[go: up one dir, main page]

CN118685387B - A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof - Google Patents

A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof Download PDF

Info

Publication number
CN118685387B
CN118685387B CN202411186633.6A CN202411186633A CN118685387B CN 118685387 B CN118685387 B CN 118685387B CN 202411186633 A CN202411186633 A CN 202411186633A CN 118685387 B CN118685387 B CN 118685387B
Authority
CN
China
Prior art keywords
serine protease
scapre
improving
protease
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411186633.6A
Other languages
Chinese (zh)
Other versions
CN118685387A (en
Inventor
黄火清
徐欣欣
田�健
关菲菲
杨浩萌
王苑
罗会颖
于会民
姚斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Animal Science of CAAS
Original Assignee
Institute of Animal Science of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Animal Science of CAAS filed Critical Institute of Animal Science of CAAS
Priority to CN202411186633.6A priority Critical patent/CN118685387B/en
Publication of CN118685387A publication Critical patent/CN118685387A/en
Application granted granted Critical
Publication of CN118685387B publication Critical patent/CN118685387B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21106Hepsin (3.4.21.106)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to the technical field of biology, in particular to a method for improving the thermal stability of serine protease ScAprE, a mutant and application thereof. The invention carries out molecular improvement on the high-temperature alkaline protease ScAprE so as to improve the thermal stability of the protease, has important significance for improving the comprehensive performance of the protease and reducing the use cost of the protease, and provides an effective technical method for improving the property of the protease.

Description

一种改进丝氨酸蛋白酶ScAprE的热稳定性的方法及突变体和 应用A method for improving the thermal stability of serine protease ScAprE, mutants and applications

技术领域Technical Field

本发明涉及生物技术领域,具体涉及一种改进丝氨酸蛋白酶ScAprE的热稳定性的方法及突变体和应用。The present invention relates to the field of biotechnology, and in particular to a method for improving the thermal stability of serine protease ScAprE, a mutant and an application thereof.

背景技术Background Art

蛋白酶在洗涤、饲料、食品、酿造以及医药行业具有重要的应用价值。在饲料行业,科学补充外源性蛋白酶对于控制饲料配方成本、提高蛋白质消化率、促进动物肠道健康、提高动物生产性能、减少环境污染等方面都有积极作用。Protease has important application value in the washing, feed, food, brewing and pharmaceutical industries. In the feed industry, scientific supplementation of exogenous protease has a positive effect on controlling feed formula costs, improving protein digestibility, promoting animal intestinal health, improving animal production performance, and reducing environmental pollution.

为了满足饲料工业需要,理想的蛋白酶应具有比活性高、热稳定性好、耐酸性强等特点。然而,目前在售的商用蛋白酶热稳定性较差,无法满足颗粒饲料制粒的生产需求,迫切需要开发新型耐热饲用蛋白酶。In order to meet the needs of the feed industry, the ideal protease should have the characteristics of high specific activity, good thermal stability, strong acid resistance, etc. However, the commercial proteases currently on sale have poor thermal stability and cannot meet the production needs of pellet feed. There is an urgent need to develop new heat-resistant feed proteases.

Shouchella clausii来源的丝氨酸蛋白酶ScAprE具有提高动物生产性能、保护动物肠道健康、降低饲料成本等功效,但其耐热性不能够满足生产应用需求。因此耐高温耐酸碱蛋白酶的挖掘及改良具有重要意义。The serine protease ScAprE from Shouchella clausii has the effects of improving animal production performance, protecting animal intestinal health, and reducing feed costs, but its heat resistance cannot meet the production application requirements. Therefore, the discovery and improvement of high temperature and acid-base resistant proteases are of great significance.

发明内容Summary of the invention

本发明的目的是提供热稳定性改进的丝氨酸蛋白酶ScAprE突变体。The object of the present invention is to provide a serine protease ScAprE mutant with improved thermal stability.

本发明的再一目的是提供一种丝氨酸蛋白酶基因。Another object of the present invention is to provide a serine protease gene.

本发明的再一目的是提供上述热稳定性改进的丝氨酸蛋白酶ScAprE突变体的应用。Another object of the present invention is to provide the use of the above-mentioned serine protease ScAprE mutant with improved thermal stability.

本发明的再一目的是提供一种改进丝氨酸蛋白酶ScAprE的热稳定性的方法。Another object of the present invention is to provide a method for improving the thermal stability of serine protease ScAprE.

根据本发明的改进丝氨酸蛋白酶ScAprE的热稳定性的方法,所述方法包括将成熟蛋白的氨基酸序列如SEQ ID NO:1所示的丝氨酸蛋白酶ScAprE进行以下突变:According to the method for improving the thermal stability of the serine protease ScAprE of the present invention, the method comprises subjecting the serine protease ScAprE whose amino acid sequence of the mature protein is shown in SEQ ID NO:1 to the following mutations:

N74D、S126G、S151A、Q176S、V199I、Q200L;或N74D, S126G, S151A, Q176S, V199I, Q200L; or

N18A、R19A、N74D、S85G、V199I、Q200L。N18A, R19A, N74D, S85G, V199I, Q200L.

SEQ ID NO:1:SEQ ID NO: 1:

AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNVQSTWPGSTYASLNGTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR。AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNVQSTWPGSTYASLNGTSMATPHVA GAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR.

根据本发明的丝氨酸蛋白酶ScAprE突变体,其成熟蛋白的氨基酸序列如SEQ IDNO:2或SEQ ID NO:3所示。According to the serine protease ScAprE mutant of the present invention, the amino acid sequence of its mature protein is shown in SEQ ID NO:2 or SEQ ID NO:3.

SEQ ID NO:2:SEQ ID NO:2:

AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALDNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGGPSPSATLEQAVNSATSRGVLVVAAAGNSGAGSISYPARYANAMAVGATDSNNNRASFSQYGAGLDIVAPGVNILSTWPGSTYASLNGTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR。AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALDNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGGPSPSATLEQAVNSATSRGVLVVAAAGNSGAGSISYPARYANAMAVGATDSNNNRASFSQYGAGLDIVAPGVNILSTWPGSTYASLNGTSMATPHVA GAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR.

SEQ ID NO:3:SEQ ID NO:3:

AQSVPWGISRVQAPAAHAAGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALDNSIGVLGVAPGAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNILSTWPGSTYASLNGTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR。AQSVPWGISRVQAPAAHAAGLTGSGVKVAVLDTGISTHPDLRIRGGASFVPGEPSTQDGNGHGTHVAGTIAALDNSIGVLGVAPGAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSISYPARYANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNILSTWPGSTYASLNGTSMATPHVA GAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR.

根据本发明的丝氨酸蛋白酶的丝氨酸蛋白酶基因,编码上述丝氨酸蛋白酶ScAprE突变体。The serine protease gene of the serine protease according to the present invention encodes the above-mentioned serine protease ScAprE mutant.

根据本发明的丝氨酸蛋白酶的丝氨酸蛋白酶基因,其核苷酸序列如SEQ ID NO:4或SEQ ID NO:5所示。The nucleotide sequence of the serine protease gene of the serine protease according to the present invention is shown in SEQ ID NO:4 or SEQ ID NO:5.

SEQ ID NO:4:SEQ ID NO:4:

ATGAAGAAACCACTTGGAAAAATAGTAGCCTCTACAGCATTGTTAATCTCTGTGGCGTTTTCCTCATCTATTGCTTCTGCTGCAGAGGAAGCCAAAGAGAAATATCTCATTGGGTTCAACGAACAAGAGGCAGTGTCCGAGTTTGTTGAACAAGTCGAAGCAAACGATGAAGTAGCGATACTGTCAGAGGAAGAAGAGGTCGAAATTGAACTTCTGCATGAGTTTGAAACCATACCGGTTTTGTCAGTTGAACTGTCACCTGAAGATGTCGATGCTCTTGAATTAGACCCGGCGATTTCTTACATAGAGGAAGATGCTGAAGTCACAACTATGGCACAGAGCGTACCTTGGGGAATAAGTAGAGTACAAGCGCCGGCCGCACACAACCGTGGACTGACTGGCAGCGGAGTCAAGGTGGCCGTCCTGGACACAGGCATCTCTACACATCCGGATCTGCGTATTAGAGGTGGAGCATCGTTTGTGCCGGGGGAACCGTCTACACAAGATGGGAACGGACATGGCACACACGTCGCAGGAACAATTGCGGCGCTTGATAATAGCATTGGCGTGTTAGGAGTGGCACCGTCCGCGGAGCTGTACGCCGTCAAGGTTCTTGGCGCTTCAGGCTCAGGCTCCGTGAGCTCAATTGCGCAGGGTTTAGAGTGGGCGGGTAATAACGGCATGCATGTGGCCAACCTTAGCCTTGGCGGACCAAGCCCTAGTGCAACTCTGGAACAGGCGGTAAACAGTGCTACCAGCAGAGGCGTCTTGGTCGTCGCTGCTGCCGGAAACAGTGGTGCGGGAAGTATATCGTATCCGGCGCGCTATGCGAATGCAATGGCAGTAGGAGCCACAGACAGCAATAATAACCGGGCATCTTTCTCACAGTATGGTGCAGGCCTTGACATTGTGGCGCCGGGAGTGAACATATTAAGCACATGGCCAGGAAGCACTTACGCTAGCCTTAATGGCACTTCGATGGCGACACCGCATGTAGCTGGAGCAGCTGCCCTTGTAAAGCAAAAAAACCCGTCATGGTCCAATGTCCAGATCCGCAACCACCTGAAAAATACGGCAACGAGCTTAGGGAGTACTAATCTTTACGGATCTGGCCTTGTCAATGCCGAAGCCGCGACGCGC。ATGAAGAAACCACTTGGAAAAATAGTAGCCTCTACAGCATTGTTAATCTCTGTGGCGTTTTCCTCATCTATTGCTTCTGCTGCAGAGGAAGCCAAAGAGAAATATCTCATTGGGTTCAACGAACAAGAGGCAGTGTCCGAGTTTGTTGAACAAGTCGAAGCAAACGATGAAGTAGCGATACTGTCAGAGGAAGAAGAGGTCGAAATTGAACTTCTGCATGAGTTTGAAACCATACCGGTTTTGTCAGTTGAACTGTCACCT GAAGATGTCGATGCTCTTGAATTA GACCCGGCGATTTCTTACATAGAGGAAGATGCTGAAGTCACAACTATGGCACAGAGCGTACCTTGGGGAATAAGTAGAGTACAAGCGCCGGCCGCACACAACCGTGGACTGACTGGCAGCGGAGTCAAGGTGGCCGTCCTGGACACAGGCATCTCTACACATCCGGATCTGCGTATTAGAGGTGGAGCATCGTTTGTGCCGGGGGAACCGTCTACACAAGATGGGAACGGACATGGCACACACGTCGCAGGAACAATTGCGGCGCT TGATAATAGCATTGGCGTG TTAGGAGTGGCACCGTCCGCGGAGCTGTACGCCGTCAAGGTTTCTTGGCGCTTCAGGCTCAGGCTCCGTGAGCTCAATTGCGCAGGGTTTAGAGTGGGCGGGTAATAACGGCATGCATGTGGCCAACCTTAGCCTTGGCGGACCAAGCCCTAGTGCAACTCTGGAACAGGCGGTAAACAGTGCTACCAGCAGAGGCGTCTTGGTCGTCGCTGCTGCCGGAAACAGTGGTGCGGGAAGTATATCGTATCCGG CGCGCTATGCGAATGCAATGGCAGTAGGAGCCACA GACAGCAATAATAACCGGGCATCTTTCTCACAGTATGGTGCAGGCCTTGACATTGTGGCGCCGGGAGTGAACATATTAAGCACATGGCCAGGAAGCACTTACGCTAGCCTTAATGGCACTTCGATGGCGACACCGCATGTAGCTGGAGCAGCTGCCCTTGTAAAGCAAAAAAACCCGTCATGGTCCAATGTCCAGATCCGCAACCACCTGAAAAATACGGCAACGAGCTTAGGGAGTACTAATCTTTACGGATCTGGCCTT GTCAATGCCGAAGCCGCGACGCGC.

SEQ ID NO:5:SEQ ID NO:5:

ATGAAGAAACCACTTGGAAAAATAGTAGCCTCTACAGCATTGTTAATCTCTGTGGCGTTTTCCTCATCTATTGCTTCTGCTGCAGAGGAAGCCAAAGAGAAATATCTCATTGGGTTCAACGAACAAGAGGCAGTGTCCGAGTTTGTTGAACAAGTCGAAGCAAACGATGAAGTAGCGATACTGTCAGAGGAAGAAGAGGTCGAAATTGAACTTCTGCATGAGTTTGAAACCATACCGGTTTTGTCAGTTGAACTGTCACCTGAAGATGTCGATGCTCTTGAATTAGACCCGGCGATTTCTTACATAGAGGAAGATGCTGAAGTCACAACTATGGCACAATCAGTTCCGTGGGGCATATCACGCGTTCAGGCACCTGCAGCTCATGCCGCCGGCCTGACAGGATCAGGAGTCAAAGTCGCTGTTTTAGACACGGGGATCAGCACACACCCAGACCTGCGTATCCGTGGAGGAGCAAGTTTCGTTCCGGGAGAACCTAGCACTCAGGACGGGAACGGACATGGAACACATGTTGCTGGCACGATAGCTGCCCTGGATAACTCGATCGGAGTTCTGGGAGTTGCGCCTGGGGCGGAACTGTACGCTGTAAAGGTACTTGGTGCTAGCGGCTCTGGCAGTGTGTCTAGCATAGCGCAGGGACTGGAATGGGCTGGGAATAACGGCATGCATGTGGCTAACCTGTCTTTGGGGTCCCCATCTCCTTCTGCCACTTTAGAACAAGCTGTCAATTCAGCGACAAGTCGCGGGGTCTTGGTCGTCGCTGCAAGCGGCAATTCAGGCGCCGGATCTATTTCGTACCCAGCACGTTACGCGAACGCAATGGCGGTCGGAGCAACGGACCAAAATAACAATCGCGCGAGCTTTAGCCAGTACGGAGCCGGATTGGACATTGTTGCGCCGGGTGTTAACATTTTGTCTACCTGGCCGGGTAGTACATACGCTTCGCTGAATGGCACAAGCATGGCCACCCCTCATGTCGCCGGTGCTGCTGCGCTTGTTAAACAGAAAAACCCGTCCTGGTCTAATGTGCAGATCCGTAACCACCTTAAGAATACCGCTACGTCACTGGGTAGCACGAATCTTTATGGATCCGGGCTGGTTAATGCCGAAGCTGCGACGAGA。ATGAAGAAACCACTTGGAAAAATAGTAGCCTCTACAGCATTGTTAATCTCTGTGGCGTTTTCCTCATCTATTGCTTCTGCTGCAGAGGAAGCCAAAGAGAAATATCTCATTGGGTTCAACGAACAAGAGGCAGTGTCCGAGTTTGTTGAACAAGTCGAAGCAAACGATGAAGTAGCGATACTGTCAGAGGAAGAAGAGGTCGAAATTGAACTTCTGCATGAGTTTGAAACCATACCGGTTTTGTCAGTTGAACTGTCACCT GAAGATGTCGATGCTCTTGAATTA GACCCGGCGATTTCTTACATAGAGGAAGATGCTGAAGTCACAACTATGGCACAATCAGTTCCGTGGGGCATATCACGCGTTCAGGCACCTGCAGCTCATGCCGCCGGCCTGACAGGATCAGGAGTCAAAGTCGCTGTTTTAGACACGGGGATCAGCACACACCCAGACCTGCGTATCCGTGGAGGAGCAAGTTTCGTTCCGGGAGAACCTAGCACTCAGGACGGGAACGGACATGGAACACATGTTGCTGGCACGATAGCTG CCCTGGATAACTCGATCGGAGTT CTGGGAGTTGCGCCTGGGGCGGAACTGTACGCTGTAAAGGTACTTGGTGCTAGCGGCTCTGGCAGTGTGTCTAGCATAGCGCAGGGACTGGAATGGGCTGGGAATAACGGCATGCATGTGGCTAACCTGTCTTTGGGGTCCCCATCTCCTTCTGCCACTTTAGAACAAGCTGTCAATTCAGCGACAAGTCGCGGGGTCTTGGTCGTCGCTGCAAGCGGCAATTCAGGCGCCGGATCTATTTCGTACCCAGCACGTTA CGCGAACGCAATGGCGGTCGGAGCAACG GACCAAAATAACAATCGCGCGAGCTTTAGCCAGTACGGAGCCGGATTGGACATTGTTGCGCCGGGTGTTAACATTTTGTCTACCTGGCCGGGTAGTACATACGCTTCGCTGAATGGCACAAGCATGGCCACCCCTCATGTCGCCGGTGCTGCTGCGCTTGTTAAACAGAAAAACCCGTCCTGGTCTAATGTGCAGATCCGTAACCACCTTAAGAATACCGCTACGTCACTGGGTAGCACGAATCTTTATGGATCCGGGC TGGTTAATGCCGAAGCTGCGACGAGA.

本发明对高温碱性蛋白酶ScAprE进行分子改良,以提升其热稳定性,对于提升蛋白酶的综合性能,降低蛋白酶的使用成本具有重要意义,为蛋白酶的性质改良提供了有效的技术方法。The present invention performs molecular modification on the high-temperature alkaline protease ScAprE to improve its thermal stability, which is of great significance for improving the comprehensive performance of the protease and reducing the use cost of the protease, and provides an effective technical method for improving the properties of the protease.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1显示 ScAprE及其突变体的热稳定性检测;Figure 1 shows the thermal stability test of ScAprE and its mutants;

图2 显示重组ScAprE及其突变体ScAprEMut1的酶学性质检测,其中,A:温度对酶活力的影响;B:pH对酶活力的影响;C:pH稳定性。FIG2 shows the enzymatic property detection of recombinant ScAprE and its mutant ScAprEMut1, wherein A: the effect of temperature on enzyme activity; B: the effect of pH on enzyme activity; C: pH stability.

具体实施方式DETAILED DESCRIPTION

以下实施例中所涉及实验材料与方法:The experimental materials and methods involved in the following examples are:

菌株和试剂:枯草芽孢杆菌Bacillus subtilis SCK6,市购;pHT 43载体;pEASY-Blunt simple 载体;高保真DNA聚合酶;DNA 凝胶回收试剂盒;细菌基因组提取试剂盒和质粒提取试剂盒;T4 DNA连接酶和限制性内切酶。Strains and reagents: Bacillus subtilis SCK6, commercially available; pHT 43 vector; pEASY-Blunt simple vector; high-fidelity DNA polymerase; DNA gel recovery kit; bacterial genome extraction kit and plasmid extraction kit; T4 DNA ligase and restriction endonuclease.

培养基:Culture medium:

LB 液体培养基:蛋白胨 10 g/L,酵母粉 5 g/L,NaCl 10 g/L;LB liquid medium: peptone 10 g/L, yeast powder 5 g/L, NaCl 10 g/L;

LB 固体培养基:蛋白胨 10 g/L,酵母粉 5 g/L,NaCl 10 g/L, 琼脂粉15 g/L;LB solid medium: peptone 10 g/L, yeast powder 5 g/L, NaCl 10 g/L, agar powder 15 g/L;

发酵培养基:豆粕 10 g,玉米粉 5 g,K2HPO3 1g,明胶 10 g,总体积 300 mL;Fermentation medium: soybean meal 10 g, corn flour 5 g, K 2 HPO 3 1 g, gelatin 10 g, total volume 300 mL;

脱脂奶粉固体培养基:4%脱脂奶粉,2%琼脂粉 ;Skim milk powder solid medium: 4% skim milk powder, 2% agar powder;

LBS培养基:蛋白胨 10 g/L,酵母粉 5 g/L,NaCl 10 g/L,山梨醇91.1 g/L;LBS medium: peptone 10 g/L, yeast powder 5 g/L, NaCl 10 g/L, sorbitol 91.1 g/L;

电转洗涤培养基(SMG):山梨醇91.1 g/L,甘露醇91.1 g/L,甘油100 g/L;Electroporation washing medium (SMG): sorbitol 91.1 g/L, mannitol 91.1 g/L, glycerol 100 g/L;

复苏培养基(LBSM):蛋白胨 10 g/L,酵母粉 5 g/L,NaCl 10 g/L,山梨醇91.1 g/L,甘露醇69.2 g/L。Recovery medium (LBSM): peptone 10 g/L, yeast powder 5 g/L, NaCl 10 g/L, sorbitol 91.1 g/L, mannitol 69.2 g/L.

实施例1 ScAprE多点突变体的设计、构建表达Example 1 Design, construction and expression of ScAprE multi-point mutants

1.1 ScAprE多点突变体的设计1.1 Design of ScAprE multi-point mutants

ScAprE (SEQ ID No:1)为Shouchella clausii来源的S8 家族的丝氨酸蛋白酶,为了提升ScAprE的热稳定性,进行突变分析,具体方法如下:ScAprE (SEQ ID No: 1) is a serine protease of the S8 family from Shouchella clausii . In order to improve the thermal stability of ScAprE, mutation analysis was performed. The specific method is as follows:

通过Jackhmmer工具搜索ScAprE同源序列,利用迁移学习构建基于MP-Bert的sequence 20分类模型,后将ScAprE序列进行10万次不同位置的10% 随机掩码,用sequence模型对掩码序列进行预测,生成10万条突变序列。构建基于MP-BERT的温度回归模型,测试基于bert的回归微调模型效果比文献中模型效果好,用这两个模型对上述突变序列进行预测,选择Ogt值为主,Tm值为辅的序列降序排列,选择Tm值和最适反应温度预测值较高的前五条多点突变体(I8V、T37P、I43V、T56A、I77V、S139Y、S158A、I159V、I192L、W203Y、A224V、W235L;T37P、T56A、H118D、N167S、A168V、S253Y、S259Y;Q107A、H118D、R143K、I159V、Q185N、Q200L、W203Y、K229L、S259A;N74D、S126G、S151A、Q176S、V199I、Q200L;N18A、R19A、N74D、S85G、V199I,Q200L)进行合成和实验验证。The ScAprE homologous sequence was searched by Jackhmmer tool, and the sequence 20 classification model based on MP-Bert was constructed by transfer learning. Then, the ScAprE sequence was randomly masked at 10% of different positions 100,000 times, and the masked sequence was predicted by the sequence model to generate 100,000 mutant sequences. A temperature regression model based on MP-BERT was constructed to test whether the bert-based regression fine-tuning model was better than the model in the literature. These two models were used to predict the above mutant sequences, and the sequences with Ogt value as the main and Tm value as the auxiliary were arranged in descending order. The top five multi-point mutants with higher Tm value and optimal reaction temperature prediction values were selected (I8V, T37P, I43V, T56A, I77V, S139Y, S158A, I159V, I192L, W203Y, A224V, W2 35L; T37P, T56A, H118D, N167S, A168V, S253Y, S259Y; Q107A, H118D, R143K, I159V, Q185N, Q200L, W203Y, K229L, S259A; N74D, S126G, S151A, Q176S, V199I, Q200L; N18A, R19A, N74D, S85G, V199I, Q200L).

1.2 ScAprE多点突变体的构建表达1.2 Construction and expression of ScAprE multi-point mutants

依据芽孢杆菌表达系统的密码子偏好性对ScAprE野生型及突变体蛋白进行编码序列的密码子优化合成,并构建至表达载体pHT43的BamHI位点。将ScAprE野生型蛋白及突变体表达质粒转化芽孢杆菌SCK6菌株进行诱导表达。将转化平板长出的单克隆借助灭菌过后的牙签分别点在脱脂奶粉固体培养基上,37oC培养 30h 后,观察是否有透明圈的产生,并比较转化子与对照菌株的透明圈的直径,筛选阳性转化子。分别将阳性转化子和对照菌株即SCK6 菌株接种至 LB 培养基中,阳性转化子的培养基中加入四环素,SCK6 培养基不加四环素,200 rpm、37oC振荡培养。过夜培养后按4%的接种量转接到发酵培养基中进行发酵培养,培养三天后收集发酵液并进行重组蛋白酶的纯化。According to the codon preference of the Bacillus expression system, the codons of the coding sequences of ScAprE wild-type and mutant proteins were optimized and synthesized, and constructed into the Bam HI site of the expression vector pHT43. The expression plasmids of ScAprE wild-type protein and mutant were transformed into Bacillus SCK6 strain for induced expression. The single clones grown on the transformation plate were spotted on the skim milk powder solid culture medium with the help of sterilized toothpicks. After culturing at 37 o C for 30 hours, the formation of transparent circles was observed, and the diameters of the transparent circles of the transformants and the control strains were compared to screen the positive transformants. The positive transformants and the control strain, i.e., the SCK6 strain, were inoculated into LB culture medium respectively. Tetracycline was added to the culture medium of the positive transformants, and tetracycline was not added to the SCK6 culture medium. The culture was shaken at 200 rpm and 37 o C. After overnight culture, the inoculation amount was transferred to the fermentation medium at 4% for fermentation culture. After three days of culture, the fermentation broth was collected and the recombinant protease was purified.

将诱导表达后的蛋白用Ni柱进行纯化。将重组ScAprE蛋白和其所有的突变体进行热稳定性测定。实验结果显示,其中突变体蛋白ScAprEMut1(SEQ ID NO:2)、ScAprEMut2(SEQ ID NO:3)的热稳定性较野生型ScAprE蛋白具有明显的改善。在70oC处理1个小时后,ScAprE的残余酶活力仅剩0.1%,而ScAprEMut2经70oC处理1个小时后,剩余酶活力仍在65%以上,表现出优异的热稳定性(图1)。The induced expressed protein was purified using a Ni column. The recombinant ScAprE protein and all its mutants were subjected to thermal stability tests. The experimental results showed that the thermal stability of the mutant proteins ScAprEMut1 (SEQ ID NO: 2) and ScAprEMut2 (SEQ ID NO: 3) was significantly improved compared with the wild-type ScAprE protein. After being treated at 70 o C for 1 hour, the residual enzyme activity of ScAprE was only 0.1%, while the residual enzyme activity of ScAprEMut2 was still above 65% after being treated at 70 o C for 1 hour, showing excellent thermal stability (Figure 1).

实施例2 ScAprE多点突变体的热稳定性检测Example 2 Thermal stability test of ScAprE multi-point mutants

碱性蛋白酶酶活力测定按照中华人民共和国国家标准 GB/T 23527–2009 中所描述的福林法进行。在试管中加入 pH 10.5、1%酪蛋白溶液0.5 mL,40oC 预热3 min,加入0.5 mL 适当稀释的酶液,混合均匀后,40oC 条件下反应 10 min,加 0.4 M三氯乙酸溶液1mL终止反应。将该反应液转移至 2 m L EP管中,12,000rpm 离心 10min。取上清液1 m L,依次加入碳酸钠溶液5 m L 和福林试剂使用溶液1 mL,振荡混匀后,置于 40oC 水浴锅中显色 20 min。680 nm条件下测定吸光度。The alkaline protease activity was determined according to the Folin method described in the National Standard of the People's Republic of China GB/T 23527–2009. 0.5 mL of pH 10.5, 1% casein solution was added to the test tube, preheated at 40 o C for 3 min, 0.5 mL of appropriately diluted enzyme solution was added, mixed evenly, reacted at 40 o C for 10 min, and 1 mL of 0.4 M trichloroacetic acid solution was added to terminate the reaction. The reaction solution was transferred to a 2 mL EP tube and centrifuged at 12,000 rpm for 10 min. 1 mL of the supernatant was taken, 5 mL of sodium carbonate solution and 1 mL of Folin reagent solution were added in sequence, and after oscillation and mixing, it was placed in a 40 o C water bath for color development for 20 min. The absorbance was measured at 680 nm.

为了检测ScAprEMut2的综合酶学性能,将ScAprE和ScAprEMut2在不同温度和pH条件下进行酶活力测定,结果显示,ScAprEMut2与ScAprE的最适温度和pH值相似,最适温度为60oC,最适pH值为11左右(图2中A图,图2中B图)。而ScAprEMut2相较于ScAprE野生型蛋白具有更强的酸碱耐受性,pH稳定性范围宽泛。ScAprEMut2在pH 3.5的缓冲液中处理24h后,仍保留90%以上的酶活力。在pH 12的缓冲液中处理24h后,仍保留85%以上的酶活力(图2中C图)。In order to detect the comprehensive enzymatic performance of ScAprEMut2, ScAprE and ScAprEMut2 were subjected to enzyme activity assays under different temperature and pH conditions. The results showed that the optimum temperature and pH value of ScAprEMut2 were similar to those of ScAprE, with the optimum temperature being 60 o C and the optimum pH being around 11 (Figure 2A, Figure 2B). ScAprEMut2 has stronger acid-base tolerance than the wild-type ScAprE protein and has a wide pH stability range. After being treated in a pH 3.5 buffer for 24 hours, ScAprEMut2 still retained more than 90% of its enzyme activity. After being treated in a pH 12 buffer for 24 hours, more than 85% of its enzyme activity was still retained (Figure 2C).

以上实施例仅用于理解本申请的技术方案,不限定本申请保护范围。The above embodiments are only used to understand the technical solution of the present application and do not limit the protection scope of the present application.

Claims (8)

1. A method for improving the thermostability of serine protease ScAprE, comprising mutating serine protease ScAprE having the amino acid sequence of the mature protein as set forth in SEQ ID No. 1 by:
N74D, S126G, S151A, Q176S, V I and Q200L; or (b)
N18A, R19A, N74D, S85G, V199I and Q200L.
2. The serine protease ScAprE mutant is characterized in that the amino acid sequence of the mature protein of the serine protease ScAprE mutant is shown as SEQ ID NO. 2 or SEQ ID NO. 3.
3. A serine protease gene, characterized in that, the serine protease gene encodes the serine protease ScAprE mutant of claim 2.
4. The serine protease gene according to claim 3, wherein the nucleotide sequence of the serine protease gene is shown in SEQ ID NO.4 or SEQ ID NO. 5.
5. A recombinant expression vector comprising the serine protease gene of claim 3.
6. A recombinant strain comprising the serine protease gene of claim 3.
7. A method of preparing a serine protease, the method comprising the steps of:
transforming a host strain with the recombinant expression vector of claim 5 to obtain a recombinant strain;
Inducing the recombinant strain to express serine protease;
separating and purifying to obtain serine proteinase.
8. Use of the serine protease ScAprE mutant according to claim 2 as feed additive.
CN202411186633.6A 2024-08-28 2024-08-28 A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof Active CN118685387B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411186633.6A CN118685387B (en) 2024-08-28 2024-08-28 A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411186633.6A CN118685387B (en) 2024-08-28 2024-08-28 A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof

Publications (2)

Publication Number Publication Date
CN118685387A CN118685387A (en) 2024-09-24
CN118685387B true CN118685387B (en) 2024-10-29

Family

ID=92764958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411186633.6A Active CN118685387B (en) 2024-08-28 2024-08-28 A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof

Country Status (1)

Country Link
CN (1) CN118685387B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294152A (en) * 1998-12-18 2008-10-29 诺沃奇梅兹有限公司 I-S1 and I-S2 subgroups subtilases with additional amino acid residues in the active site loop region
CN107109388A (en) * 2014-12-19 2017-08-29 诺维信公司 Ease variants and the polynucleotides encoded to it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU219852B (en) * 1993-10-14 2001-08-28 The Procter And Gamble Company Bleaching compositions comprising protease enzymes
DK1141205T3 (en) * 1998-12-18 2007-06-18 Novozymes As Subtilase enzymes from the I-S1 and I-S2 subgroups, which have an additional amino acid residue in an active site loop region
CN1302106C (en) * 1998-12-18 2007-02-28 诺沃奇梅兹有限公司 Subtilase enzymes of the I-S1 I-S2 sub-groups having an additional amino acid residue in an active site loop region

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294152A (en) * 1998-12-18 2008-10-29 诺沃奇梅兹有限公司 I-S1 and I-S2 subgroups subtilases with additional amino acid residues in the active site loop region
CN107109388A (en) * 2014-12-19 2017-08-29 诺维信公司 Ease variants and the polynucleotides encoded to it

Also Published As

Publication number Publication date
CN118685387A (en) 2024-09-24

Similar Documents

Publication Publication Date Title
WO2022134236A1 (en) Alkaline protease mutant, gene thereof, engineering bacteria thereof, preparation method therefor and use thereof
CN112522173B (en) Engineering bacterium for producing heterologous alkaline protease and construction method thereof
CN113862233B (en) Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application
CN112458072B (en) Alkaline protease mutant and preparation thereof
CN107200772B (en) Signal peptide for optimizing efficient secretory expression of keratinase Ker and application thereof
CN117402860B (en) Streptomyces trypsin mutant and application thereof
CN114736879A (en) Glucose oxidase GoxM10 mutant E361P with improved heat stability and derivative mutant and application thereof
CN114561375A (en) Protease mutant BLAPR2 with improved heat stability and coding gene and application thereof
CN118685387B (en) A method for improving the thermal stability of serine protease ScAprE, mutants and applications thereof
CN115851679A (en) Low-temperature high-activity alkaline protease mutant and application thereof
CN103243080A (en) Keratinase gene with mutant leading sequence point, as well as encoding protein and application thereof
CN1746301A (en) Acid-resistant and high-temperature-resistant α-amylase and preparation method thereof
CN117721057A (en) An engineered bacterium heterologously expressing the E0TYP4 gene and its application in the production of fish feed protease
CN110669751B (en) Mutant zymoprotein of alanine racemase and preparation method thereof
CN113755474B (en) Carboxypeptidase, and coding gene and application thereof
CN116790564A (en) Heat-resistant protease mutant and encoding gene and application thereof
CN114480342A (en) Mutant PET hydrolase, recombinant vector, recombinant engineering bacterium and application thereof
CN108676787B (en) Thermophilic alkalophilic xylanase mutant with improved specific enzyme activity and application thereof in industry
CN112725315A (en) Application of chitosanase and mutant thereof in preparation of chitosan oligosaccharide
CN116904428B (en) Method for improving stability of high-temperature alkaline protease AprThc and mutant
CN105062991A (en) Amylase mutants with improved thermal stability as well as coding gene and application of amylase mutants
CN116970592B (en) Aminopeptidase mutant with improved thermal stability and its application
CN117004589A (en) An aminopeptidase mutant and its application
CN119552846B (en) Acid protease mutant with improved stability, and product and application thereof
CN107955814B (en) Promoter for improving protein expression efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant