有30ml种子培养基的250ml三角瓶中,在37℃,250rpm振荡培养12小时得到种子培养液用于发酵培养基接种。(1) Seed culture: Fresh clones from the LB plate were inoculated into a test tube containing 4 ml of seed culture medium and cultured overnight at 37°C, 250 rpm with shaking. Then, the culture was transferred to a 250 ml Erlenmeyer flask containing 30 ml of seed culture medium at an inoculum volume of 2% (V/V) and cultured at 37°C, 250 rpm with shaking for 12 hours to obtain a seed culture solution for inoculation of the fermentation medium.

(2)发酵培养:250ml三角瓶中发酵培养基体积为25ml,将种子培养液按照终浓度OD550=0.1的接种量接种于发酵培养基,37℃,250rpm,发酵60小时,得到发酵液。(2) Fermentation culture: The volume of the fermentation medium in a 250 ml Erlenmeyer flask was 25 ml. The seed culture solution was inoculated into the fermentation medium at an inoculum amount of a final concentration of OD550 = 0.1. The fermentation was carried out at 37° C. and 250 rpm for 60 hours to obtain a fermentation solution.

分析方法:使用安捷伦(Agilent-1260)高效液相色谱仪对发酵3天的发酵液中的组分进行测定。发酵液中的葡萄糖和泛解酸浓度测定采用伯乐(Biorad)公司的AminexHPX–87H有机酸分析柱。Analysis method: Agilent-1260 high performance liquid chromatograph was used to determine the components in the fermentation broth after 3 days of fermentation. The concentrations of glucose and pantoic acid in the fermentation broth were determined using Biorad's Aminex HPX-87H organic acid analysis column.

结果发现:Span096菌株发酵3天,能够生产1.8g/L的泛解酸,相对于出发菌株Span050泛解酸产量提高了50%。The results showed that the Span096 strain could produce 1.8 g/L of pantoic acid after 3 days of fermentation, which was 50% higher than that of the starting strain Span050.

实施例30:Span096在5L罐中的发酵Example 30: Fermentation of Span096 in a 5L tank

种子培养基的组成和配制、分析方法同实施例29中所述相同。The composition, preparation and analysis method of the seed culture medium are the same as those described in Example 29.

发酵培养基:葡萄糖30g/L、硫酸镁5g/L、磷酸二氢钾10.5g/L、酵母粉20g/L、磷酸氢二铵6g/L、一水柠檬酸1.84g/L,微量元素同实施例26发酵培养基,溶剂为水。Fermentation medium: glucose 30 g/L, magnesium sulfate 5 g/L, potassium dihydrogen phosphate 10.5 g/L, yeast powder 20 g/L, diammonium hydrogen phosphate 6 g/L, citric acid monohydrate 1.84 g/L, trace elements are the same as the fermentation medium in Example 26, and the solvent is water.

补料培养基:600g/L葡萄糖,溶剂为水。Feed medium: 600 g/L glucose, solvent is water.

发酵在5L发酵罐(上海保兴,BIOTECH-5BG)中进行,包括以下步骤:Fermentation was carried out in a 5L fermenter (BIOTECH-5BG, Shanghai Baoxing), including the following steps:

(1)种子培养:500m L三角瓶中种子培养基为50m L,115℃灭菌15min。冷却后将重组大肠杆菌Span096按照1%(V/V)的接种量接种于种子培养基,在37℃和250rpm的条件下培养12小时得到种子液,用于发酵培养基接种。(1) Seed culture: 50 mL of seed culture medium was placed in a 500 mL Erlenmeyer flask and sterilized at 115°C for 15 min. After cooling, the recombinant E. coli Span096 was inoculated into the seed culture medium at a rate of 1% (V/V), and cultured at 37°C and 250 rpm for 12 hours to obtain a seed solution for inoculation of the fermentation medium.

(2)发酵培养:5L发酵罐中发酵培养基体积为3L,115℃灭菌25min。将种子液按照终浓度OD550=0.2的接种量接种于发酵培养基,溶氧维持30%,用氨水作中和剂pH维持7.0,通过补料培养基将罐内葡萄糖浓度控制在5g/L以下,37℃培养3天,得到发酵液。发酵液为发酵罐内所有物质。(2) Fermentation culture: The volume of the fermentation medium in a 5L fermenter is 3L, and sterilized at 115°C for 25 min. The seed solution is inoculated into the fermentation medium at a final concentration of OD550 = 0.2, the dissolved oxygen is maintained at 30%, and the pH is maintained at 7.0 using ammonia water as a neutralizer. The glucose concentration in the tank is controlled below 5g/L by feeding the medium, and the culture is carried out at 37°C for 3 days to obtain the fermentation broth. The fermentation broth is all the substances in the fermenter.

结果发现:Span096发酵3天后,泛解酸产量达到31g/L,具有很好的工业应用潜力。The results showed that after 3 days of fermentation, the production of pantoic acid in Span096 reached 31 g/L, which has great potential for industrial application.

序列信息:Sequence information:

枯草芽孢杆菌乙酰乳酸合成酶(alsS),氨基酸序列(SEQ ID NO:1):MLTKATKEQKSLVKNRGAELVVDCLVEQGVTHVFGIPGAKIDAVFDALQDKGPEIIVARHEQNAAFMAQAVGRLTGKPGVVLVTSGPGASNLATGLLTANTEGDPVVALAGNVIRADRLKRTHQSLDNAALFQPITKYSVEVQDVKNIPEAVTNAFRIASAGQAGAAFVSFPQDVVNEVTNTKNVRAVAAPKLGPAADDAISAAIAKIQTAKLPVVLVGMKGGRPEAIKAVRKLLKKVQLPFVETYQAAGTLSRDLEDQYFGRIGLFRNQPGDLLLEQADVVLTIGYDPIEYDPKFWNINGDRTIIHLDEIIADIDHAYQPDLELIGDIPSTINHIEHDAVKVEFAEREQKILSDLKQYMHEGEQVPADWKSDRAHPLEIVKELRNAVDDHVTVTCDIGSHAIWMSRYFRSYEPLTLMISNGMQTLGVALPWAIGASLVKPGEKVVSVSGDGGFLFSAMELETAVRLKAPIVHIVWNDSTYDMVAFQQLKKYNRTSAVDFGNIDIVKYAESFGATGLRVESPDQLADVLRQGMNAEGPVIIDVPVDYSDNINLASDKLPKEFGELMKTKALBacillus subtilis acetolactate synthase (alsS), amino acid sequence (SEQ ID NO: 1): MLTKATKEQKSLVKNRGAELVVDCLVEQGVTHVFGIPGAKIDAVFDALQDKGPEIIVARHEQNAAFMAQAVGRLTGKPGVVLVTSGPGASNLATGLLTANTEGDPVVALAGNVIRADRLKRTHQSLDNAALFQPITKYSVEVQDVKNIPEAVTNAFRIASAGQAGAAFVSFPQDVVNEVTNTKNVRAVAAPKLGPAADDAISAAIAKIQTAKLPVVLVGMKGGRPEAIKAVRKLLKKVQLPFVETYQAAGTLSRDLEDQYFGRIGLFRNQPGDLLLEQADVV LTIGYDPIEYDPKFWNINGDRTIIHLDEIIADIDHAYQPDLELIGDIPSTINHIEHDAVKVEFAEREQKILSDLKQYMHEGEQVPADWKSDRAHPLEIVKELRNAVDDHVTVTCDIGSHAIWMSRYFRSYEPLTLMISNGMQTLGVALPWAIGASLVKPGEKVVSVSGDGGFLFSAMELETAVRLKAPIVHIVWNDSTYDMVAFQQLKKYNRTSAVDFGN IDIVKYAESFGATGLRVESPDQLADVLRQGMNAEGPVIIDVPVDYSDNINLASDKLPKEFGELMKTKAL

枯草芽孢杆菌乙酰乳酸合成酶(alsS),核苷酸序列(SEQ ID NO:2):atgttgacaaaagcaacaaaagaacaaaaatcccttgtgaaaaacagaggggcggagcttgttgttgattgcttagtggagcaaggtgtcacacatgtatttggcattccaggtgcaaaaattgatgcggtatttgacgctttacaagataaaggacctgaaattatcgttgcccggcacgaacaaaacgcagcattcatggcccaagcagtcggccgtttaactggaaaaccgggagtcgtgttagtcacatcaggaccgggtgcctctaacttggcaacaggcctgctgacagcgaacactgaaggagaccctgtcgttgcgcttgctggaaacgtgatccgtgcagatcgtttaaaacggacacatcaatctttggataatgcggcgctattccagccgattacaaaatacagtgtagaagttcaagatgtaaaaaatataccggaagctgttacaaatgcatttaggatagcgtcagcagggcaggctggggccgcttttgtgagctttccgcaagatgttgtgaatgaagtcacaaatacgaaaaacgtgcgtgctgttgcagcgccaaaactcggtcctgcagcagatgatgcaatcagtgcggccatagcaaaaatccaaacagcaaaacttcctgtcgttttggtcggcatgaaaggcggaagaccggaagcaattaaagcggttcgcaagcttttgaaaaaggttcagcttccatttgttgaaacatatcaagctgccggtaccctttctagagatttagaggatcaatattttggccgtatcggtttgttccgcaaccagcctggcgatttactgctagagcaggcagatgttgttctgacgatcggctatgacccgattgaatatgatccgaaattctggaatatcaatggagaccggacaattatccatttagacgagattatcgctgacattgatcatgcttaccagcctgatcttgaattgatcggtgacattccgtccacgatcaatcatatcgaacacgatgctgtgaaagtggaatttgcagagcgtgagcagaaaatcctttctgatttaaaacaatatatgcatgaaggtgagcaggtgcctgcagattggaaatcagacagagcgcaccctcttgaaatcgttaaagagttgcgtaatgcagtcgatgatcatgttacagtaacttgcgatatcggttcgcacgccatttggatgtcacgttatttccgcagctacgagccgttaacattaatgatcagtaacggtatgcaaacactcggcgttgcgcttccttgggcaatcggcgcttcattggtgaaaccgggagaaaaagtggtttctgtctctggtgacggcggtttcttattctcagcaatggaattagagacagcagttcgactaaaagcaccaattgtacacattgtatggaacgacagcacatatgacatggttgcattccagcaattgaaaaaatataaccgtacatctgcggtcgatttcggaaatatcgatatcgtgaaatatgcggaaagcttcggagcaactggcttgcgcgtagaatcaccagaccagctggcagatgttctgcgtcaaggcatgaacgctgaaggtcctgtcatcatcgatgtcccggttgactacagtgataacattaatttagcaagtgacaagcttccgaaagaattcggggaactcatgaaaacgaaagctctctagBacillus subtilis acetolactate synthase (alsS), nucleotide sequence (SEQ ID NO: 2): atgttgacaaaagcaacaaaagaacaaaaatcccttgtgaaaaacagaggggcggagcttgttgttgattgcttagtggagcaaggtgtcacacatgtatttggcattccaggtgcaaaaattgatgcggtatttgacgctttacaagataaaggacctgaaattatcgttgcccggcacgaacaaaacgcagcattcatggcccaagc agtcggccgtttaactggaaaaccgggagtcgtgttagtcacatcaggaccgggtgcctctaacttggcaacaggcctgctgacagcgaacactgaaggagaccctgtcgttgcgcttgctggaaacgtgatccgtgcagatcgtttaaaacggacacatcaatctttggataatgcggcgctattccagcc gattacaaaatacagtgtagaag ttcaagatgtaaaaaatataccggaagctgttacaaatgcatttaggatagcgtcagggcaggcaggctggggccgcttttgtgagctttccgcaagatgttgtgaatgaagtcacaaatacgaaaaacgtgcgtgctgttgcagcgccaaaaactcggtcctgcagcagatgatgcaatcagtg cggccatagcaaaaatccaaacagcaaaactt cctgtcgttttggtcggcatgaaaggcggaagaccggaagcaattaaagcggttcgcaagcttttgaaaaaggttcagcttccatttgttgaaacatatcaagctgccggtaccctttctagagatttagaggatcaatattttggccgtatcggtttgttccgcaaccagcctggcgatttactgctagag caggcagatgttgttctgacgatc ggctatgacccgattgaatatgatccgaaattctggaatatcaatggagaccggacaattatccatttagacgagattatcgctgacattgatcatgcttaccagcctgatcttgaattgatcggtgacattccgtccacgatcaatcatatcgaacacgatgctgtgaaagtggaatttgcagagcgtgagcagaaaatcctttctgattta aa acaatatatgcatgaaggtgagcaggtgcctgcagattggaaatcagacagcgcaccctcttgaaatcgttaaagagttgcgtaatgcagtcgatgatcatgttacagtaacttgcgatatcggttcgcacgccatttggatgtcacgttatttccgcagctacgagccgttaacattaatgatcagtaacggtat gcaaacactcggcgttg cgcttccttgggcaatcggcgcttcattggtgaaaccgggagaaaaagtggtttctgtctctggtgacggcggttcttattctcagcaatggaattagacagcagttcgactaaaagcaccaattgtacacattgtatggaacgacagcacatatgacatggttgcattccagcaattgaaaaaataaccgtacat ctgcggtcgatttc ggaaatatcgatatcgtgaaatatgcggaaagcttcggagcaactggcttgcgcgtagaatcaccagaccagctggcgcgtagaatcaccagaccagctggcagatgttctgcgtcaaggcatgaacgctgaaggtcctgtcatcatcgatgtcccggttgactacagtgataacattaatttagcaagtgacaagcttccgaaagaattcggggaactcatgaaaacgaa agctctctag

大肠杆菌的乙酰乳酸合成酶I,氨基酸序列(SEQ ID NO:3)Acetolactate synthase I of Escherichia coli, amino acid sequence (SEQ ID NO: 3)

MASSGTTSTRKRFTGAEFIVHFLEQQGIKIVTGIPGGSILPVYDALSQSTQIRHILARHEQGAGFIAQGMARTDGKPAVMASSGTTSTRKRFTGAEFIVHFLEQQGIKIVTGIPGGSILPVYDALSQSTQIRHILARHEQGAGFIAQGMARTDGKPAV

CMACSGPGATNLVTAIADARLDSIPLICITGQVPASMIGTDAFQEVDTYGISIPITKHNYLVRHIEELPQVMSDAFRIAQCMACSGPGATNLVTAIADARLDSIPLICITGQVPASMIGTDAFQEVDTYGISIPITKHNYLVRHIEELPQVMSDAFRIAQ

SGRPGPVWIDIPKDVQTAVFEIEAQPAVAEKAAAPAFSEESIRDAATMINAAKRPVLYLGGGVINAPARVRELAEKAQSGRPGPVWIDIPKDVQTAVFEIEAQPAVAEKAAAPAFSEESIRDAATMINAAKRPVLYLGGGVINAPARVRELAEKAQ

LPTTMTLMALGMLPKAHPLSLGMLGMHGVRSTNYILQEADLLIVLGARFDDRAIGKTEQFCPNAKIIHVDIDRAELLPTTMTLMALGMLPKAHPLSLGMLGMHGVRSTNYILQEADLLIVLGARRFDDRAIGKTEQFCPNAKIIHVDIDRAEL

GKIKQPHVAIQADVDDVLAQLIPLVEAQPRAEWHQLVADLQREFPCPIPKACDPLSHYGLINAVAACVDDNAIITTDVGKIKQPHVAIQADVDDVLAQLIPLVEAQPRAEWHQLVADLQREFPCPIPKACDPLSHYGLINAVAACVDDNAIITTDV

GQHQMWTAQAYPLNRPRQWLTSGGLGTMGFGLPAAIGAALANPDRKVLCFSGDGSLMMNIQEMATASENQLDVKGQHQMWTAQAYPLNRPRQWLTSGGLGTMGFGLPAAIGAALANPDRKVLCFSGDGSLMMNIQEMATASENQLDVK

IILMNNEALGLVHQQQSLFYEQGVFAATYPGKINFMQIAAGFGLETCDLNNEADPQAALQEIINRPGPALIHVRIDAEIILMNNEALGLVHQQQSLFYEQGVFAATYPGKINFMQIAAGFGLETCDLNNEADPQAALQEIINRPGPALIHVRIDAE

EKVYPMVPPGAANTEMVGEEKVYPMVPPGAANTEMVGE

大肠杆菌的乙酰乳酸合成酶I,核苷酸序列(SEQ ID NO:4)Acetolactate synthase I of Escherichia coli, nucleotide sequence (SEQ ID NO: 4)

atggcaagttcgggcacaacatcgacgcgtaagcgctttaccggcgcagaatttatcgttcatttcctggaacagcagggcattaagattgtgacgggcattccgggcggttctatcctatggcaagttcgggcacaacatcgacgcgtaagcgctttaccggcgcagaatttatcgttcatttcctggaacagcagggcattaagattgtgacgggcattccgggcggttctatcct

gcctgtttacgatgccttaagccaaagtacgcaaatccgccatattctggctcgccatgaacagggcgcgggatttatcgctcagggaatggcgcgcaccgacggtaaaccggcggtgcctgtttacgatgccttaagccaaagtacgcaaatccgccatattctggctcgccatgaacagggcgcgggatttatcgctcagggaatggcgcgcaccgacggtaaaccggcggt

ctgtatggcctgtagcggaccgggtgcgactaacctggtgaccgccattgccgatgcgcggctggactccatcccgctgatttgcatcactggtcaggttcccgcctcgatgatcggcctgtatggcctgtagcggaccgggtgcgactaacctggtgaccgccattgccgatgcgcggctggactccatcccgctgatttgcatcactggtcaggttcccgcctcgatgatcggc

accgacgccttccaggaagtcgacacctacggcatctctatccccatcaccaaacacaactatctggtcagacatatcgaagaactcccgcaggtcatgagcgatgccttccgcattgaccgacgccttccaggaagtcgacacctacggcatctctatccccatcaccaaacacaactatctggtcagacatatcgaagaactcccgcaggtcatgagcgatgccttccgcattg

cgcaatcaggccgcccaggcccggtgtggatagacattcctaaggatgtgcaaacggcggtttttgagattgaagctcagcccgcggtggcagaaaaagccgctgcacccgcctttcgcaatcaggccgcccaggcccggtgtggatagacattcctaaggatgtgcaaacggcggtttttgagattgaagctcagcccgcggtggcagaaaaagccgctgcacccgccttt

agcgaagaaagcattcgtgacgcagctacaatgattaacgctgccaaacgcccggtgctttatctgggtggtggtgtgatcaatgcgcctgcgcgggtgcgtgaactggcggagaaaagcgaagaaagcattcgtgacgcagctacaatgattaacgctgccaaacgcccggtgctttatctgggtggtggtgtgatcaatgcgcctgcgcgggtgcgtgaactggcggagaaa

gcgcaactgcctaccaccatgactttaatggcgctgggcatgctgccaaaagcgcatccgttgtcgctgggtatgctggggatgcacggcgtgcgcagcactaactatatcttgcagggcgcaactgcctaccaccatgactttaatggcgctgggcatgctgccaaaagcgcatccgttgtcgctgggtatgctggggatgcacggcgtgcgcagcactaactatatcttgcagg

aggcggatttactgattgtgctcggtgcgcgttttgatgaccgggcgattggcaaaaccgagcagttctgtccgaatgccaaaatcattcatgtcgatatcgaccgtgcagagctgggtaaggcggatttactgattgtgctcggtgcgcgttttgatgaccgggcgattggcaaaaccgagcagttctgtccgaatgccaaaatcattcatgtcgatatcgaccgtgcagagctgggta

aaatcaagcagccgcatgtggcgattcaggcggatgttgatgacgtgctggcgcagttgatcccgctggtggaagcgcaaccgcgtgcagagtggcaccagttggtagcggatttgaaatcaagcagccgcatgtggcgattcaggcggatgttgatgacgtgctggcgcagttgatcccgctggtggaagcgcaaccgcgtgcagagtggcaccagttggtagcggatttg

cagcgtgagtttccgtgtccaatcccgaaagcgtgcgatccattaagccattacggcctgatcaacgccgttgccgcctgtgtcgatgacaatgcgattatcaccaccgatgtggggcacagcgtgagtttccgtgtccaatcccgaaagcgtgcgatccattaagccattacggcctgatcaacgccgttgccgcctgtgtcgatgacaatgcgattatcaccaccgatgtggggca

gcatcagatgtggaccgcgcaagcttatccgctcaatcgcccacgccagtggctgacctccggtgggctgggcacgatgggttttggcctgcctgcggcgattggcgcggcgctgggcatcagatgtggaccgcgcaagcttatccgctcaatcgcccacgccagtggctgacctccggtgggctgggcacgatgggttttggcctgcctgcggcgattggcgcggcgctgg

cgaacccggatcgcaaagtgttgtgtttctccggcgacggcagcctgatgatgaatattcaggagatggcgaccgccagtgaaaatcagctggatgtcaaaatcattctgatgaacaacgaacccggatcgcaaagtgttgtgtttctccggcgacggcagcctgatgatgaatattcaggagatggcgaccgccagtgaaaatcagctggatgtcaaaatcattctgatgaacaa

cgaagcgctggggctggtgcatcagcaacagagtctgttctacgagcaaggcgtttttgccgccacctatccgggcaaaatcaactttatgcagattgccgccggattcggcctcgaacgaagcgctggggctggtgcatcagcaacagagtctgttctacgagcaaggcgtttttgccgccacctatccgggcaaaatcaactttatgcagattgccgccggattcggcctcgaa

acctgtgatttgaataacgaagccgatccgcaggctgcattgcaggaaatcatcaatcgccctggcccggcgctgatccatgtgcgcattgatgccgaagaaaaagtttacccgatggacctgtgatttgaataacgaagccgatccgcaggctgcattgcaggaaatcatcaatcgccctggcccggcgctgatccatgtgcgcattgatgccgaagaaaaagtttacccgatgg

tgccgccaggtgcggcgaatactgaaatggtgggggaataatgccgccaggtgcggcgaatactgaaatggtgggggaataa

大肠杆菌的乙酰乳酸合成酶II,氨基酸序列(SEQ ID NO:5)Acetolactate synthase II of Escherichia coli, amino acid sequence (SEQ ID NO: 5)

MNGAQWVVHALRAQGVNTVFGYPGGAIMPVYDALYDGGVEHLLCRHEQGAAMAAIGYARATGKTGVCIATSGPMNGAQWVVHALRAQGVNTVFGYPGGAIMPVYDALYDGGVEHLLCRHEQGAAMAAIGYARATGKTGVCIATSGP

GATNLITGLADALLDSIPVVAITGQVSAPFIGTDAFQEVDVLGLSLACTKHSFLVQSLEELPRIMAEAFDVASSGRPGPGATNLITGLADALLDSIPVVAITGQVSAPFIGTDAFQEVDVLGLSLACTKHSFLVQSLEELPRIMAEAFDVASSGRPGP

VLVDIPKDIQLASGDLEPWFTTVENEVTFPHAEVEQARQMLAKAQKPMLYVGGGVGMAQAVPALREFLATTKMPAVLVDIPKDIQLASGDLEPWFTTVENEVTFPHAEVEQARQMLAKAQKPMLYVGGGVGMAQAVPALREFLATTKMPA

TCTLKGLGAVEADYPYYLGMLGMHGTKAANFAVQECDLLIAVGARFDDRVTGKLNTFAPHASVIHMDIDPAEMNKTCTLKGLGAVEADYPYYLGMLGMMHGTKAANFAVQECDLLIAVGARFDDRVTGKLNTFAPHASVIHMDIDPAEMNK

LRQAHVALQGDLNALLPALQQPLNINDWQQHCAQLRDEHAWRYDHPGDAIYAPLLLKQLSDRKPADCVVTTDVGLRQAHVALQGDLNALLPALQQPLNINDWQQHCAQLRDEHAWRYDHPGDAIYAPLLLKQLSDRKPADCVVTTDVG

QHQMWAAQHIAHTRPENFITSSGLGTMGFGLPAAVGAQVARPNDTVVCISGDGSFMMNVQELGTVKRKQLPLKIVQHQMWAAQHIAHTRPENFITTSSGLGTMGFGLPAAVGAQVARPNDTVVCISGDGSFMMNVQELGTVKRKQLPLKIV

LLDNQRLGMVRQWQQLFFQERYSETTLTDNPDFLMLASAFGIPGQHITRKDQVEAALNTMLNSDGPYLLHVSIDELLLDNQRLGMVRQWQQLFFQERYSETTLTDNPDFLMLASAFGIPGQHITRKDQVEAALNTMLNSDGPYLLHVSIDEL

ENVWPLVPPGASNSEMLEKLSENVWPLVPPGASNSEMLEKLS

大肠杆菌的乙酰乳酸合成酶II,核苷酸序列(SEQ ID NO:6)Acetolactate synthase II of Escherichia coli, nucleotide sequence (SEQ ID NO: 6)

atgaatggcgcacagtgggtggtacatgcgttgcgggcacagggtgtgaataccgttttcggttatccgggtggcgcaattatgccggtttacgatgcattgtatgacggcggcgtggaatgaatggcgcacagtgggtggtacatgcgttgcgggcacagggtgtgaataccgttttcggttatccgggtggcgcaattatgccggtttacgatgcattgtatgacggcggcgtgga

gcacttgctgtgccgacatgaacagggtgcggcaatggcggctatcggttatgcccgtgctactggcaaaactggcgtatgtatcgccacgtctggtccgggcgcaaccaacctgatgcacttgctgtgccgacatgaacagggtgcggcaatggcggctatcggttatgcccgtgctactggcaaaactggcgtatgtatcgccacgtctggtccgggcgcaaccaacctgat

aaccgggcttgcggacgcactgttagattccatccccgttgttgccatcaccggtcaagtgtccgcaccgtttatcggcacggacgcatttcaggaagtggatgtcctgggattgtcgctaaccgggcttgcggacgcactgttagattccatccccgttgttgccatcaccggtcaagtgtccgcaccgtttatcggcacggacgcatttcaggaagtggatgtcctgggattgtcgct

agcctgtaccaagcacagcttcctggtgcagtcgctggaagagttgccgcgcatcatggctgaagcattcgacgttgccagctcaggtcgtcctggtccggttctggtcgatatcccaaagcctgtaccaagcacagcttcctggtgcagtcgctggaagagttgccgcgcatcatggctgaagcattcgacgttgccagctcaggtcgtcctggtccggttctggtcgatatcccaa

aagatatccaattagccagcggcgacctggaaccgtggttcaccaccgttgaaaacgaagtgactttcccacatgccgaagtcgagcaagcgcgccagatgctggcaaaagcgcaaagatatccaattagccagcggcgacctggaaccgtggttcaccaccgttgaaaacgaagtgactttcccacatgccgaagtcgagcaagcgcgccagatgctggcaaaagcgca

aaaaccgatgctgtacgttggtggtggcgtgggtatggcgcaggcagttcctgctttacgagaatttctcgctaccacaaaaatgcctgccacctgcacgctgaaagggctgggcgcaaaaaccgatgctgtacgttggtggtggcgtgggtatggcgcaggcagttcctgctttacgagaatttctcgctaccacaaaaatgcctgccacctgcacgctgaaagggctgggcgca

gttgaagcagattatccgtactatctgggcatgctgggaatgcatggcaccaaagcggcgaacttcgcggtgcaggagtgcgacttgctgatcgccgtgggtgcacgttttgatgaccgttgaagcagattatccgtactatctgggcatgctgggaatgcatggcaccaaagcggcgaacttcgcggtgcaggagtgcgacttgctgatcgccgtgggtgcacgttttgatgatgacc

gggtgaccggcaaactgaacaccttcgcaccacacgccagtgttatccatatggatatcgacccggcagaaatgaacaagctgcgtcaggcacatgtggcattacaaggtgatttaagggtgaccggcaaactgaacaccttcgcaccacacgccagtgttatccatatggatatcgacccggcagaaatgaacaagctgcgtcaggcacatgtggcattacaaggtgatttaa

atgctctgttaccagcattacagcagccgttaaatatcaatgactggcagcaacactgcgcgcagctgcgtgatgaacatgcctggcgttacgaccatcccggtgacgctatctacgcgatgctctgttaccagcattacagcagccgttaaatatcaatgactggcagcaacactgcgcgcagctgcgtgatgaacatgcctggcgttacgaccatcccggtgacgctatctacgcg

ccgttgttgttaaaacaactgtcggatcgtaaacctgcggattgcgtcgtgaccacagatgtggggcagcaccagatgtgggctgcgcagcacatcgcccacactcgcccggaaaatccgttgttgttaaaacaactgtcggatcgtaaacctgcggattgcgtcgtgaccacagatgtggggcagcaccagatgtgggctgcgcagcacatcgcccacactcgcccggaaaat

ttcatcacctccagcggcttaggtaccatgggttttggtttaccggcggcggttggcgcacaagtcgcgcgaccgaacgataccgttgtctgtatctccggtgacggctctttcatgatgttcatcacctccagcggcttaggtaccatgggttttggtttaccggcggcggttggcgcacaagtcgcgcgaccgaacgataccgttgtctgtatctccggtgacggctctttcatgatg

aatgtgcaagagctgggcaccgtaaaacgcaagcagttaccgttgaaaatcgtcttactcgataaccaacggttagggatggttcgacaatggcagcaactgttttttcaggaacgataaatgtgcaagagctgggcaccgtaaaacgcaagcagttaccgttgaaaatcgtcttactcgataaccaacggttagggatggttcgacaatggcagcaactgttttttcaggaacgata

cagcgaaaccacccttactgataaccccgatttcctcatgttagccagcgccttcggcatccctggccaacacatcacccgtaaagaccaggttgaagcggcactcaacaccatgctgcagcgaaaccacccttactgataaccccgatttcctcatgttagccagcgccttcggcatccctggccaacacatcacccgtaaagaccaggttgaagcggcactcaacaccatgctg

aacagtgatgggccatacctgcttcatgtctcaatcgacgaacttgagaacgtctggccgctggtgccgccaggtgccagtaattcagaaatgttggagaaattatcatgaaacagtgatgggccatacctgcttcatgtctcaatcgacgaacttgagaacgtctggccgctggtgccgccaggtgccagtaattcagaaatgttggagaaattatcatga

L-缬氨酸反馈抗性乙酰乳酸合成酶III,氨基酸序列(SEQ ID NO:7)L-valine feedback-resistant acetolactate synthase III, amino acid sequence (SEQ ID NO: 7)

MRRILSVLLENESDALFRVIGLFSQRGYNIESLTVAPTDDPTLSRMTIQTVGDEKVLEQIEKQLHKLVDVLRVSELGQMRRILSVLLENESDALFRVIGLFSQRGYNIESLTVAPTDDPTLSRMTIQTVGDEKVLEQIEKQLHKLVDVLRVSELGQ

GAHVEREIMLVKIQASGYGRDEVKRNTEIFRGQIIDVTPSLYTVQLAGTSGKLDAFLASIRDVAKIVEVARSGVVGLSGAHVEREIMLVKIQASGYGRDEVKRNTEIFRGQIIDVTPSLYTVQLAGTSGKLDAFLASIRDVAKIVEVARSGVVGLS

RGDKIMRRGDKIMR

L-缬氨酸反馈抗性乙酰乳酸合成酶III,核苷酸序列(SEQ ID NO:8)L-valine feedback-resistant acetolactate synthase III, nucleotide sequence (SEQ ID NO: 8)

atgcgccggatattatcagtcttactcgaaaatgaatcagacgcgttattccgcgtgattggccttttttcccagcgtggctacaacattgaaagcctgaccgttgcgccaaccgacgatcatgcgccggatattatcagtcttactcgaaaatgaatcagacgcgttattccgcgtgattggccttttttcccagcgtggctacaacattgaaagcctgaccgttgcgccaaccgacgatc

cgacattatcgcgtatgaccatccagaccgtgggcgatgaaaaagtacttgagcagatcgaaaagcaattacacaagctggtcgatgtcttgcgcgtgagtgagttggggcagggcgcgacattatcgcgtatgaccatccagaccgtgggcgatgaaaaagtacttgagcagatcgaaaagcaattacacaagctggtcgatgtcttgcgcgtgagtgagttggggcagggcg

cgcatgttgagcgggaaatcatgctggtgaaaattcaggccagcggttacgggcgtgacgaagtgaaacgtaatacggaaatattccgtgggcaaattatcgatgtcacaccctcgctcgcatgttgagcgggaaatcatgctggtgaaaattcaggccagcggttacgggcgtgacgaagtgaaacgtaatacggaaatattccgtgggcaaattatcgatgtcacaccctcgct

ttataccgttcaattagcaggcaccagcggtaagcttgatgcatttttagcatcgattcgcgatgtggcgaaaattgtggaggttgctcgctctggtgtggtcggactttcgcgcggcgatttataccgttcaattagcaggcaccagcggtaagcttgatgcatttttagcatcgattcgcgatgtggcgaaaattgtggaggttgctcgctctggtgtggtcggactttcgcgcggcgat

aaaataatgcgttgaaaaataatgcgttga

NADH依赖型乙酰羟基酸还原异构酶,氨基酸序列(SEQ ID NO:9)NADH-dependent acetohydroxyacid reductoisomerase, amino acid sequence (SEQ ID NO: 9)

MKIYYDQDADLQYLDGKTVAVIGYGSQGHAQSQNLRDSGVKVVVADIPSSENWKKAEEAQFQPLTADEAAREADIIMKIYYDQDADLQYLDGKTVAVIGYGSQGHAQSQNLRDSGVKVVVADIPSSENWKKAEEAQFQPLTADEAAREADII

QILVPDEKQAALYRESIAPNLRPGKALVFSHGFNIHFKQIVPPPDVDVFMVAPKGPGHLVRRMYEEGAGVPSLVAVEQQILVPDEKQAALYRESIAPNLRPGKALVFSHGFNIHFKQIVPPPDVDVFMVAPKGPGHLVRRMYEEGAGVPSLVAVEQ

DYSGQALNLALAYAKGIGATRAGVIQTTFKEETETDLFGEQAVLCGGITELIRAGFDTLVDAGYQPEIAYFECLHEMKDYSGQALNLALAYAKGIGATRAGVIQTTFKEETETDLFGEQAVLCGGITELIRAGFDTLVDAGYQPEIAYFECLHEMK

LIVDLIYEGGISTMRYSISDTAEYGDLTRGKRIITEATREEMKKILKEIQDGVFAREWLLENQVGRPVYNALRRKEQNLIVDLIYEGGISTMRYSISDTAEYGDLTRGKRIITEATREEMKKILKEIQDGVFAREWLLENQVGRPVYNALRRKEQN

HLIETVGARLRGMMPWLKKKVIHLIETVGARLRGMMPWLKKKVI

NADH依赖型乙酰羟基酸还原异构酶,核苷酸序列(SEQ ID NO:10)NADH-dependent acetohydroxyacid reductoisomerase, nucleotide sequence (SEQ ID NO: 10)

atgaaaatctattacgatcaggacgcggatctgcaatatctggatggcaaaaccgtggctgttatcggctacggttcacagggccatgcgcagtcgcaaaatctgcgtgacagcggtgttaaagtggttgtcgcggatattccgagctctgaaaactggaaaaaagctgaagaagcgcagttccaaccgctgacggctgacgaagcagcccgcgaagcggatattatccagattctggtgccggatgaaaaacaagcagctctgtatcgtgaatcaatcgccccgaatctgcgcccgggcaaagcactggtgtttagccacggcttcaacattcactttaaacagatcgtgccgccgccggacgtcgatgtgtttatggtcgcaccgaaaggtccgggtcacctggtgcgtcgcatgtacgaagaaggcgccggtgttccgtctctggttgcagtcgaacaggactatagtggtcaagccctgaatctggcgctggcctacgcaaaaggcattggtgccacccgtgcaggcgtcatccagaccacgttcaaagaagaaaccgaaaccgacctgtttggtgaacaagccgtcctgtgcggcggtattaccgaactgatccgcgcaggcttcgacaccctggtggatgctggttatcagccggaaattgcgtactttgaatgtctgcatgaaatgaaactgattgttgacctgatctatgaaggcggtatttccaccatgcgttatagtatctccgacaccgctgaatacggcgatctgacgcgtggtaaacgcattatcaccgaagcgacgcgcgaagaaatgaagaaaattctgaaagaaatccaggatggcgtgttcgcccgtgaatggctgctggaaaaccaagtgggtcgcccggtttataatgccctgcgtcgcaaagaacagaaccacctgattgaaaccgtgggcgcacgtctgcgcggtatgatgccgtggctgaagaaaaaagttatctaaatgaaaatctattacgatcaggacgcggatctgcaatatctggatggcaaaaccgtggctgttatcggctacggttcacagggccatgcgcagtcgcaaaatctgcgtgacagcggtgttaaagtggttgtcgcggatattccgagctctgaaaactggaaaaaagctgaagaagcgcagttccaaccgct gacggctgacgaagcagcccgcgaagcggatattatccagattctggtgccggatgaa aaacaagcagctctgtatcgtgaatcaatcgccccgaatctgcgcccgggcaaagcactggtgtttagccacggcttcaacattcactttaaacagatcgtgccgccgccggacgtcgatgtgtttatggtcgcaccgaaaggtccgggtcacctggtgcgtcgcatgtacgaagaaggcgccggtg ttccgtctctggttgcagtcgaacaggactatagtggtcaagccctgaatctggcgctggcct acgcaaaaggcattggtgccacccgtgcaggcgtcatccagaccacgttcaaagaagaaaccgaaaccgacctgtttggtgaacaagccgtcctgtgcggcggtattaccgaactgatccgcgcaggcttcgacaccctggtggatgctggttatcagccggaaattgcgtactttgaatgtctgcatgaaatga aactgattgttgacctgatctatgaaggcggtatttccaccatgcgttatagtat ctccgacaccgctgaatacggcgatctgacgcgtggtaaacgcattatcaccgaagcgacgcgcgaagaaatgaagaaaattctgaaagaaatccaggatggcgtgttcgcccgtgaatggctgctggaaaaccaagtgggtcgcccggtttataatgcccggtttataatgccctgcgtcgcaaagaacagaaccacctgattgaa accgtgggcgcacgtctgcgcggtatgatgccgtggctgaagaaaaaagttatctaa

二羟酸脱水酶,氨基酸序列(SEQ ID NO:11)Dihydroxyacid dehydratase, amino acid sequence (SEQ ID NO: 11)

MPKYRSATTTHGRNMAGARALWRATGMTDADFGKPIIAVVNSFTQFVPGHVHLRDLGKLVAEQIEAAGGVAKEFNMPKYRSATTTHGRNMAGARALWRATGMTDADFGKPIIAVVNSFTQFVPGHVHLRDLGKLVAEQIEAAGGVAKEFN

TIAVDDGIAMGHGGMLYSLPSRELIADSVEYMVNAHCADAMVCISNCDKITPGMLMASLRLNIPVIFVSGGPMEAGTIAVDDGIAMGHGGGMLYSLPSRELIADSVEYMVNAHCADAMVCISNCDKITPGMLMASLRLNIPVIFVSGGPMEAG

KTKLSDQIIKLDLVDAMIQGADPKVSDSQSDQVERSACPTCGSCSGMFTANSMNCLTEALGLSQPGNGSLLATHADKTKLSDQIIKLDLVDAMIQGADPKVSDSQSDQVERSACPTCGSCSGMFTANSMNCLTEALGLSQPGNGSLLATHAD

RKQLFLNAGKRIVELTKRYYEQNDESALPRNIASKAAFENAMTLDIAMGGSTNTVLHLLAAAQEAEIDFTMSDIDKRKQLFLNAGKRIVELTKRYYEQNDESALPRNIASKAAFENAMTLDIAMGGSTNTVLHLLAAAQEAEIDFTMSDIDK

LSRKVPQLCKVAPSTQKYHMEDVHRAGGVIGILGELDRAGLLNRDVKNVLGLTLPQTLEQYDVMLTQDDAVKNMFLSRKVPQLCKVAPSTQKYHMEDVHRAGGVIGILGELDRAGLLNRDVKNVLGLTLPQTLEQYDVMLTQDDAVKNMF

RAGPAGIRTTQAFSQDCRWDTLDDDRANGCIRSLEHAYSKDGGLAVLYGNFAENGCIVKTAGVDDSILKFTGPAKVRAGPAGIRTTQAFSQDCRWDTLDDDRANGCIRSLEHAYSKDGGLAVLYGNFAENGCIVKTAGVDDSILKFTGPAKV

YESQDDAVEAILGGKVVAGDVVVIRYEGPKGGPGMQEMLYPTSFLKSMGLGKACALITDGRFSGGTSGLSIGHVSPYESQDDAVEAILGGKVVAGDVVVIRYEGPKGPGGMQEMLYPTSFLKSMGLGKACALITDGRFSGGTSGLSIGHVSP

EAASGGSIGLIEDGDLIAIDIPNRGIQLQVSDAELAARREAQDARGDKAWTPKNRERQVSFALRAYASLATSADKGAEAASGGSIGLIEDGDLIAIDIPNRGIQLQVSDAELAARREAQDARGDKAWTPKNRERQVSFALRAYASLATSADKGA

VRDKSKLGGVRDKSKLGG

二羟酸脱水酶,核苷酸序列(SEQ ID NO:12)Dihydroxyacid dehydratase, nucleotide sequence (SEQ ID NO: 12)

atgcctaagtaccgttccgccaccaccactcatggtcgtaatatggcgggtgctcgtgcgctgtggcgcgccaccggaatgaccgacgccgatttcggtaagccgattatcgcggttgatgcctaagtaccgttccgccaccaccactcatggtcgtaatatggcgggtgctcgtgcgctgtggcgcgccaccggaatgaccgacgccgatttcggtaagccgattatcgcggttg

tgaactcgttcacccaatttgtaccgggtcacgtccatctgcgcgatctcggtaaactggtcgccgaacaaattgaagcggctggcggcgttgccaaagagttcaacaccattgcggtgtgaactcgttcacccaatttgtaccgggtcacgtccatctgcgcgatctcggtaaactggtcgccgaacaaattgaagcggctggcggcgttgccaaagagttcaacaccattgcggtg

gatgatgggattgccatgggccacggggggatgctttattcactgccatctcgcgaactgatcgctgattccgttgagtatatggtcaacgcccactgcgccgacgccatggtctgcatgatgatgggattgccatgggccacggggggatgctttattcactgccatctcgcgaactgatcgctgattccgttgagtatatggtcaacgcccactgcgccgacgccatggtctgcat

ctctaactgcgacaaaatcaccccggggatgctgatggcttccctgcgcctgaatattccggtgatctttgtttccggcggcccgatggaggccgggaaaaccaaactttccgatcagactctaactgcgacaaaatcaccccggggatgctgatggcttccctgcgcctgaatattccggtgatctttgtttccggcggcccgatggaggccgggaaaaccaaactttccgatcaga

tcatcaagctcgatctggttgatgcgatgatccagggcgcagacccgaaagtatctgactcccagagcgatcaggttgaacgttccgcgtgtccgacctgcggttcctgctccgggattcatcaagctcgatctggttgatgcgatgatccagggcgcagacccgaaagtatctgactcccagagcgatcaggttgaacgttccgcgtgtccgacctgcggttcctgctccggggat

gtttaccgctaactcaatgaactgcctgaccgaagcgctgggcctgtcgcagccgggcaacggctcgctgctggcaacccacgccgaccgtaagcagctgttccttaatgctggtaagtttaccgctaactcaatgaactgcctgaccgaagcgctgggcctgtcgcagccgggcaacggctcgctgctggcaacccacgccgaccgtaagcagctgttccttaatgctggtaa

acgcattgttgaattgaccaaacgttattacgagcaaaacgacgaaagtgcactgccgcgtaatatcgccagtaaggcggcgtttgaaaacgccatgacgctggatatcgcgatgggtacgcattgttgaattgaccaaacgttattacgagcaaaacgacgaaagtgcactgccgcgtaatatcgccagtaaggcggcgtttgaaaacgccatgacgctggatatcgcgatgggt

ggatcgactaacaccgtacttcacctgctggcggcggcgcaggaagcggaaatcgacttcaccatgagtgatatcgataagctttcccgcaaggttccacagctgtgtaaagttgcgcggatcgactaacaccgtacttcacctgctggcggcggcgcaggaagcggaaatcgacttcaccatgagtgatatcgataagctttcccgcaaggttccacagctgtgtaaagttgcgc

cgagcacccagaaataccatatggaagatgttcaccgtgctggtggtgttatcggtattctcggcgaactggatcgcgcggggttactgaaccgtgatgtgaaaaacgtacttggcctgcgagcacccagaaataccatatggaagatgttcaccgtgctggtggtgttatcggtattctcggcgaactggatcgcgcggggttatgaaccgtgatgtgaaaaacgtacttggcctg

acgttgccgcaaacgctggaacaatacgacgttatgctgacccaggatgacgcggtaaaaaatatgttccgcgcaggtcctgcaggcattcgtaccacacaggcattctcgcaagattacgttgccgcaaacgctggaacaatacgacgttatgctgacccaggatgacgcggtaaaaaatatgttccgcgcaggtcctgcaggcattcgtaccacacaggcattctcgcaagatt

gccgttgggatacgctggacgacgatcgcgccaatggctgtatccgctcgctggaacacgcctacagcaaagacggcggcctggcggtgctctacggtaactttgcggaaaacgggccgttgggatacgctggacgacgatcgcgccaatggctgtatccgctcgctggaacacgcctacagcaaagacggcggcctggcggtgctctacggtaactttgcggaaaacgg

ctgcatcgtgaaaacggcaggcgtcgatgacagcatcctcaaattcaccggcccggcgaaagtgtacgaaagccaggacgatgcggtagaagcgattctcggcggtaaagttgtcctgcatcgtgaaaacggcaggcgtcgatgacagcatcctcaaattcaccggcccggcgaaagtgtacgaaagccaggacgatgcggtagaagcgattctcggcggtaaagttgtc

gccggagatgtggtagtaattcgctatgaaggcccgaaaggcggtccggggatgcaggaaatgctctacccaaccagcttcctgaaatcaatgggtctcggcaaagcctgtgcgctgccggagatgtggtagtaattcgctatgaaggcccgaaaggcggtccggggatgcaggaaatgctctacccaaccagcttcctgaaatcaatgggtctcggcaaagcctgtgcgct

gatcaccgacggtcgtttctctggtggcacctctggtctttccatcggccacgtctcaccggaagcggcaagcggcggcagcattggcctgattgaagatggtgacctgatcgctatcgatcaccgacggtcgtttctctggtggcacctctggtctttccatcggccacgtctcaccggaagcggcaagcggcggcagcattggcctgattgaagatggtgacctgatcgctatc

gacatcccgaaccgtggcattcagttacaggtaagcgatgccgaactggcggcgcgtcgtgaagcgcaggacgctcgaggtgacaaagcctggacgccgaaaaatcgtgaacgtgacatcccgaaccgtggcattcagttacaggtaagcgatgccgaactggcggcgcgtcgtgaagcgcaggacgctcgaggtgacaaagcctggacgccgaaaaatcgtgaacgt

caggtctcctttgccctgcgtgcttatgccagcctggcaaccagcgccgacaaaggcgcggtgcgcgataaatcgaaactggggggttaacaggtctcctttgccctgcgtgcttatgccagcctggcaaccagcgccgacaaaggcgcggtgcgcgataaatcgaaactggggggttaa

谷氨酸棒杆菌3-甲基-2-氧代丁酸羟甲基转移酶,氨基酸序列(SEQ ID NO:13)MPMSGIDAKKIRTRHFREAKVNGQKVSVLTSYDALSARIFDEAGVDMLLVGDSAANVVLGRDTTLSITLDEMIVLAKAVTIATKRALVVVDLPFGTYEVSPNQAVESAIRVMRETGAAAVKIEGGVEIAQTIRRIVDAGIPVVGHIGYTPQSEHSLGGHVVQGRGASSGKLIADARALEQAGAFAVVLEMVPAEAAREVTEDLSITTIGIGAGNGTDGQVLVWQDAFGLNRGKKPRFVREYATLGDSLHDAAQAYIADIHAGTFPGEAESFCorynebacterium glutamicum 3-methyl-2-oxobutanoate hydroxymethyltransferase, amino acid sequence (SEQ ID NO: 13)MPMSGIDAKKIRTRHFREAKVNGQKVSVLTSYDALSARIFDEAGVDMLLVGDSAANVVLGRDTTLSITLDEMIVLAKAVTIATKRALVVVDLPFGTYEVSPNQAVESAIRVMRETGAAAVKIEGGVEIAQTIRRIVDAGIPVVGHIGYTPQSEHSLGGHVVQGRGASSGKLIADARALEQAGAFAVVLEMVPAEAAREVTEDLSITTIGIGAGNGTDGQVLVWQDAFGLNRGKKPRFVREYATLGDSLHDAAQAYIADIHAGTFPGEAESF

谷氨酸棒杆菌3-甲基-2-氧代丁酸羟甲基转移酶,核苷酸序列(SEQ ID NO:14)atgcccatgtcaggcattgatgcaaagaaaatccgcacccgtcatttccgcgaagctaaagtaaacggccagaaagtttcggttctcaccagctatgatgcgctttcggcgcgcatttttgatgaggctggcgtcgatatgctccttgttggtgattccgctgccaacgttgtgctgggtcgcgataccaccttgtcgatcaccttggatgagatgattgtgctggccaaggcggtgacgatcgctacgaagcgtgcgcttgtggtggttgatctgccgtttggtacctatgaggtgagcccaaatcaggcggtggagtccgcgatccgggtcatgcgtgaaacgggtgcggctgcggtgaagatcgagggtggcgtggagatcgcgcagacgattcgacgcattgttgatgctggaattccggttgtcggccacatcgggtacaccccgcagtccgagcattccttgggcggccacgtggttcagggtcgtggcgcgagttctggaaagctcatcgccgatgcccgcgcgttggagcaggcgggtgcgtttgcggttgtgttggagatggttccagcagaggcagcgcgcgaggttaccgaggatctttccatcaccactatcggaatcggtgccggcaatggcacagatgggcaggttttggtgtggcaggatgccttcggcctcaaccgcggcaagaagccacgcttcgtccgcgagtacgccaccttgggcgattccttgcacgacgccgcgcaggcctacatcgccgatatccacgcgggtaccttcccaggcgaagcggagtccttttaaCorynebacterium glutamicum 3-methyl-2-oxobutyrate hydroxymethyltransferase, nucleotide sequence (SEQ ID NO: 14) atgcccatgtcaggcattgatgcaaagaaaatccgcacccgtcatttccgcgaagctaaagtaaacggccagaaagtttcggttctcaccagctatgatgcgctttcggcgcgcatttttgatgaggctggcgtcgatatgctccttgttggtgattccgctgccaacgttgtgctgggtcgcgataccaccttgtcga tcaccttggatgagatgattgtgctggccaaggcggtgacgatcgctacgaagcgtgcgcttgtggtggttgatctgccgtttggtacctatgaggtgagcccaaatcaggcggtggagtccgcgatccgggtcatgcgtgaaacgggtgcggctgcggtgaagatcgagggtggcgtgg agatcgcgcagacgattcgacgcatt gttgatgctggaattccggttgtcggccacatcgggtacaccccgcagtccgagcattccttgggcggccacgtggttcagggtcgtggcgcgagttctggaaagctcatcgccgatgcccgcgcgttggagcaggcgggtgcgtttgcggttgtgttggagatggttccagcagagg cagcgcgcgaggttaccgaggatcttt ccatcaccactatcggaatcggtgccggcaatggcacagatgggcaggcaggttttggtgtggcaggatgccttcggcctcaaccgcggcaagaagccacgcttcgtccgcgagtacgccaccttgggcgattccttgcacgacgccgcgcaggcctacatcgccgatatccacgcgggtaccttcccaggcgaagc ggagtccttttaa

大肠杆菌3-甲基-2-氧代丁酸羟甲基转移酶,氨基酸序列(SEQ ID NO:15)Escherichia coli 3-methyl-2-oxobutyrate hydroxymethyltransferase, amino acid sequence (SEQ ID NO: 15)

MKPTTISLLQKYKQEKKRFATITAYDYSFAKLFADEGLNVMLVGDSLGMTVQGHDSTLPVTVADIAYHTAAVRRGAMKPTTISLLQKYKQEKKRFATITAYDYSFAKLFADEGLNVMLVGDSLGMTVQGHDSTLPVTVADIAYHTAAVRRGA

PNCLLLADLPFMAYATPEQAFENAATVMRAGANMVKIEGGEWLVETVQMLTERAVPVCGHLGLTPQSVNIFGGYKPNCLLLADLPFMAYATPEQAFENAATVMRAGANMVKIEGGEWLVETVQMLTERAVPVCGHLGLTPQSVNIFGGYK

VQGRGDEAGDQLLSDALALEAAGAQLLVLECVPVELAKRITEALAIPVIGIGAGNVTDGQILVMHDAFGITGGHIPKVQGRGDEAGDQLLSDALALEAAGAQLLVLECPVVELAKRITEALAIPVIGIGAGNVTDGQILVMHDAFGITGGHIPK

FAKNFLAETGDIRAAVRQYMAEVESGVYPGEEHSFHFAKNFLAETGDIRAAVRQYMAEVESGVYPGEEHSFH

大肠杆菌3-甲基-2-氧代丁酸羟甲基转移酶,核苷酸序列(SEQ ID NO:16)Escherichia coli 3-methyl-2-oxobutyrate hydroxymethyltransferase, nucleotide sequence (SEQ ID NO: 16)

ttaatggaaactgtgttcttcgcccggataaacgccggactccacttcagccatatactgccgcacagccgcgcggatgtcgcccgtttcggcgaggaaatttttagcgaatttaggaatttaatggaaactgtgttcttcgcccggataaacgccggactccacttcagccatatactgccgcacagccgcgcggatgtcgcccgtttcggcgaggaaatttttagcgaatttaggaat

gtgaccgccggtaataccaaaggcgtcgtgcatcacgaggatctgcccgtcagtgacgttgcctgcgccaatgccaataaccgggatcgccagtgcttcggtaatacgttttgccagtgtgaccgccggtaataccaaaggcgtcgtgcatcacgaggatctgcccgtcagtgacgttgcctgcgccaatgccaataaccgggatcgccagtgcttcggtaatacgttttgccagt

tcaaccggcacgcattccagcaccagcagctgtgccccagcagcttctaaggctaatgcatcgctgagcagttgatcgcccgcttcatcgccgcgcccctgaactttgtagccaccgatcaaccggcacgcattccagcaccagcagctgtgccccagcagcttctaaggctaatgcatcgctgagcagttgatcgcccgcttcatcgccgcgcccctgaactttgtagccaccga

aaatattcactgactgtggtgttaaacctaagtgaccacatacaggaacggcacgttcggtcagcatttgtacggtttctaccagccactcaccgccttcaattttgaccatgttagcaccgaaatattcactgactgtggtgttaaacctaagtgaccacatacaggaacggcacgttcggtcagcatttgtacggtttctaccagccactcaccgccttcaattttgaccatgttagcaccg

gcacgcataaccgttgcggcgttttcgaaggcttgttccggcgtggcatacgccataaacggcaggtcagccagcagcaggcagtttggtgcgccgcgacgtacggcggcagtgtggcacgcataaccgttgcggcgttttcgaaggcttgttccggcgtggcatacgccataaacggcaggtcagccagcagcagcagcagtttggtgcgccgcgacgtacggcggcagtgtg

gtaggcgatatcggcaacggtaactggcagggtggagtcgtgcccctgaaccgtcatgcccagcgaatcgcccaccagcatgacgttaagcccttcatcagcaaagagtttggcgagtaggcgatatcggcaacggtaactggcagggtggagtcgtgcccctgaaccgtcatgcccagcgaatcgcccaccagcatgacgttaagcccttcatcagcaaagagtttggcga

agctatagtcataagcggtgatggtcgcgaaacgttttttttcctgtttgtacttctgcagtaaggagatggtggtcggtttcatagctatagtcataagcggtgatggtcgcgaaacgttttttttcctgtttgtacttctgcagtaaggagatggtggtcggtttcat

2-脱氢泛酸酯-2-还原酶,氨基酸序列(SEQ ID NO:17)2-Dehydropantothenate-2-reductase, amino acid sequence (SEQ ID NO: 17)

MKITVLGCGALGQLWLTALCKQGHEVQGWLRVPQPYCSVNLVETDGSIFNESLTANDPDFLATSDLLLVTLKAWQVMKITVLGCGALGQLWLTALCKQGHEVQGWLRVPQPYCSVNLVETDGSIFNESLTANDPDFLATSDLLLVTLKAWQV

SDAVKSLASTLPVTTPILLIHNGMGTIEELQNIQQPLLMGTTTHAARRDGNVIIHVANGITHIGPARQQDGDYSYLADISDAVKSLASTLPVTTPILLIHNGMGTIEELQNIQQPLLMGTTTHAARRDGNVIIHVANGITHIGPARQQDGDYSYLADI

LQTVLPDVAWHNNIRAELWRKLAVNCVINPLTAIWNCPNGELRHHPQEIMQICEEVAAVIEREGHHTSAEDLRDYVMLQTVLPDVAWHNNIRAELWRKLAVNCVINPLTAIWNCPNGELRHHPQEIMQICEEVAAVIEREGHHTSAEDLRDYVM

QVIDATAENISSMLQDIRALRHTEIDYINGFLLRRARAHGIAVPENTRLFEMVKRKESEYERIGTGLPRPWQVIDATAENISSMLQDIRALRHTEIDYINGFLLRRARAHGIAVPENTRLFEMVKRKESEYERIGTGLPRPW

2-脱氢泛酸酯-2-还原酶,核苷酸序列(SEQ ID NO:18)2-Dehydropantothenate-2-reductase, nucleotide sequence (SEQ ID NO: 18)

atgaaaattaccgtattgggatgcggtgccttagggcaattatggcttacagcactttgcaaacagggtcatgaagttcagggctggctgcgcgtaccgcaaccttattgtagcgtgaatatgaaaattaccgtattggggatgcggtgccttagggcaattatggcttacagcactttgcaaacagggtcatgaagttcagggctggctgcgcgtaccgcaaccttattgtagcgtgaat

ctggttgagacagatggttcgatatttaacgaatcgctgaccgccaacgatcccgattttctcgccaccagcgatctgctcctggtgacgctgaaagcatggcaggtttccgatgccgtcctggttgagacagatggttcgatatttaacgaatcgctgaccgccaacgatcccgattttctcgccaccagcgatctgctcctggtgacgctgaaagcatggcaggtttccgatgccgtc

aaaagcctcgcgtccacactgcctgtaactacgccaatactgttaattcacaacggcatgggcaccatcgaagagttgcaaaacattcagcagccattactgatgggcaccaccacccaaaagcctcgcgtccacactgcctgtaactacgccaatactgttaattcacaacggcatgggcaccatcgaagagttgcaaaacattcagcagccattactgatgggcaccacccaccc

atgcagcccgccgcgacggcaatgtcattattcatgtggcaaacggtatcacgcatattggcccggcacggcaacaggacggggattacagttatctggcggatattttgcaaaccgtatgcagcccgccgcgacggcaatgtcattattcatgtggcaaacggtatcacgcatattggcccggcacggcaacaggacggggattacagttatctggcggatattttgcaaaccgt

gttgcctgacgttgcctggcataacaatattcgcgccgagctgtggcgcaagctggcagtcaactgcgtgattaatccactgactgccatctggaattgcccgaacggtgaattacgtcgttgcctgacgttgcctggcataacaatattcgcgccgagctgtggcgcaagctggcagtcaactgcgtgattaatccactgactgccatctggaattgcccgaacggtgaattacgtc

atcatccgcaagaaattatgcagatatgcgaagaagtcgcggcggtgatcgaacgcgaagggcatcatacttcagcagaagatttgcgtgattacgtgatgcaggtgattgatgccacatcatccgcaagaaattatgcagatatgcgaagaagtcgcggcggtgatcgaacgcgaagggcatcatacttcagcagaagatttgcgtgattacgtgatgcaggtgattgatgccac

agcggaaaatatctcgtcgatgttgcaggatatccgcgcgctgcgccacactgaaatcgactatatcaatggttttctcttacgccgcgcccgcgcgcatgggattgccgtaccggaaaagcggaaaatatctcgtcgatgttgcaggatatccgcgcgctgcgccacactgaaatcgactatatcaatggtttctcttacgccgcgcccgcgcgcatgggattgccgtaccggaaa

acacccgcctgtttgaaatggtaaaaagaaaggagagtgaatatgagcgcatcggcactggtttgcctcgcccctggtagacacccgcctgtttgaaatggtaaaaagaaaggagagtgaatatgagcgcatcggcactggtttgcctcgcccctggtag

丝氨酸羟甲基转移酶,氨基酸序列(SEQ ID NO:19)Serine hydroxymethyltransferase, amino acid sequence (SEQ ID NO: 19)

MLKREMNIADYDAELWQAMEQEKVRQEEHIELIASENYTSPRVMQAQGSQLTNKYAEGYPGKRYYGGCEYVDIVEMLKREMNIADYDAELWQAMEQEKVRQEEHIELIASENYTSPRVMQAQGSQLTNKYAEGYPGKRYYGGCEYVDIVE

QLAIDRAKELFGADYANVQPHSGSQANFAVYTALLEPGDTVLGMNLAHGGHLTHGSPVNFSGKLYNIVPYGIDATGQLAIDRAKELFGADYANVQPHSGSQANFAVYTALLEPGDTVLGMNLAHGGHLTHGSPVNFSGKLYNIVPYGIDATG

HIDYADLEKQAKEHKPKMIIGGFSAYSGVVDWAKMREIADSIGAYLFVDMAHVAGLVAAGVYPNPVPHAHVVTTTHIDYADLEKQAKEHKPKMIIGGFSAYSGVVDWAKMREIADSIGAYLFVDMAHVAGLVAAGVYPNPVPHAHVVTTT

THKTLAGPRGGLILAKGGSEELYKKLNSAVFPGGQGGPLMHVIAGKAVALKEAMEPEFKTYQQQVAKNAKAMVEVTHKTLAGPRGGLILAKGGSEELYKKLNSAVFPGGQGGPLMHVIAGKAVALKEAMEPEFKTYQQQVAKNAKAMVEV

FLERGYKVVSGGTDNHLFLVDLVDKNLTGKEADAALGRANITVNKNSVPNDPKSPFVTSGIRVGTPAITRRGFKEAEFLERGYKVVSGGTDNHLFLVDLVDKNLTGKEADAALGRANITVNKNSVPNDPKSPFVTSGIRVGTPAITRRGFKEAE

AKELAGWMCDVLDSINDEAVIERIKGKVLDICARYPVYAAKELAGWMCDVLDSINDEAVIERIKGKVLDICARYPVYA

丝氨酸羟甲基转移酶,核苷酸序列(SEQ ID NO:20)Serine hydroxymethyltransferase, nucleotide sequence (SEQ ID NO: 20)

atgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaagtacgtcaggaagagcacatcgaactgatcgcctccgaaaactacaccatgttaaagcgtgaaatgaacattgccgattatgatgccgaactgtggcaggctatggagcaggaaaaagtacgtcaggaagagcacatcgaactgatcgcctccgaaaactacacc

agcccgcgcgtaatgcaggcgcagggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacggcggttgcgagtatgttgatatcgttgaacaactggcgagcccgcgcgtaatgcaggcgcagggttctcagctgaccaacaaatatgctgaaggttatccgggcaaacgctactacggcggttgcgagtatgttgatatcgttgaacaactggcg

atcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccggctcccaggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctggatcgatcgtgcgaaagaactgttcggcgctgactacgctaacgtccagccgcactccggctcccaggctaactttgcggtctacaccgcgctgctggaaccaggtgataccgttctgg

gtatgaacctggcgcatggcggtcacctgactcacggttctccggttaacttctccggtaaactgtacaacatcgttccttacggtatcgatgctaccggtcatatcgactacgccgatctgtatgaacctggcgcatggcggtcacctgactcacggttctccggttaacttctccggtaaactgtacaacatcgttccttacggtatcgatgctaccggtcatatcgactacgccgatct

ggaaaaacaagccaaagaacacaagccgaaaatgattatcggtggtttctctgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctgggaaaaacaagccaaagaacacaagccgaaaatgattatcggtggtttctctgcatattccggcgtggtggactgggcgaaaatgcgtgaaatcgctgacagcatcggtgcttacctg

ttcgttgatatggcgcacgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccactcacaaaaccctggcgggtccgcgcggcggttcgttgatatggcgcacgttgcgggcctggttgctgctggcgtctacccgaacccggttcctcatgctcacgttgttactaccaccactcacaaaaccctggcgggtccgcgcggcgg

cctgatcctggcgaaaggtggtagcgaagagctgtacaaaaaactgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgccggtaaagcggttgctctgcctgatcctggcgaaaggtggtagcgaagagctgtacaaaaaactgaactctgccgttttccctggtggtcagggcggtccgttgatgcacgtaatcgccggtaaagcggttgctctg

aaagaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtgttcctcgagcgcggctacaaagtggtttccggcggcactgaaaagaagcgatggagcctgagttcaaaacttaccagcagcaggtcgctaaaaacgctaaagcgatggtagaagtgttcctcgagcgcggctacaaagtggtttccggcggcactga

taaccacctgttcctggttgatctggttgataaaaacctgaccggtaaagaagcagacgccgctctgggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaacgatccgaataaccacctgttcctggttgatctggttgataaaaacctgaccggtaaagaagcagacgccgctctgggccgtgctaacatcaccgtcaacaaaaacagcgtaccgaacgatccgaa

gagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacccgtcgcggctttaaagaagccgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatcgagcccgtttgtgacctccggtattcgtgtaggtactccggcgattacccgtcgcggctttaaagaagccgaagcgaaagaactggctggctggatgtgtgacgtgctggacagcatc

aatgatgaagccgttatcgagcgcatcaaaggtaaagttctcgacatctgcgcacgttacccggtttacgcataaaatgatgaagccgttatcgagcgcatcaaaggtaaagttctcgacatctgcgcacgttacccggtttacgcataa

氨甲基转移酶,氨基酸序列(SEQ ID NO:21)Aminomethyltransferase, amino acid sequence (SEQ ID NO: 21)

MAQQTPLYEQHTLCGARMVDFHGWMMPLHYGSQIDEHHAVRTDAGMFDVSHMTIVDLRGSRTREFLRYLLANDVMAQQTPLYEQHTLCGARMVDFHGWMMPLHYGSQIDEHHAVRTDAGMFDVSHMTIVDLRGSRTREFLRYLLANDV

AKLTKSGKALYSGMLNASGGVIDDLIVYYFTEDFFRLVVNSATREKDLSWITQHAEPFGIEITVRDDLSMIAVQGPNAAKLTKSGKALYSGMLNASGGVIDDLIVYYFTEDFFRLVVNSATREKDLSWITQHAEPFGIEITVRDDLSMIAVQGPNA

QAKAATLFNDAQRQAVEGMKPFFGVQAGDLFIATTGYTGEAGYEIALPNEKAADFWRALVEAGVKPCGLGARDTLQAKAATLFNDAQRQAVEGMKPFFGVQAGDLFIATTGYTGEAGYEIALPNEKAADFWRALVEAGVKPCGLGARDTL

RLEAGMNLYGQEMDETISPLAANMGWTIAWEPADRDFIGREALEVQREHGTEKLVGLVMTEKGVLRNELPVRFTDRLEAGMNLYGQEMDETISPLAANMGWTIAWEPADRDFIGREALEVQREHGTEKLVGLVMTEKGVLRNELPVRFTD

AQGNQHEGIITSGTFSPTLGYSIALARVPEGIGETAIVQIRNREMPVKVTKPVFVRNGKAVAAQGNQHEGIITSGTFSPTLGYSIALARVPEGIGETAIVQIRNREMPVKVTKPVFVRNGKAVA

氨甲基转移酶,核苷酸序列(SEQ ID NO:22)Aminomethyltransferase, nucleotide sequence (SEQ ID NO: 22)

atggcacaacagactcctttgtacgaacaacacacgctttgcggcgctcgcatggtggatttccacggctggatgatgccgttgcattacggttcgcaaatcgacgaacatcatgcggtatggcacaacagactcctttgtacgaacaacacacgctttgcggcgctcgcatggtggatttccacggctggatgatgccgttgcattacggttcgcaaatcgacgaacatcatgcggt

acgtaccgatgccggaatgtttgatgtgtcacatatgaccatcgtcgatctccgcggcagccgcacccgggagtttctgcgttatctgctggcgaacgatgtggcgaagctcaccaaaacgtaccgatgccggaatgtttgatgtgtcacatatgaccatcgtcgatctccgcggcagccgcacccgggagtttctgcgttatctgctggcgaacgatgtggcgaagctcaccaaa

agcggcaaagccctttactcggggatgttgaatgcctctggcggtgtgatagatgatctcatcgtctactactttactgaagatttcttccgcctcgttgttaactccgccacccgcgaaaaagcggcaaagccctttactcggggatgttgaatgcctctggcggtgtgatagatgatctcatcgtctactactttactgaagatttcttccgcctcgttgttaactccgccacccgcgaaaa

agacctctcctggattacccaacacgctgaacctttcggcatcgaaattaccgttcgtgatgacctttccatgattgccgtgcaagggccgaatgcgcaggcaaaagctgccacactgttagacctctcctggattacccaacacgctgaacctttcggcatcgaaattaccgttcgtgatgacctttccatgattgccgtgcaagggccgaatgcgcaggcaaaagctgccacactgtt

taatgacgcccagcgtcaggcggtggaagggatgaaaccgttctttggcgtgcaggcgggcgatctgtttattgccaccactggttataccggtgaagcgggctatgaaattgcgctgtaatgacgcccagcgtcaggcggtggaagggatgaaaccgttctttggcgtgcaggcgggcgatctgtttattgccaccactggttataccggtgaagcgggctatgaaattgcgctg

cccaatgaaaaagcggccgatttctggcgtgcgctggtggaagcgggtgttaagccatgtggcttgggcgcgcgtgacacgctgcgtctggaagcgggcatgaatctttatggtcagcccaatgaaaaagcggccgatttctggcgtgcgctggtggaagcgggtgttaagccatgtggcttgggcgcgcgtgacacgctgcgtctggaagcgggcatgaatctttatggtcag

gagatggacgaaactatttctcctttagccgccaacatgggctggactatcgcctgggaaccggcagatcgtgactttatcggtcgtgaagccctggaagtgcagcgtgagcatggtagagatggacgaaactatttctcctttagccgccaacatgggctggactatcgcctgggaaccggcagatcgtgactttatcggtcgtgaagccctggaagtgcagcgtgagcatggta

cagaaaaactggttggtctggtgatgaccgaaaaaggcgtgctgcgtaatgaactgccggtacgctttaccgatgcgcagggcaaccagcatgaaggcattatcaccagcggtactttcagaaaaactggttggtctggtgatgaccgaaaaaggcgtgctgcgtaatgaactgccggtacgctttaccgatgcgcagggcaaccagcatgaaggcattatcaccagcggtacttt

ctccccgacgctgggttacagcattgcgctggcgcgcgtgccggaaggtattggcgaaacggcgattgtgcaaattcgcaaccgtgaaatgccggttaaagtgacaaaacctgtttttctccccgacgctgggttacagcattgcgctggcgcgcgtgccggaaggtattggcgaaacggcgattgtgcaaattcgcaaccgtgaaatgccggttaaagtgacaaaacctgttttt

gtgcgtaacggcaaagccgtcgcgtgagtgcgtaacggcaaagccgtcgcgtga

甘氨酸脱羧酶,氨基酸序列(SEQ ID NO:23)Glycine decarboxylase, amino acid sequence (SEQ ID NO: 23)

MTQTLSQLENSGAFIERHIGPDAAQQQEMLNAVGAQSLNALTGQIVPKDIQLATPPQVGAPATEYAALAELKAIASRMTQTLSQLENSGAFIERHIGPDAAQQQEMLNAVGAQSLNALTGQIVPKDIQLATPPQVGAPATEYAALAELKAIASR

NKRFTSYIGMGYTAVQLPPVILRNMLENPGWYTAYTPYQPEVSQGRLEALLNFQQVTLDLTGLDMASASLLDEATANKRFTSYIGMGYTAVQLPPVILRNMLENPGWYTAYTPYQPEVSQGRLEALLNFQQVTLDLTGLDMASASLLDEATA

AAEAMAMAKRVSKLKNANRFFVASDVHPQTLDVVRTRAETFGFEVIVDDAQKVLDHQDVFGVLLQQVGTTGEIHAAEAMAMAKRVSKLKNANRFFVASDVHPQTLDVVRTRAETFGFEVIVDDAQKVLDHQDVFGVLLQQVGTTGEIH

DYTALISELKSRKIVVSVAADIMALVLLTAPGKQGADIVFGSAQRFGVPMGYGGPHAAFFAAKDEYKRSMPGRIIGVDYTALISELKSRKIVVSVAADIMALVLLTAPGKQGADIVFGSAQRFGVPMGYGGPHAAFFAAKDEYKRSMPGRIIGV

SKDAAGNTALRMAMQTREQHIRREKANSNICTSQVLLANIASLYAVYHGPVGLKRIANRIHRLTDILAAGLQQKGLKSKDAAGNTALRMAMQTREQHIRREKANSNICTSQVLLANIASLYAVYHGPVGLKRIANRIHRLTDILAAGLQQKGLK

LRHAHYFDTLCVEVADKAGVLTRAEAAEINLRSDILNAVGITLDETTTRENVMQLFSVLLGDNHGLDIDTLDKDVALRHAHYFDTLCVEVADKAGVLTRAEAAEINLRSDILNAVGITLDETTTRENVMQLFSVLLGDNHGLDIDTLDKDVA

HDSRSIQPAMLRDDEILTHPVFNRYHSETEMMRYMHSLERKDLALNQAMIPLGSCTMKLNAAAEMIPITWPEFAELHDSRSIQPAMLRDDEILTHPVFNRYHSETEMMRYMHSLERKDLALNQAMIPLGSCTMKLNAAAEMIPITWPEFAEL

HPFCPPEQAEGYQQMIAQLADWLVKLTGYDAVCMQPNSGAQGEYAGLLAIRHYHESCNEGHRDICLIPASAHGTNPHPFCPPEQAEGYQQMIAQLADWLVKLTGYDAVCMQPNSGAQGEYAGLLAIRHYHESCNEGHRDICLIPASAHGTNP

ASAHMAGMQVVVVACDKNGNIDLTDLRAKAEQAGDNLSCIMVTYPSTHGVYEETIREVCEVVHQFGGQVYLDGAASAHMAGMQVVVVACDKNGNIDLTDLRAKAEQAGDNLSCIMVTYPSTHGVYEETIREVCEVVHQFGGQVYLDGA

NMNAQVGITSPGFIGADVSHLNLHKTFCIPHGGGGPGMGPIGVKAHLAPFVPGHSVVQIEGMLTRQGAVSAAPFGSNMNAQVGITSPGFIGADVSHLNLHKTFCIPHGGGGPGMGPIGVKAHLAPFVPGHSVVQIEGMLTRQGAVSAAPFGS

ASILPISWMYIRMMGAEGLKKASQVAILNANYIASRLQDAFPVLYTGRDGRVAHECILDIRPLKEETGISELDIAKRLIASILPISWMYIRMMGAEGLKKASQVAILNANYIASRLQDAFPVLYTGRDGRVAHECILDIRPLKEETGISELDIAKRLI

DYGFHAPTMSFPVAGTLMVEPTESESKVELDRFIDAMLAIRAEIDQVKAGVWPLEDNPLVNAPHIQSELVAEWAHPYDYGFHAPTMSFPVAGTLMVEPTESESKVELDRFIDAMLAIRAEIDQVKAGVWPLEDNPLVNAPHIQSELVAEWAHPY

SREVAVFPAGVADKYWPTVKRLDDVYGDRNLFCSCVPISEYQSREVAVFPAGVADKYWPTVKRLDDVYGDRNLFCSCVPISEYQ

甘氨酸脱羧酶,核苷酸序列(SEQ ID NO:24)Glycine decarboxylase, nucleotide sequence (SEQ ID NO: 24)

atgacacagacgttaagccagcttgaaaacagcggcgcttttattgaacgccatatcggaccggacgccgcgcaacagcaagaaatgctgaatgccgttggtgcacaatcgttaaacatgacacagacgttaagccagcttgaaaacagcggcgcttttattgaacgccatatcggaccggacgccgcgcaacagcaagaaatgctgaatgccgttggtgcacaatcgttaaac

gcgctgaccggccagattgtgccgaaagatattcagcttgcgacaccaccgcaggttggcgcaccggcgaccgaatacgccgcactggcagaactcaaggctattgccagtcgcagcgctgaccggccagattgtgccgaaagatattcagcttgcgaccaccgcaggttggcgcaccggcgaccgaatacgccgcactggcagaactcaaggctattgccagtcgca

ataaacgcttcacgtcttacatcggcatgggttacaccgccgtgcagctaccgccggttatcctgcgtaacatgctggaaaatccgggctggtataccgcgtacactccgtatcaacctataaacgcttcacgtcttacatcggcatgggttacaccgccgtgcagctaccgccggttatcctgcgtaacatgctggaaaatccgggctggtataccgcgtacactccgtatcaacct

gaagtctcccagggccgccttgaagcactgctcaacttccagcaggtaacgctggatttgactggactggatatggcctctgcttctcttctggacgaggccaccgctgccgccgaaggaagtctcccagggccgccttgaagcactgctcaacttccagcaggtaacgctggatttgactggactggatatggcctctgcttctcttctggacgaggccaccgctgccgccgaag

caatggcgatggcgaaacgcgtcagcaaactgaaaaatgccaaccgcttcttcgtggcttccgatgtgcatccgcaaacgctggatgtggtccgtactcgtgccgaaacctttggttttcaatggcgatggcgaaacgcgtcagcaaactgaaaaatgccaaccgcttcttcgtggcttccgatgtgcatccgcaaacgctggatgtggtccgtactcgtgccgaaacctttggtttt

gaagtgattgtcgatgacgcgcaaaaagtgctcgaccatcaggacgtcttcggcgtgctgttacagcaggtaggcactaccggtgaaattcacgactacactgcgcttattagcgaactgaagtgattgtcgatgacgcgcaaaaagtgctcgaccatcaggacgtcttcggcgtgctgttacagcaggtaggcactaccggtgaaattcacgactacactgcgctttattagcgaact

gaaatcacgcaaaattgtggtcagcgttgccgccgatattatggcgctggtgctgttaactgcgccgggtaaacagggcgcggatattgtttttggttcggcgcaacgcttcggcgtgcgaaatcacgcaaaattgtggtcagcgttgccgccgatattatggcgctggtgctgttaactgcgccgggtaaacagggcgcggatattgtttttggttcggcgcaacgcttcggcgtgc

cgatgggctacggtggcccacacgcggcattctttgcggcgaaagatgaatacaaacgctcaatgccgggccgtattatcggtgtatcgaaagatgcagctggcaacaccgctctgccgatgggctacggtggcccacgcggcattctttgcggcgaaagatgaatacaaacgctcaatgccgggccgtattatcggtgtatcgaaagatgcagctggcaacaccgctctgc

gcatggcgatgcagactcgcgagcaacatattcgtcgtgagaaagcgaactccaacatttgtacttcccaggtactgctggcaaacatcgccagcctgtatgccgtttatcacggcccggcatggcgatgcagactcgcgagcaacatattcgtcgtgagaaagcgaactccaacatttgtacttcccaggtactgctggcaaacatcgccagcctgtatgccgtttatcacggcccg

gttggcctgaaacgtatcgctaaccgcattcaccgtctgaccgatatcctggcggcaggcctgcaacaaaaaggtctgaagctgcgccatgcgcactatttcgacactctgtgtgtggagttggcctgaaacgtatcgctaaccgcattcaccgtctgaccgatatcctggcggcaggcctgcaacaaaaaggtctgaagctgcgccatgcgcactatttcgacactctgtgtgtgga

agtggccgataaggcgggcgtactgacgcgtgccgaagcggctgaaatcaacctgcgtagcgatatcctgaacgcggttgggatcacccttgatgaaaccaccacgcgcgaaaacagtggccgataaggcgggcgtactgacgcgtgccgaagcggctgaaatcaacctgcgtagcgatatcctgaacgcggttggggatcacccttgatgaaaccaccacgcgcgaaaac

gtgatgcagcttttcagcgtactgctgggggataaccacggcctggacatcgacacgctggacaaagacgtggctcacgacagccgctctattcaacctgcgatgctgcgcgacgagtgatgcagcttttcagcgtactgctgggggataaccacggcctggacatcgacacgctggacaaagacgtggctcacgacagccgctctattcaacctgcgatgctgcgcgacga

cgaaatcctcacccatccggtgtttaatcgctaccacagcgaaaccgaaatgatgcgctatatgcactcgctggagcgtaaagatctggcgctgaatcaggcgatgatcccgctgggtcgaaatcctcacccatccggtgtttaatcgctaccacagcgaaaccgaaatgatgcgctatatgcactcgctggagcgtaaagatctggcgctgaatcaggcgatgatcccgctgggt

tcctgcaccatgaaactgaacgccgccgccgagatgatcccaatcacctggccggaatttgccgaactgcacccgttctgcccgccggagcaggccgaaggttatcagcagatgatttcctgcaccatgaaactgaacgccgccgccgagatgatcccaatcacctggccggaatttgccgaactgcacccgttctgcccgccggagcaggccgaaggttatcagcagatgatt

gcgcagctggctgactggctggtgaaactgaccggttacgacgccgtttgtatgcagccgaactctggcgcacagggcgaatacgcgggcctgctggcgattcgtcattatcatgaagcgcagctggctgactggctggtgaaactgaccggttacgacgccgtttgtatgcagccgaactctggcgcacagggcgaatacgcgggcctgctggcgattcgtcattatcatgaa

agctgcaacgaagggcatcgcgatatctgcctgatcccggcttctgcgcacggaactaaccccgcttctgcacatatggcaggaatgcaggtggtggttgtggcgtgtgataaaaacagctgcaacgaagggcatcgcgatatctgcctgatcccggcttctgcgcacggaactaaccccgcttctgcacatatggcaggaatgcaggtggtggttgtggcgtgtgataaaaac

ggcaacatcgatctgactgatctgcgcgcgaaagcggaacaggcgggcgataacctctcctgtatcatggtgacttatccttctacccacggcgtgtatgaagaaacgatccgtgaagggcaacatcgatctgactgatctgcgcgcgaaagcggaacaggcgggcgataacctctcctgtatcatggtgacttatccttctacccacggcgtgtatgaagaaacgatccgtgaag

tgtgtgaagtcgtgcatcagttcggcggtcaggtttaccttgatggcgcgaacatgaacgcccaggttggcatcacctcgccgggctttattggtgcggacgtttcacaccttaacctactgtgtgaagtcgtgcatcagttcggcggtcaggtttaccttgatggcgcgaacatgaacgcccaggttggcatcacctcgccgggctttattggtgcggacgtttcacaccttaacctac

ataaaactttctgcattccgcacggcggtggtggtccgggtatgggaccgatcggcgtgaaagcgcatttggcaccgtttgtaccgggtcatagcgtggtgcaaatcgaaggcatgttataaaactttctgcattccgcacggcggtggtggtccgggtatgggaccgatcggcgtgaaagcgcatttggcaccgtttgtaccgggtcatagcgtggtgcaaatcgaaggcatgtt

aacccgtcagggcgcggtttctgcggcaccgttcggtagcgcctctatcctgccaatcagctggatgtacatccgcatgatgggcgcagaagggctgaaaaaagcaagccaggtggaacccgtcagggcgcggtttctgcggcaccgttcggtagcgcctctatcctgccaatcagctggatgtacatccgcatgatgggcgcagaagggctgaaaaaagcaagccaggtgg

caatcctcaacgccaactatattgccagccgcctgcaggatgccttcccggtgctgtataccggtcgcgacggtcgcgtggcgcacgaatgtattctcgatattcgcccgctgaaagacaatcctcaacgccaactatattgccagccgcctgcaggatgccttcccggtgctgtataccggtcgcgacggtcgcgtggcgcacgaatgtattctcgatattcgcccgctgaaaga

agaaaccggcatcagcgagctggatattgccaagcgcctgatcgactacggtttccacgcgccgacgatgtcgttcccggtggcgggtacgctgatggttgaaccgactgaatctgaagaaaccggcatcagcgagctggatattgccaagcgcctgatcgactacggtttccacgcgccgacgatgtcgttcccggtggcgggtacgctgatggttgaaccgactgaatctga

aagcaaagtggaactggatcgctttatcgacgcgatgctggctatccgcgcagaaattgaccaggtgaaagccggtgtctggccgctggaagataacccgctggtgaacgcgccgcaagcaaagtggaactggatcgctttatcgacgcgatgctggctatccgcgcagaaattgaccaggtgaaagccggtgtctggccgctggaagataacccgctggtgaacgcgccgc

acattcagagcgaactggtcgccgagtgggcgcatccgtacagccgtgaagttgcggtattcccggcaggtgtggcagacaaatactggccgacagtgaaacgtctggatgatgtttacattcagagcgaactggtcgccgagtgggcgcatccgtacagccgtgaagttgcggtattcccggcaggtgtggcagacaaatactggccgacagtgaaacgtctggatgatgttt

acggcgaccgtaacctgttctgctcctgcgtaccgattagcgaataccagtaaacggcgaccgtaacctgttctgctcctgcgtaccgattagcgaataccagtaa

磷酸甘油酸脱氢酶,氨基酸序列(SEQ ID NO:25)Phosphoglycerate dehydrogenase, amino acid sequence (SEQ ID NO: 25)

MSQNGRPVVLIADKLAQSTVDALGDAVEVRWVDGPNRPELLDAVKEADALLVRSATTVDAEVIAAAPNLKIVGRAMSQNGRPVVLIADKLAQSTVDALGDAVEVRWVDGPNRPELLDAVKEADALLVRSATTVDAEVIAAAPNLKIVGRA

GVGLDNVDIPAATEAGVMVANAPTSNIHSACEHAISLLLSTARQIPAADATLREGEWKRSSFNGVEIFGKTVGIVGFGGVGLDNVDIPAATEAGVMVANAPTSNIHSACEHAISLLLSTARQIPAADATLREGEWKRSSFNGVEIFGKTVGIVGFG

HIGQLFAQRLAAFETTIVAYDPYANPARAAQLNVELVELDELMSRSDFVTIHLPKTKETAGMFDAQLLAKSKKGQIIIHIGQLFAQRLAAFETTIVAYDPYANPARAAQLNVELVELDELMSRSDFVTIHLPKTKETAGMFDAQLLAKSKKGQIII

NAARGGLVDEQALADAIESGHIRGAGFDVYSTEPCTDSPLFKLPQVVVTPHLGASTEEAQDRAGTDVADSVLKALANAARGGLVDEQALADAIESGHIRGAGFDVYSTEPCTDSPLFKLPQVVVTPHLGASTEEAQDRAGTDVADSVLKALA

GEFVADAVNVSGGRVGEEVAVWMDLAGEFVADAVNVSGGRVGEEVAVWMDLA

磷酸甘油酸脱氢酶,核苷酸序列(SEQ ID NO:26)Phosphoglycerate dehydrogenase, nucleotide sequence (SEQ ID NO: 26)

atgagccagaatggccgtccggtagtcctcatcgccgataagcttgcgcagtccactgttgacgcgcttggagatgcagtagaagtccgttgggttgacggacctaaccgcccagaaatgagccagaatggccgtccggtagtcctcatcgccgataagcttgcgcagtccactgttgacgcgcttggagatgcagtagaagtccgttgggttgacggacctaaccgcccagaa

ctgcttgatgcagttaaggaagcggacgcactgctcgtgcgttctgctaccactgtcgatgctgaagtcatcgccgctgcccctaacttgaagatcgtcggtcgtgccggcgtgggcttctgcttgatgcagttaaggaagcggacgcactgctcgtgcgttctgctaccactgtcgatgctgaagtcatcgccgctgcccctaacttgaagatcgtcggtcgtgccggcgtgggctt

ggacaacgttgacatccctgctgccactgaagctggcgtcatggttgctaacgcaccgacctctaatattcactccgcttgtgagcacgcaatttctttgctgctgtctactgctcgccagggacaacgttgacatccctgctgccactgaagctggcgtcatggttgctaacgcaccgacctctaatattcactccgcttgtgagcacgcaatttctttgctgctgtctactgctcgccag

atccctgctgctgatgcgacgctgcgtgagggcgagtggaagcggtcttctttcaacggtgtggaaattttcggaaaaactgtcggtatcgtcggttttggccacattggtcagttgtttgatccctgctgctgatgcgacgctgcgtgagggcgagtggaagcggtcttctttcaacggtgtggaaattttcggaaaaactgtcggtatcgtcggttttggccacattggtcagttgtttg

ctcagcgtcttgctgcgtttgagaccaccattgttgcttacgatccttacgctaaccctgctcgtgcggctcagctgaacgttgagttggttgagttggatgagctgatgagccgttctgacctcagcgtcttgctgcgtttgagaccaccattgttgcttacgatccttacgctaaccctgctcgtgcggctcagctgaacgttgagttggttgagttggatgagctgatgagccgttctgac

tttgtcaccattcaccttcctaagaccaaggaaactgctggcatgtttgatgcgcagctccttgctaagtccaagaagggccagatcatcatcaacgctgctcgtggtggccttgttgatgtttgtcaccattcaccttcctaagaccaaggaaactgctggcatgtttgatgcgcagctccttgctaagtccaagaagggccagatcatcatcaacgctgctcgtggtggccttgttgatg

agcaggctttggctgatgcgattgagtccggtcacattcgtggcgctggtttcgatgtgtactccaccgagccttgcactgattctcctttgttcaagttgcctcaggttgttgtgactcctcaagcaggctttggctgatgcgattgagtccggtcacattcgtggcgctggtttcgatgtgtactccaccgagccttgcactgattctcctttgttcaagttgcctcaggttgttgtgactcctca

cttgggtgcttctactgaagaggctcaggatcgtgcgggtactgacgttgctgattctgtgctcaaggcgctggctggcgagttcgtggcggatgctgtgaacgtttccggtggtcgcgtcttgggtgcttctactgaagaggctcaggatcgtgcgggtactgacgttgctgattctgtgctcaaggcgctggctggcgagttcgtggcggatgctgtgaacgtttccggtggtcgcgt

gggcgaagaggttgctgtgtggatggatctggcttaagggcgaagaggttgctgtgtggatggatctggcttaa

磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶,氨基酸序列(SEQ ID NO:27)Phosphoserine/phosphohydroxythreonine aminotransferase, amino acid sequence (SEQ ID NO: 27)

MAQIFNFSSGPAMLPAEVLKQAQQELRDWNGLGTSVMEVSHRGKEFIQVAEEAEKDFRDLLNVPSNYKVLFCHGGMAQIFNFSSSGPAMLPAEVLKQAQQELRDWNGLGTSVMEVSHRGKEFIQVAEEAEKDFRDLLNVPSNYKVLFCHGG

GRGQFAAVPLNILGDKTTADYVDAGYWAASAIKEAKKYCTPNVFDAKVTVDGLRAVKPMREWQLSDNAAYMHYGRGQFAAVPLNILGDKTTADYVDAGYWAASAIKEAKKYCTPNVFDAKVTVDGLRAVKPMREWQLSDNAAYMHY

CPNETIDGIAIDETPDFGADVVVAADFSSTILSRPIDVSRYGVIYAGAQKNIGPAGLTIVIVREDLLGKANIACPSILDYSCPNETIDGIAIDETPDFGADVVVAADFSSTILSRPIDVSRYGVIYAGAQKNIGPAGLTIVIVREDLLGKANIACPSILDYS

ILNDNGSMFNTPPTFAWYLSGLVFKWLKANGGVAEMDKINQQKAELLYGVIDNSDFYRNDVAKANRSRMNVPFQLILNDNGSMFNTPPTFAWYLSGLVFKWLKANGGVAEMDKINQQKAELLYGVIDNSDFYRNDVAKANRSRMNVPFQL

ADSALDKLFLEESFAAGLHALKGHRVVGGMRASIYNAMPLEGVKALTDFMVEFERRHGADSALDKLFLEESFAAGLHALKGHRVVGGMRASIYNAMPLEGVKALTDFMVEFERRHG

磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶,核苷酸序列(SEQ ID NO:28)Phosphoserine/phosphohydroxythreonine aminotransferase, nucleotide sequence (SEQ ID NO: 28)

atggctcaaatcttcaattttagttctggtccggcaatgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtcttggtacgtcggtgatggaagtgagatggctcaaatcttcaattttagttctggtccggcaatgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtcttggtacgtcggtgatggaagtgag

tcaccgtggcaaagagttcattcaggttgcagaggaagccgagaaggattttcgcgatcttcttaatgtcccctccaactacaaggtattattctgccatggcggtggtcgcggtcagttttcaccgtggcaaagagttcattcaggttgcagaggaagccgagaaggattttcgcgatcttcttaatgtcccctccaactacaaggtattattctgccatggcggtggtcgcggtcagttt

gctgcggtaccgctgaatattctcggtgataaaaccaccgcagattatgttgatgccggttactgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgacgctgcggtaccgctgaatattctcggtgataaaaccaccgcagattatgttgatgccggttatgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgac

gccaaagtgactgttgatggtctgcgcgcggttaagccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatcgacggccaaagtgactgttgatggtctgcgcgcggttaagccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatcgacg

aaacgccagacttcggcgcagatgtggtggtcgccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaatttacgctggcgcgcagaaaaatatcggaaacgccagacttcggcgcagatgtggtggtcgccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaatttacgctggcgcgcagaaaaatatcgg

cccggctggcctgacaatcgtcatcgttcgtgaagatttgctgggcaaagcgaatatcgcgtgtccgtcgattctggattattccatcctcaacgataacggctccatgtttaacacgccgcccggctggcctgacaatcgtcatcgttcgtgaagatttgctgggcaaagcgaatatcgcgtgtccgtcgattctggattattccatcctcaacgataacggctccatgtttaacacgccg

ccgacatttgcctggtatctatctggtctggtctttaaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaaagcagaactgctatatggggtgattgatccgacatttgcctggtatctatctggtctggtctttaaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaaagcagaactgctatatggggtgattgat

aacagcgatttctaccgcaatgacgtggcgaaagctaaccgttcgcggatgaacgtgccgttccagttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggcaacagcgatttctaccgcaatgacgtggcgaaagctaaccgttcgcggatgaacgtgccgttccagttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggc

cttcatgcactgaaaggtcaccgtgtggtcggcggaatgcgcgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtcacttcatgcactgaaaggtcaccgtgtggtcggcggaatgcgcgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtca

cggttaacggttaa

磷酸丝氨酸磷酸酶,氨基酸序列(SEQ ID NO:29)Phosphoserine phosphatase, amino acid sequence (SEQ ID NO: 29)

MPNITWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSKLGAAMVIVAAWCVEDYMPNITWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSKLGAAMVIVAAWCVEDY

QVIRLAGSLTARATRLAHEAQLDVAPLGKIPHLRTPGLLVMDMDSTAIQIECIDEIAKLAGTGEMVAEVTERAMRGELQVIRLAGSLTARATRLAHEAQLDVAPLGKIPHLRTPGLLVMDMDSTAIQIECIDEIAKLAGTGEMVAEVTERAMRGEL

DFTASLRSRVATLKGADANILQQVRENLPLMPGLTQLVLKLETLGWKVAIASGGFTFFAEYLRDKLRLTAVVANELEIDFTASLRSRVATLKGADANILQQVRENLPLMPGLTQLVLKLETLGWKVAIASGGFTFFAEYLRDKLRLTAVVANELEI

MDGKFTGNVIGDIVDAQYKAKTLTRLAQEYEIPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHAMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYEIPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHA

DLMGVFCILSGSLNQKDLMGVFCILSGSLNQK

磷酸丝氨酸磷酸酶,核苷酸序列(SEQ ID NO:30)Phosphoserine phosphatase, nucleotide sequence (SEQ ID NO: 30)

atgcctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattaccacgcaggtcgtagcggctggcatgcctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattaccacgcaggtcgtagcggctggc

tgctgtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggtgcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggcatgctgtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggtgcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggca

ggttcactcaccgcacgggctacacgcctggcccacgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggactggttcactcaccgcacgggctacacgcctggcccacgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggact

ccaccgccatccagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactcgattttaccgccagccaccgccatccagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactcgattttaccgccag

cctgcgcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatgccaggcttaacgcaactggtgctcaagctggaaacgccctgcgcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatgccaggcttaacgcaactggtgctcaagctggaaacgc

tgggctggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcgcgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaattttgggctggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcgcgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaattt

accggcaatgtgatcggcgacatcgtagacgcgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggagaccggcaatgtgatcggcgacatcgtagacgcgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggag

ccaatgacctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacgctgacctgatgggggtattcccaatgacctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacgctgacctgatgggggtattc

tgcatcctctcaggcagcctgaatcagaagtaatgcatcctctcaggcagcctgaatcagaagtaa

支链氨基酸氨基转移酶,氨基酸序列(SEQ ID NO:31)Branched-chain amino acid aminotransferase, amino acid sequence (SEQ ID NO: 31)

VTTKKADYIWFNGEMVRWEDAKVHVMSHALHYGTSVFEGIRCYDSHKGPVVFRHREHMQRLHDSAKIYRFPVSQVTTKKADYIWFNGEMVRWEDAKVHVMSHALHYGTSVFEGIRCYDSHKGPVVFRHREHMQRLHDSAKIYRFPVSQ

SIDELMEACRDVIRKNNLTSAYIRPLIFVGDVGMGVNPPAGYSTDVIIAAFPWGAYLGAEALEQGIDAMVSSWNRAASIDELMEACRDVIRKNNLTSAYIRPLIFVGDVGMGVNPPAGYSTDVIIAAFPWGAYLGAEALEQGIDAMVSSWNRAA

PNTIPTAAKAGGNYLSSLLVGSEARRHGYQEGIALDVNGYISEGAGENLFEVKDGVLFTPPFTSSALPGITRDAIIKLAPNTIPTAAKAGGNYLSSLLVGSEARRHGYQEGIALDVNGYISEGAGENLFEVKDGVLFTPPFTSSALPGITRDAIIKLA

KELGIEVREQVLSRESLYLADEVFMSGTAAEITPVRSVDGIQVGEGRCGPVTKRIQQAFFGLFTGETEDKWGWLDQKELGIEVREQVLSRESLYLADEVFMSGTAAEITPVRSVDGIQVGEGRCGPVTKRIQQAFFGLFTGETEDKWGWLDQ

VNQV N

支链氨基酸氨基转移酶,核苷酸序列(SEQ ID NO:32)Branched-chain amino acid aminotransferase, nucleotide sequence (SEQ ID NO: 32)

gtgaccacgaagaaagctgattacatttggttcaatggggagatggttcgctgggaagacgcgaaggtgcatgtgatgtcgcacgcgctgcactatggcacctcggtttttgaaggcagtgaccacgaagaaagctgattacatttggttcaatggggagatggttcgctgggaagacgcgaaggtgcatgtgatgtcgcacgcgctgcactatggcacctcggtttttgaaggca

tccgttgctacgactcgcacaaaggaccggttgtattccgccatcgtgagcatatgcagcgtctgcatgactccgccaaaatctatcgctttccggtttcgcagagcattgatgagctgattccgttgctacgactcgcacaaaggaccggttgtattccgccatcgtgagcatatgcagcgtctgcatgactccgccaaaatctatcgctttccggtttcgcagagcattgatgagctgat

ggaagcttgtcgtgacgtgatccgcaaaaacaatctcaccagcgcctatatccgtccgctgatcttcgtcggtgatgttggcatgggcgttaacccgccagcgggatactcaaccgatgggaagcttgtcgtgacgtgatccgcaaaaacaatctcaccagcgcctatatccgtccgctgatcttcgtcggtgatgttggcatgggcgttaacccgccagcgggatactcaaccgatg

tgattatcgccgctttcccgtggggagcgtatctgggcgcagaagcgctggagcaggggatcgatgcgatggtttcctcctggaaccgcgcagcaccaaacaccatcccaaccgcgtgattatcgccgctttcccgtggggagcgtatctgggcgcagaagcgctggagcaggggatcgatgcgatggtttcctcctggaaccgcgcagcaccaaacaccatcccaaccgcg

gcaaaagccggtggtaactacctctcttccctgctggtgggtagtgaagcacgccgccacggttatcaggaaggtatcgcgctggatgtgaatggttacatctctgaaggtgcaggcggcaaaagccggtggtaactacctctcttccctgctggtgggtagtgaagcacgccgccacggttatcaggaaggtatcgcgctggatgtgaatggttacatctctgaaggtgcaggcg

aaaacctgtttgaagtgaaagacggcgtgctgttcaccccaccgttcacctcctccgcgctgccgggtattacccgtgatgccatcatcaaactggcaaaagagctgggaattgaagtcaaaacctgtttgaagtgaaagacggcgtgctgttcaccccaccgttcacctcctccgcgctgccgggtattacccgtgatgccatcatcaaactggcaaaagagctgggaattgaagtc

cgtgagcaggtgctgtcgcgcgaatccctgtacctggcggatgaagtgtttatgtccggtactgcggcagaaatcacgccagtgcgcagcgtagatggtattcaggttggtgaaggccgtgagcaggtgctgtcgcgcgaatccctgtacctggcggatgaagtgtttatgtccggtactgcggcagaaatcacgccagtgcgcagcgtagatggtattcaggttggtgaaggc

cgttgcggcccggttaccaaacgcatccagcaagccttcttcggcctcttcactggcgaaaccgaagataaatggggctggttagatcaagttaatcaataacgttgcggcccggttaccaaacgcatccagcaagccttcttcggcctcttcactggcgaaaccgaagataaatggggctggttagatcaagttaatcaataa

大肠杆菌乙酰羟基酸还原异构酶,氨基酸序列(SEQ ID NO:167)Escherichia coli acetohydroxyacid reductoisomerase, amino acid sequence (SEQ ID NO: 167)

MANYFNTLNLRQQLAQLGKCRFMGRDEFADGASYLQGKKVVIVGCGAQGLNQGLNMRDSGLDISYALRKEAIAEMANYFNTLNLRQQLAQLGKCRFMGRDEFADGASYLQGKKVVIVGCGAQGLNQGLNMRDSGLDISYALRKEAIAE

KRASWRKATENGFKVGTYEELIPQADLVINLTPDKQHSDVVRTVQPLMKDGAALGYSHGFNIVEVGEQIRKDITVVKRASWRKATENGFKVGTYEELIPQADLVINLTPDKQHSDVVRTVQPLMKDGAALGYSHGFNIVEVGEQIRKDITVV

MVAPKCPGTEVREEYKRGFGVPTLIAVHPENDPKGEGMAIAKAWAAATGGHRAGVLESSFVAEVKSDLMGEQTILCMVAPKCPGTEVREEYKRGFGVPTLIAVHPENDPKGEGMAIAKAWAAATGGHRAGVLESSFVAEVKSDLMGEQTILC

GMLQAGSLLCFDKLVEEGTDPAYAEKLIQFGWETITEALKQGGITLMMDRLSNPAKLRAYALSEQLKEIMAPLFQKHGMLQAGSLLCFDKLVEEGTDPAYAEKLIQFGWETITEALKQGGITLMMDRLSNPAKLRAYALSEQLKEIMAPLFQKH

MDDIISGEFSSGMMADWANDDKKLLTWREETGKTAFETAPQYEGKIGEQEYFDKGVLMIAMVKAGVELAFETMVMDDIISGEFSSGMMADWANDDKKLLTWREETGKTAFETAPQYEGKIGEQEYFDKGVLMIAMVKAGVELAFETMV

DSGIIEESAYYESLHELPLIANTIARKRLYEMNVVISDTAEYGNYLFSYACVPLLKPFMAELQPGDLGKAIPEGAVDNDSGIIEESAYYESLHELPLIANTIARKRLYEMNVVISDTAEYGNYLFSYACVPPLLKPFMAELQPGDLGKAIPEGAVDN

GQLRDVNEAIRSHAIEQVGKKLRGYMTDMKRIAVAGGQLRDVNEAIRSHAIEQVGKKLRGYMTDMKRIAVAG

大肠杆菌乙酰羟基酸还原异构酶,核苷酸序列(SEQ ID NO:168)Escherichia coli acetohydroxyacid reductoisomerase, nucleotide sequence (SEQ ID NO: 168)

atggctaactacttcaatacactgaatctgcgccagcagctggcacagctgggcaaatgtcgctttatgggccgcgatgaattcgccgatggcgcgagctaccttcagggtaaaaaagatggctaactacttcaatacactgaatctgcgccagcagctggcacagctgggcaaatgtcgctttatgggccgcgatgaattcgccgatggcgcgagctaccttcagggtaaaaaag

tagtcatcgtcggctgtggcgcacagggtctgaaccagggcctgaacatgcgtgattctggtctcgatatctcctacgctctgcgtaaagaagcgattgccgagaagcgcgcgtcctgtagtcatcgtcggctgtggcgcacagggtctgaaccagggcctgaacatgcgtgattctggtctcgatatctcctacgctctgcgtaaagaagcgattgccgagaagcgcgcgtcctg

gcgtaaagcgaccgaaaatggttttaaagtgggtacttacgaagaactgatcccacaggcggatctggtgattaacctgacgccggacaagcagcactctgatgtagtgcgcaccgtgcgtaaagcgaccgaaaatggttttaaagtgggtacttacgaagaactgatcccacaggcggatctggtgattaacctgacgccggacaagcagcactctgatgtagtgcgcaccgt

acagccactgatgaaagacggcgcggcgctgggctactcgcacggtttcaacatcgtcgaagtgggcgagcagatccgtaaagatatcaccgtagtgatggttgcgccgaaatgccacagccactgatgaaagacggcgcggcgctgggctactcgcacggtttcaacatcgtcgaagtgggcgagcagatccgtaaagatatcaccgtagtgatggttgcgccgaaatgcc

caggcaccgaagtgcgtgaagagtacaaacgtgggttcggcgtaccgacgctgattgccgttcacccggaaaacgatccgaaaggcgaaggcatggcgattgccaaagcctgggcaggcaccgaagtgcgtgaagagtacaaacgtgggttcggcgtaccgacgctgattgccgttcacccggaaaacgatccgaaaggcgaaggcatggcgattgccaaagcctggg

cggctgcaaccggtggtcaccgtgcgggtgtgctggaatcgtccttcgttgcggaagtgaaatctgacctgatgggcgagcaaaccatcctgtgcggtatgttgcaggctggctctctcggctgcaaccggtggtcaccgtgcgggtgtgctggaatcgtccttcgttgcggaagtgaaatctgacctgatgggcgagcaaaccatcctgtgcggtatgttgcaggctggctctct

gctgtgcttcgacaagctggtggaagaaggtaccgatccagcatacgcagaaaaactgattcagttcggttgggaaaccatcaccgaagcactgaaacagggcggcatcaccctgagctgtgcttcgacaagctggtggaagaaggtaccgatccagcatacgcagaaaaactgattcagttcggttgggaaaccatcaccgaagcactgaaacagggcggcatcaccctga

tgatggaccgtctctctaacccggcgaaactgcgtgcttatgcgctttctgaacagctgaaagagatcatggcacccctgttccagaaacatatggacgacatcatctccggcgaattcttgatggaccgtctctctaacccggcgaaactgcgtgcttatgcgctttctgaacagctgaaagagatcatggcacccctgttccagaaacatatggacgacatctccggcgaattct

cttccggtatgatggcggactgggccaacgatgataagaaactgctgacctggcgtgaagagaccggcaaaaccgcgtttgaaaccgcgccgcagtatgaaggcaaaatcggcgacttccggtatgatggcggactgggccaacgatgataagaaaactgctgacctggcgtgaagagaccggcaaaaccgcgtttgaaaccgcgccgcagtatgaaggcaaaatcggcga

gcaggagtacttcgataaaggcgtactgatgatcgcgatggtgaaagcgggcgttgaactggcgttcgaaaccatggtcgattccggcatcattgaagagtctgcatattatgaatcacgcaggagtacttcgataaaggcgtactgatgatcgcgatggtgaaagcgggcgttgaactggcgttcgaaaccatggtcgattccggcatcattgaagagtctgcatattatgaatcac

tgcacgagctgccgctgattgccaacaccatcgcccgtaagcgtctgtacgaaatgaacgtggttatctctgataccgctgagtacggtaactatctgttctcttacgcttgtgtgccgttgtgcacgagctgccgctgattgccaacaccatcgcccgtaagcgtctgtacgaaatgaacgtggttatctctgataccgctgagtacggtaactatctgttctcttacgcttgtgtgccgttg

ctgaaaccgtttatggcagagctgcaaccgggcgacctgggtaaagctattccggaaggcgcggtagataacgggcaactgcgtgatgtgaacgaagcgattcgcagccatgcgatctgaaaccgtttatggcagagctgcaaccgggcgacctgggtaaagctattccggaaggcgcggtagataacgggcaactgcgtgatgtgaacgaagcgattcgcagccatgcgat

tgagcaggtaggtaagaaactgcgcggctatatgacagatatgaaacgtattgctgttgcgggttaatgagcaggtaggtaagaaactgcgcggctatatgacagatatgaaacgtattgctgttgcgggttaa

M1-93启动子(SEQ ID NO:169)M1-93 promoter (SEQ ID NO: 169)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaaacagctttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaaacagct

RBS5人工调控元件(SEQ ID NO:170)RBS5 artificial regulatory element (SEQ ID NO: 170)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaggactacgttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaggactacg

RBSL1(SEQ ID NO:171)RBSL1 (SEQ ID NO: 171)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaggtcagcattatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaggtcagca

RBSL2(SEQ ID NO:172)RBSL2 (SEQ ID NO: 172)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggagggttcgattatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggagggttcga

M1-46(SEQ ID NO:173)M1-46 (SEQ ID NO: 173)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcctctcgccccaccaattcggtttaaaccaggaaacagctttatctctggcggtgttgacaagagataacaacgttgatataattgagcctctcgccccaccaattcggtttaaaccaggaaacagct

serCB基因簇(SEQ ID NO:174)serCB gene cluster (SEQ ID NO: 174)

ttatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaaacagctatggctcaaatcttcaattttagttctggtccggcattatctctggcggtgttgacaagagataacaacgttgatataattgagcccgtattgttagcatgtacgtttaaaccaggaaacagctatggctcaaatcttcaattttagttctggtccggca

atgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtcttggtacgtcggtgatggaagtgagtcaccgtggcaaagagttcattcaggttgcagagatgctaccggcagaggtgcttaaacaggctcaacaggaactgcgcgactggaacggtcttggtacgtcggtgatggaagtgagtcaccgtggcaaagagttcattcaggttgcagag

gaagccgagaaggattttcgcgatcttcttaatgtcccctccaactacaaggtattattctgccatggcggtggtcgcggtcagtttgctgcggtaccgctgaatattctcggtgataaaacgaagccgagaaggattttcgcgatcttcttaatgtcccctccaactacaaggtattattctgccatggcggtggtcgcggtcagtttgctgcggtaccgctgaatattctcggtgataaaac

caccgcagattatgttgatgccggttactgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgacgccaaagtgactgttgatggtctgcgcgcggttacaccgcagattatgttgatgccggttatgggcggcaagtgccattaaagaagcgaaaaaatactgcacgcctaatgtctttgacgccaaagtgactgttgatggtctgcgcgcggtta

agccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatcgacgaaacgccagacttcggcgcagatgtggtggtcagccaatgcgtgaatggcaactctctgataatgctgcttatatgcattattgcccgaatgaaaccatcgatggtatcgccatcgacgaaacgccagacttcggcgcagatgtggtggtc

gccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaatttacgctggcgcgcagaaaaatatcggcccggctggcctgacaatcgtcatcgttcgtgagccgctgacttctcttcaaccattctttcccgtccgattgacgtcagccgttatggtgtaatttacgctggcgcgcagaaaaatatcggcccggctggcctgacaatcgtcatcgttcgtga

agatttgctgggcaaagcgaatatcgcgtgtccgtcgattctggattattccatcctcaacgataacggctccatgtttaacacgccgccgacatttgcctggtatctatctggtctggtctttagatttgctgggcaaagcgaatatcgcgtgtccgtcgattctggattattccatcctcaacgataacggctccatgtttaacacgccgccgacatttgcctggtatctatctggtctggtcttt

aaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaaagcagaactgctatatggggtgattgataacagcgatttctaccgcaatgacgtggcgaaaaaatggctgaaagcgaacggcggtgtagctgaaatggataaaatcaatcagcaaaaagcagaactgctatatggggtgattgataacagcgatttctaccgcaatgacgtggcgaaa

gctaaccgttcgcggatgaacgtgccgttccagttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggccttcatgcactgaaaggtcaccgtgtggtcggcgctaaccgttcgcggatgaacgtgccgttccagttggcggacagtgcgcttgacaaattgttccttgaagagtcttttgctgctggccttcatgcactgaaaggtcaccgtgtggtcggc

ggaatgcgcgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtcacggttaagtcgacaaaaggagaacaaacatgcggaatgcgcgcttctatttataacgccatgccgctggaaggcgttaaagcgctgacagacttcatggttgagttcgaacgccgtcacggttaagtcgacaaaaggagaacaaacatgc

ctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattaccacgcaggtcgtagcggctggctgctctaacattacctggtgcgacctgcctgaagatgtctctttatggccgggtctgcctctttcattaagtggtgatgaagtgatgccactggattaccacgcaggtcgtagcggctggctgct

gtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggtgcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggcaggttgtatggtcgtgggctggataaacaacgtctgacccaataccagagcaaactgggtgcggcgatggtgattgttgccgcctggtgcgtggaagattatcaggtgattcgtctggcaggtt

cactcaccgcacgggctacacgcctggcccacgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggactccaccactcaccgcacgggctacacgcctggcccacgaagcgcagctggatgtcgccccgctggggaaaatcccgcacctgcgcacgccgggtttgctggtgatggatatggactccac

cgccatccagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactcgattttaccgccagcctgccgccatccagattgaatgtattgatgaaattgccaaactggccggaacgggcgagatggtggcggaagtaaccgaacgggcgatgcgcggcgaactcgattttaccgccagcctgc

gcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatgccaggcttaacgcaactggtgctcaagctggaaacgctgggcgcagccgtgtggcgacgctgaaaggcgctgacgccaatattctgcaacaggtgcgtgaaaatctgccgctgatgccaggcttaacgcaactggtgctcaagctggaaacgctgggc

tggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcgcgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaatttaccggtggaaagtggcgattgcctccggcggctttactttctttgctgaatacctgcgcgacaagctgcgcctgaccgccgtggtagccaatgaactggagatcatggacggtaaatttaccgg

caatgtgatcggcgacatcgtagacgcgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggagccaatcaatgtgatcggcgacatcgtagacgcgcagtacaaagcgaaaactctgactcgcctcgcgcaggagtatgaaatcccgctggcgcagaccgtggcgattggcgatggagccaat

gacctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacgctgacctgatgggggtattctgcatgacctgccgatgatcaaagcggcagggctggggattgcctaccatgccaagccaaaagtgaatgaaaaggcggaagtcaccatccgtcacgctgacctgatgggggtattctgcat

cctctcaggcagcctgaatcagaagtaacctctcaggcagcctgaatcagaagtaa

Claims (17)

1.一种经遗传改造的产泛解酸菌株,其具有或具有增强的NADH依赖型乙酰羟基酸还原异构酶,优选所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。1. A genetically modified pantoate-producing strain having or having enhanced NADH-dependent acetohydroxyacid reductoisomerase, preferably the NADH-dependent acetohydroxyacid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO:9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxyacid reductoisomerase activity. 2.权利要求1的经遗传改造的产泛解酸菌株,其:2. The genetically engineered pantoate producing strain of claim 1, wherein: 进一步具有或具有增强的:乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶的活性,Further having or having enhanced activity of acetolactate synthase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase, 任选地,具有活性降低的或失活的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶和/或支链氨基酸氨基转移酶;优选地,其中支链氨基酸氨基转移酶是弱化的,Optionally, having reduced activity or inactivated: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase and/or branched-chain amino acid aminotransferase; preferably, wherein the branched-chain amino acid aminotransferase is attenuated, 优选地,所述3-甲基-2-氧代丁酸羟甲基转移酶包括来自谷氨酸棒杆菌(Corynebacterium glutamicum)和/或来自大肠杆菌(Escherichia coli)的3-甲基-2-氧代丁酸羟甲基转移酶,Preferably, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum and/or from Escherichia coli. 优选地,所述磷酸甘油酸脱氢酶来自谷氨酸棒杆菌,和/或,所述二羟酸脱水酶、2-脱氢泛酸酯-2-还原酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶来自大肠杆菌,Preferably, the phosphoglycerate dehydrogenase is from Corynebacterium glutamicum, and/or the dihydroxyacid dehydratase, 2-dehydropantothenate-2-reductase, glycine lyase system (e.g. aminomethyltransferase and/or glycine decarboxylase), phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase are from Escherichia coli, 优选地,所述乙酰乳酸合成酶包括来自枯草芽孢杆菌(Bacillus subtilis)的乙酰乳酸合成酶,和/或来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III。Preferably, the acetolactate synthase includes acetolactate synthase from Bacillus subtilis, and/or acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli. 3.权利要求2的经遗传改造的产泛解酸菌株,其中:3. The genetically engineered pantoate producing strain of claim 2, wherein: 所述来自枯草芽孢杆菌的乙酰乳酸合成酶包含SEQ ID NO:1所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶活性的氨基酸序列;和/或The acetolactate synthase from Bacillus subtilis comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase activity; and/or 所述乙酰乳酸合成酶I包含SEQ ID NO:3所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶I活性的氨基酸序列;和/或The acetolactate synthase I comprises the amino acid sequence shown in SEQ ID NO: 3 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase I activity; and/or 所述乙酰乳酸合成酶II包含SEQ ID NO:5所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶II活性的氨基酸序列;和/或The acetolactate synthase II comprises the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase II activity; and/or 所述L-缬氨酸反馈抗性乙酰乳酸合成酶III包含SEQ ID NO:7所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有L-缬氨酸反馈抗性乙酰乳酸合成酶III活性的氨基酸序列;和/或The L-valine feedback-resistant acetolactate synthase III comprises the amino acid sequence shown in SEQ ID NO: 7, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having L-valine feedback-resistant acetolactate synthase III activity; and/or 所述二羟酸脱水酶包含SEQ ID NO:11所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有二羟酸脱水酶活性的氨基酸序列;和/或The dihydroxy-acid dehydratase comprises an amino acid sequence as shown in SEQ ID NO: 11, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having dihydroxy-acid dehydratase activity; and/or 所述来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:13所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列;和/或The 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum comprises the amino acid sequence shown in SEQ ID NO: 13 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity; and/or 所述来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:15所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列;和/或The 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli comprises the amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity; and/or 所述2-脱氢泛酸酯-2-还原酶包含SEQ ID NO:17所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有2-脱氢泛酸酯-2-还原酶活性的氨基酸序列;和/或The 2-dehydropantothenate-2-reductase comprises the amino acid sequence of SEQ ID NO: 17, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has 2-dehydropantothenate-2-reductase activity; and/or 所述丝氨酸羟甲基转移酶包含SEQ ID NO:19所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有丝氨酸羟甲基转移酶活性的氨基酸序列;和/或The serine hydroxymethyltransferase comprises the amino acid sequence of SEQ ID NO: 19, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has serine hydroxymethyltransferase activity; and/or 所述氨甲基转移酶包含SEQ ID NO:21所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有氨甲基转移酶活性的氨基酸序列;和/或The aminomethyltransferase comprises the amino acid sequence of SEQ ID NO: 21, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has aminomethyltransferase activity; and/or 所述甘氨酸脱羧酶包含SEQ ID NO:23所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有甘氨酸脱羧酶活性的氨基酸序列;和/或The glycine decarboxylase comprises the amino acid sequence of SEQ ID NO: 23, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has glycine decarboxylase activity; and/or 所述磷酸甘油酸脱氢酶包含SEQ ID NO:25所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸甘油酸脱氢酶活性的氨基酸序列;和/或The phosphoglycerate dehydrogenase comprises the amino acid sequence of SEQ ID NO: 25, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoglycerate dehydrogenase activity; and/or 所述磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶包含SEQ ID NO:27所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶活性的氨基酸序列;和/或The phosphoserine/phosphohydroxythreonine aminotransferase comprises the amino acid sequence of SEQ ID NO: 27, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine/phosphohydroxythreonine aminotransferase activity; and/or 所述磷酸丝氨酸磷酸酶包含SEQ ID NO:29所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸磷酸酶活性的氨基酸序列;和/或The phosphoserine phosphatase comprises the amino acid sequence of SEQ ID NO: 29, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine phosphatase activity; and/or 所述弱化的支链氨基酸氨基转移酶包含SEQ ID NO:31所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有弱化的支链氨基酸氨基转移酶活性的氨基酸序列。The weakened branched-chain amino acid aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has weakened branched-chain amino acid aminotransferase activity. 4.权利要求1-3任一项的经遗传改造的产泛解酸菌株,其4. The genetically modified pantoate producing strain of any one of claims 1 to 3, wherein 表达编码弱化的支链氨基酸氨基转移酶的基因;和/或expressing a gene encoding a weakened branched-chain amino acid aminotransferase; and/or 具有过表达的:编码乙酰乳酸合成酶的基因、编码来自Thermacetogenium phaeum菌株的NADH依赖型乙酰羟基酸还原异构酶的基因、编码二羟酸脱水酶的基因、编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和编码磷酸丝氨酸磷酸酶的基因,和/或Overexpressed: a gene encoding acetolactate synthase, a gene encoding an NADH-dependent acetohydroxyacid reductoisomerase from a Thermacetogenium phaeum strain, a gene encoding a dihydroxyacid dehydratase, a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum, a gene encoding a 2-dehydropantothenate-2-reductase, a gene encoding a serine hydroxymethyltransferase, a gene encoding a glycine lyase system (e.g., a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase), a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Escherichia coli, a gene encoding a phosphoglycerate dehydrogenase, a gene encoding a phosphoserine/phosphohydroxythreonine aminotransferase, and a gene encoding a phosphoserine phosphatase, and/or 任选地,不具有编码如下一或多种、优选全部酶的基因或者编码如下一或多种、优选全部酶的内源基因是被敲除的:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶,Optionally, there is no gene encoding one or more, preferably all of the following enzymes or endogenous genes encoding one or more, preferably all of the following enzymes are knocked out: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase, phosphate acetyltransferase, 优选地,所述编码乙酰乳酸合成酶的基因包括编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因,和/或编码来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因。Preferably, the gene encoding acetolactate synthase includes a gene encoding acetolactate synthase from Bacillus subtilis, and/or a gene encoding acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli. 5.权利要求4的经遗传改造的产泛解酸菌株,其中:5. The genetically engineered pantoate producing strain of claim 4, wherein: 所述编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因包含SEQ ID NO:2所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding the acetolactate synthase from Bacillus subtilis comprises the nucleotide sequence shown in SEQ ID NO: 2 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码乙酰乳酸合成酶I的基因包含SEQ ID NO:4所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding acetolactate synthase I comprises the nucleotide sequence shown in SEQ ID NO: 4 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码乙酰乳酸合成酶II的基因包含SEQ ID NO:6所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding acetolactate synthase II comprises the nucleotide sequence shown in SEQ ID NO: 6 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因包含SEQ ID NO:8所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding L-valine feedback-resistant acetolactate synthase III comprises the nucleotide sequence shown in SEQ ID NO: 8 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码NADH依赖型乙酰羟基酸还原异构酶的基因包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding NADH-dependent acetohydroxyacid reductoisomerase comprises the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码二羟酸脱水酶的基因包含SEQ ID NO:12所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding the dihydroxy-acid dehydratase comprises the nucleotide sequence of SEQ ID NO: 12 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因包含SEQ IDNO:14所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum comprises the nucleotide sequence shown in SEQ ID NO: 14 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因包含SEQ ID NO:16所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli comprises the nucleotide sequence shown in SEQ ID NO: 16 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码2-脱氢泛酸酯-2-还原酶的基因包含SEQ ID NO:18所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 2-dehydropantothenate-2-reductase comprises the nucleotide sequence shown in SEQ ID NO: 18 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码丝氨酸羟甲基转移酶的基因包含SEQ ID NO:20所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding serine hydroxymethyltransferase comprises the nucleotide sequence shown in SEQ ID NO: 20 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码氨甲基转移酶的基因包含SEQ ID NO:22所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding aminomethyltransferase comprises the nucleotide sequence shown in SEQ ID NO: 22 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码甘氨酸脱羧酶的基因包含SEQ ID NO:24所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding glycine decarboxylase comprises the nucleotide sequence shown in SEQ ID NO: 24 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸甘油酸脱氢酶的基因包含SEQ ID NO:26所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoglycerate dehydrogenase comprises the nucleotide sequence shown in SEQ ID NO: 26 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因包含SEQ ID NO:28所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoserine/phosphohydroxythreonine aminotransferase comprises the nucleotide sequence shown in SEQ ID NO: 28 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸丝氨酸磷酸酶的基因包含SEQ ID NO:30所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoserine phosphatase comprises the nucleotide sequence shown in SEQ ID NO: 30 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码弱化的支链氨基酸氨基转移酶的基因包含SEQ ID NO:32所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。The gene encoding the weakened branched-chain amino acid aminotransferase comprises the nucleotide sequence shown in SEQ ID NO: 32 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto. 6.权利要求1-5任一项的经遗传改造的产泛解酸菌株,其中:所述经遗传改造的产泛解酸菌株属于埃希氏菌属(Escherichia)、肠杆菌属(Enterobacter)、谷氨酸棒杆菌、枯草芽孢杆菌和酵母菌,优选为大肠杆菌,更优选地,为保藏在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCC No.26276的大肠杆菌。6. The genetically modified pantoic acid-producing strain according to any one of claims 1 to 5, wherein: the genetically modified pantoic acid-producing strain belongs to the genus Escherichia, Enterobacter, Corynebacterium glutamicum, Bacillus subtilis and yeast, preferably Escherichia coli, more preferably, Escherichia coli deposited in the General Microbiological Center (CGMCC) of the China National Microbiological Culture Collection Administration in Beijing, China, with a deposit number of CGMCC No. 26276. 7.一种产生权利要求1-6任一项的经遗传改造的产泛解酸菌株的方法,包括在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶的活性,优选所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。7. A method for producing a genetically modified pantoate-producing strain according to any one of claims 1 to 6, comprising conferring or enhancing the activity of NADH-dependent acetohydroxyacid reductoisomerase in the pantoate-producing strain, preferably the NADH-dependent acetohydroxyacid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO: 9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxyacid reductoisomerase activity. 8.权利要求7的方法,还包括,在菌株中:8. The method of claim 7, further comprising, in the strain: 赋予或增强:乙酰乳酸合成酶、二羟酸脱水酶、3-甲基-2-氧代丁酸羟甲基转移酶、2-脱氢泛酸酯-2-还原酶、丝氨酸羟甲基转移酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸甘油酸脱氢酶、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶的活性,conferring or enhancing the activity of acetolactate synthase, dihydroxyacid dehydratase, 3-methyl-2-oxobutyrate hydroxymethyltransferase, 2-dehydropantothenate-2-reductase, serine hydroxymethyltransferase, glycine lyase system (e.g., aminomethyltransferase and/or glycine decarboxylase), phosphoglycerate dehydrogenase, phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase, 任选地,弱化或失活,如果存在的话:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶、磷酸乙酰转移酶和/或支链氨基酸氨基转移酶的活性;优选地,弱化支链氨基酸氨基转移酶的活性,Optionally, attenuating or inactivating, if present: the activity of L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate transaminase, phosphate acetyltransferase and/or branched-chain amino acid aminotransferase; preferably, attenuating the activity of branched-chain amino acid aminotransferase, 优选地,所述3-甲基-2-氧代丁酸羟甲基转移酶包括来自谷氨酸棒杆菌和/或大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶,Preferably, the 3-methyl-2-oxobutanoate hydroxymethyltransferase comprises 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum and/or Escherichia coli, 优选地,所述磷酸甘油酸脱氢酶来自谷氨酸棒杆菌,和/或,所述二羟酸脱水酶、2-脱氢泛酸酯-2-还原酶、甘氨酸裂解酶系统(例如氨甲基转移酶和/或甘氨酸脱羧酶)、磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶和磷酸丝氨酸磷酸酶来自大肠杆菌,Preferably, the phosphoglycerate dehydrogenase is from Corynebacterium glutamicum, and/or the dihydroxyacid dehydratase, 2-dehydropantothenate-2-reductase, glycine lyase system (e.g. aminomethyltransferase and/or glycine decarboxylase), phosphoserine/phosphohydroxythreonine aminotransferase and phosphoserine phosphatase are from Escherichia coli, 优选地,所述乙酰乳酸合成酶包括来自枯草芽孢杆菌的乙酰乳酸合成酶,和/或来自大肠杆菌的乙酰乳酸合成酶I、乙酰乳酸合成酶II和/或L-缬氨酸反馈抗性乙酰乳酸合成酶III。Preferably, the acetolactate synthase includes acetolactate synthase from Bacillus subtilis, and/or acetolactate synthase I, acetolactate synthase II and/or L-valine feedback-resistant acetolactate synthase III from Escherichia coli. 9.权利要求8的方法,其中:9. The method of claim 8, wherein: 所述来自枯草芽孢杆菌的乙酰乳酸合成酶包含SEQ ID NO:1所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶活性的氨基酸序列;和/或The acetolactate synthase from Bacillus subtilis comprises the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase activity; and/or 所述乙酰乳酸合成酶I包含SEQ ID NO:3所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶I活性的氨基酸序列;和/或The acetolactate synthase I comprises the amino acid sequence shown in SEQ ID NO: 3 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase I activity; and/or 所述乙酰乳酸合成酶II包含SEQ ID NO:5所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有乙酰乳酸合成酶II活性的氨基酸序列;和/或The acetolactate synthase II comprises the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having acetolactate synthase II activity; and/or 所述L-缬氨酸反馈抗性乙酰乳酸合成酶III包含SEQ ID NO:7所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有L-缬氨酸反馈抗性乙酰乳酸合成酶III活性的氨基酸序列;和/或The L-valine feedback-resistant acetolactate synthase III comprises the amino acid sequence shown in SEQ ID NO: 7, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having L-valine feedback-resistant acetolactate synthase III activity; and/or 所述二羟酸脱水酶包含SEQ ID NO:11所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有二羟酸脱水酶活性的氨基酸序列;和/或The dihydroxy-acid dehydratase comprises an amino acid sequence as shown in SEQ ID NO: 11, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having dihydroxy-acid dehydratase activity; and/or 所述来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:13所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列;和/或The 3-methyl-2-oxobutanoate hydroxymethyltransferase from Corynebacterium glutamicum comprises the amino acid sequence shown in SEQ ID NO: 13 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity; and/or 所述来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶包含SEQ ID NO:15所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有3-甲基-2-氧代丁酸羟甲基转移酶活性的氨基酸序列;和/或The 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli comprises the amino acid sequence shown in SEQ ID NO: 15, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having 3-methyl-2-oxobutanoate hydroxymethyltransferase activity; and/or 所述2-脱氢泛酸酯-2-还原酶包含SEQ ID NO:17所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有2-脱氢泛酸酯-2-还原酶活性的氨基酸序列;和/或The 2-dehydropantothenate-2-reductase comprises the amino acid sequence of SEQ ID NO: 17, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has 2-dehydropantothenate-2-reductase activity; and/or 所述丝氨酸羟甲基转移酶包含SEQ ID NO:19所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有丝氨酸羟甲基转移酶活性的氨基酸序列;和/或The serine hydroxymethyltransferase comprises the amino acid sequence of SEQ ID NO: 19, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has serine hydroxymethyltransferase activity; and/or 所述氨甲基转移酶包含SEQ ID NO:21所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有氨甲基转移酶活性的氨基酸序列;和/或The aminomethyltransferase comprises the amino acid sequence of SEQ ID NO: 21, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has aminomethyltransferase activity; and/or 所述甘氨酸脱羧酶包含SEQ ID NO:23所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有甘氨酸脱羧酶活性的氨基酸序列;和/或The glycine decarboxylase comprises the amino acid sequence of SEQ ID NO: 23, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has glycine decarboxylase activity; and/or 所述磷酸甘油酸脱氢酶包含SEQ ID NO:25所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸甘油酸脱氢酶活性的氨基酸序列;和/或The phosphoglycerate dehydrogenase comprises the amino acid sequence of SEQ ID NO: 25, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoglycerate dehydrogenase activity; and/or 所述磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶包含SEQ ID NO:27所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶活性的氨基酸序列;和/或The phosphoserine/phosphohydroxythreonine aminotransferase comprises the amino acid sequence of SEQ ID NO: 27, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine/phosphohydroxythreonine aminotransferase activity; and/or 所述磷酸丝氨酸磷酸酶包含SEQ ID NO:29所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有磷酸丝氨酸磷酸酶活性的氨基酸序列;和/或The phosphoserine phosphatase comprises the amino acid sequence of SEQ ID NO: 29, or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has phosphoserine phosphatase activity; and/or 所述弱化的支链氨基酸氨基转移酶包含SEQ ID NO:31所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有弱化的支链氨基酸氨基转移酶活性的氨基酸序列。The weakened branched-chain amino acid aminotransferase comprises the amino acid sequence shown in SEQ ID NO: 31 or an amino acid sequence that is at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical thereto and has weakened branched-chain amino acid aminotransferase activity. 10.权利要求7-9任一项的方法,包括,在菌株中:10. The method of any one of claims 7 to 9, comprising, in the strain: 表达编码弱化的支链氨基酸氨基转移酶的基因;和/或expressing a gene encoding a weakened branched-chain amino acid aminotransferase; and/or 过表达:编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因、编码乙酰乳酸合成酶I的基因、编码乙酰乳酸合成酶II的基因、编码L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因、编码来自Thermacetogenium phaeum菌株的NADH依赖型乙酰羟基酸还原异构酶的基因、编码二羟酸脱水酶的基因、编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码2-脱氢泛酸酯-2-还原酶的基因、编码丝氨酸羟甲基转移酶的基因、编码甘氨酸裂解酶系统的基因(例如编码氨甲基转移酶的基因和/或编码甘氨酸脱羧酶的基因)、编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因、编码磷酸甘油酸脱氢酶的基因、编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因和编码磷酸丝氨酸磷酸酶的基因,和/或Overexpression: a gene encoding acetolactate synthase from Bacillus subtilis, a gene encoding acetolactate synthase I, a gene encoding acetolactate synthase II, a gene encoding L-valine feedback-resistant acetolactate synthase III, a gene encoding an NADH-dependent acetohydroxyacid reductoisomerase from a Thermacetogenium phaeum strain, a gene encoding a dihydroxyacid dehydratase, a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum, a gene encoding a 2-dehydropantothenate-2-reductase, a gene encoding a serine hydroxymethyltransferase, a gene encoding a glycine lyase system (e.g., a gene encoding an aminomethyltransferase and/or a gene encoding a glycine decarboxylase), a gene encoding a 3-methyl-2-oxobutyrate hydroxymethyltransferase from Escherichia coli, a gene encoding a phosphoglycerate dehydrogenase, a gene encoding a phosphoserine/phosphohydroxythreonine aminotransferase, and a gene encoding a phosphoserine phosphatase, and/or 任选地,敲除编码如下一或多种、优选全部酶的内源基因,如果存在的话:L-丝氨酸脱氨酶I、丙酸激酶、甲酸乙酰转移酶、醇脱氢酶、丙酮酸甲酸裂解酶、富马酸还原酶、乳酸脱氢酶、甲基乙二醛合酶、乙酸激酶、核糖激酶、缬氨酸-丙酮酸转氨酶和/或磷酸乙酰转移酶。Optionally, endogenous genes encoding one or more, preferably all, of the following enzymes are knocked out, if present: L-serine deaminase I, propionate kinase, formate acetyltransferase, alcohol dehydrogenase, pyruvate formate lyase, fumarate reductase, lactate dehydrogenase, methylglyoxal synthase, acetate kinase, ribokinase, valine-pyruvate aminotransferase and/or phosphate acetyltransferase. 11.权利要求10的方法,其中:11. The method of claim 10, wherein: 所述编码来自枯草芽孢杆菌的乙酰乳酸合成酶的基因包含SEQ ID NO:2所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding the acetolactate synthase from Bacillus subtilis comprises the nucleotide sequence shown in SEQ ID NO: 2 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码乙酰乳酸合成酶I的基因包含SEQ ID NO:4所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding acetolactate synthase I comprises the nucleotide sequence shown in SEQ ID NO: 4 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码乙酰乳酸合成酶II的基因包含SEQ ID NO:6所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding acetolactate synthase II comprises the nucleotide sequence shown in SEQ ID NO: 6 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码L-缬氨酸反馈抗性乙酰乳酸合成酶III的基因包含SEQ ID NO:8所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding L-valine feedback-resistant acetolactate synthase III comprises the nucleotide sequence shown in SEQ ID NO: 8 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码NADH依赖型乙酰羟基酸还原异构酶的基因包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding NADH-dependent acetohydroxyacid reductoisomerase comprises the nucleotide sequence shown in SEQ ID NO: 10 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码二羟酸脱水酶的基因包含SEQ ID NO:12所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding the dihydroxy-acid dehydratase comprises the nucleotide sequence of SEQ ID NO: 12 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码来自谷氨酸棒杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因包含SEQ IDNO:14所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 3-methyl-2-oxobutyrate hydroxymethyltransferase from Corynebacterium glutamicum comprises the nucleotide sequence shown in SEQ ID NO: 14 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码来自大肠杆菌的3-甲基-2-氧代丁酸羟甲基转移酶的基因包含SEQ ID NO:16所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase from Escherichia coli comprises the nucleotide sequence shown in SEQ ID NO: 16 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码2-脱氢泛酸酯-2-还原酶的基因包含SEQ ID NO:18所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding 2-dehydropantothenate-2-reductase comprises the nucleotide sequence shown in SEQ ID NO: 18 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码丝氨酸羟甲基转移酶的基因包含SEQ ID NO:20所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding serine hydroxymethyltransferase comprises the nucleotide sequence shown in SEQ ID NO: 20 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码氨甲基转移酶的基因包含SEQ ID NO:22所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding aminomethyltransferase comprises the nucleotide sequence shown in SEQ ID NO: 22 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码甘氨酸脱羧酶的基因包含SEQ ID NO:24所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding glycine decarboxylase comprises the nucleotide sequence shown in SEQ ID NO: 24 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸甘油酸脱氢酶的基因包含SEQ ID NO:26所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoglycerate dehydrogenase comprises the nucleotide sequence shown in SEQ ID NO: 26 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸丝氨酸/磷酸羟基苏氨酸氨基转移酶的基因包含SEQ ID NO:28所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoserine/phosphohydroxythreonine aminotransferase comprises the nucleotide sequence shown in SEQ ID NO: 28 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码磷酸丝氨酸磷酸酶的基因包含SEQ ID NO:30所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列,和/或The gene encoding phosphoserine phosphatase comprises the nucleotide sequence shown in SEQ ID NO: 30 or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto, and/or 所述编码弱化的支链氨基酸氨基转移酶的基因包含SEQ ID NO:32所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。The gene encoding the weakened branched-chain amino acid aminotransferase comprises the nucleotide sequence shown in SEQ ID NO: 32 or its degenerate sequence, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto. 12.权利要求7-11任一项的方法,其中所述菌株选自埃希氏菌属、肠杆菌属、谷氨酸棒杆菌、枯草芽孢杆菌和酵母菌,优选大肠杆菌。12. The method according to any one of claims 7 to 11, wherein the strain is selected from the group consisting of Escherichia, Enterobacter, Corynebacterium glutamicum, Bacillus subtilis and yeast, preferably Escherichia coli. 13.一种产生经遗传改造的产泛解酸菌株的方法,包括:在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCC No.21699的大肠杆菌中,用编码NADH依赖型乙酰羟基酸还原异构酶的基因替代NADPH依赖型乙酰羟基酸还原异构酶编码基因,13. A method for producing a genetically modified pantoate-producing strain, comprising: replacing a gene encoding an NADPH-dependent acetohydroxy acid reductoisomerase with a gene encoding an NADH-dependent acetohydroxy acid reductoisomerase in Escherichia coli at the General Microbiological Center of China Microorganism Culture Collection (CGMCC) in Beijing, China, with a deposit number of CGMCC No. 21699, 优选地,所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum菌株,更优选地,所述NADH依赖型乙酰羟基酸还原异构酶包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列,更优选地,所述编码NADH依赖型乙酰羟基酸还原异构酶的基因包含SEQ ID NO:10所示的核苷酸序列或其简并序列,或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性的核苷酸序列。Preferably, the NADH-dependent acetohydroxy acid reductoisomerase is from a Thermacetogenium phaeum strain, more preferably, the NADH-dependent acetohydroxy acid reductoisomerase comprises the amino acid sequence shown in SEQ ID NO: 9, or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity, more preferably, the gene encoding the NADH-dependent acetohydroxy acid reductoisomerase comprises the nucleotide sequence shown in SEQ ID NO: 10, or a degenerate sequence thereof, or a nucleotide sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto. 14.权利要求7-13任一项的方法,其中所述经遗传改造的产泛解酸菌株为保藏在中国北京的中国微生物菌种保藏管理委员会普通微生物中心(CGMCC)、保藏号为CGMCCNo.26276的大肠杆菌。14. The method of any one of claims 7 to 13, wherein the genetically modified pantoic acid-producing strain is Escherichia coli deposited in the General Microbiological Center of China Microorganism Culture Collection Committee (CGMCC) in Beijing, China, with a deposit number of CGMCC No. 26276. 15.一种提高产泛解酸菌株的D-泛解酸生产的方法,包括:在产泛解酸菌株中赋予或增强NADH依赖型乙酰羟基酸还原异构酶的活性,优选所述NADH依赖型乙酰羟基酸还原异构酶来自Thermacetogenium phaeum,更优选包含SEQ ID NO:9所示的氨基酸序列或与其具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高相同性且具有NADH依赖型乙酰羟基酸还原异构酶活性的氨基酸序列。15. A method for improving the production of D-pantoic acid in a pantoic acid-producing strain, comprising: conferring or enhancing the activity of NADH-dependent acetohydroxy acid reductoisomerase in the pantoic acid-producing strain, preferably the NADH-dependent acetohydroxy acid reductoisomerase is from Thermacetogenium phaeum, more preferably comprising the amino acid sequence shown in SEQ ID NO:9 or an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity thereto and having NADH-dependent acetohydroxy acid reductoisomerase activity. 16.一种生产D-泛解酸的方法,包括在适于发酵生产D-泛解酸的条件下培养权利要求1-6任一项的经遗传改造的产泛解酸菌株或者通过权利要求7-15任一项的方法获得的经遗传改造的产泛解酸菌株,任选包括分离纯化产生的D-泛解酸。16. A method for producing D-pantoic acid, comprising culturing the genetically modified pantoic acid-producing strain of any one of claims 1 to 6 or the genetically modified pantoic acid-producing strain obtained by the method of any one of claims 7 to 15 under conditions suitable for the fermentative production of D-pantoic acid, optionally comprising isolating and purifying the produced D-pantoic acid. 17.权利要求1-6任一项的经遗传改造的产泛解酸菌株或者通过权利要求7-15任一项的方法获得的经遗传改造的产泛解酸菌株在生产D-泛解酸中的应用。17. Use of the genetically modified pantoic acid-producing strain according to any one of claims 1 to 6 or the genetically modified pantoic acid-producing strain obtained by the method according to any one of claims 7 to 15 in producing D-pantoic acid.
CN202310341207.4A 2023-03-30 2023-03-30 A recombinant microorganism producing pantoic acid and its application Pending CN118726215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310341207.4A CN118726215A (en) 2023-03-30 2023-03-30 A recombinant microorganism producing pantoic acid and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310341207.4A CN118726215A (en) 2023-03-30 2023-03-30 A recombinant microorganism producing pantoic acid and its application

Publications (1)

Publication Number Publication Date
CN118726215A true CN118726215A (en) 2024-10-01

Family

ID=92853459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310341207.4A Pending CN118726215A (en) 2023-03-30 2023-03-30 A recombinant microorganism producing pantoic acid and its application

Country Status (1)

Country Link
CN (1) CN118726215A (en)

Similar Documents

Publication Publication Date Title
KR102777466B1 (en) Genetically engineered bacteria producing L-arginine and methods for constructing and applying the same
CN103981203B (en) 5 amino-laevulic acid superior strains and its preparation method and application
CN111100834B (en) Construction method and strain for improving pantothenic acid yield of genetically engineered bacteria
CN103282486B (en) There is the microorganism of the ornithine throughput of improvement and use the method for this microorganisms producing ornithine
CN114457122B (en) Recombinant microorganism producing L-valine and its construction method and application
CN113278641B (en) Recombinant Escherichia coli producing L-valine, its construction method and its application
CN104862352A (en) O-phosphoserine-producing microorganism and method for producing L-cysteine or its derivative from O-phosphoserine using the microorganism
CN113278568B (en) Recombinant escherichia coli for producing L-valine and application thereof
CN115109736B (en) Microorganism producing pantoic acid and construction method and application thereof
CN101679964A (en) Mutant microorganism having high putrescine productivity and method for producing putrescine using the same
CN104651291B (en) One plant of recombinant bacterial strain for producing phenol and its application
WO2022174597A1 (en) Genetically engineered bacterium for producing l-sarcosine, construction method therefor and use thereof
CN113278569B (en) Plasmid-free and inducer-free gene engineering bacterium for producing D-pantothenic acid and construction method
CN103667163B (en) Produce recombinant microorganism and the method for isopropylcarbinol
CN108546697B (en) Enzyme method for preparing beta alanine
CN105980544B (en) Microorganism producing L-amino acid and method for producing L-amino acid using the same
CN112592875B (en) A homoserine-producing strain and its construction method and application
CN104974946A (en) Recombinant escherichia coli with high osmotic pressure resistance and application thereof
CN118726215A (en) A recombinant microorganism producing pantoic acid and its application
CN117363549A (en) Genetically engineered bacterium for producing 5-hydroxytryptamine and construction method and application thereof
WO2024197704A1 (en) Recombinant microorganism for producing pantoic acid and use thereof
US11479795B2 (en) Genetically engineered bacterium for sarcosine production as well as construction method and application
CN117946950A (en) A novel dehydrogenase for producing 2-hydroxyisovaleric acid and the construction and application of 2-hydroxyisovaleric acid engineering bacteria
WO2023246071A1 (en) Mrec mutant and use thereof in l-valine fermentative production
CN118562691A (en) A new recombinant microorganism and its construction method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination