CN1187251C - Device for managing and controlling operation of elevator - Google Patents
Device for managing and controlling operation of elevator Download PDFInfo
- Publication number
- CN1187251C CN1187251C CNB971803412A CN97180341A CN1187251C CN 1187251 C CN1187251 C CN 1187251C CN B971803412 A CNB971803412 A CN B971803412A CN 97180341 A CN97180341 A CN 97180341A CN 1187251 C CN1187251 C CN 1187251C
- Authority
- CN
- China
- Prior art keywords
- traffic
- elevator
- traffic flow
- data
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 27
- 238000013480 data collection Methods 0.000 claims abstract description 11
- 238000013528 artificial neural network Methods 0.000 claims description 50
- 230000006870 function Effects 0.000 claims description 31
- 238000007405 data analysis Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000012937 correction Methods 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 238000013507 mapping Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 101000743788 Homo sapiens Zinc finger protein 92 Proteins 0.000 description 2
- 102100029860 Suppressor of tumorigenicity 20 protein Human genes 0.000 description 2
- 102100039046 Zinc finger protein 92 Human genes 0.000 description 2
- 101100445400 Gibberella fujikuroi (strain CBS 195.34 / IMI 58289 / NRRL A-6831) TF22 gene Proteins 0.000 description 1
- 101100279896 Gibberella fujikuroi (strain CBS 195.34 / IMI 58289 / NRRL A-6831) TF23 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
Landscapes
- Elevator Control (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
Abstract
本发明电梯操作管理和控制系统包括交通数据收集部分用于收集求得电梯乘客交通量的交通数据;交通量计算部分,用于根据由所述交通数据收集部分收集的交通数据来计算所述交通量的交通量计算部分;交通流计算部分,用于根据由所述交通量计算部分计算的所述交通量计算在各个层之间移动的所述电梯乘客的交通流估计值;控制参数设定部分,用于根据由所述交通流计算部分计算的所述交通流估计值来设定用于控制所述电梯操作的控制参数;和操作控制部分,用于根据由所述控制参数设定部分设定的所述控制参数来控制所述电梯的所述操作,从而它不需要预先准备和存储大量交通流模式和根据交通流模式获得的交通量的组合,而且可以立即从迄今为止观测到的交通量数据计算交通流估计值,并通过设定对应于交通流估计值的群管理控制的控制参数,来进行电梯群管理控制。
The elevator operation management and control system of the present invention includes a traffic data collection part for collecting traffic data for obtaining elevator passenger traffic volume; a traffic volume calculation part for calculating the traffic volume according to the traffic data collected by the traffic data collection part A traffic volume calculation section of volume; a traffic flow calculation section for calculating a traffic flow estimated value of the elevator passengers moving between floors based on the traffic volume calculated by the traffic volume calculation section; control parameter setting a section for setting a control parameter for controlling the operation of the elevator based on the traffic flow estimated value calculated by the traffic flow calculation section; and an operation control section for setting a control parameter based on the control parameter setting section by the The control parameters set are used to control the operation of the elevator, so that it does not need to prepare and store a large number of traffic flow patterns and combinations of traffic volumes obtained according to the traffic flow patterns in advance, and can immediately learn from the hitherto observed The traffic volume data calculates the traffic flow estimated value, and by setting the control parameters of the group management control corresponding to the traffic flow estimated value, the elevator group management control is performed.
Description
技术领域technical field
本发明涉及电梯操作管理和控制系统。The present invention relates to elevator operation management and control systems.
背景技术Background technique
图7是示出用于估计例如在JP-A-7-309546中所述的以及其控制目的特别在于包括多梯的交通工具的现有技术交通装置控制系统的交通流的基本原理的注释图。FIG. 7 is an explanatory diagram showing the basic principle for estimating the traffic flow of a prior art traffic control system such as that described in JP-A-7-309546 and whose control purpose is particularly for vehicles including multiple elevators .
在图7中,标号11表示交通量数据,它包括诸如在每层乘坐电梯的人数和在每层离开电梯的人数的定量信息、标号13表示说明诸如由量、时间段(timezone)、方向等元素表示的电梯乘客的生成和移动的交通流和标号12表示用于根据从预设定交通量和交通流模式之间的关系所得到的输入交通量数据11而来的交通流13的多层神经(neural)网络(控制神经网络)。In Fig. 7,
假设在某一幢楼中在预定时间段内,在第i层乘上电梯而在第j层离开电梯的电梯乘客数,即,从第i层移到第j层的电梯乘客数为Tij时,可以如下表示在该时间段中在该时间段内的交通流:Assuming that in a certain building, the number of elevator passengers who take the elevator on the i-th floor and leave the elevator on the j-th floor within a predetermined period of time, that is, the number of elevator passengers moving from the i-th floor to the j-th floor is Tij , the traffic flow in that time period in that time period can be represented as follows:
交通流:T=(T12、T13、…、Tij、…) …(1)Traffic flow: T = (T12, T13, ..., Tij, ...) ... (1)
于是,可如下表示通过这种交通流生成并可观测到的交通量数据:Then, the traffic volume data generated and observed through this traffic flow can be expressed as follows:
交通量数据:G=(p,q) …(2)Traffic volume data: G = (p, q) ... (2)
其中,p是在每层乘上电梯的人数,而q是在每层离开电梯的人数。Among them, p is the number of people taking the elevator on each floor, and q is the number of people leaving the elevator on each floor.
于是,交通流就是这交通的流量,而且交通量是可根据交通流找到的容易观测到的量。Thus, the traffic flow is the flow of this traffic, and the traffic volume is an easily observable quantity that can be found from the traffic flow.
此外,当将可观测控制结果设为E时,除了交通量数据之外,还可如下表示控制结果E:In addition, when the observable control result is set to E, in addition to the traffic volume data, the control result E can also be expressed as follows:
控制结果:E=(r,y,m) …(3)Control results: e = (r, y, m) ... (3)
其中,r是对于大厅呼叫(hall call)的响应时间的分配、y是每层预报错过(prediction miss)的次数分配和m是当电梯(car)已满并经过每层时的次数分配。where r is the distribution of response time to hall calls, y is the distribution of prediction misses per floor and m is the distribution of times when the elevator (car) is full and passes each floor.
由于很难精确直接地从不包含在目标时间段中电梯乘客的移动方向的信息的交通量数据G找到交通流T,所以这里用近似方法来找到交通流。Since it is difficult to find the traffic flow T precisely and directly from the traffic data G which does not contain information on the direction of movement of the elevator passengers in the target time period, an approximate method is used here to find the traffic flow.
首先,预先准备好假设的大量楼中交通流模式,再通过模拟找到固定控制参数,当对每个交通流模式进行控制时生成的交通量数据G和控制结果E。从而,可以获得在“交通量和交通流模式”以及“交通流模式和控制结果”之间的几种关系。First, a large number of hypothetical traffic flow patterns in the building are prepared in advance, and then fixed control parameters are found through simulation, and the traffic volume data G and control results E generated when each traffic flow pattern is controlled. Thus, several relationships between "traffic volume and traffic flow pattern" and "traffic flow pattern and control result" can be obtained.
接着,用神经网络来表示“交通量和交通流模式”的关系。于是,准备例如图7所示的多层神经网络12,而且分别向输入侧提供交通量数据11,和向输出侧提供生成交通量数据11的交通流模式13,作为让神经网络学习的所谓教师(teacher)数据。Next, a neural network is used to represent the relationship between "traffic volume and traffic flow pattern". Then, for example, a multilayer
结果,当输入某一交通量数据时,神经网络12输出一个交通流模式,该模式是预先准备好的各种交通流模式中最接近于能生成所输入的交通量数据的那一个模式。As a result, when a certain traffic volume data is input, the
因此,通过预先准备和使神经网络12学到足够数量的交通流模式,相对于来自至今学到的“交通量和交通流模式”的关系的交通量数据,神经网络12选择和输出生成任意交通量的交通流,或者至少很接近该交通流的交通流。Therefore, by preparing and having the
当根据多个不同交通流模式生成相同交通量数据时,由于在固定控制参数下,交通流不同时,控制结果互不相同,所以神经网络12能够选择交通流模式,它允许通过利用在“交通流模式和控制结果”之间的关系,从生成相同交通量数据的交通流模式中获得特定控制结果。When the same traffic flow data is generated according to a plurality of different traffic flow patterns, since under fixed control parameters, when the traffic flow is different, the control results are different from each other, so the
此外,由于可以设定控制参数,以使得预先准备的交通流模式用预先模拟等方法获得最佳控制结果,所以当可以根据交通量数据估计交通流时,神经网络12可以设定最佳控制参数。In addition, since the control parameters can be set so that the pre-prepared traffic flow pattern can obtain the best control results by means of pre-simulation, etc., when the traffic flow can be estimated according to the traffic volume data, the
在这个现有技术中,确定交通流估计的精确度依赖于可预先准备在交通流模式和从交通流模式获得的交通量之间的多少组合。然而,存在问题,即,由于预先准备和存储所有种类的交通流模式和从交通流模式获得的交通量的组合需要庞大的存储容量,而且它不能相对应当前服务状态有效地分配适当电梯,所以这是不可实践的。In this prior art, determining the accuracy of the traffic flow estimation depends on how many combinations between the traffic flow pattern and the traffic volume obtained from the traffic flow pattern can be prepared in advance. However, there is a problem that since preparing and storing in advance all kinds of traffic flow patterns and combinations of traffic volumes obtained from the traffic flow patterns requires a huge storage capacity, and it cannot efficiently allocate appropriate elevators corresponding to the current service state, so This is not practical.
在JP-B-62-36954中所述的技术也有一个问题,即,由于虽然它可以分析过去发生了哪种交通流,它不能实时估计当时发生哪种交通流,同时控制电梯操作管理,所以它不能相对应当前服务状态,有效地分配适当电梯。The technique described in JP-B-62-36954 also has a problem, that is, since although it can analyze what kind of traffic flow occurred in the past, it cannot estimate in real time what kind of traffic flow occurred at that time while controlling elevator operation management, so It cannot effectively allocate the appropriate elevator corresponding to the current service state.
因此,本发明的目的在于提供电梯操作管理和控制系统来解决这个问题,其中上述系统能够实时估计来自观测到的交通量数据的交通流并能够对应于估计的交通流来进行电梯操作管理和控制。Therefore, it is an object of the present invention to solve this problem by providing an elevator operation management and control system capable of estimating traffic flow from observed traffic data in real time and capable of performing elevator operation management and control corresponding to the estimated traffic flow .
发明内容Contents of the invention
本发明提供一种电梯操作管理和控制系统,包括:The present invention provides an elevator operation management and control system, comprising:
交通数据收集部分用于收集求得电梯乘客的交通量的交通数据;The traffic data collection part is used to collect traffic data to obtain the traffic volume of elevator passengers;
控制参数设定部分,用于设定用于控制所述电梯操作的控制参数;和a control parameter setting section for setting control parameters for controlling the operation of the elevator; and
操作控制部分,用于根据由所述控制参数设定部分设定的所述控制参数来控制所述电梯的所述操作,an operation control section for controlling the operation of the elevator according to the control parameter set by the control parameter setting section,
其特征在于,所述电梯操作管理和控制系统还包括:It is characterized in that the elevator operation management and control system also includes:
交通量计算部分,用于根据由所述交通数据收集部分收集的交通数据来计算所述交通量;a traffic volume calculation section for calculating the traffic volume based on the traffic data collected by the traffic data collection section;
交通流计算部分,用于根据由所述交通量计算部分计算的所述交通量实时地计算在各个层之间移动的所述电梯乘客的交通流估计值;a traffic flow calculation section for calculating in real time an estimated value of traffic flow of the elevator passengers moving between floors based on the traffic volume calculated by the traffic volume calculation section;
交通数据分析部分,用于按照所述交通数据分析乘客的移动;a traffic data analysis section for analyzing movement of passengers according to said traffic data;
估计功能构成部分,用于根据所述交通数据分析部分分析的结果构成所述交通流计算部分的估计功能;an estimating function constituting section for constituting an estimating function of said traffic flow calculating section based on a result analyzed by said traffic data analyzing section;
其中,所述控制参数设定部分根据由所述交通流计算部分计算的所述交通流估计值来设定用于控制所述电梯操作的控制参数。Wherein, the control parameter setting section sets a control parameter for controlling the operation of the elevator based on the traffic flow estimated value calculated by the traffic flow calculation section.
如上所述的电梯操作管理和控制系统,由神经网络形成所述交通流计算部分,其中在所述神经网络的输入侧设定所述电梯乘客的所述交通量,而在输出侧设定所述电梯乘客的所述交通流。In the elevator operation management and control system as described above, the traffic flow calculation section is formed by a neural network, wherein the traffic volume of the elevator passengers is set on the input side of the neural network, and the traffic volume of the elevator passengers is set on the output side. The traffic flow of the elevator passengers.
如上所述的电梯操作管理和控制系统,还包括教师数据产生部分,其中所述教师数据产生部分用于根据由所述交通数据收集部分收集的所述交通数据来产生所述神经网络用来学习的教师数据,所述估计功能构成部分通过根据由所述教师数据产生部分产生的所述教师数据来供所述神经网络学习,计算所述交通流计算部分的所述交通流估计值。The elevator operation management and control system as described above, further comprising a teacher data generation section, wherein the teacher data generation section is used to generate the neural network for learning based on the traffic data collected by the traffic data collection section The estimation function constituting section calculates the traffic flow estimation value of the traffic flow calculating section by providing the neural network with learning based on the teacher data generated by the teacher data generating section.
如上所述的电梯操作管理和控制系统,所述估计功能构成部分根据交通流数据的各对应元素的两个平方的误差设定一个值作为所述估计精确度的指数,其中所述两个平方分别为所采用的教师数据和由所述交通流计算部分根据所述教师数据的所述交通量数据计算的所述交通流估计值相对应。In the elevator operation management and control system as described above, the estimating function constituting part sets a value as an index of the estimating accuracy based on the error of two squares of each corresponding element of the traffic flow data, wherein the two squares The employed teacher data and the traffic flow estimated value calculated by the traffic flow calculating section based on the traffic volume data of the teacher data correspond respectively.
如上所述的电梯操作管理和控制系统,所述教师数据产生部分在预定时间段内,根据由所述交通数据收集部分收集的交通数据产生所述教师数据。In the elevator operation management and control system as described above, the teacher data generating section generates the teacher data based on the traffic data collected by the traffic data collecting section within a predetermined period of time.
如上所述的电梯操作管理和控制系统,所述交通流计算部分按在目标层之间移动的电梯乘客的交通量占整个交通量的比率来计算交通流估计值。In the elevator operation management and control system as described above, the traffic flow calculation section calculates the traffic flow estimation value as a ratio of the traffic volume of elevator passengers moving between the target floors to the entire traffic volume.
如上所述的电梯操作管理和控制系统,所述操作控制部分按群管理控制实施操作控制。In the elevator operation management and control system as described above, the operation control section performs operation control by group management control.
附图说明Description of drawings
图1是本发明的电梯操作管理和控制系统的注释图。Fig. 1 is an explanatory diagram of the elevator operation management and control system of the present invention.
图2是本发明的电梯操作管理和控制系统的注释图。Fig. 2 is an explanatory diagram of the elevator operation management and control system of the present invention.
图3是本发明的电梯操作管理和控制系统的注释图。Fig. 3 is an explanatory diagram of the elevator operation management and control system of the present invention.
图4是本发明的电梯操作管理和控制系统的注释图。Fig. 4 is an explanatory diagram of the elevator operation management and control system of the present invention.
图5是本发明的电梯操作管理和控制系统的注释图。Fig. 5 is an explanatory diagram of the elevator operation management and control system of the present invention.
图6是本发明的电梯操作管理和控制系统的注释图。Fig. 6 is an explanatory diagram of the elevator operation management and control system of the present invention.
图7是现有技术交通装置控制系统的注释图。Fig. 7 is an explanatory diagram of a prior art traffic device control system.
具体实施方式Detailed ways
第一实施例first embodiment
接着,利用附图说明本发明的第一实施例。Next, a first embodiment of the present invention will be described using the drawings.
图1是本发明的电梯操作管理和控制系统的交通流估计的基本原理注释图。在此,通过举例说明利用群(group)管理控制来操作多个电梯的情况,解释该原理。Fig. 1 is an explanatory diagram of the basic principle of traffic flow estimation of the elevator operation management and control system of the present invention. Here, the principle is explained by exemplifying a case where a plurality of elevators are operated using group supervisory control.
在图1中,交通量数据11包括定量信息,诸如,每层每个方向(UP/DOWN),乘上电梯的人数和离开电梯的人数,而且以OD(始发/目的地)数据表示交通流13,其中所述数据表示在整个交通量中从某一层到另一目标层间移动的电梯乘客的交通量。多层神经网络(控制神经网络)12根据输入交通量数据11估计交通流数据13。In Fig. 1, the
当在此假设在某一幢楼中,在预定时间段内,从第i层乘上电梯和在第j层离开电梯的电梯乘客数,即,表示从第i层移到第j层的电梯乘客数的OD数据,设为TFij时,可以与前面所述的现有技术例子相同的方法,来如下表示在大楼内的交通流,这是因为它是那些OD数据的集合:When it is assumed here that in a certain building, within a predetermined period of time, the number of elevator passengers who take the elevator from the i-th floor and leave the elevator on the j-th floor, that is, the number of elevators moving from the i-th floor to the j-th floor The OD data of the number of passengers, when set as TFij, can represent the traffic flow in the building as follows in the same way as the prior art example described above, because it is a collection of those OD data:
交通流:TF=(TF12,TF13,…,TFij,…) …(4)Traffic flow: TF = (TF 12 , TF 13 , ..., TFij, ...) ... (4)
此外,如下表示由这种交通流生成并可观测的交通量数据:Furthermore, the observable traffic volume data generated by such a traffic flow is represented as follows:
交通量数据:G=(ON up(f1),ON dn(F1),OFF up(f1),OFF dn(f`1))Traffic volume data: G=(ON up(f1), ON dn(F1), OFF up(f1), OFF dn(f`1))
ON up(f1):在第f1层,乘坐向上方向电梯的人数,ON up(f1): On the f1 floor, the number of people taking the elevator in the upward direction,
ON dn(F1):在第f1层,乘坐向下方向电梯的人数,ON dn(F1): On the f1 floor, the number of people taking the elevator in the downward direction,
OFF up(f1):在第f1层,离开向上方向电梯的人数,OFF up(f1): On the f1 floor, the number of people leaving the elevator in the upward direction,
OFF dn(F1):在第f1层,离开向下方向电梯的人数 …(5)OFF dn(F1): On the f1 floor, the number of people leaving the elevator in the downward direction ...(5)
通常,虽然可以从交通流数据G找到如表达式(5)所示的交通量T,但是很难相反从交通量数据T找到精确的交通流G,其中所述交通流数据G包含表示电梯乘客的移动方向和如表达式(4)所示的目标时间段的信息。Generally, although the traffic volume T shown in expression (5) can be found from the traffic flow data G, it is difficult to find the precise traffic flow G from the traffic volume data T instead, where the traffic flow data G contains the elevator passenger The direction of movement and the information of the target time period shown in expression (4).
于是,根据本发明,除了每天群管理和控制,还由神经网络根据关于在目标时间段内多少电梯乘客从哪层移到哪层的每个交通流数据的过去表格,找到作为每层的层间电梯乘客数的交通量,而且由神经网络表示根据交通流数据定义的交通量的映像(map)。于是,通过在控制群管理过程中利用这种神经网络的学习结果,利用对该映像的逆映射,从交通量数据中近似地找到交通流G。Thus, according to the present invention, in addition to the daily group management and control, the neural network is also used to find the floor as each floor based on the past table of each traffic flow data about how many elevator passengers moved from which floor to which floor in the target time period. The traffic volume of the number of elevator passengers between elevators, and the map of the traffic volume defined by the traffic flow data is represented by the neural network. Then, by using the learning result of this neural network in the control group management process, the traffic flow G is approximately found from the traffic volume data by using the inverse mapping of this map.
因此,使得例如在结束每天控制之后,神经网络学到在交通流和从该交通流计算出的交通量之间的关系。当从输入侧给出交通量数据时,使得神经网络学习,而且在这种情况下从输出侧提取交通流,当输入某一交通量数据作为神经网络的一般质量时,神经网络可以输出与交通量数据相对应的交通流。即,神经网络可以获得执行作为对根据交通流数据定义交通量的映射的逆映射的能力。Thus, for example, the neural network learns the relationship between the traffic flow and the traffic volume calculated from it, eg after the end of the daily control. When the traffic volume data is given from the input side, the neural network is made to learn, and in this case the traffic flow is extracted from the output side, when a certain traffic volume data is input as the general quality of the neural network, the neural network can output the same traffic Traffic flow corresponding to volume data. That is, the neural network can acquire the ability to perform mapping that is the inverse of a mapping that defines traffic volumes from traffic flow data.
虽然当可以特定交通流时,操作控制系统通过设定与交通流相对应的控制参数来进行群管理,在电梯群管理控制中存在多个控制参数,诸如分配给拥挤层的电梯数、设定无服务层、预报每个电梯达到特定层的时间、在呼叫分配过程中对每个评估指数的加权等。Although the operation control system performs group management by setting control parameters corresponding to the traffic flow when the traffic flow can be specified, there are multiple control parameters in elevator group management control, such as the number of elevators assigned to congested floors, setting No floors served, forecast of when each elevator will reach a particular floor, weighting of each evaluation index during call assignment, etc.
然而,当可以特定交通流时,可以用模拟等方法来评估在限定控制参数下的控制结果,而且可以设定对于每个交通流的控制参数的最佳值。即,当可以估计交通流时,可以自动设定控制参数的最佳值。However, when a traffic flow can be specified, a method such as simulation can be used to evaluate the control result under limited control parameters, and the optimum value of the control parameter for each traffic flow can be set. That is, when the traffic flow can be estimated, the optimal value of the control parameter can be automatically set.
接着,作为本发明的实施例,用图2可解释用以根据由上述基本原理估计的交通流来控制多个电梯群的电梯操作管理和控制系统。Next, as an embodiment of the present invention, an elevator operation management and control system for controlling a plurality of elevator groups based on the traffic flow estimated by the above basic principle can be explained using FIG. 2 .
图2是示出作为本发明的电梯操作管理和控制系统的例子的群管理和控制系统的结构方框图。在图2中,标号(31至3n)表示设在每层大厅处的大厅呼叫按钮。当电梯乘客操纵大厅呼叫按钮31至3n中的至少任一按钮时,将大厅呼叫从操纵的大厅呼叫按钮输出到群管理控制单元1,从而群管理控制单元1实施群管理控制。Fig. 2 is a block diagram showing the structure of a group management and control system as an example of the elevator operation management and control system of the present invention. In FIG. 2, reference numerals (31 to 3n) denote hall call buttons provided at the halls of each floor. When an elevator passenger manipulates at least any one of the hall call buttons 31 to 3n, a hall call is output from the manipulated hall call button to the group
电梯控制器21至2m中的每个控制器根据群管理控制单元1的控制命令,操纵每个电梯,诸如,运行、停止和开门/关门。Each of the elevator controllers 21 to 2m operates each elevator, such as running, stopping, and door opening/closing, according to control commands of the group
这里,群管理控制单元1包括用以收集诸如每个电梯的行动和所生成呼叫的交通数据的交通数据收集部分1A、用以根据收集到的交通数据来计算交通量的交通量计算部分1B、作为用以根据计算交通量数据实时计算交通流估计值的交通流计算部分的估计部分1C、用以通过根据交通数据分析电梯乘客的移动来产生用来学习神经网络的教师数据的教师数据产生部分1D、用以根据由交通数据产生部分1D产生的教师数据,通过学习神经网络来构成用来计算交通流估计值的交通流估计部分1C的功能的估计功能构成部分1E、用以根据由交通流估计部分1C估计的交通流估计值,设定用来控制电梯群的控制参数的控制参数设定部分1F和用以根据预设定控制参数来控制群管理的操作控制部分1G。Here, the group
这里,上述交通数据不仅包括用以计算交通量的数据,还包括用以分析电梯乘客的移动来估计交通流的数据,诸如,如由电梯乘客进行的呼叫一类的信号、如停止、向上、向下等一类的电梯操作信息、乘上/离开电梯的人数、关于诸如负荷和目标时间段变化的电梯信息。Here, the above-mentioned traffic data includes not only data used to calculate the traffic volume but also data used to analyze the movement of elevator passengers to estimate traffic flow, such as signals such as calls made by elevator passengers, such as stop, up, Elevator operation information such as down, the number of people boarding/leaving the elevator, information about elevators such as changes in load and target time period.
参照图3,将电梯群管理控制的具体操作特别作为本实施例的操作来进行解释。Referring to Fig. 3, the specific operation of the elevator group management control will be explained especially as the operation of this embodiment.
图3是示意示出群管理控制的流程图。Fig. 3 is a flowchart schematically showing group management control.
首先,交通数据收集部分1A收集交通数据,诸如,停止和运行一类的电梯行为、乘上/离开电梯的人数、电梯呼叫、大厅呼叫和实时被呼叫的电梯(步骤ST10)。First, the traffic data collection section 1A collects traffic data such as elevator behavior such as stop and run, number of people boarding/leaving the elevator, elevator calls, hall calls, and called elevators in real time (step ST10).
接着,交通量计算部分1B根据由交通数据收集部分1A收集的交通数据来计算交通量数据G(步骤ST20)。通过使交通量计算部分1B例如每隔1分钟就计算在过去5分钟内乘上/离开电梯的人数,可以实现对交通量的计算。Next, the traffic amount calculation section 1B calculates traffic amount data G based on the traffic data collected by the traffic data collection section 1A (step ST20). The calculation of the traffic volume can be realized by causing the traffic volume calculation section 1B to count the number of people who got on/off the elevator in the past 5 minutes, for example, every 1 minute.
接着,交通流估计部分1C根据由交通量计算部分1B计算的交通量数据,实时计算交通流估计值(步骤ST30)。这里,参照图4,可以解释在步骤S30中交通流估计操作。Next, the traffic flow estimation section 1C calculates a traffic flow estimation value in real time based on the traffic volume data calculated by the traffic volume calculation section 1B (step ST30). Here, referring to FIG. 4, the traffic flow estimation operation in step S30 can be explained.
将计算的交通量数据G输入到如图1所示的神经网络12(步骤ST31)。此时,将如在表达式(2)中所示的交通量数据G的各个元素数据ON up(f1),ON dn(F1),OFF up(f1)和OFF dn(f`1)的值输入到在神经网络12的输入层中的每个神经元(neuron)。因此,在输入层中的神经元数量是4×Z(Z是在大楼中的层数)。The calculated traffic volume data G is input to the
这里,神经网络12实施已知网络计算(步骤ST32)并实时输出通过计算找到的交通量估计值。Here, the
在这种情况下,将神经网络12的输出层中的每个神经元的输出值设为在表达式(4)中的交通流数据TF的每个元素的估计值。即,通过将输出层的每个神经元的输出值设为TF11、将第二神经元的输出值设为TF12、…,可以获得交通流数据的估计值作为OD数据。因此,在输出层中的神经元数量是Z2。In this case, the output value of each neuron in the output layer of the
注意,与每个情况相对应,可以任意设定在中间层中的神经元数量。Note that the number of neurons in the middle layer can be arbitrarily set corresponding to each case.
此外,通过将大楼分成几个区域,每个区域都可描述交通流和交通量。在这种情况下,上述Z是区域数量。Furthermore, by dividing the building into several zones, each zone can describe the traffic flow and volume. In this case, Z above is the number of zones.
现在,回到对图3的解释,当由神经网络12在步骤ST30中实时获得交通流估计数据时,接着控制参数设定部分1F设定与由神经网络12估计的交通流相对应的控制参数(步骤ST40)。Now, returning to the explanation of FIG. 3, when the traffic flow estimation data is obtained in real time by the
接着,操作控制部分1G根据由控制参数设定部分1F设定的控制参数,执行电梯群管理控制(步骤ST50)。Next, the operation control section 1G executes elevator group management control based on the control parameters set by the control parameter setting section 1F (step ST50).
随便说一下,通过重复校正下述估计功能,可以构成用以根据在每天群管理控制期间由神经网络12实现的交通量数据,来估计交通流的这种功能。By the way, the function to estimate the traffic flow based on the traffic volume data realized by the
即,例如,与每天群管理控制分开,间歇地执行对由神经网络12实现的交通流估计功能的校正(步骤ST60)。在完成每天控制之后,或者例如每星期的预定时间间隔内,可以执行对估计功能的校正。That is, for example, the correction of the traffic flow estimation function realized by the
通过使神经网络12学习交通流和交通量之间的关系,并使神经网络12改进特定交通流估计功能能力从而超过上次获得的交通流估计功能能力,可以实现对估计功能的校正,其中根据从在上次执行的校正估计功能和这次执行的校正估计功能之间获得的交通数据找到的交通流数据和交通量数据,计算上述交通流和交通量。Correction of the estimation function can be achieved by causing the
参照图5描述用以校正估计功能(步骤ST60)的过程。The procedure to correct the estimation function (step ST60) is described with reference to FIG. 5 .
图5是示出用以校正交通流估计功能的流程图。FIG. 5 is a flowchart showing a function to correct traffic flow estimation.
从在步骤ST10中收集的在群管理控制下的交通数据中取出存储用以校正估计功能的数据(步骤ST61)。Data stored for correcting the estimation function is fetched from the traffic data under group management control collected in step ST10 (step ST61).
关于用以校正估计功能的交通数据,不必存储所有收集的数据作为用以校正的数据。可以把大约5分钟的预定数据设为一个单元,而且可以存储预定数据量,例如每时间段几个数据、其中发生特征交通的例如办公时间和平常时间,以供校正估计功能之用。Regarding the traffic data used to correct the estimation function, it is not necessary to store all collected data as data used for correction. Predetermined data of about 5 minutes can be set as a unit, and a predetermined amount of data, such as several data per time period, such as office hours and normal hours in which characteristic traffic occurs, can be stored for use in correcting the estimation function.
接着,教师数据产生部分1D分析用以校正估计功能以生成用以学习神经网络12的所谓教师数据的交通数据(步骤ST62)。Next, the teacher data generating section 1D analyzes the traffic data for correcting the estimation function to generate so-called teacher data for learning the neural network 12 (step ST62).
这里,教师数据包括分别来自交通数据的交通量数据和交通流数据的组合。这里,根据乘上/离开每部电梯的人数,以与上述步骤ST20的过程相同的方法,来以表达式(5)的形式找到交通量数据。可以表达式(4)的形式找到交通流数据。参照图6,进一步解释找到它们的过程。Here, the teacher data includes a combination of traffic volume data and traffic flow data respectively from the traffic data. Here, the traffic volume data is found in the form of expression (5) in the same way as the procedure of the above-mentioned step ST20 according to the number of people boarding/leaving each elevator. Traffic flow data can be found in the form of expression (4). Referring to Figure 6, the process of finding them is further explained.
将从它以向上或向下开始运行到它逆转它的路线时电梯的一系列操作称为扫描(scan)。例如,假设,在目标时间段内,在向上扫描中,停下层和乘上/离开某部电梯的人数是1F(3个人乘上)→ 3F(2个人离开)→4F(1个人乘上)→6F(1人离开)→10F(10个人离开),如图6所示。The sequence of operations of an elevator from when it starts running either up or down to when it reverses its course is called a scan. For example, assume that, during the target time period, the number of people who stop at a floor and take/leave an elevator is 1F (3 people get on) → 3F (2 people leave) → 4F (1 person gets on) in the upward scan → 6F (1 person leaves) → 10F (10 people leave), as shown in Figure 6.
在这种情况下,可将在3F处离开电梯的两个人特定为从IF乘上电梯的人。然而,不能特定在6F和10F处离开电梯的电梯乘客的乘上层。In this case, the two people who got off the elevator at 3F can be specified as the people who got on the elevator from IF. However, the boarding floors of the elevator passengers leaving the elevator at 6F and 10F cannot be specified.
因此,将已离开电梯并不能特定的电梯人数相同地分配到电梯乘客的移动组合中。即,在这种情况下,如下分配不能特定的两个人1F→6F(0.5人),4F→6F(0.5人),1F→10F(0.5人)和4F→10F(0.5人)。As a result, the unspecified number of people who have left the elevator are assigned equally to the movement combination of the elevator passengers. That is, in this case, two unspecified persons 1F→6F (0.5 persons), 4F→6F (0.5 persons), 1F→10F (0.5 persons) and 4F→10F (0.5 persons) are assigned as follows.
接着,每个区域都转换这个数据。当在图6的例子中,将IF设为第一区域、将2F至6F设为第二区域和将7F至10F设为第三区域时,如下列表达式(6)表示交通流数据作为OD(初始/目的地)数据:Next, each region transforms this data. When, in the example of FIG. 6 , IF is set as the first area, 2F to 6F is set as the second area, and 7F to 10F is set as the third area, the traffic flow data is expressed as OD as in the following expression (6). (origin/destination) data:
TF12=2.5(1F→3F(2人)和1F→6F(0.5人))TF12=2.5 (1F→3F (2 persons) and 1F→6F (0.5 persons))
TF13=0.5(1F→10F(0.5人))TF13=0.5(1F→10F(0.5 people))
TF22=0.54F→6F(0.5人))TF22=0.54F→6F (0.5 people)
TF23=0.5(4F→10F(0.5人)) …(6)TF23=0.5(4F→10F(0.5 people)) ...(6)
通过每部电梯和每扫描计算和积分上述过程,可以找到交通流数据,其中反映了关于在目标时间段中各个电梯乘客的移动信息。By calculating and integrating the above process per elevator and per scan, traffic flow data can be found, which reflects the movement information about the passengers of each elevator in the target time period.
于是,使神经网络12学习通过用每个存储的交通数据获得的交通量数据和数据流数据作为教师数据来调节神经网络12(步骤ST63)。Then, the
将已知所谓回传播方法用作学习神经网络12。A known so-called backpropagation method is used for learning the
接着,检测交通流的估计精确度。作为估计精确度的指数,采用了各对应元素平方的误差的总和,其中元素是指所采用的教师数据和由神经网络12根据教师数据的交通量数据计算的交通流估计值(步骤ST64)。Next, the estimation accuracy of the traffic flow is checked. As an index of the estimation accuracy, the sum of the squared errors of the corresponding elements of the employed teacher data and the traffic flow estimated value calculated by the
即,总计关于所有教师数据的下列表达式(7)分别找到的误差E并将总值设为估计精确度的指数。可考虑总值越小,估计精确度越好。That is, the errors E respectively found by the following expression (7) with respect to all teacher data are summed up and the total value is set as an index of the estimation accuracy. It can be considered that the smaller the total value, the better the estimation accuracy.
E=∑(TFij- TFij)2 E=∑(TFij- TF ij) 2
TFij=教师数据的交通流数据的每个元素值TFij = each element value of the traffic flow data of the teacher data
TFij=根据教师数据的交通量数据计算的交通量估计值的每个元素值 TF ij = each element value of the traffic estimate calculated from the traffic data of the teacher data
…(7)...(7)
接着,估计功能构成部分1E把通过运用表达式(7)找到的误差E的总值与在校正上次执行的估计功能的过程中,通过运用表达式(7)找到的误差的总值E相比较(步骤ST65)。Next, the estimation function constituting section 1E compares the total value of errors E found by using expression (7) with the total value E of errors found by using expression (7) in the process of correcting the estimation function performed last time Comparison (step ST65).
于是,当估计精确度改进时(在步骤ST65中YES),估计功能构成部分IE将在步骤S63中调节的神经网络登录下来(步骤ST67),反之,当精度未能改进时(在步骤S765中的No)则回到前一神经网络登录下来。Then, when the estimation accuracy improves (YES in step ST65), the estimation function constituent part IE registers the neural network adjusted in step S63 (step ST67), otherwise, when the accuracy fails to improve (in step S765 No) then return to the previous neural network to log in.
神经网络12和交通流估计部分1C经常保持在良好状态下,而且通过执行除了正常群管理控制之外还执行对交通流估计功能的校正,来使估计交通流的精确度保持得很好。The
因此,上述实施例不需要预先准备和存储大量交通流模式和根据交通流模式获得的交通量的组合、立即从迄今所观测到的交通量数据计算交通流估计值和通过设定对于与计算交通流估计值相对应的群管理控制的控制参数,可以进行电梯群管理控制。Therefore, the above-described embodiment does not need to prepare and store a large number of combinations of traffic flow patterns and traffic volume obtained according to the traffic flow patterns in advance, immediately calculate traffic flow estimation values from traffic volume data observed so far, and calculate traffic flow by setting The control parameters of the group management control corresponding to the flow estimation value can be used for elevator group management control.
此外,由于输入数据不包含任何估计值,而且是立即可观测到的交通量,所以可以以高精确度地计算和更加精确地估计交通流。此外,由于如此安排本实施例从而通过神经网络产生在交通量和交通流之间的关系,并通过使神经网络学习交通数据的分析结果来构成和校正估计功能,所以它不需要通过预先存储大量数据来将两者的关系与大量逻辑相联系,而且可以减小为将两者联系起来进行计算所需的程序和存储区域。Furthermore, since the input data does not contain any estimates and is immediately observable traffic volumes, traffic flow can be calculated with high accuracy and more precisely estimated. In addition, since the present embodiment is so arranged that the relationship between traffic volume and traffic flow is generated by the neural network, and the estimation function is constituted and corrected by making the neural network learn the analysis results of the traffic data, it does not need to store a large amount of data in advance. Data to connect the relationship between the two with a large amount of logic, and can be reduced to the program and storage area required to connect the two for calculation.
此外,由于根据在对基于精确度的前一次调节到对基于精确度的此次调节的间隔之间的交通流数据和实际交通量数据,可以将由交通流估计部分估计的交通流估计值的估计精确度保持得很好,所以本实施例允许电梯操作管理和控制系统符合每撞大楼的电梯乘客的移动变化,其中上述变化依赖于大楼和时间段。In addition, since the traffic flow estimated value estimated by the traffic flow estimating section can be estimated by Accuracy is maintained so well that this embodiment allows the elevator operation management and control system to follow the movement of elevator passengers per building hit, where the changes are building and time period dependent.
此外,通过采用非稳态交通流数据以计算交通流估计部分的估计精确度的指数作为教师数据来进行学习,故不必担心估计功能构成部分会恶化估计精确度。In addition, learning is performed by using non-stationary traffic flow data to calculate an index of estimation accuracy of the traffic flow estimation portion as teacher data, so there is no need to worry about deterioration of estimation accuracy by the estimation function component.
本发明允许神经网络得到调整是因为它通过运用教师数据来在每预定时间段估计与时间段相对应的交通流,从而它允许与时间段相对应更加精确地估计交通流,而不是运用不论什么时间段都一致地估计交通流的计算部分。The present invention allows the neural network to be tuned because it estimates the traffic flow corresponding to the time period at each predetermined time period by using the teacher data, thus it allows a more accurate estimation of the traffic flow corresponding to the time period, rather than using whatever Time periods are consistently estimated for the calculated portion of the traffic flow.
此外,在整个交通量中,交通流计算部分计算交通流估计值作为在目标层之间移动的电梯乘客的交通量,所以无误地表达了在大楼内的电梯乘客的移动。In addition, in the entire traffic volume, the traffic flow calculation section calculates the traffic flow estimation value as the traffic volume of the elevator passengers moving between the target floors, so the movement of the elevator passengers in the building is expressed without error.
此外,本发明不仅在控制一个电梯操作管理方面十分有效,而且通过将呼叫相互分配给多个电梯,允许将复杂的电梯操作管理用于所谓对执行最佳操作控制的群管理控制。In addition, the present invention is not only effective in controlling the operation management of one elevator, but also allows complicated elevator operation management to be used for so-called group management control for performing optimum operation control by assigning calls to a plurality of elevators mutually.
如上所述,可以适当地使用本发明电梯操作管理和控制系统。As described above, the elevator operation management and control system of the present invention can be suitably used.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB971803412A CN1187251C (en) | 1997-10-07 | 1997-10-07 | Device for managing and controlling operation of elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB971803412A CN1187251C (en) | 1997-10-07 | 1997-10-07 | Device for managing and controlling operation of elevator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1239928A CN1239928A (en) | 1999-12-29 |
CN1187251C true CN1187251C (en) | 2005-02-02 |
Family
ID=5177709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971803412A Expired - Lifetime CN1187251C (en) | 1997-10-07 | 1997-10-07 | Device for managing and controlling operation of elevator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1187251C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101054140B (en) * | 2006-04-12 | 2011-01-26 | 株式会社日立制作所 | Lift group management control method and system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006085383A (en) * | 2004-09-15 | 2006-03-30 | Mitsutoyo Corp | Control parameter setting method for control circuit in measurement control system, and measuring instrument |
JP2010222074A (en) * | 2009-03-19 | 2010-10-07 | Toshiba Corp | Elevator group supervisory operation system and method |
JP2011102158A (en) * | 2009-11-10 | 2011-05-26 | Toshiba Elevator Co Ltd | Group management control device and group management control method for elevator |
FI123017B (en) * | 2011-08-31 | 2012-10-15 | Kone Corp | Lift system |
CN103771199A (en) * | 2012-10-24 | 2014-05-07 | 通用电梯(中国)有限公司 | Elevator allocation calling system |
JP6096543B2 (en) * | 2013-03-15 | 2017-03-15 | 株式会社日立製作所 | Elevator that can register a rough number of users in advance |
-
1997
- 1997-10-07 CN CNB971803412A patent/CN1187251C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101054140B (en) * | 2006-04-12 | 2011-01-26 | 株式会社日立制作所 | Lift group management control method and system |
Also Published As
Publication number | Publication date |
---|---|
CN1239928A (en) | 1999-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1047997C (en) | Elevator grouping management control method | |
CN1127442C (en) | Elavator management control apparatus | |
CN1177746C (en) | Elevator group management device | |
CN1135857C (en) | Telecom Performance Management System | |
CN1231409C (en) | Optimum managing method for elevator group | |
CN1056659A (en) | Elevator Control | |
CN1071698C (en) | Group management control method for elevator | |
CN101054141A (en) | Lift group management control method and system | |
CN1187251C (en) | Device for managing and controlling operation of elevator | |
CN100347675C (en) | Property optimizing method for applying server | |
KR101092986B1 (en) | Design process for elevator arrangements in new and existing buildings | |
CN1592427A (en) | Ideal transfer of call handling from automated systems to human operators | |
CN1193924C (en) | Elevator group management device | |
CN1042130A (en) | Elevator multiple control device | |
CN110884968B (en) | An elevator control method and system | |
CN1019288B (en) | A device for realizing elevator group control | |
CN115676539A (en) | Coordinated scheduling method for high-rise elevators based on Internet of Things | |
CN1189376C (en) | Method for controlling elevator equipment with multiple cars | |
JP4621620B2 (en) | Elevator group management system, method and program | |
CN110517774A (en) | A method of prediction abnormal body temperature | |
WO1999018025A1 (en) | Device for managing and controlling operation of elevator | |
CN1021700C (en) | Elevator Control | |
CN1805365A (en) | Web service QoS processor and handling method | |
JP7409831B2 (en) | Elevator control device, elevator control method, machine learning device, machine learning method and program | |
CN110451365A (en) | A kind of elevator calling control method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20050202 |