CN118676123A - Packaging module for packaging wafer in outer space and packaging method thereof - Google Patents
Packaging module for packaging wafer in outer space and packaging method thereof Download PDFInfo
- Publication number
- CN118676123A CN118676123A CN202410971396.8A CN202410971396A CN118676123A CN 118676123 A CN118676123 A CN 118676123A CN 202410971396 A CN202410971396 A CN 202410971396A CN 118676123 A CN118676123 A CN 118676123A
- Authority
- CN
- China
- Prior art keywords
- radiation shield
- packaging
- plastic
- sealing layer
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000005855 radiation Effects 0.000 claims abstract description 106
- 239000004033 plastic Substances 0.000 claims abstract description 49
- 229920003023 plastic Polymers 0.000 claims abstract description 49
- 238000007789 sealing Methods 0.000 claims abstract description 47
- 235000012431 wafers Nutrition 0.000 claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims description 36
- 239000007924 injection Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 13
- 239000000523 sample Substances 0.000 claims description 10
- 229920002050 silicone resin Polymers 0.000 claims description 10
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 9
- VJPLIHZPOJDHLB-UHFFFAOYSA-N lead titanium Chemical compound [Ti].[Pb] VJPLIHZPOJDHLB-UHFFFAOYSA-N 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 230000015654 memory Effects 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000005022 packaging material Substances 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- 238000002604 ultrasonography Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/06—Containers; Seals characterised by the material of the container or its electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/296—Organo-silicon compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3135—Double encapsulation or coating and encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
- H01L23/556—Protection against radiation, e.g. light or electromagnetic waves against alpha rays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B80/00—Assemblies of multiple devices comprising at least one memory device covered by this subclass
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
本申请涉及半导体制造技术领域,提供一种用于外太空的封装晶圆的封装模块及其封装方法,该封装模块包括:印刷电路板和辐射防护罩;其中,所述辐射防护罩用于罩住所述印刷电路板中的晶圆,所述辐射防护罩与所述晶圆之间的内空间存在第一塑封层,所述辐射防护罩的外空间存在第二塑封层。本申请中通过辐射防护罩罩住印刷电路板中的晶圆,通过辐射防护罩阻挡太空辐射,有利于减轻太空辐射对封装模块的影响。
The present application relates to the field of semiconductor manufacturing technology, and provides a packaging module for packaging wafers in outer space and a packaging method thereof, wherein the packaging module comprises: a printed circuit board and a radiation shield; wherein the radiation shield is used to cover the wafer in the printed circuit board, a first plastic sealing layer exists in the inner space between the radiation shield and the wafer, and a second plastic sealing layer exists in the outer space of the radiation shield. In the present application, the wafer in the printed circuit board is covered by the radiation shield, and the space radiation is blocked by the radiation shield, which is conducive to reducing the impact of space radiation on the packaging module.
Description
技术领域Technical Field
本发明涉及半导体制造技术领域,具体涉及一种用于外太空的封装晶圆的封装模块及其封装方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular to a packaging module for packaging wafers in outer space and a packaging method thereof.
背景技术Background Art
外太空存在太空辐射,会影响电子设备的正常工作,例如太空辐射中的宇宙射线,宇宙射线是来自银河系内外的高能粒子流,包括高速的质子、重离子以及少量的电子,宇宙射线的能量范围广泛,有的可以极高,导致常规的电子设备无法在外太空使用。There is space radiation in outer space, which can affect the normal operation of electronic equipment. For example, cosmic rays are part of space radiation. Cosmic rays are high-energy particle streams from inside and outside the Milky Way, including high-speed protons, heavy ions and a small amount of electrons. The energy range of cosmic rays is wide, and some can be extremely high, making conventional electronic equipment unable to be used in outer space.
发明内容Summary of the invention
针对现有技术存在的不足,本申请提供了一种用于外太空的封装晶圆的封装模块及其封装方法,有利于减轻太空辐射对封装模块的影响。In view of the deficiencies in the prior art, the present application provides a packaging module and a packaging method for packaging wafers in outer space, which are helpful in reducing the impact of space radiation on the packaging module.
为解决上述问题,本发明提供如下技术方案:To solve the above problems, the present invention provides the following technical solutions:
第一方面,本申请实施例提供了一种用于外太空的封装晶圆的封装模块,所述封装模块包括印刷电路板和辐射防护罩;其中,In a first aspect, an embodiment of the present application provides a packaging module for packaging wafers in outer space, the packaging module comprising a printed circuit board and a radiation shield; wherein:
所述辐射防护罩用于罩住所述印刷电路板中的晶圆,所述辐射防护罩与所述晶圆之间的内空间存在第一塑封层,所述辐射防护罩的外空间存在第二塑封层。The radiation shield is used to cover the wafer in the printed circuit board. A first plastic sealing layer exists in the inner space between the radiation shield and the wafer, and a second plastic sealing layer exists in the outer space of the radiation shield.
在一些实施方式中,所述辐射防护罩的材料为铅钛合金。In some embodiments, the radiation shield is made of lead-titanium alloy.
在一些实施方式中,所述辐射防护罩的材料为铅铝合金。In some embodiments, the material of the radiation shield is lead aluminum alloy.
在一些实施方式中,所述辐射防护罩的材料为铅钛合金。In some embodiments, the radiation shield is made of lead-titanium alloy.
在一些实施方式中,所述第一塑封层和所述第二塑封层采用环氧树脂或硅树脂塑封。In some embodiments, the first molding layer and the second molding layer are molded using epoxy resin or silicone resin.
在一些实施方式中,所述辐射防护罩的厚度在[0.01mm,0.09mm]的范围内。In some embodiments, the thickness of the radiation shield is in the range of [0.01 mm, 0.09 mm].
在一些实施方式中,辐射防护罩用于罩住所述印刷电路板中的中央处理器、至少一个双倍速率同步动态随机存储器以及至少一个闪存。In some embodiments, the radiation shield is used to shield a central processing unit, at least one double data rate synchronous dynamic random access memory, and at least one flash memory in the printed circuit board.
第二方面,本申请实施例提供了一种封装方法,所述封装方法用于制作如第一方面的用于外太空的封装晶圆的封装模块,所述方法包括:In a second aspect, an embodiment of the present application provides a packaging method, the packaging method is used to manufacture a packaging module for a packaging wafer for outer space as in the first aspect, the method comprising:
将辐射防护罩罩住印刷电路板的晶圆;Covering the wafer of printed circuit boards with a radiation shield;
使用分孔式模具通过所述辐射防护罩上预留的多个注入孔对所述辐射防护罩与所述晶圆之间的内空间进行塑封,以排出所述内空间内的气体形成第一塑封层;Using a divided hole mold to plastic-seal the inner space between the radiation shield and the wafer through a plurality of injection holes reserved on the radiation shield to discharge the gas in the inner space to form a first plastic-sealing layer;
对所述辐射防护罩上预留的多个注入孔进行密封;Sealing a plurality of injection holes reserved on the radiation shield;
对所述辐射防护罩的外空间进行塑封,形成第二塑封层。The outer space of the radiation protection cover is plastic-sealed to form a second plastic-sealed layer.
在一些实施方式中,所述对所述辐射防护罩上预留的多个注入孔进行密封,包括:In some embodiments, the step of sealing the plurality of injection holes reserved on the radiation shield comprises:
对所述辐射防护罩上预留的多个注入孔进行焊接密封。The multiple injection holes reserved on the radiation shield are welded and sealed.
在一些实施方式中,所述对所述辐射防护罩上预留的多个注入孔进行焊接密封,包括:In some embodiments, the step of welding and sealing the plurality of injection holes reserved on the radiation shield comprises:
将超声波探头接触或靠近所述多个注入孔中的其中一个注入孔;placing an ultrasonic probe in contact with or close to one of the injection holes;
通过所述超声波探头对所述第一塑封层进行超声波检测,确定所述第一塑封层是否残留气泡或空洞;Performing ultrasonic testing on the first plastic sealing layer by using the ultrasonic probe to determine whether bubbles or voids remain in the first plastic sealing layer;
在检测结果为未残留气泡或空洞时,对所述辐射防护罩上预留的多个注入孔进行焊接密封。When the detection result shows that no bubbles or voids remain, the plurality of injection holes reserved on the radiation shield are welded and sealed.
本申请提供了一种用于外太空的封装晶圆的封装模块及其封装方法,该封装模块包括:印刷电路板和辐射防护罩;其中,所述辐射防护罩用于罩住所述印刷电路板中的晶圆,所述辐射防护罩与所述晶圆之间的内空间存在第一塑封层,所述辐射防护罩的外空间存在第二塑封层。本申请中通过辐射防护罩罩住印刷电路板中的晶圆,通过辐射防护罩阻挡太空辐射,有利于减轻太空辐射对封装模块的影响。The present application provides a packaging module for packaging wafers in outer space and a packaging method thereof, the packaging module comprising: a printed circuit board and a radiation shield; wherein the radiation shield is used to cover the wafer in the printed circuit board, a first plastic sealing layer exists in the inner space between the radiation shield and the wafer, and a second plastic sealing layer exists in the outer space of the radiation shield. In the present application, the wafer in the printed circuit board is covered by the radiation shield, and the space radiation is blocked by the radiation shield, which is conducive to reducing the impact of space radiation on the packaging module.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本申请实施例提供的用于外太空的封装晶圆的封装模块的结构示意图。FIG1 is a schematic diagram of the structure of a packaging module for packaging wafers for use in outer space provided in an embodiment of the present application.
图2是本申请实施例提供的一种印刷电路板的结构示意图。FIG. 2 is a schematic diagram of the structure of a printed circuit board provided in an embodiment of the present application.
图3是本申请实施例提供的一种封装方法的流程示意图。FIG3 is a schematic flow chart of a packaging method provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
请参阅图1和图2,图1是本申请实施例提供的用于外太空的封装晶圆的封装模块的结构示意图,图2是本申请实施例提供的印刷电路板的结构示意图。如图1所示,用于外太空的封装晶圆的封装模块1包括:印刷电路板10和辐射防护罩20。如图2所示,印刷电路板10的一面设置有晶圆11、晶圆12、晶圆13,印刷电路板10的另一面设置有焊锡球14。Please refer to Figures 1 and 2. Figure 1 is a schematic diagram of the structure of a packaging module for packaging wafers for outer space provided in an embodiment of the present application, and Figure 2 is a schematic diagram of the structure of a printed circuit board provided in an embodiment of the present application. As shown in Figure 1, a packaging module 1 for packaging wafers for outer space includes: a printed circuit board 10 and a radiation shield 20. As shown in Figure 2, wafers 11, 12, and 13 are arranged on one side of the printed circuit board 10, and solder balls 14 are arranged on the other side of the printed circuit board 10.
可以理解的是,图1和图2中晶圆的数量和位置仅作为示意,不应理解为对本申请的限制。It is understandable that the number and positions of the wafers in FIG. 1 and FIG. 2 are for illustration only and should not be construed as limitations on the present application.
在一些实施方式中,辐射防护罩20用于罩住所述印刷电路板10(Printed CircuitBoard,PCB)中的晶圆,所述辐射防护罩20与所述晶圆之间的内空间存在第一塑封层,所述辐射防护罩20的外空间存在第二塑封层。In some embodiments, the radiation shield 20 is used to cover the wafer in the printed circuit board 10 (Printed Circuit Board, PCB), the inner space between the radiation shield 20 and the wafer has a first plastic sealing layer, and the outer space of the radiation shield 20 has a second plastic sealing layer.
如果只有第二塑封层,则对辐射防护罩20外空间进行塑封时,辐射防护罩20容易移位,导致封装失败,而先形成第一塑封层,可以固定辐射防护罩20,而且塑封材料可以选用同样具有防辐射效果的硅树脂,进一步的提高防辐射效果。If there is only the second plastic sealing layer, the radiation shield 20 is easily displaced when the outer space of the radiation shield 20 is plastic sealed, resulting in packaging failure. However, if the first plastic sealing layer is formed first, the radiation shield 20 can be fixed, and the plastic sealing material can be selected from silicone resin which also has radiation protection effect, thereby further improving the radiation protection effect.
在一些实施方式中,在第二塑封层成型后,可以在第二塑封层外再设置一个辐射防护罩20。In some embodiments, after the second plastic packaging layer is formed, a radiation shield 20 may be disposed outside the second plastic packaging layer.
在一些实施方式中,辐射防护罩20用于罩住所述印刷电路板10(Printed CircuitBoard,PCB)中的所有晶圆。In some embodiments, the radiation shield 20 is used to cover all wafers in the printed circuit board (PCB) 10 .
在一些实施方式中,辐射防护罩20上会预留接地连接点,以便与PCB上的接地层相连,实现电磁屏蔽。In some embodiments, a ground connection point is reserved on the radiation shield 20 so as to be connected to a ground layer on the PCB to achieve electromagnetic shielding.
在一些实施方式中,辐射防护罩20由金属材料构成。In some embodiments, radiation shield 20 is constructed of a metallic material.
在一些实施方式中,所述辐射防护罩的材料为铅合金。In some embodiments, the material of the radiation shield is lead alloy.
在一些实施方式中,所述辐射防护罩的材料为铅铝合金。In some embodiments, the material of the radiation shield is lead aluminum alloy.
在一些实施方式中,辐射防护罩的材料为铅钛合金。In some embodiments, the material of the radiation shield is lead titanium alloy.
其中,铅是一种低熔点、密度大、柔软的金属,而钛则以其高强度、低密度、良好的耐腐蚀性著称,铅具有良好的辐射屏蔽效果,而钛则广泛应用于航空航天领域,具有轻质高强度的特性,使用铅钛合金可以在保证辐射屏蔽效果的前提下兼具较好的强度和适宜的重量。Among them, lead is a metal with a low melting point, high density and softness, while titanium is known for its high strength, low density and good corrosion resistance. Lead has a good radiation shielding effect, while titanium is widely used in the aerospace field and has the characteristics of light weight and high strength. The use of lead-titanium alloy can have both good strength and suitable weight while ensuring the radiation shielding effect.
在一些实施方式中,为了保障辐射屏蔽效果,铅钛合金中钛的质量百分比为5%至10%,其余为铅。In some embodiments, in order to ensure the radiation shielding effect, the mass percentage of titanium in the lead-titanium alloy is 5% to 10%, and the rest is lead.
优选地,铅钛合金中钛的质量百分比为7%-8%,其余为铅。Preferably, the mass percentage of titanium in the lead-titanium alloy is 7%-8%, and the rest is lead.
具体地,铅的熔点约为327°C,而钛的熔点高达1668°C,巨大的熔点导致铅钛合金制备困难,但发明人在实际过程中发现钛的质量百分比为7%-8%的铅钛合金在实际加工制造过程中兼容性比较好,较易制作。Specifically, the melting point of lead is about 327°C, while the melting point of titanium is as high as 1668°C. The huge melting points make it difficult to prepare lead-titanium alloys. However, the inventors found in actual practice that lead-titanium alloys with a titanium mass percentage of 7%-8% have better compatibility and are easier to produce in the actual processing and manufacturing process.
在一些实施方式中,第一塑封层和所述第二塑封层采用环氧树脂或硅树脂塑封。In some embodiments, the first plastic sealing layer and the second plastic sealing layer are sealed with epoxy resin or silicone resin.
因为封装模块运用于外太空环境时,需要考虑塑封材料在外太空极端条件下的表现,在常用的塑封材料:环氧树脂、硅树脂、聚氨酯、UV固化树脂这四种中,优选地采用硅树脂进行塑封,硅树脂具有以下优势:Because when the package module is used in the outer space environment, it is necessary to consider the performance of the plastic packaging material under the extreme conditions of outer space. Among the four commonly used plastic packaging materials: epoxy resin, silicone resin, polyurethane, and UV curing resin, silicone resin is preferably used for plastic packaging. Silicone resin has the following advantages:
宽温度范围:硅树脂能够承受从极低温度到极高温度的极端变化,可以更好的适应外太空的极端温差环境。Wide temperature range: Silicone can withstand extreme changes from very low temperatures to very high temperatures, and can better adapt to the extreme temperature difference environment of outer space.
耐辐射性能:硅树脂相较于其他塑封材料通常具有更好的耐辐射性能,可以更好地保护PCB板上的晶圆免受宇宙射线和高能粒子的影响。Radiation resistance: Silicone resin generally has better radiation resistance than other plastic packaging materials, and can better protect the wafers on the PCB board from cosmic rays and high-energy particles.
耐候性:硅树脂具有优秀的耐紫外线和耐化学腐蚀性能,可以长时间暴露在太空环境中。Weather resistance: Silicone has excellent resistance to UV rays and chemical corrosion and can withstand long-term exposure to space environments.
在一些实施方式中,辐射防护罩的厚度在[0.01mm,0.09mm]的范围内。In some embodiments, the thickness of the radiation shield is in the range of [0.01 mm, 0.09 mm].
在一些实施方式中,所述封装模块的厚度在[1.8mm,2.2mm]的范围内In some embodiments, the thickness of the package module is in the range of [1.8 mm, 2.2 mm]
示例性地,辐射防护罩的厚度为0.01mm或0.02mm或0.03mm或0.04mm或0.05mm或0.06mm或0.07mm或0.08mm或0.09mm。Exemplarily, the thickness of the radiation shield is 0.01 mm or 0.02 mm or 0.03 mm or 0.04 mm or 0.05 mm or 0.06 mm or 0.07 mm or 0.08 mm or 0.09 mm.
在一些实施方式中,辐射防护罩20用于罩住所述印刷电路板10中的中央处理器、至少一个双倍速率同步动态随机存储器以及至少一个闪存。In some embodiments, the radiation shield 20 is used to shield a central processing unit, at least one double data rate synchronous dynamic random access memory, and at least one flash memory in the printed circuit board 10 .
可选地,印刷电路板10中设置有一个中央处理器、两个双倍速率同步动态随机存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDR SRAM)以及至少一个闪存。Optionally, the printed circuit board 10 is provided with a central processing unit, two double data rate synchronous dynamic random access memories (DDR SRAM) and at least one flash memory.
在一些实施方式中,封装模块还包括从第一塑封层中延伸至第二塑封层外部的通信天线,以实现不同封装模块之间的通信功能,此时辐射防护罩上预留有让通信天线穿过的通过孔。In some embodiments, the packaging module further includes a communication antenna extending from the first plastic packaging layer to the outside of the second plastic packaging layer to realize the communication function between different packaging modules. In this case, a through hole is reserved on the radiation shield for the communication antenna to pass through.
可选地,通过孔为螺旋形。Optionally, the through hole is spiral-shaped.
请再参阅图3,图3是本申请实施例提供的一种封装方法的流程示意图。该方法用于制作上述的用于外太空的封装晶圆的封装模块,该方法100包括:步骤110至步骤140。Please refer to FIG3 again, which is a schematic flow chart of a packaging method provided in an embodiment of the present application. The method is used to manufacture the packaging module for packaging wafers for outer space, and the method 100 includes: steps 110 to 140.
步骤110:将辐射防护罩罩住印刷电路板的晶圆。Step 110: Cover the printed circuit board wafer with a radiation shield.
在一些实施方式中,辐射防护罩的形状近似为长方体或半圆球等,本申请不做限制。In some embodiments, the shape of the radiation shield is approximately a cuboid or a hemisphere, etc., which is not limited in the present application.
步骤120:使用分孔式模具通过所述辐射防护罩上预留的多个注入孔对所述辐射防护罩与所述晶圆之间的内空间进行塑封,以排出所述内空间内的气体形成第一塑封层。Step 120: Use a multi-hole mold to plastic-seal the inner space between the radiation shield and the wafer through a plurality of injection holes reserved on the radiation shield to discharge the gas in the inner space to form a first plastic-sealing layer.
具体地,分孔式模具,也称为透气模具或排气模具,是塑封工艺中常用的一种模具设计,特别是在封装电子元器件(如集成电路、传感器等)时尤为重要。这类模具的设计目的是为了在注塑成型过程中有效地排出模具腔内的空气和其他挥发性物质,防止在封装材料内部形成气泡或空洞,从而保证封装产品的质量和可靠性。Specifically, the split-hole mold, also known as the breathable mold or exhaust mold, is a commonly used mold design in the plastic packaging process, especially when packaging electronic components (such as integrated circuits, sensors, etc.). The purpose of designing this type of mold is to effectively exhaust the air and other volatile substances in the mold cavity during the injection molding process, prevent the formation of bubbles or voids inside the packaging material, and thus ensure the quality and reliability of the packaged product.
在一些实施方式中,在形成第一塑封层后,稳固了辐射防护罩,在后续形成第二塑封层时不需要额外固定辐射防护罩。In some embodiments, after the first plastic encapsulation layer is formed, the radiation shield is stabilized, and there is no need to additionally fix the radiation shield when the second plastic encapsulation layer is subsequently formed.
步骤130:对所述辐射防护罩上预留的多个注入孔进行密封。Step 130: Seal the multiple injection holes reserved on the radiation shield.
在一些实施方式中,在填充塑封材料后密封预留的注入孔,可以采用以下几种方法:In some embodiments, the reserved injection hole is sealed after filling the molding material, and the following methods can be used:
使用密封胶:使用快速固化的密封胶或环氧树脂,通过手动或自动化设备滴入或涂抹在注入孔处。选择的密封胶应当与塑封材料兼容,不会产生化学反应,并且能够提供良好的密封性能和耐环境特性。固化后,多余的胶体可以刮平或打磨,以保持表面平整。Use sealant: Use fast-curing sealant or epoxy resin, drip or apply it to the injection hole manually or with automated equipment. The selected sealant should be compatible with the plastic material, not produce chemical reactions, and provide good sealing performance and environmental resistance. After curing, the excess colloid can be scraped or polished to keep the surface flat.
热熔密封:对于热塑性塑封材料,可以使用热风枪或红外加热器局部加热注入孔周围的材料,使其软化后再施加压力,利用材料自身的粘性闭合孔洞。这种方法适用于那些能通过加热重新流动的塑封材料。Hot melt sealing: For thermoplastic encapsulation materials, a hot air gun or infrared heater can be used to locally heat the material around the injection hole to soften it and then apply pressure to close the hole using the material's own viscosity. This method is suitable for encapsulation materials that can reflow by heating.
插塞:对于较大的注入孔,可以预先制作好尺寸匹配的小塞子(常用材料包括环氧插芯、塑料或金属),在塑封材料固化前迅速插入孔中,之后材料固化会将其固定在位,形成密封。Plugs: For larger injection holes, small plugs of matching size can be pre-made (commonly used materials include epoxy ferrules, plastics or metals) and quickly inserted into the hole before the molding compound cures. The material will then cure and fix it in place to form a seal.
焊接密封:如果注入孔边缘是金属材质,且塑封材料允许高温处理,可以采用焊接的方法来封闭孔洞。使用低熔点焊料或激光焊接技术在孔周围形成密封圈。Welding seal: If the edge of the injection hole is made of metal and the plastic sealing material allows high temperature processing, welding can be used to seal the hole. Use low melting point solder or laser welding technology to form a sealing ring around the hole.
自动封口剂:在一些高端的生产线上,会使用专门的自动封口设备,能够在填充塑封材料后立即在注入点施加封口剂并固化,实现高效且一致的密封效果。Automatic sealant: On some high-end production lines, special automatic sealing equipment is used, which can apply the sealant and cure it at the injection point immediately after filling the plastic sealing material, so as to achieve efficient and consistent sealing effect.
在一些实施方式中,辐射防护罩采用金属材料制成,因此步骤130中包括下述步骤:对所述辐射防护罩上预留的多个注入孔进行焊接密封,从而在注入孔周围形成密封圈。In some embodiments, the radiation shield is made of metal material, so step 130 includes the following steps: welding and sealing a plurality of injection holes reserved on the radiation shield, thereby forming sealing rings around the injection holes.
在一些实施方式中,如果辐射防护罩内空间塑封后存在气泡,则后续使用可能引发膨胀变形、甚至爆炸等损坏设备的危险情况,因此塑封后需要对排气情况进行检测,此时步骤130包括下述步骤。In some embodiments, if bubbles exist in the space inside the radiation shield after plastic sealing, subsequent use may cause expansion, deformation, or even explosion, which may damage the equipment. Therefore, the exhaust condition needs to be detected after plastic sealing. At this time, step 130 includes the following steps.
(1)将超声波探头接触或靠近所述多个注入孔中的其中一个注入孔。(1) The ultrasonic probe is brought into contact with or close to one of the plurality of injection holes.
(2)通过所述超声波探头对所述第一塑封层进行超声波检测,确定所述第一塑封层是否残留气泡或空洞。(2) Performing ultrasonic detection on the first plastic sealing layer by using the ultrasonic probe to determine whether bubbles or voids remain in the first plastic sealing layer.
(3)在检测结果为未残留气泡或空洞时,对所述辐射防护罩上预留的多个注入孔进行密封。(3) When the test result shows that no bubbles or voids remain, the multiple injection holes reserved on the radiation shield are sealed.
在一些实施方式中,因为辐射防护罩具有防辐射作用,因此X射线检测效果较差,故本申请采用超声波检测,提高检测准确度。In some embodiments, since the radiation shield has a radiation protection function, the X-ray detection effect is poor, so the present application adopts ultrasonic detection to improve the detection accuracy.
在一些实施方式中,因为一个注入孔的检测范围有限,因此每个注入孔都被利用来进行超声波检测,此时步骤将超声波探头接触或靠近所述多个注入孔中的其中一个注入孔,包括:将超声波探头依次接触或靠近所述多个注入孔,以在检测完当前注入孔后,检测下一注入孔。In some embodiments, because the detection range of an injection hole is limited, each injection hole is used for ultrasonic detection. At this time, the step of bringing the ultrasonic probe into contact with or close to one of the multiple injection holes includes: bringing the ultrasonic probe into contact with or close to the multiple injection holes in turn, so as to detect the next injection hole after detecting the current injection hole.
在一些实施方式中,辐射防护罩为金属材料,则辐射防护罩会影响超声波的穿透和信号解读,本申请中利用预设防护罩上预留的注入孔当做超声波检测的窗口,构思巧妙,节约成本且能保障出厂后产品的使用安全。In some embodiments, the radiation shield is made of metal material, which will affect the penetration of ultrasound and signal interpretation. In this application, the injection hole reserved on the preset shield is used as a window for ultrasonic detection. The design is ingenious, cost-saving and can ensure the safety of the product after leaving the factory.
在一些实施方式中,需要根据辐射防护罩的厚度、第一塑封层的密度以及厚度,调整超声波检测仪的频率、功率和脉冲宽度等参数,因为第一塑封层的存在,最好采用低频超声波,以更好地穿透塑封层。In some embodiments, it is necessary to adjust the parameters of the ultrasonic detector such as frequency, power and pulse width according to the thickness of the radiation shield, the density and thickness of the first plastic sealing layer. Due to the existence of the first plastic sealing layer, it is best to use low-frequency ultrasound to better penetrate the plastic sealing layer.
在一些实施方式中,若超声波探头不接触注入孔,而是靠近注入孔检测,则可以使用耦合剂(如水或专用凝胶)来改善超声波的传播。In some embodiments, if the ultrasonic probe does not touch the injection hole but is close to the injection hole for detection, a coupling agent (such as water or a special gel) may be used to improve the propagation of ultrasonic waves.
具体地,超声波在空气中的传播效率远低于在固体或液体中,空气间隙会大量吸收和散射超声波能量,导致信号衰减严重,耦合剂填充超声波探头与注入孔之间的微小缝隙,消除了空气层,减少了能量损失,提高检测准确度。Specifically, the propagation efficiency of ultrasound in the air is much lower than that in solids or liquids. The air gap will absorb and scatter a large amount of ultrasonic energy, resulting in severe signal attenuation. The coupling agent fills the tiny gap between the ultrasonic probe and the injection hole, eliminating the air layer, reducing energy loss and improving detection accuracy.
上述超声波检测方式中,气泡或其他内部缺陷会导致超声波反射异常,因为气泡与塑封材料的声阻抗差异大,会产生较强的反射信号,故而实现了对气泡的检测。In the above ultrasonic detection method, bubbles or other internal defects will cause abnormal ultrasonic reflection. Since the acoustic impedance difference between bubbles and plastic packaging materials is large, a strong reflection signal will be generated, thus realizing the detection of bubbles.
在一些实施方式中,在考虑超声波的穿透能力时,材料的声阻抗(声速和密度的乘积)是关键因素,理论上,声阻抗与介质的超声波传播速度和密度成正比,声阻抗越接近人体组织的(大约1.5 MRayls),超声波的反射就越小,穿透性就越好,从声学性能的角度看,在塑封材料中,硅树脂的声阻抗更接近于人体组织的声阻抗,因此通常具有较好的声学透明性,故第一塑封层可以采用硅树脂进行塑封。In some embodiments, when considering the penetration ability of ultrasound, the acoustic impedance of the material (the product of sound velocity and density) is a key factor. In theory, the acoustic impedance is proportional to the ultrasonic propagation speed and density of the medium. The closer the acoustic impedance is to that of human tissue (approximately 1.5 MRayls), the smaller the reflection of ultrasound and the better the penetration. From the perspective of acoustic performance, among plastic encapsulation materials, the acoustic impedance of silicone resin is closer to the acoustic impedance of human tissue, and therefore it usually has better acoustic transparency. Therefore, the first plastic encapsulation layer can be encapsulated with silicone resin.
步骤140:对所述辐射防护罩的外空间进行塑封,形成第二塑封层。Step 140: Plastic-sealing the outer space of the radiation shield to form a second plastic-sealing layer.
通过上述方式,可以对用于外太空的封装晶圆的封装模块进行封装,封装得到的封装模块防辐射效果好,可以将太空辐射减少至少50%。Through the above method, the packaging module of the packaging wafer used in outer space can be packaged, and the packaged module obtained by packaging has good radiation protection effect and can reduce space radiation by at least 50%.
综上,本申请提供了一种用于外太空的封装晶圆的封装模块及其封装方法,该封装模块包括:印刷电路板和辐射防护罩;其中,所述辐射防护罩用于罩住所述印刷电路板中的晶圆,所述辐射防护罩与所述晶圆之间的内空间存在第一塑封层,所述辐射防护罩的外空间存在第二塑封层。本申请中通过辐射防护罩罩住印刷电路板中的晶圆,通过辐射防护罩阻挡太空辐射,有利于减轻太空辐射对封装模块的影响。In summary, the present application provides a packaging module for packaging wafers in outer space and a packaging method thereof, the packaging module comprising: a printed circuit board and a radiation shield; wherein the radiation shield is used to cover the wafer in the printed circuit board, a first plastic sealing layer exists in the inner space between the radiation shield and the wafer, and a second plastic sealing layer exists in the outer space of the radiation shield. In the present application, the wafer in the printed circuit board is covered by the radiation shield, and the space radiation is blocked by the radiation shield, which is conducive to reducing the impact of space radiation on the packaging module.
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application, rather than to limit it. Although the present application has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410971396.8A CN118676123B (en) | 2024-07-19 | 2024-07-19 | Packaging module and packaging method for packaging wafers in outer space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410971396.8A CN118676123B (en) | 2024-07-19 | 2024-07-19 | Packaging module and packaging method for packaging wafers in outer space |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118676123A true CN118676123A (en) | 2024-09-20 |
CN118676123B CN118676123B (en) | 2025-01-28 |
Family
ID=92732178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410971396.8A Active CN118676123B (en) | 2024-07-19 | 2024-07-19 | Packaging module and packaging method for packaging wafers in outer space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118676123B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5825042A (en) * | 1993-06-18 | 1998-10-20 | Space Electronics, Inc. | Radiation shielding of plastic integrated circuits |
US5880403A (en) * | 1994-04-01 | 1999-03-09 | Space Electronics, Inc. | Radiation shielding of three dimensional multi-chip modules |
US6812476B1 (en) * | 1999-02-26 | 2004-11-02 | Commissariat A L'energie Atomique | Electronic system operating under irradiation, process for designing such a system and application thereof to the control of a mobile robot |
CN103943610A (en) * | 2014-04-16 | 2014-07-23 | 华为技术有限公司 | Electronic component packaging structure and electronic device |
DE102015205054A1 (en) * | 2015-03-20 | 2016-09-22 | Robert Bosch Gmbh | Electronic module with alpha radiation protection for a transmission control unit and transmission control unit |
KR20180087504A (en) * | 2017-01-23 | 2018-08-02 | 앰코 테크놀로지 인코포레이티드 | Semiconductor package and manufacturing method thereof |
CN111066141A (en) * | 2017-06-23 | 2020-04-24 | ams国际有限公司 | Radiation resistant package for electronic devices |
CN111819912A (en) * | 2018-03-08 | 2020-10-23 | 三星电子株式会社 | Circuit board including conductive structure for electrical connection wiring and electronic device including the same |
US20210202557A1 (en) * | 2019-12-27 | 2021-07-01 | Sensohub Co., Ltd. | Radiation-resistant image sensor package |
CN113793843A (en) * | 2021-09-30 | 2021-12-14 | 重庆平创半导体研究院有限责任公司 | Anti-irradiation packaging structure and method |
CN114664673A (en) * | 2022-05-25 | 2022-06-24 | 武汉敏声新技术有限公司 | Radio frequency module packaging structure and method |
CN117810207A (en) * | 2023-12-29 | 2024-04-02 | 深圳市安信达存储技术有限公司 | Metal sheet packaging method of embedded memory chip in space environment satellite |
-
2024
- 2024-07-19 CN CN202410971396.8A patent/CN118676123B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5825042A (en) * | 1993-06-18 | 1998-10-20 | Space Electronics, Inc. | Radiation shielding of plastic integrated circuits |
US5880403A (en) * | 1994-04-01 | 1999-03-09 | Space Electronics, Inc. | Radiation shielding of three dimensional multi-chip modules |
US6812476B1 (en) * | 1999-02-26 | 2004-11-02 | Commissariat A L'energie Atomique | Electronic system operating under irradiation, process for designing such a system and application thereof to the control of a mobile robot |
CN103943610A (en) * | 2014-04-16 | 2014-07-23 | 华为技术有限公司 | Electronic component packaging structure and electronic device |
DE102015205054A1 (en) * | 2015-03-20 | 2016-09-22 | Robert Bosch Gmbh | Electronic module with alpha radiation protection for a transmission control unit and transmission control unit |
KR20180087504A (en) * | 2017-01-23 | 2018-08-02 | 앰코 테크놀로지 인코포레이티드 | Semiconductor package and manufacturing method thereof |
CN111066141A (en) * | 2017-06-23 | 2020-04-24 | ams国际有限公司 | Radiation resistant package for electronic devices |
CN111819912A (en) * | 2018-03-08 | 2020-10-23 | 三星电子株式会社 | Circuit board including conductive structure for electrical connection wiring and electronic device including the same |
US20210202557A1 (en) * | 2019-12-27 | 2021-07-01 | Sensohub Co., Ltd. | Radiation-resistant image sensor package |
CN113793843A (en) * | 2021-09-30 | 2021-12-14 | 重庆平创半导体研究院有限责任公司 | Anti-irradiation packaging structure and method |
CN114664673A (en) * | 2022-05-25 | 2022-06-24 | 武汉敏声新技术有限公司 | Radio frequency module packaging structure and method |
CN117810207A (en) * | 2023-12-29 | 2024-04-02 | 深圳市安信达存储技术有限公司 | Metal sheet packaging method of embedded memory chip in space environment satellite |
Also Published As
Publication number | Publication date |
---|---|
CN118676123B (en) | 2025-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100487888C (en) | Semiconductor device, semiconductor crystal wafer, semiconductor assembly and manufacturing method for semiconductor device | |
US8263862B2 (en) | Hermetic electrical ports in liquid crystal polymer packages | |
CN103515327B (en) | Kovar metal structure for laser seal welding and laser welding method | |
CN112188728A (en) | Temperature and pressure integrated sensor based on flip chip and packaging method thereof | |
CN106486427A (en) | A kind of package casing based on LCP substrate and preparation method | |
CN110035626A (en) | A kind of miniaturization microwave components airtight construction | |
CN107634044A (en) | A kind of high-power SIP gold tin welding encapsulating structure and method for packing | |
CN118676123A (en) | Packaging module for packaging wafer in outer space and packaging method thereof | |
Gannamani et al. | An experimental study of popcorning in plastic encapsulated microcircuits | |
CN104833692A (en) | Detection method of semiconductor device packaging structure | |
CN113658878A (en) | Preparation method of electromagnetic shielding structure | |
CN115377270B (en) | LED packaging structure | |
CN107182171B (en) | A kind of seal protection structure and its encapsulating method of BGA device | |
CN110783751B (en) | A stress relief structure for improving the reliability of airtight welding of multi-core connectors | |
US6731001B2 (en) | Semiconductor device including bonded wire based to electronic part and method for manufacturing the same | |
CN206259334U (en) | A kind of package casing based on LCP substrates | |
CN217587275U (en) | Built-in type air tightness packaging accelerometer signal detection circuit shell | |
CN116412930A (en) | A gas detector assembly and a refrigerant detector assembly | |
CN108508283B (en) | Electric field sensor package assembly and batch manufacturing method thereof | |
CN222233623U (en) | Semiconductor packaging structure and radio frequency module | |
TWI830448B (en) | Chip package structure and method for fabricating the same | |
CN115190706A (en) | A double-sided packaging structure for electronic products | |
CN102064143A (en) | Optical module and manufacturing method thereof | |
CN221141244U (en) | Circuit packaging structure and inertial measurement unit | |
CN103681364A (en) | Integration method of lead-less ball pin surface mounting type high-density thick-film hybrid integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |