CN118691947A - A control method for laser denial system - Google Patents
A control method for laser denial system Download PDFInfo
- Publication number
- CN118691947A CN118691947A CN202411198481.1A CN202411198481A CN118691947A CN 118691947 A CN118691947 A CN 118691947A CN 202411198481 A CN202411198481 A CN 202411198481A CN 118691947 A CN118691947 A CN 118691947A
- Authority
- CN
- China
- Prior art keywords
- target
- lens group
- module
- laser
- fixed lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/145—Illumination specially adapted for pattern recognition, e.g. using gratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Lenses (AREA)
Abstract
Description
技术领域Technical Field
本发明属于激光拒止技术领域,特别是涉及一种激光拒止系统的控制方法。The present invention belongs to the technical field of laser denial, and in particular relates to a control method of a laser denial system.
背景技术Background Art
激光拒止系统是一种利用激光技术实现特定拒止功能的系统,例如,利用激光技术实现对目标的驱离、爆闪等。传统的激光拒止系统依靠人工发现目标,然后操作相应设备进行拒止,这种方式准确率和效率较低。The laser denial system is a system that uses laser technology to achieve specific denial functions, such as using laser technology to drive away or flash targets. Traditional laser denial systems rely on manual detection of targets and then operate corresponding equipment for denial, which has low accuracy and efficiency.
发明内容Summary of the invention
本发明的目的在于克服现有技术的不足,提供一种激光拒止系统的控制方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a control method for a laser denial system.
本发明的目的是通过以下技术方案来实现的:一种激光拒止系统的控制方法,包括:The objective of the present invention is achieved through the following technical solution: A control method for a laser denial system, comprising:
采集图像;Collect images;
利用预先构建的YOLOv3-tiny模型识别所述图像中的目标;Identify the object in the image using a pre-built YOLOv3-tiny model;
计算所述目标的脱靶量;Calculating the miss amount of the target;
根据所述目标的脱靶量控制激光拒止系统中的目标拒止模块对目标进行拒止。The target denial module in the laser denial system is controlled according to the miss distance of the target to deny the target.
进一步地,所述YOLOv3-tiny模型舍弃了生成候选框的阶段,直接采用回归的分析的方法,以便在输入图像中直接通过卷积神经网络操作得到预测框的位置以及置信度。Furthermore, the YOLOv3-tiny model abandons the stage of generating candidate boxes and directly adopts a regression analysis method to obtain the position and confidence of the prediction box directly through the convolutional neural network operation in the input image.
进一步地,所述YOLOv3-tiny模型的损失函数为:Furthermore, the loss function of the YOLOv3-tiny model is:
其中,表示YOLOv3-tiny模型的损失函数,表示目标置信度的损失函数,表示目标类别的损失函数,表示位置损失函数,为平衡系数;in, represents the loss function of the YOLOv3-tiny model, represents the loss function of target confidence, represents the loss function of the target category, represents the position loss function, is the balance coefficient;
目标置信度的损失函数为:The loss function of target confidence is:
其中,,表示预测目标边界框与真实边界框的交并比IOU的值;为预测值,为预测置信度,,为正负样本的个数;in, , represents the value of the intersection-over-union (IOU) between the predicted target bounding box and the true bounding box; is the predicted value, is the prediction confidence, , is the number of positive and negative samples;
目标类别的损失函数为:The loss function for the target category is:
其中,,表示预测目标边界框中是否存在类目标;为预测值,为目标概率,,为正样本的个数;in, , represents the predicted target bounding box Does it exist in Class target; is the predicted value, is the target probability, , is the number of positive samples;
位置损失函数为:The position loss function is:
其中,,,,,,,,,为预测边界框的中心偏移量,为预测边界框的宽高缩放比,为正样本的个数。in, , , , , , , , , is the center offset of the predicted bounding box, is the aspect ratio of the predicted bounding box, is the number of positive samples.
进一步地,计算所述目标的脱靶量,包括:Further, calculating the off-target amount of the target includes:
根据目标的中心点坐标,计算目标的坐标位置相对于图像中心的X轴像素偏移量和Y轴像素偏移量;According to the coordinates of the center point of the target, the X-axis pixel offset and the Y-axis pixel offset of the target's coordinate position relative to the image center are calculated;
基于X轴像素偏移量和Y轴像素偏移量,以及相机的变焦倍率,计算当前视场角;Calculate the current field of view angle based on the X-axis pixel offset and the Y-axis pixel offset, as well as the camera zoom factor;
基于当前视场角计算目标X轴和Y轴的角度偏移量。Calculates the target's X and Y angular offsets based on the current field of view.
进一步地,所述激光拒止系统包括:Furthermore, the laser denial system comprises:
目标识别模块,用于采集图像,对图像中的目标进行跟踪识别,并计算出目标的脱靶量;The target recognition module is used to collect images, track and identify targets in the images, and calculate the target's miss distance;
目标拒止模块;Target Denial Module;
控制模块,用于根据所述目标的脱靶量控制所述目标拒止模块对目标进行拒止;A control module, used for controlling the target rejection module to reject the target according to the miss distance of the target;
电源模块,用于为目标识别模块、目标拒止模块和控制模块供电;A power module, used to supply power to the target identification module, the target denial module and the control module;
其中,所述目标拒止模块包括白光模组、绿光模组和红外模组;Wherein, the target denial module includes a white light module, a green light module and an infrared module;
所述白光模组包括白色激光光源和第一镜头,所述第一镜头包括第一固定透镜组和第一移动透镜组,所述第一固定透镜组和第一移动透镜组均设置于所述白色激光光源的出光面一侧,所述第一移动透镜组设置于所述白色激光光源和第一固定透镜组之间,所述第一镜头对白光光谱范围内的光线的透过率大于80%,所述第一移动透镜组的最大行程为90mm;The white light module comprises a white laser light source and a first lens, the first lens comprises a first fixed lens group and a first movable lens group, the first fixed lens group and the first movable lens group are both arranged on one side of the light emitting surface of the white laser light source, the first movable lens group is arranged between the white laser light source and the first fixed lens group, the transmittance of the first lens to light within the white light spectrum range is greater than 80%, and the maximum stroke of the first movable lens group is 90 mm;
所述绿光模组包括绿色激光光源和第二镜头,所述第二镜头包括第二固定透镜组、第三固定透镜组、第二移动透镜组和第三移动透镜组,所述第二固定透镜组、第三固定透镜组、第二移动透镜组和第三移动透镜组均设置于所述绿色激光光源的出光面一侧,所述第二固定透镜组设置于绿色激光光源和第三固定透镜组之间,所述第二移动透镜组设置于第二固定透镜组和第三固定透镜组之间,所述第三移动透镜组设置于第二移动透镜组和第三固定透镜组之间,所述第二镜头对绿光光谱范围内的光线的透过率大于95%,所述第二镜头的最大通光口径为45mm,所述第二镜头的光路焦距范围为1mm~78mm;The green light module includes a green laser light source and a second lens, the second lens includes a second fixed lens group, a third fixed lens group, a second movable lens group and a third movable lens group, the second fixed lens group, the third fixed lens group, the second movable lens group and the third movable lens group are all arranged on one side of the light exit surface of the green laser light source, the second fixed lens group is arranged between the green laser light source and the third fixed lens group, the second movable lens group is arranged between the second fixed lens group and the third fixed lens group, the third movable lens group is arranged between the second movable lens group and the third fixed lens group, the transmittance of the second lens to light within the green light spectrum range is greater than 95%, the maximum aperture of the second lens is 45 mm, and the optical path focal length range of the second lens is 1 mm to 78 mm;
所述红外模组包括红外激光光源和第三镜头,所述第三镜头包括第四固定透镜组、第五固定透镜组、第四移动透镜组和第五移动透镜组,所述第四固定透镜组、第五固定透镜组、第四移动透镜组和第五移动透镜组均设置于所述红外激光光源的出光面一侧,所述第四固定透镜组设置于红外激光光源和第五固定透镜组之间,所述第四移动透镜组设置于第四固定透镜组和第五固定透镜组之间,所述第五移动透镜组设置于第四移动透镜组和第五固定透镜组之间,所述第三镜头对红外光谱范围内的光线的透过率大于95%,所述第三镜头的最大通光口径为25mm,所述第三镜头的光路焦距范围为0.4mm~30mm。The infrared module includes an infrared laser light source and a third lens. The third lens includes a fourth fixed lens group, a fifth fixed lens group, a fourth movable lens group and a fifth movable lens group. The fourth fixed lens group, the fifth fixed lens group, the fourth movable lens group and the fifth movable lens group are all arranged on one side of the light exit surface of the infrared laser light source. The fourth fixed lens group is arranged between the infrared laser light source and the fifth fixed lens group. The fourth movable lens group is arranged between the fourth fixed lens group and the fifth fixed lens group. The fifth movable lens group is arranged between the fourth movable lens group and the fifth fixed lens group. The transmittance of the third lens to light within the infrared spectrum range is greater than 95%. The maximum light aperture of the third lens is 25 mm. The optical path focal length range of the third lens is 0.4 mm to 30 mm.
进一步地,所述目标识别模块包括:Furthermore, the target recognition module includes:
相机,用于采集图像;A camera, used to capture images;
图像跟踪板,用于对图像中的目标进行跟踪识别,并计算出目标的脱靶量;An image tracking board is used to track and identify the target in the image and calculate the target's miss distance;
泛光灯,用于为所述相机补光照明。A floodlight is used to provide fill light for the camera.
进一步地,所述白光模组还包括内置PI型位移传感器的减速直线电机,所述减速直线电机用于驱动第一移动透镜组移动。Furthermore, the white light module also includes a deceleration linear motor with a built-in PI type displacement sensor, and the deceleration linear motor is used to drive the first movable lens group to move.
进一步地,所述绿色激光光源采用多管芯耦合光纤输出的方式制作而成,输出特征为光纤芯径400um,NA0.22,中心波长525±10nm。Furthermore, the green laser light source is manufactured by multi-core coupled optical fiber output, and the output characteristics are optical fiber core diameter 400um, NA0.22, and central wavelength 525±10nm.
进一步地,所述红外激光光源采用多管芯耦合光纤输出的方式制作而成,将多颗管芯出光通过光路耦合进400um光纤NA0.22输出。Furthermore, the infrared laser light source is manufactured by adopting a multi-core coupled optical fiber output method, and the light output from multiple cores is coupled into a 400um optical fiber NA0.22 output through an optical path.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明通过图像识别技术进行目标的识别和跟踪 ,然后计算目标的脱靶量,并根据脱靶量控制目标拒止模块进行拒止,实现了目标发现和拒止的自动化控制,提高了目标拒止的准确率和效率;(1) The present invention uses image recognition technology to identify and track the target, then calculates the target's miss distance, and controls the target denial module to perform denial according to the miss distance, thereby realizing the automatic control of target discovery and denial, and improving the accuracy and efficiency of target denial;
(2)本发明中的YOLOv3-tiny模型舍弃了生成候选框的阶段,直接采用回归的分析的方法,即在输入图像中直接通过卷积神经网络操作就能得到预测框的位置以及置信度,提高了目标的检测速度;(2) The YOLOv3-tiny model in the present invention abandons the stage of generating candidate frames and directly adopts the regression analysis method, that is, the position and confidence of the prediction frame can be obtained directly through the convolutional neural network operation in the input image, thereby improving the detection speed of the target;
(3)本发明改进了YOLOv3-tiny模型的损失函数,实现了对目标的高精度识别,有效平衡了目标的识别速度和准确率。(3) The present invention improves the loss function of the YOLOv3-tiny model, achieves high-precision recognition of the target, and effectively balances the recognition speed and accuracy of the target.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明中控制方法的一种流程图;FIG1 is a flow chart of a control method in the present invention;
图2为本发明中YOLOv3-tiny模型的网络结构示意图;FIG2 is a schematic diagram of the network structure of the YOLOv3-tiny model in the present invention;
图3为本发明中特征提取网络构架的示意图;FIG3 is a schematic diagram of a feature extraction network architecture in the present invention;
图4为本发明中预测边界框计算的示意图;FIG4 is a schematic diagram of the prediction bounding box calculation in the present invention;
图5为YOLOv3-tiny模型中的参数构成示意图;FIG5 is a schematic diagram of the parameter composition in the YOLOv3-tiny model;
图6为本发明中识别目标的坐标偏移量计算示意图;FIG6 is a schematic diagram of calculating the coordinate offset of the identified target in the present invention;
图7为激光拒止系统的一种组成示意图;FIG7 is a schematic diagram of a laser denial system;
图8为白光模组的光路示意图;FIG8 is a schematic diagram of the optical path of the white light module;
图9为绿光模组的光路示意图;FIG9 is a schematic diagram of the optical path of the green light module;
图10为红外模组的光路示意图;FIG10 is a schematic diagram of the optical path of the infrared module;
图中,1-第一固定透镜组,2-第一移动透镜组,3-白色激光光源,4-第二固定透镜组,5-第二移动透镜组,6-第三移动透镜组,7-第三固定透镜组,8-第四固定透镜组,9-第四移动透镜组,10-第五移动透镜组,11-第五固定透镜组。In the figure, 1-first fixed lens group, 2-first movable lens group, 3-white laser light source, 4-second fixed lens group, 5-second movable lens group, 6-third movable lens group, 7-third fixed lens group, 8-fourth fixed lens group, 9-fourth movable lens group, 10-fifth movable lens group, 11-fifth fixed lens group.
具体实施方式DETAILED DESCRIPTION
下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solution of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are only part of the embodiments of the present invention, rather than all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present invention.
参阅图1至图10,本发明提供一种激光拒止系统的控制方法:Referring to FIGS. 1 to 10 , the present invention provides a control method for a laser denial system:
如图1所示,一种激光拒止系统的控制方法,包括步骤S100至步骤S400。As shown in FIG. 1 , a control method of a laser rejection system includes steps S100 to S400 .
步骤S100.采集图像。Step S100: Capture images.
例如,利用目标识别模块采集图像。For example, an image is collected using an object recognition module.
步骤S200.利用预先构建的YOLOv3-tiny模型识别所述图像中的目标。Step S200: Using a pre-built YOLOv3-tiny model to identify the target in the image.
在一些实施例中,所述YOLOv3-tiny模型舍弃了生成候选框的阶段,直接采用回归的分析的方法,以便在输入图像中直接通过卷积神经网络操作得到预测框的位置以及置信度。该端到端的检测方法提高了目标的检测速度,使得目标的检测速度达到30FPS。In some embodiments, the YOLOv3-tiny model abandons the stage of generating candidate boxes and directly adopts a regression analysis method to obtain the position and confidence of the predicted box directly through the convolutional neural network operation in the input image. This end-to-end detection method improves the detection speed of the target, so that the detection speed of the target reaches 30FPS.
YOLOv3-tiny模型的网络结构如图2所示。本发明中YOLOv3-tiny在特征提取时采用的主干网络是在YOLOv2的基础上将Darknet-19网络和最大池化层进行结合。此特征提取网络一共有7个卷积层,卷积核的大小是3×3,结构如图所示,从图3中可以看出,特征提取只需要7次卷积操作,减少了计算量,提高了检测的速度。该主干网络还通过浮点运算提高了NPU的利用率,从而提高训练速度。The network structure of the YOLOv3-tiny model is shown in Figure 2. The backbone network used by YOLOv3-tiny in the present invention for feature extraction is a combination of the Darknet-19 network and the maximum pooling layer based on YOLOv2. This feature extraction network has a total of 7 convolutional layers, the size of the convolution kernel is 3×3, and the structure is shown in the figure. It can be seen from Figure 3 that feature extraction only requires 7 convolution operations, which reduces the amount of calculation and improves the detection speed. The backbone network also improves the utilization rate of the NPU through floating-point operations, thereby improving the training speed.
YOLOv3-tiny使用维度簇作为锚框来直接预测边界框,YOLOv3-tiny只对每个真实的对象分配边界框,如果边界框与真实对象不对应,则只有目标损失,不计算坐标以及类别损失。网络预测每个边界框的4个坐标参数为。如果网格在图像左上角的偏移量为,并且边界框的宽度和高度为,目标边界框的预测如图4,虚线矩形框为预设边界框,实线矩形框为通过网络预测的偏移量计算得到的预测边界框;其中网络预测的边界框中心偏移量以及宽高缩放比,为最终预测的目标边界框,从预设边界框到最终预测边界框的转换过程如右侧公式所示,其中表示的是sigmoid函数,通过该函数将预测偏移量映射在0到1之间。YOLOv3-tiny uses dimension clusters as anchor boxes to directly predict bounding boxes. YOLOv3-tiny only assigns a bounding box to each real object. If the bounding box does not correspond to the real object, only the target loss is calculated, and the coordinate and category losses are not calculated. The network predicts the four coordinate parameters of each bounding box as follows: If the grid is offset from the top left corner of the image by , and the width and height of the bounding box are , the prediction of the target bounding box is shown in Figure 4. The dotted rectangular box is the preset bounding box, and the solid rectangular box is the predicted bounding box calculated by the offset predicted by the network; the center offset of the bounding box predicted by the network is and aspect ratio , is the final predicted target bounding box. The conversion process from the preset bounding box to the final predicted bounding box is shown in the formula on the right, where Represents the sigmoid function, which maps the predicted offset between 0 and 1.
YOLOv3-tiny网络采用的是多尺度预测,在每个尺度中预测3个边界框,针对自建的车头车尾数据集,每个尺度的参数大小为,其中表示的是进行预测的特征层大小,例如,YOLOv3-tiny模型的输入采用的图片大小为416×416,经过特征提取网络的卷积操作后的两个尺度特征图大小分别为13×13、26×26,每个尺度有4个位置偏移参数、1个置信分数、2个目标类别,具体构成如图5所示。The YOLOv3-tiny network uses multi-scale prediction, predicting 3 bounding boxes at each scale. For the self-built vehicle head and tail dataset, the parameter size of each scale is ,in It represents the size of the feature layer for prediction. For example, the input image size of the YOLOv3-tiny model is 416×416. The sizes of the two scale feature maps after the convolution operation of the feature extraction network are 13×13 and 26×26 respectively. Each scale has 4 position offset parameters, 1 confidence score, and 2 target categories. The specific structure is shown in Figure 5.
因此,在2个特征层上分别预测三个尺寸的特征图,一共会得到6个尺寸规模。针对车头朝向数据集采用k-means聚类算法得到这6个Anchor,分别是(52× 45),(107×93),(169×148),(314×210),(250×272),(343×322),再分别划分到对应的两个特征层,具体分类如表1所示。Therefore, by predicting feature maps of three sizes on two feature layers, a total of six sizes will be obtained. The k-means clustering algorithm is used for the vehicle head orientation dataset to obtain these six anchors, which are (52× 45), (107×93), (169×148), (314×210), (250×272), and (343×322). They are then divided into the corresponding two feature layers. The specific classification is shown in Table 1.
表1边界框分类Table 1 Bounding box classification
在一些实施例中,所述YOLOv3-tiny模型的损失函数为:In some embodiments, the loss function of the YOLOv3-tiny model is:
其中,表示YOLOv3-tiny模型的损失函数,表示目标置信度的损失函数,表示目标类别的损失函数,表示位置损失函数,为平衡系数;in, represents the loss function of the YOLOv3-tiny model, represents the loss function of target confidence, represents the loss function of the target category, represents the position loss function, is the balance coefficient;
目标置信度的损失函数为:The loss function of target confidence is:
其中,,表示预测目标边界框与真实边界框的交并比IOU的值;为预测值,为预测置信度,,为正负样本的个数;in, , represents the value of the intersection-over-union (IOU) between the predicted target bounding box and the true bounding box; is the predicted value, is the prediction confidence, , is the number of positive and negative samples;
目标类别的损失函数为:The loss function for the target category is:
其中,,表示预测目标边界框中是否存在类目标;为预测值,为目标概率,,为正样本的个数;in, , represents the predicted target bounding box Does it exist in Class target; is the predicted value, is the target probability, , is the number of positive samples;
位置损失函数为:The position loss function is:
其中,,,,,,,,,为预测边界框的中心偏移量,为预测边界框的宽高缩放比,为正样本的个数。in, , , , , , , , , is the center offset of the predicted bounding box, is the aspect ratio of the predicted bounding box, is the number of positive samples.
步骤S300.计算所述目标的脱靶量。Step S300: Calculate the miss distance of the target.
在一些实施例中,计算所述目标的脱靶量,包括:根据目标的中心点坐标,计算目标的坐标位置相对于图像中心的X轴像素偏移量和Y轴像素偏移量;基于X轴像素偏移量和Y轴像素偏移量,以及相机的变焦倍率,计算当前视场角;基于当前视场角计算目标X轴和Y轴的角度偏移量。In some embodiments, calculating the miss distance of the target includes: calculating the X-axis pixel offset and the Y-axis pixel offset of the coordinate position of the target relative to the image center according to the center point coordinates of the target; calculating the current field of view angle based on the X-axis pixel offset and the Y-axis pixel offset, and the zoom ratio of the camera; and calculating the angular offset of the target X-axis and Y-axis based on the current field of view angle.
假设当前相机倍率为30倍,查表得出此时的视场角为:水平18.22°(≈0.32弧度=19.2弧分),垂直10.3°(≈0.18弧度=10.8弧分),相机靶面为1920x1080像素,计算出此时像素与视场角度应关系为:水平:19.2/1920=0.01弧分/Pixel;垂直:10.8/1080=0.01弧分/Pixel。此时,依照垂直及水平便宜的像素值,可实时计算出实时目标偏移的水平X轴、垂直Y轴的偏移角度。像素计算角偏差脱靶量示意图如图6所示。Assuming that the current camera magnification is 30 times, the table shows that the field of view angle at this time is: horizontal 18.22° (≈0.32 radians = 19.2 arc minutes), vertical 10.3° (≈0.18 radians = 10.8 arc minutes), the camera target surface is 1920x1080 pixels, and the relationship between the pixel and the field of view angle at this time is calculated to be: horizontal: 19.2/1920 = 0.01 arc minutes/Pixel; vertical: 10.8/1080 = 0.01 arc minutes/Pixel. At this time, according to the vertical and horizontal cheap pixel values, the horizontal X-axis and vertical Y-axis offset angles of the real-time target offset can be calculated in real time. The schematic diagram of the pixel calculation angle deviation miss amount is shown in Figure 6.
步骤S400.根据所述目标的脱靶量控制激光拒止系统中的目标拒止模块对目标进行拒止。Step S400: Controlling the target denial module in the laser denial system to deny the target according to the miss distance of the target.
例如,根据所述目标的脱靶量,控制所述目标拒止模块来实现强光驱离、爆闪等。For example, according to the miss distance of the target, the target rejection module is controlled to achieve strong light drive away, flashing, etc.
在一些实施例中,如图7所示,所述激光眩目拒止系统包括目标识别模块、目标拒止模块、控制模块和电源模块。目标识别模块用于采集图像,对图像中的目标进行跟踪识别,并计算出目标的脱靶量;控制模块用于根据所述目标的脱靶量控制所述目标拒止模块对目标进行拒止;电源模块用于为目标识别模块、目标拒止模块和控制模块供电。所述激光眩目拒止系统主要用于对海面目标进行探照、爆闪、通讯等。In some embodiments, as shown in FIG7 , the laser dazzle denial system includes a target recognition module, a target denial module, a control module and a power module. The target recognition module is used to collect images, track and identify targets in the images, and calculate the miss distance of the targets; the control module is used to control the target denial module to deny the targets according to the miss distance of the targets; the power module is used to supply power to the target recognition module, the target denial module and the control module. The laser dazzle denial system is mainly used for searchlighting, flashing, communication, etc. of sea surface targets.
所述目标拒止模块包括白光模组、绿光模组和红外模组。The target rejection module includes a white light module, a green light module and an infrared module.
所述白光模组包括白色激光光源3和第一镜头。如图8所示,所述第一镜头包括第一固定透镜组1和第一移动透镜组2,所述第一固定透镜组1和第一移动透镜组2均设置于所述白色激光光源3的出光面一侧,所述第一移动透镜组2设置于所述白色激光光源3和第一固定透镜组1之间,其中,所述第一镜头对白光光谱范围内的光线的透过率大于80%,所述第一移动透镜组2的最大行程为90mm。本实施例中通过第一移动透镜组2的前后移动实现角度变化,实现白光模组的连续变焦。The white light module includes a white laser light source 3 and a first lens. As shown in FIG8 , the first lens includes a first fixed lens group 1 and a first movable lens group 2, wherein the first fixed lens group 1 and the first movable lens group 2 are both arranged on one side of the light-emitting surface of the white laser light source 3, and the first movable lens group 2 is arranged between the white laser light source 3 and the first fixed lens group 1, wherein the transmittance of the first lens to light within the white light spectrum range is greater than 80%, and the maximum stroke of the first movable lens group 2 is 90 mm. In this embodiment, the angle change is achieved by moving the first movable lens group 2 forward and backward, thereby achieving continuous zooming of the white light module.
白色激光光源3采用高能蓝色激光激发耐高温荧光粉方案,具有可靠性高、出光角度小、性价比高、环境实用性好等优点。本实施例中的白色激光光源3的覆盖全部白光光谱波段,中心亮度达1260cd/mm2。通过本实施例中白色激光光源3和第一镜头的配合,减少了光线传播过程中的损失,提高了白光模组射出光线的集中度,使得白光模组在25m处中心照度大于等于28000 lux,使得镜头的变束散角指标为1.2°~8°。The white laser light source 3 adopts a high-energy blue laser to excite high-temperature resistant phosphor solution, which has the advantages of high reliability, small light output angle, high cost performance, good environmental practicality, etc. The white laser light source 3 in this embodiment covers the entire white light spectrum band, and the central brightness reaches 1260cd/ mm2 . Through the cooperation of the white laser light source 3 and the first lens in this embodiment, the loss in the light propagation process is reduced, and the concentration of the light emitted by the white light module is improved, so that the central illumination of the white light module at 25m is greater than or equal to 28000 lux, and the variable beam divergence index of the lens is 1.2°~8°.
在一些实施例中,采用减速直线电机实现第一移动透镜组2的前后移动,并内置位置传感PI,当位置传感PI信号触发,即将减速直线电机的地址码置零,用于定义光路变焦起始位置。In some embodiments, a deceleration linear motor is used to realize the forward and backward movement of the first movable lens group 2, and a built-in position sensor PI is provided. When the position sensor PI signal is triggered, the address code of the deceleration linear motor is set to zero to define the starting position of the optical path zoom.
所述绿光模组包括绿色激光光源和第二镜头。所述第二镜头包括第二固定透镜组4、第三固定透镜组7、第二移动透镜组5和第三移动透镜组6,所述第二固定透镜组4、第三固定透镜组7、第二移动透镜组5和第三移动透镜组6均设置于所述绿色激光光源的出光面一侧,所述第二固定透镜组4设置于绿色激光光源和第三固定透镜组7之间,所述第二移动透镜组5设置于第二固定透镜组4和第三固定透镜组7之间,所述第三移动透镜组6设置于第二移动透镜组5和第三固定透镜组7之间,其中,所述第二镜头对绿光光谱范围内的光线的透过率大于95%,所述第二镜头的最大通光口径为45mm,减少了光线在镜头内部的散射和吸收,提高了。本实施例中通过第二移动透镜组5和第三移动透镜组6的前后移动可实现绿光模组的连续变焦,光路焦距范围为1mm~78mm。图9中从上到下分别对应焦距为1mm、45mm和78mm的绿光光路。The green light module includes a green laser light source and a second lens. The second lens includes a second fixed lens group 4, a third fixed lens group 7, a second movable lens group 5 and a third movable lens group 6. The second fixed lens group 4, the third fixed lens group 7, the second movable lens group 5 and the third movable lens group 6 are all arranged on the light-emitting surface side of the green laser light source. The second fixed lens group 4 is arranged between the green laser light source and the third fixed lens group 7. The second movable lens group 5 is arranged between the second fixed lens group 4 and the third fixed lens group 7. The third movable lens group 6 is arranged between the second movable lens group 5 and the third fixed lens group 7. The transmittance of the second lens to the light within the green light spectrum range is greater than 95%. The maximum aperture of the second lens is 45mm, which reduces the scattering and absorption of light inside the lens and improves. In this embodiment, the continuous zoom of the green light module can be achieved by moving the second movable lens group 5 and the third movable lens group 6 forward and backward, and the focal length range of the optical path is 1mm to 78mm. From top to bottom in FIG. 9, the green light paths with focal lengths of 1mm, 45mm and 78mm correspond respectively.
所述绿色激光光源采用多管芯耦合光纤输出的方式制作而成,输出特征为光纤芯径400um,NA0.22,中心波长525±10nm,一方面可以利用小功率的绿色激光光源芯片实现大的光功率输出,另一方面多颗管芯耦合后,多颗激光器管芯出光相互之间不同源干涉,有利于消除激光散斑,减轻激光散斑对照明成像的影响。The green laser light source is manufactured by multi-core coupled optical fiber output, and the output characteristics are optical fiber core diameter 400um, NA0.22, and central wavelength 525±10nm. On the one hand, a low-power green laser light source chip can be used to achieve high optical power output. On the other hand, after multiple cores are coupled, the light outputs of multiple laser cores interfere with each other, which is conducive to eliminating laser speckle and reducing the influence of laser speckle on lighting imaging.
绿色激光光源的出光功率为25W,通过绿色激光光源和第二镜头的配合,减少了光线传播过程中的损失,提高了绿光模组射出光线的集中度,使得绿光模组的出光功率大于18W,在25m处中心照度大于等于500000 lux,在10公里外峰值照度大于等于1lux,使得镜头的变束散角指标为0.3~20°。The light output power of the green laser light source is 25W. Through the cooperation of the green laser light source and the second lens, the loss in the process of light propagation is reduced, and the concentration of the light emitted by the green light module is improved, so that the light output power of the green light module is greater than 18W, the central illumination at 25m is greater than or equal to 500,000 lux, and the peak illumination at 10 kilometers is greater than or equal to 1lux, so that the variable beam divergence index of the lens is 0.3~20°.
所述红外模组包括红外激光光源和第三镜头。所述第三镜头包括第四固定透镜组8、第五固定透镜组11、第四移动透镜组9和第五移动透镜组10,所述第四固定透镜组8、第五固定透镜组11、第四移动透镜组9和第五移动透镜组10均设置于所述红外激光光源的出光面一侧,所述第四固定透镜组8设置于红外激光光源和第五固定透镜组11之间,所述第四移动透镜组9设置于第四固定透镜组8和第五固定透镜组11之间,所述第五移动透镜组10设置于第四移动透镜组9和第五固定透镜组11之间,其中,所述第三镜头对红外光谱范围内的光线的透过率大于95%,所述第二镜头的最大通光口径为25mm。本实施例中通过第四移动透镜组9和第五移动透镜组10的前后移动可实现红外模组的连续变焦,光路焦距范围为0.4mm~30mm,使得镜头的变束散角指标为0.8~45°。图10中从上到下分别对应焦距为0.4mm、5mm和30mm的红外光路。The infrared module includes an infrared laser light source and a third lens. The third lens includes a fourth fixed lens group 8, a fifth fixed lens group 11, a fourth movable lens group 9 and a fifth movable lens group 10. The fourth fixed lens group 8, the fifth fixed lens group 11, the fourth movable lens group 9 and the fifth movable lens group 10 are all arranged on the light-emitting surface side of the infrared laser light source. The fourth fixed lens group 8 is arranged between the infrared laser light source and the fifth fixed lens group 11. The fourth movable lens group 9 is arranged between the fourth fixed lens group 8 and the fifth fixed lens group 11. The fifth movable lens group 10 is arranged between the fourth movable lens group 9 and the fifth fixed lens group 11. The transmittance of the third lens to light within the infrared spectrum range is greater than 95%, and the maximum aperture of the second lens is 25 mm. In this embodiment, the continuous zoom of the infrared module can be achieved by moving the fourth movable lens group 9 and the fifth movable lens group 10 forward and backward. The focal length range of the optical path is 0.4 mm to 30 mm, so that the beam divergence index of the lens is 0.8 to 45°. FIG10 shows infrared light paths with focal lengths of 0.4 mm, 5 mm, and 30 mm from top to bottom.
所述红外激光光源采用多管芯耦合光纤输出的方式制作而成,将多颗管芯出光通过光路耦合进400um光纤NA0.22输出,一方面可以利用小功率的红外激光光源芯片实现大的光功率输出,另一方面多颗管芯耦合后,多颗激光器管芯出光相互之间不同源干涉,有利于消除激光散斑,减轻激光散斑对照明成像的影响。The infrared laser light source is manufactured by adopting a multi-core coupled optical fiber output method, and the light output of multiple cores is coupled into a 400um optical fiber NA0.22 output through an optical path. On the one hand, a low-power infrared laser light source chip can be used to achieve a large optical power output. On the other hand, after the multiple cores are coupled, the light outputs of the multiple laser cores interfere with each other, which is beneficial to eliminate laser speckle and reduce the influence of laser speckle on lighting imaging.
红外激光光源的出光功率为20W,通过红外激光光源和第三镜头的配合,减少了光线传播过程中的损失,提高了红外模组射出光线的集中度,使得红外模组的出光功率大于等于15W,红外光夜视成像光束角度:0.8°~45°(最小角度和最大角度间任意可调)。The output power of the infrared laser light source is 20W. Through the cooperation of the infrared laser light source and the third lens, the loss in the process of light propagation is reduced, and the concentration of the light emitted by the infrared module is improved, so that the output power of the infrared module is greater than or equal to 15W. The angle of the infrared light night vision imaging beam is: 0.8°~45° (adjustable between the minimum angle and the maximum angle).
在一些实施例中,所述目标识别模块包括相机、图像跟踪板和泛光灯。相机包括可见光相机和红外热成像相机,用于采集图像;图像跟踪板用于对图像中的目标进行跟踪识别,并计算出目标的脱靶量;泛光灯用于为所述相机补光照明。In some embodiments, the target recognition module includes a camera, an image tracking board and a floodlight. The camera includes a visible light camera and an infrared thermal imaging camera for collecting images; the image tracking board is used to track and identify the target in the image and calculate the target's miss distance; the floodlight is used to provide supplementary light for the camera.
红外热成像相机的参数根据公式确定,其中,表示目标大小,表示目标的识别距离,表示光学系统焦距,表示目标所占像元数,表示像元大小(12um)。The parameters of infrared thermal imaging cameras are based on the formula Determine, among which, represents the target size, Indicates the target recognition distance, represents the focal length of the optical system, Indicates the number of pixels occupied by the target. Indicates the pixel size (12um).
目标所占像元数根据约翰逊准则,具体的:探测:在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1.5个像素以上;识别:可将目标分类,即可识别出目标是坦克、卡车或者人等。这时目标所成的像在临界尺寸方向上必须占到6个像素以上;辨认:可区分开目标的型号及其它特征,如根据外形特征分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到12个像素以上。The number of pixels occupied by the target is based on the Johnson criterion. Specifically: Detection: A target is found in the field of view. At this time, the image formed by the target must occupy more than 1.5 pixels in the critical size direction; Recognition: The target can be classified, that is, the target can be identified as a tank, truck or person. At this time, the image formed by the target must occupy more than 6 pixels in the critical size direction; Identification: The model and other characteristics of the target can be distinguished, such as distinguishing between the enemy and the friend based on the appearance characteristics. This is when the image formed by the target must occupy more than 12 pixels in the critical size direction.
由于水面的镜面反射及折射效果,近处采用白光进行补光会导致不易成像及肉眼观察,本实施例中采用泛光灯对近处进行补光照明的方案则克服了该问题。Due to the mirror reflection and refraction effects of the water surface, using white light for fill-in illumination in the near distance will make it difficult to form an image and observe with the naked eye. In this embodiment, the solution of using a floodlight for fill-in illumination in the near distance overcomes this problem.
为了提高系统的紧凑度,泛光灯与红外热成像相机共用结构空间。In order to improve the compactness of the system, the floodlight shares the structural space with the infrared thermal imaging camera.
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above is only a preferred embodiment of the present invention. It should be understood that the present invention is not limited to the form disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various other combinations, modifications and environments, and can be modified within the scope of the concept described herein through the above teachings or the technology or knowledge of the relevant field. The changes and modifications made by those skilled in the art shall not deviate from the spirit and scope of the present invention, and shall be within the scope of protection of the claims attached to the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411198481.1A CN118691947A (en) | 2024-08-29 | 2024-08-29 | A control method for laser denial system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411198481.1A CN118691947A (en) | 2024-08-29 | 2024-08-29 | A control method for laser denial system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118691947A true CN118691947A (en) | 2024-09-24 |
Family
ID=92768686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411198481.1A Pending CN118691947A (en) | 2024-08-29 | 2024-08-29 | A control method for laser denial system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118691947A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368106A (en) * | 2011-10-31 | 2012-03-07 | 中国科学院长春光学精密机械与物理研究所 | Multi-semiconductor laser optical fiber coupling device |
US20180352144A1 (en) * | 2017-06-02 | 2018-12-06 | SZ DJI Technology Co., Ltd. | Systems and methods for multi-target tracking and autofocusing based on deep machine learning and laser radar |
CN216158973U (en) * | 2021-09-02 | 2022-04-01 | 深圳市三千米光电科技有限公司 | Zooming illumination light path based on RGB laser fiber coupler light source |
CN218512725U (en) * | 2022-10-18 | 2023-02-21 | 无锡佶达德光电子技术有限公司 | Illumination laser |
CN116719199A (en) * | 2023-06-13 | 2023-09-08 | 成都航天凯特机电科技有限公司 | a searchlight |
-
2024
- 2024-08-29 CN CN202411198481.1A patent/CN118691947A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368106A (en) * | 2011-10-31 | 2012-03-07 | 中国科学院长春光学精密机械与物理研究所 | Multi-semiconductor laser optical fiber coupling device |
US20180352144A1 (en) * | 2017-06-02 | 2018-12-06 | SZ DJI Technology Co., Ltd. | Systems and methods for multi-target tracking and autofocusing based on deep machine learning and laser radar |
CN216158973U (en) * | 2021-09-02 | 2022-04-01 | 深圳市三千米光电科技有限公司 | Zooming illumination light path based on RGB laser fiber coupler light source |
CN218512725U (en) * | 2022-10-18 | 2023-02-21 | 无锡佶达德光电子技术有限公司 | Illumination laser |
CN116719199A (en) * | 2023-06-13 | 2023-09-08 | 成都航天凯特机电科技有限公司 | a searchlight |
Non-Patent Citations (2)
Title |
---|
胡军: "基于深度学习的停车场异常行为识别", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 2023, 15 February 2023 (2023-02-15), pages 2 - 37 * |
黄燕群等: "非制冷红外热像仪在便携式发射装置的应用", 弹箭与制导学报, 21 October 2020 (2020-10-21), pages 37 - 39 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102833487B (en) | Visual computing-based optical field imaging device and method | |
CN108507542A (en) | A kind of Ultra-high Speed Moving Target attitude measurement system and method | |
CN105351885B (en) | Design method of optical lens for L ED automobile front fog lamp | |
CN207486718U (en) | A kind of LED collimation concentrating component | |
CN210324245U (en) | Fingerprint identification device | |
CN108269270A (en) | Sun detection, tracks of device, method and application | |
WO2023241672A1 (en) | Bipolar coordinate multi-line laser beam structured light method, apparatus and application thereof | |
CN107678152B (en) | LED Freeform Surface Lens for Optical Microscope Reflective Illumination System | |
CN118691947A (en) | A control method for laser denial system | |
CN111947774A (en) | Screen down environment optical sensor assembly and electronic equipment | |
CN115147685A (en) | A method for identifying and predicting the running state of a sugarcane harvester | |
CN207486479U (en) | A kind of LED collimation system | |
CN1181284C (en) | One-way full light projection lamp | |
CN209895097U (en) | Projector and depth camera | |
CN207670286U (en) | A kind of intelligent vehicle head lamp lighting device based on SFV and DLP | |
CN112230661B (en) | Optical system for track tracking and machine vision sensor system thereof | |
CN214067662U (en) | Optical system for track tracking and machine vision sensor system thereof | |
CN210243885U (en) | Light filling lamp polarizing lens and shooting equipment using same | |
KR20210145592A (en) | Apparatus for amplifying light intensity of infrared rays-led | |
CN109963084B (en) | Pedestrian detection infrared camera lighting device | |
CN222836705U (en) | Light condensing structure and car lamp comprising same | |
CN205919146U (en) | Directional illuminator | |
CN203052536U (en) | Imaging optical system of light-emitting diode (LED) imaging moving light | |
CN221631812U (en) | Light source device | |
CN213754645U (en) | Infrared hunting camera with long-focus long-distance shooting function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20240924 |
|
RJ01 | Rejection of invention patent application after publication |