[go: up one dir, main page]

CN118692518A - A three-dimensional memory, reference voltage providing method and device - Google Patents

A three-dimensional memory, reference voltage providing method and device Download PDF

Info

Publication number
CN118692518A
CN118692518A CN202310328330.2A CN202310328330A CN118692518A CN 118692518 A CN118692518 A CN 118692518A CN 202310328330 A CN202310328330 A CN 202310328330A CN 118692518 A CN118692518 A CN 118692518A
Authority
CN
China
Prior art keywords
reference voltage
physical layer
storage unit
dimensional memory
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310328330.2A
Other languages
Chinese (zh)
Inventor
景蔚亮
殷士辉
季秉武
王正波
廖恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202310328330.2A priority Critical patent/CN118692518A/en
Priority to PCT/CN2024/073528 priority patent/WO2024198677A1/en
Publication of CN118692518A publication Critical patent/CN118692518A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

A three-dimensional memory, a reference voltage providing method and a device relate to the technical field of storage and are used for solving the problem that the accuracy of reading is affected due to the fact that the physical layer of a memory unit is inconsistent in size, process, performance and the like. The three-dimensional memory includes: a plurality of memory cell physical layers stacked, each memory cell physical layer including a plurality of rows and columns of memory cells, the plurality of memory cell physical layers including a first memory cell physical layer and a second memory cell physical layer; a plurality of bit lines and a plurality of word lines coupled to the plurality of memory cell physical layers; and the reference voltage supply circuit is used for supplying a first reference voltage to the physical layer of the first memory cell through the bit line and supplying a second reference voltage to the physical layer of the second memory cell through the bit line, wherein the first reference voltage and the second reference voltage are different.

Description

一种三维存储器、参考电压提供方法及设备A three-dimensional memory, reference voltage providing method and device

技术领域Technical Field

本申请涉及存储技术领域,尤其涉及一种三维存储器、参考电压提供方法及设备。The present application relates to the field of storage technology, and in particular to a three-dimensional memory, a reference voltage providing method and a device.

背景技术Background Art

随着存储器的技术发展,三维(3dimension,3D)存储器成为未来存储器的重要方向。其中,基于1TnC结构的三维存储器由于具有更高的存储密度,成为是3D存储器的重要发展方向之一。三维存储器中通常包括多个存储单元物理层,且相关技术中通常使用类似于三维动态随机存储器(dynamic random access memory,DRAM)的工作模式实现该多个存储单元物理层中存储单元的读写。但是,在三维存储器,该多个存储单元物理层中的不同存储单元物理层可能会存在尺寸、工艺和性能等不一致的问题,进而在使用类似于三维DRAM的工作模式进行读写时,会影响三维存储器读取的正确率。With the development of memory technology, three-dimensional (3D) memory has become an important direction for future memory. Among them, the three-dimensional memory based on the 1TnC structure has become one of the important development directions of 3D memory due to its higher storage density. A three-dimensional memory usually includes multiple physical layers of storage cells, and the related technology usually uses a working mode similar to a three-dimensional dynamic random access memory (DRAM) to realize the reading and writing of storage cells in the multiple physical layers of storage cells. However, in a three-dimensional memory, different physical layers of storage cells in the multiple physical layers of storage cells may have inconsistencies in size, process, and performance, which will affect the accuracy of the three-dimensional memory reading when using a working mode similar to a three-dimensional DRAM for reading and writing.

发明内容Summary of the invention

本申请提供一种三维存储器、参考电压提供方法及设备,用于解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。The present application provides a three-dimensional memory, a reference voltage providing method and a device, which are used to solve the problem that the reading accuracy is affected by the inconsistency of the size, process and performance of the physical layer of the storage unit.

为达到上述目的,本申请的实施例采用如下技术方案:To achieve the above objectives, the embodiments of the present application adopt the following technical solutions:

第一方面,提供一种三维存储器,该三维存储器可以是集成在一个芯片中的三维存储器,该三维存储器包括:层叠设置的多个存储单元物理层,每个存储单元物理层包括一层多行多列的存储单元,该多个存储单元物理层包括第一存储单元物理层和第二存储单元物理层;多个位线和多个字线,与该多个存储单元物理层耦合;参考电压提供电路,用于通过位线为该第一存储单元物理层提供第一参考电压,通过位线为该第二存储单元物理层提供第二参考电压,该第一参考电压和该第二参考电压不同。In a first aspect, a three-dimensional memory is provided, which may be a three-dimensional memory integrated in a chip, and includes: a plurality of stacked physical layers of memory cells, each physical layer of the memory cells including a layer of memory cells with multiple rows and columns, the plurality of physical layers of the memory cells including a first physical layer of memory cells and a second physical layer of memory cells; a plurality of bit lines and a plurality of word lines coupled to the plurality of physical layers of memory cells; and a reference voltage providing circuit for providing a first reference voltage to the first physical layer of memory cells through the bit lines, and providing a second reference voltage to the second physical layer of memory cells through the bit lines, the first reference voltage and the second reference voltage being different.

上述技术方案中,该三维存储器可为不同的存储单元物理层提供不同的参考电压,这样当不同的存储单元物理层被选中时,可通过位线为不同的存储单元物理层提供不同的参考电压,即通过不同的参考电压读取不同存储单元物理层的数据,从而解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。In the above technical solution, the three-dimensional memory can provide different reference voltages for different physical layers of storage cells. In this way, when different physical layers of storage cells are selected, different reference voltages can be provided for different physical layers of storage cells through bit lines, that is, data of different physical layers of storage cells are read through different reference voltages, thereby solving the problem of reading accuracy affected by inconsistencies in the size, process and performance of the physical layers of storage cells.

在第一方面的一种可能的实现方式中,该第一参考电压用于读取该第一存储单元物理层中存储单元的数据,该第二参考电压用于读取该第二存储单元物理层中存储单元的数据。可选的,在采用读取流程读取第一存储单元物理层或第二存储单元物理层中存储单元的数据时,该参考电压提供电路具体可用于在交换阶段中通过位线为第一存储单元物理层提供第一参考电压,为第二存储单元物理层提供第二参考电压。上述可能的实现方式中,通过不同的参考电压读取不同存储单元物理层的数据,能够实现不同尺寸、工艺和性能的存储单元物理层中数据的正确读取。In a possible implementation of the first aspect, the first reference voltage is used to read data of a storage cell in the first storage cell physical layer, and the second reference voltage is used to read data of a storage cell in the second storage cell physical layer. Optionally, when a read process is used to read data of a storage cell in the first storage cell physical layer or the second storage cell physical layer, the reference voltage providing circuit can be specifically used to provide a first reference voltage to the first storage cell physical layer and a second reference voltage to the second storage cell physical layer through a bit line in an exchange phase. In the above possible implementation, data of different storage cell physical layers are read by different reference voltages, so that correct reading of data in storage cell physical layers of different sizes, processes and performances can be achieved.

在第一方面的一种可能的实现方式中,该第一存储单元物理层中存储单元的尺寸大于该第二存储单元物理层中存储单元的尺寸,该第一参考电压大于该第二参考电压。该存储单元的尺寸也可以称为该存储单元的直径,具体可以是指:该存储单元中的电容对应的支柱在其所在存储单元物理层中的直径。上述可能的实现方式中,通过为尺寸较大的存储单元物理层设置较大的参考电压,能够实现不同尺寸的存储单元物理层中数据的正确读取。In a possible implementation of the first aspect, the size of the storage cell in the first storage cell physical layer is larger than the size of the storage cell in the second storage cell physical layer, and the first reference voltage is larger than the second reference voltage. The size of the storage cell may also be referred to as the diameter of the storage cell, and may specifically refer to: the diameter of the pillar corresponding to the capacitor in the storage cell in the storage cell physical layer in which it is located. In the above possible implementation, by setting a larger reference voltage for the storage cell physical layer with a larger size, it is possible to correctly read data in the storage cell physical layers of different sizes.

在第一方面的一种可能的实现方式中,该参考电压提供电路包括:电源泵,用于输出预设参考电压;电压调节电路,用于根据该预设参考电压、第一比例和第二比例,分别输出该第一参考电压和该第二参考电压。上述可能的实现方式中,通过电源泵和电压调节电路为不同的存储单元物理层提供不同的参考电压,可以减小该参考电压提供电路中电源泵的数量,减小成本。In a possible implementation of the first aspect, the reference voltage providing circuit includes: a power pump, which is used to output a preset reference voltage; and a voltage regulating circuit, which is used to output the first reference voltage and the second reference voltage respectively according to the preset reference voltage, the first ratio and the second ratio. In the above possible implementation, different reference voltages are provided for different storage unit physical layers by the power pump and the voltage regulating circuit, which can reduce the number of power pumps in the reference voltage providing circuit and reduce costs.

在第一方面的一种可能的实现方式中,该电压调节电路包括:电阻分压电路,用于根据该第一比例对该预设参考电压进行分压处理,以输出该第一参考电压;该电阻分压电路,还用于根据该第二比例对该预设参考电压进行分压处理,以输出该第二参考电压。上述可能的实现方式中,该电阻分压电路可以通过不同的比例对预设参考电压进行分压处理,以产生不同的参考电压。In a possible implementation of the first aspect, the voltage regulating circuit includes: a resistor voltage divider circuit, configured to divide the preset reference voltage according to the first ratio to output the first reference voltage; and the resistor voltage divider circuit, configured to divide the preset reference voltage according to the second ratio to output the second reference voltage. In the above possible implementation, the resistor voltage divider circuit can divide the preset reference voltage according to different ratios to generate different reference voltages.

在第一方面的一种可能的实现方式中,该参考电压提供电路还包括:数模转换电路,用于根据目标物理层地址向该电压调节电路输出指示信号,该指示信号用于指示输出该第一参考电压或该第二参考电压,该目标物理层地址为该多个存储单元物理层中被选中的存储单元物理层的地址。上述可能的实现方式中,提供了一种简单、有效的指示电压调节电路输出相应的参考电压的方式。In a possible implementation of the first aspect, the reference voltage providing circuit further includes: a digital-to-analog conversion circuit, configured to output an indication signal to the voltage regulating circuit according to a target physical layer address, the indication signal being configured to indicate outputting the first reference voltage or the second reference voltage, the target physical layer address being an address of a selected storage unit physical layer from the multiple storage unit physical layers. In the above possible implementation, a simple and effective method of indicating the voltage regulating circuit to output a corresponding reference voltage is provided.

在第一方面的一种可能的实现方式中,该参考电压提供电路包括:第一电源泵,用于输出该第一参考电压;第二电源泵,用于输出该第二参考电压;其中,该第一电源泵与该第二电源泵的电路参数不同,该电路参数包括电阻阻值。上述可能的实现方式中,通过不同的电源泵为不同的存储单元物理层提供不同的参考电压,可以使得不同的参考电压独立产生,从而避免彼此间的影响。In a possible implementation of the first aspect, the reference voltage providing circuit includes: a first power pump, used to output the first reference voltage; and a second power pump, used to output the second reference voltage; wherein the first power pump and the second power pump have different circuit parameters, and the circuit parameters include a resistance value. In the above possible implementation, different power pumps provide different reference voltages for different storage unit physical layers, so that different reference voltages can be generated independently, thereby avoiding mutual influence.

在第一方面的一种可能的实现方式中,该参考电压提供电路还包括:选择开关,用于根据目标物理层地址,选择输出该第一参考电压或者该第二参考电压,该目标物理层地址为该多个存储单元物理层中被选中的存储单元物理层的地址。上述可能的实现方式中,通过选择开关可以为不同的存储单元物理层选择相应的参考电压,从而保证该存储单元物理层中数据的正确读取。In a possible implementation of the first aspect, the reference voltage providing circuit further includes: a selection switch, configured to select and output the first reference voltage or the second reference voltage according to a target physical layer address, wherein the target physical layer address is an address of a selected storage unit physical layer among the multiple storage unit physical layers. In the above possible implementation, the selection switch can be used to select corresponding reference voltages for different storage unit physical layers, thereby ensuring correct reading of data in the storage unit physical layer.

在第一方面的一种可能的实现方式中,该三维存储器还包括:物理层地址译码器,用于对该目标物理层地址进行译码并输出。In a possible implementation manner of the first aspect, the three-dimensional memory further includes: a physical layer address decoder, configured to decode and output the target physical layer address.

在第一方面的一种可能的实现方式中,该多个存储单元物理层包括第一分组和第二分组;其中,该第一分组包括多个该第一存储单元物理层,和/或,该第二分组包括多个该第二存储单元物理层。上述可能的实现方式中,通过对该多个存储单元物理层进行分组,且通过该参考电压提供电路为不同分组中的存储单元物理层提供不同的参考电压不同,为同一分组中的存储单元物理层提供相同的参考电压,可以在实现该多个存储单元物理层中数据的正确读取的同时,减小提供的不同参考电压的数量,从而降低该参考电压提供电路的复杂度,以及减小该参考电压提供电路的成本和占用面积。In a possible implementation of the first aspect, the multiple storage unit physical layers include a first group and a second group; wherein the first group includes multiple first storage unit physical layers, and/or the second group includes multiple second storage unit physical layers. In the above possible implementation, by grouping the multiple storage unit physical layers, and providing different reference voltages to the storage unit physical layers in different groups through the reference voltage providing circuit, and providing the same reference voltage to the storage unit physical layers in the same group, the number of different reference voltages provided can be reduced while correctly reading the data in the multiple storage unit physical layers, thereby reducing the complexity of the reference voltage providing circuit, and reducing the cost and occupied area of the reference voltage providing circuit.

在第一方面的一种可能的实现方式中,该第一分组是经过一次刻蚀工艺得到的,该第二分组是经过另一次刻蚀工艺得到的;或者,该多个存储单元物理层包括经过至少两次刻蚀工艺得到的存储单元物理层,该第一分组和该第二分组分别包括该至少两次刻蚀工艺中每次刻蚀工艺对应的至少一个存储单元物理层;或者,该第一分组和该第二分组对应的参考电压读取范围不同。上述可能的实现方式中,能够提高该多个存储单元物理层中分组的灵活性,同时保证不同分组中的存储单元物理层对应不同的参考电压,从而保证不同分组中存储单元物理层中数据的正确读取。In a possible implementation of the first aspect, the first group is obtained through one etching process, and the second group is obtained through another etching process; or, the multiple storage unit physical layers include storage unit physical layers obtained through at least two etching processes, and the first group and the second group respectively include at least one storage unit physical layer corresponding to each etching process in the at least two etching processes; or, the reference voltage reading ranges corresponding to the first group and the second group are different. In the above possible implementations, the flexibility of grouping in the multiple storage unit physical layers can be improved, and at the same time, different reference voltages can be guaranteed for storage unit physical layers in different groups, thereby ensuring the correct reading of data in storage unit physical layers in different groups.

在第一方面的一种可能的实现方式中,该多个存储单元物理层还包括:第三存储单元物理层;该参考电压提供电路,还用于通过该位线为该第三存储单元物理层提供第三参考电压,该第三参考电压与该第一参考电压和该第二参考电压均不同。上述可能的实现方式中,通过对该多个存储单元物理层进行分组,且通过该参考电压提供电路为不同分组中的存储单元物理层提供不同的参考电压不同,为同一分组中的存储单元物理层提供相同的参考电压,可以在实现该多个存储单元物理层中数据的正确读取的同时,减小提供的不同参考电压的数量,从而降低该参考电压提供电路的复杂度,以及减小该参考电压提供电路的成本和占用面积。In a possible implementation of the first aspect, the multiple storage cell physical layers further include: a third storage cell physical layer; the reference voltage providing circuit is further used to provide a third reference voltage for the third storage cell physical layer through the bit line, and the third reference voltage is different from both the first reference voltage and the second reference voltage. In the above possible implementation, by grouping the multiple storage cell physical layers, and providing different reference voltages to the storage cell physical layers in different groups through the reference voltage providing circuit, and providing the same reference voltage to the storage cell physical layers in the same group, the number of different reference voltages provided can be reduced while correctly reading the data in the multiple storage cell physical layers, thereby reducing the complexity of the reference voltage providing circuit, and reducing the cost and occupied area of the reference voltage providing circuit.

在第一方面的一种可能的实现方式中,该多个存储单元物理层、该多个位线和该多个字线是通过前道工艺形成的,该参考电压提供电路是通过后道工艺形成的。上述可能的实现方式中,该参考电压提供电路可以提供不同的参考电压,通过不同的参考电压读取不同存储单元物理层的数据,从而解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。In a possible implementation of the first aspect, the plurality of storage cell physical layers, the plurality of bit lines, and the plurality of word lines are formed by a front-end process, and the reference voltage providing circuit is formed by a back-end process. In the above possible implementation, the reference voltage providing circuit can provide different reference voltages, and read data of different storage cell physical layers through different reference voltages, thereby solving the problem of affecting the accuracy of reading due to inconsistency in the size, process, and performance of the storage cell physical layer.

第二方面,提供一种参考电压提供方法,用于三维存储器的数据读取,该三维存储器包括多个位线、多个字线和层叠设置的多个存储单元物理层,该多个存储单元物理层包括第一存储单元物理层和第二存储单元物理层,该方法包括:获取目标物理层地址,该目标物理层地址为该多个存储单元物理层中被选中的存储单元物理层的地址;若该目标物理层地址为该第一存储单元物理层的地址,通过该位线为该第一存储单元物理层提供第一参考电压;若该目标物理层地址为该第二存储单元物理层的地址,通过该位线为该第二存储单元物理层提供第二参考电压,该第一参考电压和该第二参考电压不同。In a second aspect, a reference voltage providing method is provided for reading data of a three-dimensional memory, the three-dimensional memory comprising a plurality of bit lines, a plurality of word lines and a plurality of storage unit physical layers arranged in a stacked manner, the plurality of storage unit physical layers comprising a first storage unit physical layer and a second storage unit physical layer, the method comprising: obtaining a target physical layer address, the target physical layer address being the address of a selected storage unit physical layer among the plurality of storage unit physical layers; if the target physical layer address is the address of the first storage unit physical layer, providing a first reference voltage to the first storage unit physical layer through the bit line; if the target physical layer address is the address of the second storage unit physical layer, providing a second reference voltage to the second storage unit physical layer through the bit line, the first reference voltage and the second reference voltage being different.

在三维存储器的数据读取过程中,当不同的存储单元物理层被选中时,可以通过位线为不同的存储单元物理层提供不同的参考电压,这样可以通过不同的参考电压读取不同存储单元物理层的数据,从而解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。During the data reading process of the three-dimensional memory, when different physical layers of the memory cells are selected, different reference voltages can be provided to the different physical layers of the memory cells through the bit lines. In this way, the data of the different physical layers of the memory cells can be read through different reference voltages, thereby solving the problem of the accuracy of reading being affected by the inconsistency of the size, process and performance of the physical layers of the memory cells.

第三方面,提供一种存储设备,该存储设备包括控制器和三维存储器,该控制器用于控制该三维存储器的读写,该三维存储器为第一方面或者第一方面的任一种可能的实现方式所提供的三维存储器。In a third aspect, a storage device is provided, which includes a controller and a three-dimensional memory, wherein the controller is used to control the reading and writing of the three-dimensional memory, and the three-dimensional memory is the three-dimensional memory provided by the first aspect or any possible implementation of the first aspect.

第四方面,提供一种电子设备,该电子设备包括第三方面所提供的存储设备。According to a fourth aspect, an electronic device is provided, which includes the storage device provided by the third aspect.

可以理解地,上述提供的任一种参考电压提供方法、存储设备和电子设备,其所能达到的有益效果可对应参考上文所提供的三维存储器中的有益效果,此处不再赘述。It can be understood that the beneficial effects that can be achieved by any of the reference voltage providing methods, storage devices, and electronic devices provided above can correspond to the beneficial effects in the three-dimensional memory provided above, and will not be repeated here.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为一种基于1TnC结构的三维存储器的阵列示意图;FIG1 is a schematic diagram of an array of a three-dimensional memory based on a 1TnC structure;

图2为本申请实施例提供的一种1TnC结构的示意图;FIG2 is a schematic diagram of a 1TnC structure provided in an embodiment of the present application;

图3为本申请实施例提供的一种读取流程的时序图;FIG3 is a timing diagram of a reading process provided in an embodiment of the present application;

图4为本申请实施例提供的一种参考电压与读取通过率的对应关系的示意图;FIG4 is a schematic diagram of a corresponding relationship between a reference voltage and a read pass rate provided in an embodiment of the present application;

图5为本申请实施例提供的一种存储单元物理层的剖面图;FIG5 is a cross-sectional view of a physical layer of a storage unit provided in an embodiment of the present application;

图6为本申请实施例提供的一种三维存储器的结构示意图;FIG6 is a schematic diagram of the structure of a three-dimensional memory provided in an embodiment of the present application;

图7为本申请实施例提供的一种多个存储单元物理层的分组的示意图;FIG7 is a schematic diagram of a grouping of multiple storage units at the physical layer provided by an embodiment of the present application;

图8为本申请实施例提供的另一种三维存储器的结构示意图;FIG8 is a schematic diagram of the structure of another three-dimensional memory provided in an embodiment of the present application;

图9为本申请实施例提供的一种参考电压提供电路的结构示意图;FIG9 is a schematic diagram of the structure of a reference voltage providing circuit provided in an embodiment of the present application;

图10为本申请实施例提供的另一种参考电压提供电路的结构示意图;FIG10 is a schematic diagram of the structure of another reference voltage providing circuit provided in an embodiment of the present application;

图11为本申请实施例提供的一种训练参考电压的示意图;FIG11 is a schematic diagram of a training reference voltage provided in an embodiment of the present application;

图12为本申请实施例提供的另一种训练参考电压的示意图;FIG12 is a schematic diagram of another training reference voltage provided in an embodiment of the present application;

图13为本申请实施例提供的一种参考电压提供方法的流程示意图;FIG13 is a schematic diagram of a flow chart of a reference voltage providing method provided in an embodiment of the present application;

图14为本申请实施例提供的一种存储设备的结构示意图。FIG. 14 is a schematic diagram of the structure of a storage device provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下文将详细论述各实施例的制作和使用。但应了解,本申请提供的许多适用发明概念可实施在多种具体环境中。所论述的具体实施例仅仅说明用以实施和使用本说明和本技术的具体方式,而不限制本申请的范围。The making and use of each embodiment will be discussed in detail below. However, it should be understood that many applicable inventive concepts provided by this application can be implemented in a variety of specific environments. The specific embodiments discussed only illustrate specific ways to implement and use this description and this technology, and do not limit the scope of this application.

除非另有定义,否则本文所用的所有科技术语都具有与本领域普通技术人员公知的含义相同的含义。Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art.

各电路或其它组件可描述为或称为“用于”执行一项或多项任务。在这种情况下,“用于”用来通过指示电路/组件包括在操作期间执行一项或多项任务的结构(例如电路系统)来暗指结构。因此,即使当指定的电路/组件当前不可操作(例如未打开)时,该电路/组件也可以称为用于执行该任务。与“用于”措辞一起使用的电路/组件包括硬件,例如执行操作的电路等。Various circuits or other components may be described or referred to as being "configured to" perform one or more tasks. In this case, "configured to" is used to imply structure by indicating that the circuit/component includes structure (e.g., circuitry) that performs the one or more tasks during operation. Thus, even when the specified circuit/component is not currently operational (e.g., not turned on), the circuit/component may be referred to as being configured to perform the task. Circuits/components used with the phrase "configured to" include hardware, such as circuits that perform an operation, etc.

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a、b和c,其中a、b和c可以是单个,也可以是多个。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和次序进行限定。The technical scheme in the embodiment of the present application will be described below in conjunction with the accompanying drawings in the embodiment of the present application. In the present application, "at least one" refers to one or more, and "multiple" refers to two or more. "And/or" describes the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. The character "/" generally indicates that the associated objects before and after are in an "or" relationship. "At least one of the following" or its similar expressions refers to any combination of these items, including any combination of single items or plural items. For example, at least one of a, b or c can represent: a, b, c, a and b, a and c, b and c or a, b and c, where a, b and c can be single or multiple. In addition, in the embodiment of the present application, the words "first", "second" and the like do not limit the quantity and order.

本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。本申请中的“耦合”可以被理解为直接连接或者间接连接,比如,A耦合至B,可以表示:A与B直接连接,或者A与B间接连接。In this application, words such as "exemplary" or "for example" are used to indicate examples, illustrations or descriptions. Any embodiment or design described in this application as "exemplary" or "for example" should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a concrete way. "Coupled" in this application can be understood as a direct connection or an indirect connection. For example, A is coupled to B, which can mean: A is directly connected to B, or A is indirectly connected to B.

下面在介绍本申请实施例之前,首先对本申请所涉及的三维(3dimension,3D)存储器的相关内容进行介绍说明。Before introducing the embodiments of the present application, the relevant contents of the three-dimensional (3D) memory involved in the present application are first introduced and explained.

随着存储器的技术发展,三维(3dimension,3D)存储器成为未来存储器的重要方向。其中,基于1TnC结构的三维存储器由于具有更高的存储密度,成为是3D存储器的重要发展方向之一,比如,三维铁电电容(ferroelectric capacitance,FeCAP)存储器(可以简称为三维铁电存储器)。其中,一个1TnC结构包括一个晶体管和n个电容,该n个电容可用于形成队列设置的n个存储单元,该存储单元也可以称为位单元(bit cell),该n个存储单元共用该一个晶体管。With the development of memory technology, three-dimensional (3D) memory has become an important direction for future memory. Among them, the three-dimensional memory based on the 1TnC structure has become one of the important development directions of 3D memory due to its higher storage density, such as the three-dimensional ferroelectric capacitance (FeCAP) memory (which can be referred to as three-dimensional ferroelectric memory). Among them, a 1TnC structure includes a transistor and n capacitors, and the n capacitors can be used to form n memory cells set in a queue, and the memory cell can also be called a bit cell. The n memory cells share the one transistor.

图1为一种基于1TnC结构的三维存储器的阵列示意图,该三维存储器可以为三维铁电存储器。该阵列可以包括:多个位线(bit line,BL)、多个字线(word line,WL)和多个存储单元物理层(plate)。其中,该多个存储单元物理层中的每个存储单元物理层中包括一层平面设置的多个存储单元,该多个存储单元以多行多列的形式排列或。对于每个存储单元物理层,位于同一行的多个存储单元共用同一字线WL,位于同一列的多个存储单元共用同一位线BL。不同存储单元物理层中位于相同位置上的同一行的存储单元也共用同一字线WL,不同存储单元物理层中位于相同位置上的同一列的多个存储单元也共用同一位线BL。FIG1 is a schematic diagram of an array of a three-dimensional memory based on a 1TnC structure, and the three-dimensional memory may be a three-dimensional ferroelectric memory. The array may include: a plurality of bit lines (BL), a plurality of word lines (WL), and a plurality of storage cell physical layers (plates). Each of the plurality of storage cell physical layers includes a plurality of storage cells arranged in a plane, and the plurality of storage cells are arranged in the form of multiple rows and columns. For each storage cell physical layer, a plurality of storage cells located in the same row share the same word line WL, and a plurality of storage cells located in the same column share the same bit line BL. Storage cells located in the same row at the same position in different storage cell physical layers also share the same word line WL, and a plurality of storage cells located in the same column at the same position in different storage cell physical layers also share the same bit line BL.

进一步的,该三维存储器还可以包括感应放大器(sense amplifier,SA),该感应放大器SA可用于对该三维存储器的读写过程中的信号进行放大。可选的,该感应放大器SA可以包括位线感应放大器BL_SA和/或全局感应放大器(global sense amplifier,GSA)。此外,该三维存储器还可以包括行(row)地址译码器(decoder)、列(column)地址译码器、物理层地址译码器和位线选择器(BL MUX)等其它器件中的一个或者多个。Furthermore, the three-dimensional memory may also include a sense amplifier (SA), which may be used to amplify signals during the reading and writing process of the three-dimensional memory. Optionally, the sense amplifier SA may include a bit line sense amplifier BL_SA and/or a global sense amplifier (GSA). In addition, the three-dimensional memory may also include one or more of other devices such as a row address decoder, a column address decoder, a physical layer address decoder, and a bit line selector (BL MUX).

下面以三维铁电存储器中的一个1TnC(比如,n=3)结构为例,对存储单元(即bitcell)的读取流程进行介绍说明。示例性的,如图2所示,该1TnC结构包括晶体管和三个电容。该晶体管的栅极与字线WL连接,该晶体管的一极(比如,源极或漏极)与位线BL和位线感应放大器BL_SA耦合,该位线感应放大器BL_SA还与位线BL的反相/BL耦合。该晶体管的另一极(比如,源极或漏极)与该三个电容中每个电容的第一端连接,该三个电容的第二端分别与三个存储单元物理层的层线(即PL0、PL1和PL2)一一对应连接。该三个电容的第一端共用同一个电极,该电极也可以称为支柱(pillar)。The following is an example of a 1TnC (for example, n=3) structure in a three-dimensional ferroelectric memory to introduce the reading process of the storage unit (i.e., bitcell). Exemplarily, as shown in FIG2 , the 1TnC structure includes a transistor and three capacitors. The gate of the transistor is connected to the word line WL, and one electrode (for example, the source or the drain) of the transistor is coupled to the bit line BL and the bit line sense amplifier BL_SA, and the bit line sense amplifier BL_SA is also coupled to the inverted /BL of the bit line BL. The other electrode (for example, the source or the drain) of the transistor is connected to the first end of each of the three capacitors, and the second ends of the three capacitors are respectively connected to the layer lines (i.e., PL0, PL1, and PL2) of the physical layers of the three storage cells in a one-to-one correspondence. The first ends of the three capacitors share the same electrode, which can also be called a pillar.

在一种实施例中,该存储单元的读取流程可以包括四个阶段,分别为预充电(pre-charge)阶段、交换(switch)阶段、电荷共享(charge sharing)阶段和感应放大阶段,该四个阶段的时序图可以如图3所示。In one embodiment, the reading process of the memory cell may include four stages, namely a pre-charge stage, a switch stage, a charge sharing stage and a sensing amplification stage. The timing diagram of the four stages may be shown in FIG. 3 .

在预充电阶段,将字线WL置为高电平,该存储单元中电容的第一端的电位被位线BL的电位下拉至0V,随后字线WL置为低电平,该电容的第一端处于浮空(floating)状态。In the precharge stage, the word line WL is set to a high level, and the potential of the first end of the capacitor in the memory cell is pulled down to 0V by the potential of the bit line BL. Then the word line WL is set to a low level, and the first end of the capacitor is in a floating state.

在交换阶段,该电容的第一端保持浮空状态,层线PL的电位由低置高,读取该存储单元中的存储电荷;在层线PL的电位由低至高的过程中,该电容的第一端的电位因为耦合(coupling)效应被抬高;此时,位线BL的电位、以及位线的反相/BL的电位均保持在参考电压VREF。During the exchange phase, the first end of the capacitor remains in a floating state, the potential of the layer line PL is increased from low to high, and the stored charge in the memory cell is read; in the process of the potential of the layer line PL increasing from low to high, the potential of the first end of the capacitor is raised due to the coupling effect; at this time, the potential of the bit line BL and the potential of the inverted bit line /BL are both maintained at the reference voltage VREF.

在电荷共享阶段,字线WL打开,该电容的第一端和位线BL进行电荷共享。其中,若该存储单元的存储数据为0,该存储单元无电荷释放,由于耦合效应,该电容的第一端的电位略有抬高(低于VREF);位线BL的电位将被该电容的第一端的电位拉低以得到VREF-,该VREF-低于位线的反相/BL的电位VREF。若该存储单元的存储数据为1,该存储单元释放电荷和耦合效应将抬高该电容的第一端的电位(高于VREF);位线BL的电位将被该电容的第一端的电位拉高以得到VREF+,高于位线的反相/BL的电位VREF。In the charge sharing stage, the word line WL is turned on, and the first end of the capacitor and the bit line BL share charge. If the storage data of the memory cell is 0, the memory cell has no charge release, and due to the coupling effect, the potential of the first end of the capacitor is slightly raised (lower than VREF); the potential of the bit line BL will be pulled down by the potential of the first end of the capacitor to obtain VREF-, which is lower than the potential VREF of the inverted phase /BL of the bit line. If the storage data of the memory cell is 1, the memory cell releases the charge and the coupling effect will raise the potential of the first end of the capacitor (higher than VREF); the potential of the bit line BL will be pulled up by the potential of the first end of the capacitor to obtain VREF+, which is higher than the potential VREF of the inverted phase /BL of the bit line.

在感应放大阶段,与位线BL对应的SA放大位线BL与位线的反相/BL的电位差异,从而确定读取的数据为“0”或“1”。In the sensing and amplifying stage, the SA corresponding to the bit line BL amplifies the potential difference between the bit line BL and the inverted /BL of the bit line, thereby determining whether the read data is "0" or "1".

因此,上述参考电压VREF的设定,需要考虑存储的数据为“0”和“1”两种情况。示例性的,图4中示出了数据“0”和“1”在不同读取通过率(read pass rate)下对应的参考电压的大小。其中,若参考电压VREF设置较大,则有利于读取数据“1”;若参考电压VREF设置较小则有利于读取数据“0”。因此,参考电压VREF的设定,需要同时满足“0”和“1”的正确读取。本申请中将能够同时满足“0”和“1”的正确读取的参考电压的范围称为参考电压读取范围或者称为参考电压窗口(window)。比如,该参考电压读取范围可以为图4中的黑色区域。Therefore, the setting of the above-mentioned reference voltage VREF needs to consider the two cases where the stored data is "0" and "1". Exemplarily, FIG4 shows the size of the reference voltage corresponding to the data "0" and "1" at different read pass rates. Among them, if the reference voltage VREF is set to be larger, it is conducive to reading the data "1"; if the reference voltage VREF is set to be smaller, it is conducive to reading the data "0". Therefore, the setting of the reference voltage VREF needs to satisfy the correct reading of "0" and "1" at the same time. In this application, the range of reference voltages that can satisfy the correct reading of "0" and "1" at the same time is referred to as the reference voltage reading range or the reference voltage window. For example, the reference voltage reading range can be the black area in FIG4.

但是,三维存储器中的多个存储单元物理层的形成可能经过一次或者多次刻蚀工艺,同一次刻蚀工艺得到的多个存储单元物理层在垂直方向上也会存在尺寸差异,导致不同存储单元物理层中的存储单元的尺寸、工艺和性能等不一致,从而使得不同存储单元物理层对应的参考电压读取范围存在差异。进而,在按照上述读取流程使用相同的参考电压VREF读取范围读取不同存储单元物理层中存储单元的数据时,会影响读取的正确率。示例性的,如图5所示,为一种三维铁电存储器中存储单元物理层的剖面图,假设多个存储单元物理层包括按照从上向下依次堆叠设置的层i+1、层i和层i-1。其中,层i+1中存储单元的尺寸D(i+1)可以大于层i中存储单元的尺寸Di,层i中存储单元的尺寸Di可以大于层i-1中存储单元的尺寸D(i-1),即D(i+1)>Di>D(i-1)。上述存储单元的尺寸,也可以称为该存储单元(即bit cell)的直径,具体可以是指:该存储单元中的电容对应的支柱(pillar)(或者称为该电容的第一端)在其所在存储单元物理层中的直径。However, the formation of multiple physical layers of storage cells in a three-dimensional memory may go through one or more etching processes, and the multiple physical layers of storage cells obtained by the same etching process may also have size differences in the vertical direction, resulting in inconsistencies in the size, process and performance of storage cells in different physical layers of storage cells, thereby making the reference voltage reading ranges corresponding to different physical layers of storage cells different. Furthermore, when the data of storage cells in different physical layers of storage cells are read using the same reference voltage VREF reading range according to the above reading process, the accuracy of reading will be affected. Exemplarily, as shown in FIG5, it is a cross-sectional view of a physical layer of storage cells in a three-dimensional ferroelectric memory, assuming that multiple physical layers of storage cells include layer i+1, layer i and layer i-1 stacked in sequence from top to bottom. Among them, the size D(i+1) of the storage cell in layer i+1 can be greater than the size Di of the storage cell in layer i, and the size Di of the storage cell in layer i can be greater than the size D(i-1) of the storage cell in layer i-1, that is, D(i+1)>Di>D(i-1). The size of the storage unit may also be referred to as the diameter of the storage unit (ie, bit cell), and specifically refers to the diameter of the pillar (or the first end of the capacitor) corresponding to the capacitor in the storage unit in the physical layer of the storage unit.

基于此,本申请实施例提供一种三维存储器,该三维存储器可以为三维铁电存储器,也可以是除三维铁电存储器之外的其它三维存储器,比如,三维磁性随机存储器(magnetic random access memory,MRAM),或者三维DRAM等。具体的,该三维存储器可为不同的存储单元物理层提供不同的参考电压,这样当不同的存储单元物理层被选中时,可通过位线为不同的存储单元物理层提供不同的参考电压,即通过不同的参考电压读取不同存储单元物理层的数据,从而解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。下面对本申请实施例提供的三维存储器的结构进行介绍说明。Based on this, the embodiment of the present application provides a three-dimensional memory, which can be a three-dimensional ferroelectric memory, or other three-dimensional memory except the three-dimensional ferroelectric memory, such as a three-dimensional magnetic random access memory (MRAM), or a three-dimensional DRAM, etc. Specifically, the three-dimensional memory can provide different reference voltages for different physical layers of storage cells, so that when different physical layers of storage cells are selected, different reference voltages can be provided for different physical layers of storage cells through bit lines, that is, data of different physical layers of storage cells can be read through different reference voltages, thereby solving the problem of affecting the accuracy of reading due to the inconsistency of the size, process and performance of the physical layers of storage cells. The structure of the three-dimensional memory provided by the embodiment of the present application is introduced and explained below.

图6为本申请实施例提供的一种三维存储器的结构示意图,该三维存储器可以是集成在一个芯片中的三维存储器。该三维存储器包括:层叠设置的多个存储单元物理层10、多个位线BL和多个字线WL、以及参考电压提供电路20。该多个位线BL和该多个字线WL与该多个存储单元物理层10耦合,该多个位线BL还与该参考电压提供电路20耦合。FIG6 is a schematic diagram of the structure of a three-dimensional memory provided in an embodiment of the present application, and the three-dimensional memory may be a three-dimensional memory integrated in a chip. The three-dimensional memory includes: a plurality of memory cell physical layers 10 stacked, a plurality of bit lines BL and a plurality of word lines WL, and a reference voltage providing circuit 20. The plurality of bit lines BL and the plurality of word lines WL are coupled to the plurality of memory cell physical layers 10, and the plurality of bit lines BL are also coupled to the reference voltage providing circuit 20.

其中,该多个存储单元物理层10中的每个存储单元物理层包括一层呈多行多列排布的存储单元,也可以称为每个存储单元物理层包括一层存储单元阵列,比如,每个存储单元物理层包括n行n列的存储单元,n为大于1的整数。该多个存储单元物理层10可以包括第一存储单元物理层11和第二存储单元物理层12。Each of the plurality of storage unit physical layers 10 includes a layer of storage units arranged in multiple rows and columns, which can also be referred to as each storage unit physical layer including a layer of storage unit arrays. For example, each storage unit physical layer includes n rows and n columns of storage units, where n is an integer greater than 1. The plurality of storage unit physical layers 10 may include a first storage unit physical layer 11 and a second storage unit physical layer 12.

另外,该多个位线BL和该多个字线WL与该多个存储单元物理层10耦合,具体可以包括:在同一存储单元物理层中,位于同一行的多个存储单元共用同一字线WL,位于同一列的多个存储单元共用同一位线BL;在不同存储单元物理层中,位于相同平面位置上的同一行的存储单元也共用同一字线WL,位于相同位置上的同一列的多个存储单元也共用同一位线BL。In addition, the multiple bit lines BL and the multiple word lines WL are coupled to the multiple memory cell physical layers 10, which may specifically include: in the same memory cell physical layer, multiple memory cells located in the same row share the same word line WL, and multiple memory cells located in the same column share the same bit line BL; in different memory cell physical layers, memory cells located in the same row at the same plane position also share the same word line WL, and multiple memory cells located in the same column at the same position also share the same bit line BL.

示例性的,该多个位线BL包括第一位线BL1至第n位线BLn,该多个字线WL包括第一字线WL1至第n字线WLn。比如,在第一存储单元物理层11中,位于第i行的多个存储单元可以共用第i字线WLi,位于第i列的多个存储单元可以共用第i位线BLi,i的取值可以为1至n。再比如,在第二存储单元物理层12中,位于第j行的多个存储单元可以共用第j字线WLj,位于第j列的多个存储单元可以共用第j位线BLj,j的取值可以为1至n。Exemplarily, the plurality of bit lines BL include a first bit line BL1 to an nth bit line BLn, and the plurality of word lines WL include a first word line WL1 to an nth word line WLn. For example, in the first memory cell physical layer 11, a plurality of memory cells located in the i-th row may share the i-th word line WLi, and a plurality of memory cells located in the i-th column may share the i-th bit line BLi, where the value of i may be 1 to n. For another example, in the second memory cell physical layer 12, a plurality of memory cells located in the j-th row may share the j-th word line WLj, and a plurality of memory cells located in the j-th column may share the j-th bit line BLj, where the value of j may be 1 to n.

在本申请实施例中,该参考电压提供电路20可用于:通过第一位线BL1至第n位线BLn中的一个或者多个为第一存储单元物理层11提供第一参考电压VREF1,以及通过第一位线BL1至第n位线BLn中的一个或者多个为第二存储单元物理层12提供第二参考电压VREF2,第一参考电压VREF1和第二参考电压VREF2不同。In an embodiment of the present application, the reference voltage providing circuit 20 can be used to: provide a first reference voltage VREF1 for the first storage unit physical layer 11 through one or more of the first bit line BL1 to the nth bit line BLn, and provide a second reference voltage VREF2 for the second storage unit physical layer 12 through one or more of the first bit line BL1 to the nth bit line BLn, and the first reference voltage VREF1 and the second reference voltage VREF2 are different.

可选的,该多个存储单元物理层10、该多个位线WL和该多个字线BL是通过前道工艺形成的,该参考电压提供电路是通过后道工艺形成的。Optionally, the plurality of memory cell physical layers 10 , the plurality of bit lines WL, and the plurality of word lines BL are formed through a front-end process, and the reference voltage providing circuit is formed through a back-end process.

上述第一参考电压VREF1可用于读取第一存储单元物理层11中存储单元的数据,第二参考电压VREF2可用于读取第二存储单元物理层12中存储单元的数据。在采用上述图4相关的读取流程读取第一存储单元物理层11或第二存储单元物理层12中存储单元的数据时,该参考电压提供电路20具体可用于在上述交换阶段中通过位线BL为第一存储单元物理层11提供第一参考电压VREF1,为第二存储单元物理层12提供第二参考电压VREF2。The first reference voltage VREF1 can be used to read data of the storage cells in the first storage cell physical layer 11, and the second reference voltage VREF2 can be used to read data of the storage cells in the second storage cell physical layer 12. When the data of the storage cells in the first storage cell physical layer 11 or the second storage cell physical layer 12 are read using the reading process related to FIG. 4, the reference voltage providing circuit 20 can be specifically used to provide the first reference voltage VREF1 to the first storage cell physical layer 11 and provide the second reference voltage VREF2 to the second storage cell physical layer 12 through the bit line BL in the above-mentioned exchange phase.

下面以读取第一存储单元物理层11和第二存储单元物理层12中第1列的存储单元的数据为例。示例性的,当读取第一存储单元物理层11中第1列的存储单元的数据时,该参考电压提供电路20可在交换阶段将第一位线BL1和第一位线的反相/BL的电位保持为第一参考电压VREF1,以通过第一位线BL1为第一存储单元物理层11提供第一参考电压VREF1;当读取第二存储单元物理层12中第1列的存储单元的数据时,该参考电压提供电路20可在交换阶段将第一位线BL1和第一位线的反相/BL的电位保持为第二参考电压VREF2,以通过第一位线BL1为第二存储单元物理层12提供第二参考电压VREF2。The following takes reading the data of the memory cells in the first column of the first memory cell physical layer 11 and the second memory cell physical layer 12 as an example. Exemplarily, when reading the data of the memory cells in the first column of the first memory cell physical layer 11, the reference voltage providing circuit 20 may keep the potential of the first bit line BL1 and the inverted phase /BL of the first bit line as the first reference voltage VREF1 during the exchange phase, so as to provide the first reference voltage VREF1 to the first memory cell physical layer 11 through the first bit line BL1; when reading the data of the memory cells in the first column of the second memory cell physical layer 12, the reference voltage providing circuit 20 may keep the potential of the first bit line BL1 and the inverted phase /BL of the first bit line as the second reference voltage VREF2 during the exchange phase, so as to provide the second reference voltage VREF2 to the second memory cell physical layer 12 through the first bit line BL1.

可选的,第一存储单元物理层11中存储单元的尺寸可以大于第二存储单元物理层12中存储单元的尺寸,第一参考电压VREF1大于第二参考电压VREF2。其中,该存储单元的尺寸也可以称为该存储单元的直径,具体可以是指:该存储单元中电容对应的支柱(pillar)(或者称为该电容的第一端)在其所在存储单元物理层中的直径,具体可以如图5所示。示例性的,第一存储单元物理层11可以是图5中的层i+1,第二存储单元物理层12可以是图5中的层i或者层i-1;或者,第一存储单元物理层11可以是图5中的层i,第二存储单元物理层12可以是图5中的层i-1。Optionally, the size of the storage cell in the first storage cell physical layer 11 may be greater than the size of the storage cell in the second storage cell physical layer 12, and the first reference voltage VREF1 is greater than the second reference voltage VREF2. The size of the storage cell may also be referred to as the diameter of the storage cell, and may specifically refer to: the diameter of the pillar (or the first end of the capacitor) corresponding to the capacitor in the storage cell in the storage cell physical layer, as shown in FIG5. Exemplarily, the first storage cell physical layer 11 may be layer i+1 in FIG5, and the second storage cell physical layer 12 may be layer i or layer i-1 in FIG5; or, the first storage cell physical layer 11 may be layer i in FIG5, and the second storage cell physical layer 12 may be layer i-1 in FIG5.

进一步的,该多个存储单元物理层10可以包括第一分组GP1和第二分组GP2。其中,第一分组GP1可以包括多个第一存储单元物理层11,和/或,第二分组GP2可以包括多个第二存储单元物理层12。相应的,当第一分组GP1包括多个第一存储单元物理层11时,该多个第一存储单元物理层11均对应第一参考电压VREF1,从而第一参考电压VREF1可用于读取该多个第一存储单元物理层11中任意一个第一存储单元物理层11中存储单元的数据。类似的,当第二分组包括多个第二存储单元物理层12时,该多个第二存储单元物理层12均对应第二参考电压VREF2,从而第二参考电压VREF2可用于读取该多个第二存储单元物理层12中任一第二存储单元物理层12中存储单元的数据。Further, the multiple storage unit physical layers 10 may include a first group GP1 and a second group GP2. The first group GP1 may include multiple first storage unit physical layers 11, and/or the second group GP2 may include multiple second storage unit physical layers 12. Accordingly, when the first group GP1 includes multiple first storage unit physical layers 11, the multiple first storage unit physical layers 11 all correspond to the first reference voltage VREF1, so that the first reference voltage VREF1 can be used to read data of storage units in any one of the multiple first storage unit physical layers 11. Similarly, when the second group includes multiple second storage unit physical layers 12, the multiple second storage unit physical layers 12 all correspond to the second reference voltage VREF2, so that the second reference voltage VREF2 can be used to read data of storage units in any one of the multiple second storage unit physical layers 12.

在实际应用中,该多个存储单元物理层10可以是经过一次刻蚀工艺得到的,也可以是经过多次刻蚀工艺得到的。该多个存储单元物理层10中包括两个或者两个以上的分组,每个分组中可以包括一个或者多个存储单元物理层。在该两个或者两个以上的分组中,不同分组中的存储单元物理层对应的参考电压不同,同一分组中的存储单元物理层对应的参考电压相同。示例性的,该多个存储单元物理层10还可以包括第三分组GP3,第三分组GP3中可以包括一个或者多个第三存储单元物理层。相应的,该参考电压提供电路20还可用于:通过位线BL为第三存储单元物理层提供第三参考电压VREF3,第三参考电压VREF3与第一参考电压VREF1和第二参考电压VREF2均不同。In practical applications, the multiple storage cell physical layers 10 may be obtained through a single etching process or through multiple etching processes. The multiple storage cell physical layers 10 include two or more groups, each of which may include one or more storage cell physical layers. In the two or more groups, the reference voltages corresponding to the storage cell physical layers in different groups are different, and the reference voltages corresponding to the storage cell physical layers in the same group are the same. Exemplarily, the multiple storage cell physical layers 10 may also include a third group GP3, and the third group GP3 may include one or more third storage cell physical layers. Accordingly, the reference voltage providing circuit 20 may also be used to: provide a third reference voltage VREF3 for the third storage cell physical layer through the bit line BL, and the third reference voltage VREF3 is different from both the first reference voltage VREF1 and the second reference voltage VREF2.

下面以该多个存储单元物理层10包括两个分组、或者三个分组为例,对该多个存储单元物理层10的分组方式进行介绍说明。The following takes the case where the multiple storage unit physical layers 10 include two groups or three groups as an example to introduce the grouping method of the multiple storage unit physical layers 10.

在一种可能的实施例中,该多个存储单元物理层10包括第一分组GP1和第二分组GP2,第一分组GP1中的多个第一存储单元物理层11可以是经过一次刻蚀工艺得到的,第二分组GP2中的多个第二存储单元物理层12可以是经过另一次刻蚀工艺得到的。示例性的,如图7中的(a)所示,该多个存储单元物理层10包括经过两次刻蚀工艺得到的10个存储单元物理层PL0至PL9,第二分组GP2包括第一次刻蚀工艺得到的5个存储单元物理层PL0至PL4,第一分组GP1包括第二次刻蚀工艺得到的5个存储单元物理层PL5至PL9。In a possible embodiment, the plurality of storage unit physical layers 10 include a first group GP1 and a second group GP2, the plurality of first storage unit physical layers 11 in the first group GP1 may be obtained through one etching process, and the plurality of second storage unit physical layers 12 in the second group GP2 may be obtained through another etching process. Exemplarily, as shown in (a) of FIG. 7 , the plurality of storage unit physical layers 10 include 10 storage unit physical layers PL0 to PL9 obtained through two etching processes, the second group GP2 includes 5 storage unit physical layers PL0 to PL4 obtained through the first etching process, and the first group GP1 includes 5 storage unit physical layers PL5 to PL9 obtained through the second etching process.

在另一种可能的实施例中,该多个存储单元物理层10包括经过至少两次刻蚀工艺得到的存储单元物理层,每个分组包括该至少两次刻蚀工艺中每次刻蚀工艺对应的至少一个存储单元物理层。示例性的,如图7中的(b)所示,该多个存储单元物理层10包括第一次刻蚀工艺得到的5个存储单元物理层PL0至PL4,以及第二次刻蚀工艺得到的5个存储单元物理层PL5至PL9,且该多个存储单元物理层10对应三个分组;其中,第一分组GP1包括存储单元物理层PL0至PL1和PL5至PL6,第二分组GP2包括存储单元物理层PL2至PL3和PL7至PL8,第三分组GP3包括存储单元物理层PL4和PL9。In another possible embodiment, the multiple storage unit physical layers 10 include storage unit physical layers obtained through at least two etching processes, and each group includes at least one storage unit physical layer corresponding to each etching process in the at least two etching processes. Exemplarily, as shown in (b) of FIG7 , the multiple storage unit physical layers 10 include five storage unit physical layers PL0 to PL4 obtained through the first etching process, and five storage unit physical layers PL5 to PL9 obtained through the second etching process, and the multiple storage unit physical layers 10 correspond to three groups; wherein the first group GP1 includes storage unit physical layers PL0 to PL1 and PL5 to PL6, the second group GP2 includes storage unit physical layers PL2 to PL3 and PL7 to PL8, and the third group GP3 includes storage unit physical layers PL4 and PL9.

在又一种可能的实施例中,不同分组中的存储单元物理层11对应的参考电压读取范围不同,比如,第一分组GP1中的多个第一存储单元物理层11对应的参考电压读取范围,与第二分组GP2中的多个第二存储单元物理层12对应的参考电压读取范围不同。其中,该参考电压读取范围可以是指能够同时满足数据“0”和“1”的正确读取的参考电压的范围。在实际应用中,可以通过测试获取该多个存储单元物理层10中的每个存储单元物理层对应的参考电压,该参考电压可以是指能够同时满足数据“0”和“1”的正确读取的参考电压。之后,可以确定每个存储单元物理层对应的参考电压在预设的多个参考电压读取范围中所处于的参考电压读取范围,这样就可以将参考电压处于同一参考电压读取范围的存储单元物理层确定为同一分组。上述预设的多个参考电压读取范围可以是事先设置的,本申请实施例对此不作具体限制。示例性的,该多个存储单元物理层10可以对应3个分组,该预设的多个参考电压读取范围可以包括3个参考电压读取范围且分别为(0,0.3V)、[0.3V,0.5V]和(0.5V,2V)。In another possible embodiment, the reference voltage reading ranges corresponding to the storage unit physical layers 11 in different groups are different. For example, the reference voltage reading ranges corresponding to the multiple first storage unit physical layers 11 in the first group GP1 are different from the reference voltage reading ranges corresponding to the multiple second storage unit physical layers 12 in the second group GP2. The reference voltage reading range may refer to a range of reference voltages that can simultaneously satisfy the correct reading of data "0" and "1". In practical applications, the reference voltage corresponding to each storage unit physical layer in the multiple storage unit physical layers 10 may be obtained through testing, and the reference voltage may refer to a reference voltage that can simultaneously satisfy the correct reading of data "0" and "1". Afterwards, the reference voltage reading range in which the reference voltage corresponding to each storage unit physical layer is located in the preset multiple reference voltage reading ranges may be determined, so that the storage unit physical layers whose reference voltages are in the same reference voltage reading range may be determined as the same group. The preset multiple reference voltage reading ranges may be set in advance, and the embodiments of the present application do not impose specific restrictions on this. Exemplarily, the multiple storage unit physical layers 10 may correspond to three groups, and the preset multiple reference voltage reading ranges may include three reference voltage reading ranges, namely (0, 0.3V), [0.3V, 0.5V] and (0.5V, 2V).

在本申请实施例中,通过对该多个存储单元物理层10进行分组,且通过该参考电压提供电路20为不同分组中的存储单元物理层提供不同的参考电压不同,为同一分组中的存储单元物理层提供相同的参考电压,可以在实现该多个存储单元物理层10中数据的正确读取的同时,减小提供的不同参考电压的数量,从而降低该参考电压提供电路20的复杂度,以及减小该参考电压提供电路20的成本和占用面积。In an embodiment of the present application, by grouping the multiple storage cell physical layers 10, and providing different reference voltages for the storage cell physical layers in different groups through the reference voltage providing circuit 20, and providing the same reference voltage for the storage cell physical layers in the same group, it is possible to reduce the number of different reference voltages provided while achieving correct reading of data in the multiple storage cell physical layers 10, thereby reducing the complexity of the reference voltage providing circuit 20, and reducing the cost and occupied area of the reference voltage providing circuit 20.

进一步的,结合图6,如图8所示,该三维存储器还可以包括位线选择器30。其中,该位线选择器30可以耦合在该多个位线BL与该参考电压提供电路20之间。该位线选择器30可用于:从该多个位线BL中选择接收该参考电压提供电路20提供的第一参考电压VREF1或第二参考电压VREF2的位线BL。Further, in combination with FIG6 , as shown in FIG8 , the three-dimensional memory may further include a bit line selector 30. The bit line selector 30 may be coupled between the plurality of bit lines BL and the reference voltage providing circuit 20. The bit line selector 30 may be used to select a bit line BL receiving the first reference voltage VREF1 or the second reference voltage VREF2 provided by the reference voltage providing circuit 20 from the plurality of bit lines BL.

比如,当读取第一存储单元物理层11中第1列的存储单元的数据时,该参考电压提供电路20可用于提供第一参考电压VREF1,该位线选择器30可用于选择第一位线BL1接收第一参考电压VREF1,并将第一参考电压VREF1提供给第一存储单元物理层11。再比如,当读取第二存储单元物理层12中第2列的存储单元的数据时,该参考电压提供电路20可用于提供第二参考电压VREF2,该位线选择器30可用于选择第二位线BL2接收第二参考电压VREF2,并将第二参考电压VREF2提供给第二存储单元物理层12。For example, when reading data of the memory cells in the first column in the first memory cell physical layer 11, the reference voltage providing circuit 20 may be used to provide the first reference voltage VREF1, the bit line selector 30 may be used to select the first bit line BL1 to receive the first reference voltage VREF1, and provide the first reference voltage VREF1 to the first memory cell physical layer 11. For another example, when reading data of the memory cells in the second column in the second memory cell physical layer 12, the reference voltage providing circuit 20 may be used to provide the second reference voltage VREF2, the bit line selector 30 may be used to select the second bit line BL2 to receive the second reference voltage VREF2, and provide the second reference voltage VREF2 to the second memory cell physical layer 12.

进一步的,如图8所示,该三维存储器还可以包括:一个或者多个译码器,该一个或者多个译码器可用于对待读取的存储单元的地址进行译码。Furthermore, as shown in FIG. 8 , the three-dimensional memory may further include: one or more decoders, and the one or more decoders may be used to decode the addresses of the storage units to be read.

在一种可能的实施例中,该一个或者多个译码器可以包括三个解码器,该三个译码器可以分别为行地址译码器41、列地址译码器42和物理层地址译码器43。其中,行地址译码器41可用于对待读取的存储单元的行地址进行译码;列地址译码器42可用于对待读取的存储单元的列地址进行译码;该物理层地址译码器43可用于对待读取的存储单元所在的物理层地址进行译码,该物理层地址可以是指待读取的存储单元所在的存储单元物理层的地址。In a possible embodiment, the one or more decoders may include three decoders, and the three decoders may be respectively a row address decoder 41, a column address decoder 42, and a physical layer address decoder 43. The row address decoder 41 may be used to decode the row address of the storage unit to be read; the column address decoder 42 may be used to decode the column address of the storage unit to be read; and the physical layer address decoder 43 may be used to decode the physical layer address of the storage unit to be read, and the physical layer address may refer to the address of the physical layer of the storage unit where the storage unit to be read is located.

此外,如图8所示,该三维存储器还可以包括:多个位线感应放大器BL_SA,和/或全局感应放大器GSA。其中,该多个位线感应放大器BL_SA中的每个位线感应放大器BL_SA可以与一个位线BL串联,用于对该位线BL中传输的信号进行放大,比如,用于在上述读取流程中的感应放大阶段对位线BL上的电位进行放大。该全局感应放大器GSA可以与该多个位线BL同时连接,用于对该多个位线BL中传输的信号进行全局放大,比如,用于在上述读取流程中的感应放大阶段对位线BL上的电位进行放大。该全局感应放大器GSA还可以用于放大输入输出数据,以及与列地址译码器42耦合,用于对列地址译码器42译码得到的列地址进行放大,并传输至位线选择器30。该位线选择器30可以根据放大后的列地址选通相应的位线。In addition, as shown in FIG8 , the three-dimensional memory may further include: a plurality of bit line sense amplifiers BL_SA, and/or a global sense amplifier GSA. Each of the plurality of bit line sense amplifiers BL_SA may be connected in series with a bit line BL, and is used to amplify the signal transmitted in the bit line BL, for example, to amplify the potential on the bit line BL in the sensing and amplification stage in the above-mentioned reading process. The global sense amplifier GSA may be connected to the plurality of bit lines BL at the same time, and is used to globally amplify the signal transmitted in the plurality of bit lines BL, for example, to amplify the potential on the bit line BL in the sensing and amplification stage in the above-mentioned reading process. The global sense amplifier GSA may also be used to amplify input and output data, and is coupled with the column address decoder 42, and is used to amplify the column address decoded by the column address decoder 42, and transmit it to the bit line selector 30. The bit line selector 30 may select the corresponding bit line according to the amplified column address.

进一步的,上述参考电压提供电路20可以通过多种不同的方式实现,只需满足能够提供多个不同的参考电压即可。下面以该参考电压提供电路20提供第一参考电压VREF1和第二参考电压VREF2为例,对该参考电压提供电路20的具体结构进行举例说明。Furthermore, the reference voltage providing circuit 20 can be implemented in a variety of different ways, as long as it can provide a plurality of different reference voltages. The following takes the reference voltage providing circuit 20 providing the first reference voltage VREF1 and the second reference voltage VREF2 as an example to illustrate the specific structure of the reference voltage providing circuit 20.

在第一种可能的实现方式中,如图9所示,该参考电压提供电路20可以包括:电源泵21和电压调节电路22,该电源泵21的输出端可以与电压调节电路22的第一输入端耦合。In a first possible implementation, as shown in FIG. 9 , the reference voltage providing circuit 20 may include: a power pump 21 and a voltage regulating circuit 22 , and the output end of the power pump 21 may be coupled to the first input end of the voltage regulating circuit 22 .

该电源泵21可用于输出预设参考电压。该电压调节电路22可用于:接收该预设参考电压,并根据该预设参考电压、第一比例和第二比例,分别输出第一参考电压VREF1和第二参考电压VREF2。上述第一比例可以是第一参考电压VREF1与该预设参考电压的比值,第二比例可以是第二参考电压VREF2与该预设参考电压的比值。The power pump 21 can be used to output a preset reference voltage. The voltage regulating circuit 22 can be used to receive the preset reference voltage and output a first reference voltage VREF1 and a second reference voltage VREF2 according to the preset reference voltage, a first ratio and a second ratio. The first ratio can be a ratio of the first reference voltage VREF1 to the preset reference voltage, and the second ratio can be a ratio of the second reference voltage VREF2 to the preset reference voltage.

可选的,该电压调节电路22可以为电阻分压电路。该电阻分压电路可用于:根据第一比例对该预设参考电压进行分压处理,以输出第一参考电压VREF1;根据第二比例对该预设参考电压进行分压处理,以输出第二参考电压VREF2。示例性的,该电阻分压电路可以为电阻串(resistor string),该电阻串可以包括多个电阻,在实际应用中,可以通过配置该多个电阻的阻值实现上述第一比例和第二比例的分压处理。Optionally, the voltage regulating circuit 22 may be a resistor voltage divider circuit. The resistor voltage divider circuit may be used to: divide the preset reference voltage according to a first ratio to output a first reference voltage VREF1; divide the preset reference voltage according to a second ratio to output a second reference voltage VREF2. Exemplarily, the resistor voltage divider circuit may be a resistor string, which may include multiple resistors. In practical applications, the voltage division processing of the first ratio and the second ratio may be achieved by configuring the resistance values of the multiple resistors.

此外,如图10所示,该参考电压提供电路20还可以包括数模转换电路(digital toanalog converter circuit,ADC)。该数模转换电路ADC的输出端可以与该电压调节电路22的第二输入端耦合。该数模转换电路ADC的输入端可以与该物理层地址译码器43的输出端耦合。In addition, as shown in FIG10 , the reference voltage providing circuit 20 may further include a digital to analog converter circuit (ADC). The output end of the digital to analog converter circuit ADC may be coupled to the second input end of the voltage regulating circuit 22. The input end of the digital to analog converter circuit ADC may be coupled to the output end of the physical layer address decoder 43.

该数模转换电路ADC可用于:接收目标物理层地址,并根据该目标物理层地址向该电压调节电路22输出指示信号,该指示信号用于指示输出第一参考电压VREF1或第二参考电压VREF2。该目标物理层地址为该多个存储单元物理层10中被选中的存储单元物理层的地址。示例性的,当该目标物理层地址为第一存储单元物理层11的物理层地址时,该数模转换电路ADC输出的指示信号可用于指示该电压调节电路22输出第一参考电压VREF1;当该目标物理层地址为第二存储单元物理层12的物理层地址时,该数模转换电路ADC输出的指示信号可用于指示该电压调节电路22输出第二参考电压VREF2。The digital-to-analog conversion circuit ADC can be used to: receive a target physical layer address, and output an indication signal to the voltage regulating circuit 22 according to the target physical layer address, the indication signal being used to indicate outputting the first reference voltage VREF1 or the second reference voltage VREF2. The target physical layer address is the address of the selected storage unit physical layer among the multiple storage unit physical layers 10. Exemplarily, when the target physical layer address is the physical layer address of the first storage unit physical layer 11, the indication signal output by the digital-to-analog conversion circuit ADC can be used to indicate the voltage regulating circuit 22 to output the first reference voltage VREF1; when the target physical layer address is the physical layer address of the second storage unit physical layer 12, the indication signal output by the digital-to-analog conversion circuit ADC can be used to indicate the voltage regulating circuit 22 to output the second reference voltage VREF2.

可选的,该参考电压提供电路20还可以包括输出放大器(out amplifier),该输出放大器的输入端可以与该电压调节电路22的输出端耦合,用于对该电压调节电路22输出的第一参考电压VREF1和第二参考电压VREF2进行放大。Optionally, the reference voltage providing circuit 20 may further include an output amplifier (out amplifier), the input end of the output amplifier may be coupled to the output end of the voltage regulating circuit 22 , and is used to amplify the first reference voltage VREF1 and the second reference voltage VREF2 output by the voltage regulating circuit 22 .

在第二种可能的实现方式中,如图10所示,该参考电压提供电路20可以包括:第一电源泵24和第二电源泵25。第一电源泵24和第二电源泵25的结构可以相同,也可以不同。In a second possible implementation, as shown in Fig. 10, the reference voltage providing circuit 20 may include: a first power pump 24 and a second power pump 25. The structures of the first power pump 24 and the second power pump 25 may be the same or different.

第一电源泵24用于输出第一参考电压VREF1。第二电源泵25用于输出第二参考电压VREF2。当第一电源泵24和第二电源泵25的结构相同时,第一电源泵24和第二电源泵25的电路参数可以不同,该电路参数可以包括电阻阻值。示例性的,第一电源泵24和第二电源泵25可以均为低压差线性稳压器(low dropout regulator,LDO),该LDO中用于调节输出电压大小的电路参数可以包括两个电阻的阻值比例,从而第一电源泵24对应的阻值比例可以与第二电源泵25对应的阻值比例不同。The first power pump 24 is used to output a first reference voltage VREF1. The second power pump 25 is used to output a second reference voltage VREF2. When the structures of the first power pump 24 and the second power pump 25 are the same, the circuit parameters of the first power pump 24 and the second power pump 25 may be different, and the circuit parameters may include the resistance value of the resistor. Exemplarily, the first power pump 24 and the second power pump 25 may both be low dropout regulators (LDOs), and the circuit parameters used to adjust the output voltage in the LDO may include the resistance ratio of the two resistors, so that the resistance ratio corresponding to the first power pump 24 may be different from the resistance ratio corresponding to the second power pump 25.

可选的,如图10所示,该参考电压提供电路20还可以包括选择开关(switch)26。该选择开关26的两个选择端可以分别与第一电源泵24的输出端和第二电源泵25的输出端耦合。该选择开关26的固定端可以与该物理层地址译码器43的输出端耦合。Optionally, as shown in FIG10 , the reference voltage providing circuit 20 may further include a selection switch 26. Two selection terminals of the selection switch 26 may be respectively coupled to the output terminal of the first power pump 24 and the output terminal of the second power pump 25. A fixed terminal of the selection switch 26 may be coupled to the output terminal of the physical layer address decoder 43.

该选择开关26可用于:接收目标物理层地址,并根据该目标物理层地址选择输出第一参考电压VREF1或者第二参考电压VREF2。该目标物理层地址为该多个存储单元物理层10中被选中的存储单元物理层的地址。示例性的,当该目标物理层地址为第一存储单元物理层11的物理层地址时,该选择开关26可用于选通第一电源泵24,以选择输出第一参考电压VREF1;当该目标物理层地址为第二存储单元物理层12的物理层地址时,该选择开关26可用于选通第二电源泵25,以选择输出第二参考电压VREF2。The selection switch 26 may be used to receive a target physical layer address, and select to output a first reference voltage VREF1 or a second reference voltage VREF2 according to the target physical layer address. The target physical layer address is the address of a selected storage unit physical layer among the multiple storage unit physical layers 10. Exemplarily, when the target physical layer address is the physical layer address of the first storage unit physical layer 11, the selection switch 26 may be used to enable the first power pump 24 to select to output the first reference voltage VREF1; when the target physical layer address is the physical layer address of the second storage unit physical layer 12, the selection switch 26 may be used to enable the second power pump 25 to select to output the second reference voltage VREF2.

进一步的,上述三维存储器的数据读取过程中所使用的参考电压(比如,第一参考电压VREF1和第二参考电压VREF2),可以是通过训练得到的,具体可以在使用前(即生命周期为time0)进行训练,也可以在使用过程中的不同生命周期进行训练。Furthermore, the reference voltages used in the data reading process of the three-dimensional memory (for example, the first reference voltage VREF1 and the second reference voltage VREF2) can be obtained through training, and can be trained before use (i.e., the life cycle is time0), or can be trained at different life cycles during use.

在一种可能的实施例中,在使用前对该参考电压进行训练时,可以在参考电压训练模式下,使用多个预设参考电压对该三维存储器中的多个存储单元物理层10进行训练,并根据该多个存储单元物理层10的分组,确定每个分组对应的参考电压。In a possible embodiment, when the reference voltage is trained before use, multiple preset reference voltages can be used to train multiple storage unit physical layers 10 in the three-dimensional memory in a reference voltage training mode, and based on the grouping of the multiple storage unit physical layers 10, the reference voltage corresponding to each group can be determined.

示例性的,如图11所示,该方法可以包括以下步骤。S11.进入参考电压训练模式,并初始化k=0,k可用于表示第k个存储单元物理层。S12.遍历多个预设参考电压,读取第k个存储单元物理层中存储单元的数据,并根据读取结果确定数据“0”和“1”的读取通过率。S13.判断k是否等于n;若否(即k不等于n)则执行k=k+1后返回S12;若是(即k等于n)则执行S14。S14.基于不同预设参考电压下的读取通过率,确定每个分组对应的参考电压,并写入该三维存储器中。Exemplarily, as shown in FIG11 , the method may include the following steps. S11. Enter reference voltage training mode and initialize k=0, where k can be used to represent the kth storage unit physical layer. S12. Traverse multiple preset reference voltages, read the data of the storage unit in the kth storage unit physical layer, and determine the read pass rate of data "0" and "1" based on the read result. S13. Determine whether k is equal to n; if not (i.e., k is not equal to n), execute k=k+1 and return to S12; if yes (i.e., k is equal to n), execute S14. S14. Based on the read pass rate under different preset reference voltages, determine the reference voltage corresponding to each group, and write it into the three-dimensional memory.

在另一种可能的实施例中,在不同生命周期对该参考电压进行训练时,可以在该三维存储器处于空闲(idle)状态时,按照上述使用前对该参考电压进行训练的方式,训练每个分组对应的参考电压。其中,该不同生命周期可以通过读写次数来体现。In another possible embodiment, when the reference voltage is trained in different life cycles, the reference voltage corresponding to each group can be trained in the above-mentioned manner of training the reference voltage before use when the three-dimensional memory is in an idle state. The different life cycles can be reflected by the number of read and write times.

示例性的,如图12所示,该方法可以包括以下步骤。S21.判断是否进入空闲状态;若否则返回空闲状态;若是(即进入空闲状态)则执行S22。S22.查询读写次数。S23.该读写次数是否满足训练触发条件,比如,该读写次数大于或等于预设次数;若否则返回空闲状态,若是则执行S24。S24.执行参考电压训练过程,并在训练完成后执行S25。S25.返回空闲状态。Exemplarily, as shown in FIG12 , the method may include the following steps. S21. Determine whether to enter the idle state; if not, return to the idle state; if so (i.e., enter the idle state), execute S22. S22. Query the number of read and write times. S23. Whether the number of read and write times meets the training trigger condition, for example, the number of read and write times is greater than or equal to the preset number; if not, return to the idle state, if so, execute S24. S24. Execute the reference voltage training process, and execute S25 after the training is completed. S25. Return to the idle state.

本申请实施例中,通过对不同分组的存储单元物理层在数据读取过程中所使用的参考电压进行训练,可以保证不同分组的存储单元物理层对应的参考电压的准确性,这样在对不同存储单元物理层进行数据读取时,可以通过位线为被选中的存储单元物理层提供对应的参考电压,从而保证不同存储单元物理层的数据的正确读取。In an embodiment of the present application, by training the reference voltages used by the physical layers of storage cells in different groups during the data reading process, the accuracy of the reference voltages corresponding to the physical layers of storage cells in different groups can be ensured. In this way, when reading data from different physical layers of storage cells, the corresponding reference voltage can be provided to the selected physical layers of storage cells through the bit lines, thereby ensuring the correct reading of data from different physical layers of storage cells.

图13为本申请实施例提供的一种参考电压提供方法的流程示意图,该方法可应用于上文所提供的三维存储器中,该方法包括以下几个步骤。FIG. 13 is a flow chart of a reference voltage providing method provided in an embodiment of the present application. The method can be applied to the three-dimensional memory provided above. The method includes the following steps.

S301:获取目标物理层地址,该目标物理层地址为多个存储单元物理层中被选中的存储单元物理层的地址。S301: Acquire a target physical layer address, where the target physical layer address is an address of a selected storage unit physical layer from among multiple storage unit physical layers.

其中,被选中的存储单元物理层可以为该多个存储单元物理层中的任意一个存储单元物理层。比如,被选中的存储单元物理层可以为第一存储单元物理层,或者为第二存储单元物理层。The selected storage unit physical layer may be any one of the multiple storage unit physical layers, for example, the selected storage unit physical layer may be the first storage unit physical layer or the second storage unit physical layer.

在一种可能的实施例中,该三维存储器可以获取物理层地址,并对该物理层地址进行译码得到该目标物理层地址。比如,该三维存储器中可以包括物理层地址译码器,该物理层地址译码器可以接收该物理层地址,并对该物理层地址进行译码得到该目标物理层地址。In a possible embodiment, the three-dimensional memory can obtain a physical layer address and decode the physical layer address to obtain the target physical layer address. For example, the three-dimensional memory can include a physical layer address decoder, which can receive the physical layer address and decode the physical layer address to obtain the target physical layer address.

S302:根据该目标物理层地址确定被选中的存储单元物理层对应的参考电压。S302: Determine a reference voltage corresponding to the physical layer of the selected storage unit according to the target physical layer address.

其中,该多个存储单元物理层中可以包括两个或者两个以上的分组,每个分组中可以包括一个或者多个存储单元物理层。在该两个或者两个以上的分组中,不同分组中的存储单元物理层对应的参考电压不同,同一分组中的存储单元物理层对应的参考电压相同。The multiple storage unit physical layers may include two or more groups, each of which may include one or more storage unit physical layers. In the two or more groups, the reference voltages corresponding to the storage unit physical layers in different groups are different, and the reference voltages corresponding to the storage unit physical layers in the same group are the same.

在一种可能的实施例中,该多个存储单元物理层可以包括第一分组和第二分组。其中,第一分组可以包括多个第一存储单元物理层,和/或,第二分组可以包括多个第二存储单元物理层。可选的,第一分组中的第一存储单元物理层对应的参考电压可以为第一参考电压,第二分组中的第二存储单元物理层对应的参考电压可以为第二参考电压。第一参考电压和第二参考电压不同。In a possible embodiment, the multiple storage unit physical layers may include a first group and a second group. The first group may include multiple first storage unit physical layers, and/or the second group may include multiple second storage unit physical layers. Optionally, the reference voltage corresponding to the first storage unit physical layer in the first group may be a first reference voltage, and the reference voltage corresponding to the second storage unit physical layer in the second group may be a second reference voltage. The first reference voltage and the second reference voltage are different.

进一步的,该多个存储单元物理层还可以包括第三分组,第三分组中可以包括一个或者多个第三存储单元物理层。第三分组中的第三存储单元物理层对应的参考电压可以为第三参考电压。第三参考电压与第一参考电压和第二参考电压均不同。Furthermore, the plurality of storage unit physical layers may further include a third group, and the third group may include one or more third storage unit physical layers. The reference voltage corresponding to the third storage unit physical layer in the third group may be a third reference voltage. The third reference voltage is different from both the first reference voltage and the second reference voltage.

S303:通过位线为被选中的存储单元物理层提供相应的参考电压。S303: Providing a corresponding reference voltage to the physical layer of the selected memory cell via the bit line.

在一种可能的实施例中,若该目标物理层地址为第一存储单元物理层的地址,则通过位线为第一存储单元物理层提供第一参考电压;若该目标物理层地址为第二存储单元物理层的地址,通过位线为第二存储单元物理层提供第二参考电压。进一步的,若该目标物理层地址为第三存储单元物理层的地址,则通过位线为第三存储单元物理层提供第三参考电压。In a possible embodiment, if the target physical layer address is the address of the physical layer of the first storage unit, a first reference voltage is provided to the physical layer of the first storage unit through a bit line; if the target physical layer address is the address of the physical layer of the second storage unit, a second reference voltage is provided to the physical layer of the second storage unit through a bit line. Further, if the target physical layer address is the address of the physical layer of the third storage unit, a third reference voltage is provided to the physical layer of the third storage unit through a bit line.

示例性的,该三维存储器中可以包括参考电压提供电路,该参考电压提供电路可用于:通过位线为第一存储单元物理层提供第一参考电压,通过位线为第二存储单元物理层提供第二参考电压,以及通过位线为第三存储单元物理层提供第三参考电压。Exemplarily, the three-dimensional memory may include a reference voltage providing circuit, which can be used to: provide a first reference voltage to a first memory cell physical layer through a bit line, provide a second reference voltage to a second memory cell physical layer through a bit line, and provide a third reference voltage to a third memory cell physical layer through a bit line.

在本申请的方法实施例中,在三维存储器的数据读取过程中,当不同的存储单元物理层被选中时,可以通过位线为不同的存储单元物理层提供不同的参考电压,这样可以通过不同的参考电压读取不同存储单元物理层的数据,从而解决了因为存储单元物理层的尺寸、工艺和性能等不一致而影响读取的正确率的问题。In a method embodiment of the present application, during the data reading process of a three-dimensional memory, when different physical layers of storage cells are selected, different reference voltages can be provided for different physical layers of storage cells through bit lines, so that data of different physical layers of storage cells can be read through different reference voltages, thereby solving the problem of affecting the reading accuracy due to inconsistencies in the size, process and performance of the physical layers of the storage cells.

在本申请的另一实施例中,还提供一种存储设备,如图14所示,该存储设备可以包括控制器和三维存储器,该控制器用于控制该三维存储器的读写,该三维存储器可以为上文所提供的任一种三维存储器。可选的,该三维存储器可以为三维铁电存储器、三维MRAM或者三维DRAM等。In another embodiment of the present application, a storage device is also provided, as shown in FIG14 , the storage device may include a controller and a three-dimensional memory, the controller is used to control the reading and writing of the three-dimensional memory, and the three-dimensional memory may be any of the three-dimensional memories provided above. Optionally, the three-dimensional memory may be a three-dimensional ferroelectric memory, a three-dimensional MRAM, or a three-dimensional DRAM, etc.

在本申请的又一实施例中,还提供一种电子设备,该电子设备可以包括电路板、以及固定在该电路板上的存储设备,该存储设备为上文所提供的存储设备。可选的,该电子设备可以包括但不限于:手机、平板电脑、计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,umPC)、上网本、摄像机、照相机、可穿戴设备、车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备或者智能机器人等。In another embodiment of the present application, an electronic device is provided, which may include a circuit board and a storage device fixed on the circuit board, and the storage device is the storage device provided above. Optionally, the electronic device may include but is not limited to: a mobile phone, a tablet computer, a computer, a laptop computer, an ultra-mobile personal computer (ultra-mobile personal computer, umPC), a netbook, a camera, a camera, a wearable device, a vehicle-mounted device (for example, a car, a bicycle, an electric car, an airplane, a ship, a train, a high-speed rail, etc.), a virtual reality (virtual reality, VR) device, an augmented reality (augmented reality, AR) device or an intelligent robot, etc.

上文中关于该三维存储器的结构和数据读取流程等相关内容的详细描述均可对应援引到该参考电压提供方法、存储设备和电子设备对应的实施例中,本申请实施例在此不再赘述。The detailed descriptions of the structure and data reading process of the three-dimensional memory mentioned above can be referred to in the corresponding embodiments of the reference voltage providing method, storage device and electronic device, and the embodiments of the present application will not be repeated here.

最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。Finally, it should be noted that the above is only a specific implementation of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (18)

1.一种三维存储器,其特征在于,包括:1. A three-dimensional memory, comprising: 层叠设置的多个存储单元物理层,每个存储单元物理层包括多行多列的存储单元,所述多个存储单元物理层包括第一存储单元物理层和第二存储单元物理层;A plurality of storage unit physical layers arranged in a stacked manner, each storage unit physical layer comprising a plurality of rows and columns of storage units, the plurality of storage unit physical layers comprising a first storage unit physical layer and a second storage unit physical layer; 多个位线和多个字线,与所述多个存储单元物理层耦合;A plurality of bit lines and a plurality of word lines, physically coupled to the plurality of memory cells; 参考电压提供电路,用于通过所述位线为所述第一存储单元物理层提供第一参考电压,通过所述位线为所述第二存储单元物理层提供第二参考电压,所述第一参考电压和所述第二参考电压不同。The reference voltage providing circuit is used to provide a first reference voltage for the first memory cell physical layer through the bit line, and to provide a second reference voltage for the second memory cell physical layer through the bit line, wherein the first reference voltage and the second reference voltage are different. 2.根据权利要求1所述的三维存储器,其特征在于,所述第一参考电压用于读取所述第一存储单元物理层中存储单元的数据,所述第二参考电压用于读取所述第二存储单元物理层中存储单元的数据。2. The three-dimensional memory according to claim 1, wherein the first reference voltage is used to read data of a storage cell in the first storage cell physical layer, and the second reference voltage is used to read data of a storage cell in the second storage cell physical layer. 3.根据权利要求1或2所述的三维存储器,其特征在于,所述第一存储单元物理层中存储单元的尺寸大于所述第二存储单元物理层中存储单元的尺寸,所述第一参考电压大于所述第二参考电压。3. The three-dimensional memory according to claim 1 or 2, characterized in that the size of the storage cell in the first storage cell physical layer is larger than the size of the storage cell in the second storage cell physical layer, and the first reference voltage is larger than the second reference voltage. 4.根据权利要求1-3任一项所述的三维存储器,其特征在于,所述参考电压提供电路包括:4. The three-dimensional memory according to any one of claims 1 to 3, wherein the reference voltage providing circuit comprises: 电源泵,用于输出预设参考电压;A power pump, used for outputting a preset reference voltage; 电压调节电路,用于根据所述预设参考电压、第一比例和第二比例,分别输出所述第一参考电压和所述第二参考电压。The voltage regulating circuit is used to output the first reference voltage and the second reference voltage respectively according to the preset reference voltage, the first ratio and the second ratio. 5.根据权利要求4所述的三维存储器,其特征在于,所述电压调节电路包括:5. The three-dimensional memory according to claim 4, wherein the voltage regulating circuit comprises: 电阻分压电路,用于根据所述第一比例对所述预设参考电压进行分压处理,以输出所述第一参考电压;a resistor voltage divider circuit, configured to divide the preset reference voltage according to the first ratio to output the first reference voltage; 所述电阻分压电路,还用于根据所述第二比例对所述预设参考电压进行分压处理,以输出所述第二参考电压。The resistor voltage divider circuit is further used to divide the preset reference voltage according to the second ratio to output the second reference voltage. 6.根据权利要求4或5所述的三维存储器,其特征在于,所述参考电压提供电路还包括:6. The three-dimensional memory according to claim 4 or 5, characterized in that the reference voltage providing circuit further comprises: 数模转换电路,用于根据目标物理层地址向所述电压调节电路输出指示信号,所述指示信号用于指示输出所述第一参考电压或所述第二参考电压,所述目标物理层地址为所述多个存储单元物理层中被选中的存储单元物理层的地址。A digital-to-analog conversion circuit is used to output an indication signal to the voltage regulation circuit according to a target physical layer address, wherein the indication signal is used to indicate output of the first reference voltage or the second reference voltage, and the target physical layer address is the address of a selected storage unit physical layer among the multiple storage unit physical layers. 7.根据权利要求1-3任一项所述的三维存储器,其特征在于,所述参考电压提供电路包括:7. The three-dimensional memory according to any one of claims 1 to 3, wherein the reference voltage providing circuit comprises: 第一电源泵,用于输出所述第一参考电压;a first power pump, configured to output the first reference voltage; 第二电源泵,用于输出所述第二参考电压;a second power pump, configured to output the second reference voltage; 其中,所述第一电源泵与所述第二电源泵的电路参数不同,所述电路参数包括电阻阻值。Wherein, the circuit parameters of the first power pump and the second power pump are different, and the circuit parameters include resistance values. 8.根据权利要求7所述的三维存储器,其特征在于,所述参考电压提供电路还包括:8. The three-dimensional memory according to claim 7, wherein the reference voltage providing circuit further comprises: 选择开关,用于根据目标物理层地址,选择输出所述第一参考电压或者所述第二参考电压,所述目标物理层地址为所述多个存储单元物理层中被选中的存储单元物理层的地址。The selection switch is used to select and output the first reference voltage or the second reference voltage according to a target physical layer address, wherein the target physical layer address is an address of a selected storage unit physical layer among the multiple storage unit physical layers. 9.根据权利要求6或8所述的三维存储器,其特征在于,所述三维存储器还包括:9. The three-dimensional memory according to claim 6 or 8, characterized in that the three-dimensional memory further comprises: 物理层地址译码器,用于对所述目标物理层地址进行译码并输出。A physical layer address decoder is used to decode and output the target physical layer address. 10.根据权利要求1-9任一项所述的三维存储器,其特征在于,所述多个存储单元物理层包括第一分组和第二分组;其中,所述第一分组包括多个所述第一存储单元物理层,和/或,所述第二分组包括多个所述第二存储单元物理层。10. The three-dimensional memory according to any one of claims 1 to 9, characterized in that the multiple storage unit physical layers include a first group and a second group; wherein the first group includes multiple first storage unit physical layers, and/or the second group includes multiple second storage unit physical layers. 11.根据权利要求10所述的三维存储器,其特征在于,所述第一分组是经过一次刻蚀工艺得到的,所述第二分组是经过另一次刻蚀工艺得到的。11 . The three-dimensional memory according to claim 10 , wherein the first group is obtained through one etching process, and the second group is obtained through another etching process. 12.根据权利要求10所述的三维存储器,其特征在于,所述多个存储单元物理层包括经过至少两次刻蚀工艺得到的存储单元物理层,所述第一分组和所述第二分组分别包括所述至少两次刻蚀工艺中每次刻蚀工艺对应的至少一个存储单元物理层。12. The three-dimensional memory according to claim 10, characterized in that the multiple storage unit physical layers include storage unit physical layers obtained through at least two etching processes, and the first group and the second group respectively include at least one storage unit physical layer corresponding to each etching process in the at least two etching processes. 13.根据权利要求10所述的三维存储器,其特征在于,所述第一分组和所述第二分组对应的参考电压读取范围不同。13 . The three-dimensional memory according to claim 10 , wherein the reference voltage reading ranges corresponding to the first group and the second group are different. 14.根据权利要求1-13任一项所述的三维存储器,其特征在于,所述多个存储单元物理层还包括:第三存储单元物理层;14. The three-dimensional memory according to any one of claims 1 to 13, characterized in that the plurality of storage unit physical layers further comprises: a third storage unit physical layer; 所述参考电压提供电路,还用于通过所述位线为所述第三存储单元物理层提供第三参考电压,所述第三参考电压与所述第一参考电压和所述第二参考电压均不同。The reference voltage providing circuit is further used to provide a third reference voltage for the third storage unit physical layer through the bit line, and the third reference voltage is different from both the first reference voltage and the second reference voltage. 15.根据权利要求1-14任一项所述的三维存储器,其特征在于,所述多个存储单元物理层、所述多个位线和所述多个字线是通过前道工艺形成的,所述参考电压提供电路是通过后道工艺形成的。15 . The three-dimensional memory according to claim 1 , wherein the plurality of memory cell physical layers, the plurality of bit lines and the plurality of word lines are formed by a front-end process, and the reference voltage providing circuit is formed by a back-end process. 16.一种参考电压提供方法,其特征在于,用于三维存储器的数据读取,所述三维存储器包括多个位线、多个字线和层叠设置的多个存储单元物理层,所述多个存储单元物理层包括第一存储单元物理层和第二存储单元物理层,所述方法包括:16. A reference voltage providing method, characterized in that it is used for reading data of a three-dimensional memory, the three-dimensional memory comprising a plurality of bit lines, a plurality of word lines and a plurality of memory cell physical layers stacked, the plurality of memory cell physical layers comprising a first memory cell physical layer and a second memory cell physical layer, the method comprising: 获取目标物理层地址,所述目标物理层地址为所述多个存储单元物理层中被选中的存储单元物理层的地址;Acquire a target physical layer address, where the target physical layer address is an address of a physical layer of a storage unit selected from the multiple physical layers of the storage units; 若所述目标物理层地址为所述第一存储单元物理层的地址,通过所述位线为所述第一存储单元物理层提供第一参考电压;If the target physical layer address is the address of the first storage unit physical layer, providing a first reference voltage to the first storage unit physical layer through the bit line; 若所述目标物理层地址为所述第二存储单元物理层的地址,通过所述位线为所述第二存储单元物理层提供第二参考电压,所述第一参考电压和所述第二参考电压不同。If the target physical layer address is the address of the second storage unit physical layer, a second reference voltage is provided to the second storage unit physical layer through the bit line, and the first reference voltage is different from the second reference voltage. 17.一种存储设备,其特征在于,所述存储设备包括控制器和三维存储器,所述控制器用于控制所述三维存储器的读写,所述三维存储器为权利要求1-15任一项所述的三维存储器。17. A storage device, characterized in that the storage device comprises a controller and a three-dimensional memory, the controller is used to control the reading and writing of the three-dimensional memory, and the three-dimensional memory is the three-dimensional memory according to any one of claims 1 to 15. 18.一种电子设备,其特征在于,所述电子设备包括电路板、以及固定于所述电路板上的如权利要求17所述的存储设备。18. An electronic device, characterized in that the electronic device comprises a circuit board, and the storage device according to claim 17 fixed on the circuit board.
CN202310328330.2A 2023-03-24 2023-03-24 A three-dimensional memory, reference voltage providing method and device Pending CN118692518A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310328330.2A CN118692518A (en) 2023-03-24 2023-03-24 A three-dimensional memory, reference voltage providing method and device
PCT/CN2024/073528 WO2024198677A1 (en) 2023-03-24 2024-01-22 Three-dimensional memory, reference voltage providing method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310328330.2A CN118692518A (en) 2023-03-24 2023-03-24 A three-dimensional memory, reference voltage providing method and device

Publications (1)

Publication Number Publication Date
CN118692518A true CN118692518A (en) 2024-09-24

Family

ID=92765267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310328330.2A Pending CN118692518A (en) 2023-03-24 2023-03-24 A three-dimensional memory, reference voltage providing method and device

Country Status (2)

Country Link
CN (1) CN118692518A (en)
WO (1) WO2024198677A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10262744B2 (en) * 2016-08-11 2019-04-16 SK Hynix Inc. Layer-based memory controller optimizations for three dimensional memory constructs
KR102581100B1 (en) * 2019-03-07 2023-09-20 삼성전기주식회사 Negative voltage circuit based on charge pump
CN111309544B (en) * 2020-02-11 2021-01-26 上海威固信息技术股份有限公司 Prediction modeling and applying method for influence of multidimensional factors on read reference voltage
CN111537773A (en) * 2020-06-05 2020-08-14 北京交通大学 Voltage detection circuit and controller and electronic equipment
JP2022041503A (en) * 2020-09-01 2022-03-11 キオクシア株式会社 Memory system

Also Published As

Publication number Publication date
WO2024198677A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
KR102151176B1 (en) Resistive Memory Device and Operating Method thereof
US10002663B2 (en) Nonvolatile memory apparatus and resistance compensation circuit thereof
CN113126898A (en) Memory device, operating method thereof, and operating method of memory controller
US10497427B2 (en) Memory device using sense amplifiers as buffer memory with reduced access time and method of cache operation of the same
US10846220B2 (en) Memory system and operation method thereof
KR20160019781A (en) Memory Device including a plurality of layers and Memory System having the same
US7652909B2 (en) 2T/2C ferroelectric random access memory with complementary bit-line loads
WO2024221781A1 (en) Data read-write circuit and method therefor, memory and driving method therefor, and electronic device
KR20220151056A (en) Memory device
JP2008171525A (en) Semiconductor storage device
KR102555454B1 (en) Semiconductor memory apparatus for preventing diturbance
US9502105B2 (en) Resistive memory device, operating method thereof, and system having the same
US8942045B2 (en) Memory apparatus and methods
US9934154B2 (en) Electronic system with memory management mechanism and method of operation thereof
JPH04351789A (en) Semiconductor storage device
CN118692518A (en) A three-dimensional memory, reference voltage providing method and device
US11862283B2 (en) Sense amplifier, storage device and read-write method
WO2023221597A1 (en) Storage array and working method for storage array
KR20150052632A (en) Semiconductor device
US9384796B2 (en) Semiconductor memory device and memory system including the same
CN115836347A (en) Memory and data migration method
EP0500097B1 (en) Dynamic random access memory device with flash write mode carrying out for selected memory cell arrays
JPS6150285A (en) Serial memory device
CN117352024A (en) Memory and access method
CN119274601A (en) Memory, storage devices and electronic devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication