CN118674665A - Image enhancement method, device and storage medium - Google Patents
Image enhancement method, device and storage medium Download PDFInfo
- Publication number
- CN118674665A CN118674665A CN202411166382.5A CN202411166382A CN118674665A CN 118674665 A CN118674665 A CN 118674665A CN 202411166382 A CN202411166382 A CN 202411166382A CN 118674665 A CN118674665 A CN 118674665A
- Authority
- CN
- China
- Prior art keywords
- image
- images
- weighted
- original image
- definite integral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
本申请公开了一种图像增强方法、设备及存储介质,该图像增强方法包括:获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;以及,基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像。可以将一个离散的图像进行连续化处理,使得增强后的图像的对比度不突兀,避免图像失真,提高图像增强效果。
The present application discloses an image enhancement method, device and storage medium, the image enhancement method comprising: obtaining an original image and pixel weight values corresponding to each pixel in the original image, and using multiple preset transformation relationships to transform the pixel values in the original image respectively to obtain multiple transformed images; performing definite integral operations on multiple preset transformation relationships, and using multiple definite integral formulas obtained to calculate the definite integral images corresponding to the original image; and, based on the pixel weight values, performing weighted filtering processing on multiple transformed images respectively to obtain multiple weighted filtered images; and performing weighted fusion processing on multiple definite integral images using multiple weighted filtered images to obtain an enhanced image. A discrete image can be processed continuously so that the contrast of the enhanced image is not abrupt, image distortion is avoided, and the image enhancement effect is improved.
Description
技术领域Technical Field
本申请涉及图像处理技术领域,特别是涉及一种图像增强方法、设备及存储介质。The present application relates to the field of image processing technology, and in particular to an image enhancement method, device and storage medium.
背景技术Background Art
图像传感器获取图像存在细节不突出、图像发蒙等多种问题,不利于后续的科学研究,也影响人们的视觉体验。因此,图像增强作为图像处理的一个重要分支,持续的受到众多科学工作者的关注。There are many problems with images obtained by image sensors, such as lack of prominent details and blurred images, which are not conducive to subsequent scientific research and also affect people's visual experience. Therefore, image enhancement, as an important branch of image processing, continues to attract the attention of many scientists.
现有的图像增强算法大致可以分为:基于统计的图像增强算法,如全局直方图增强方法、局部直方图增强方法、限制对比度自适应直方图均衡化(Contrast LimitedAdaptive Histogram Equalization,CLAHE)算法等;基于分层的图像增强方法,如Retinex算法,使用滤波或者方程优化来提取高频进行图像增强的方法等;基于学习的图像增强算法,如稀疏编码方法、深度学习方法等。Existing image enhancement algorithms can be roughly divided into: statistics-based image enhancement algorithms, such as global histogram enhancement methods, local histogram enhancement methods, Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, etc.; layered image enhancement methods, such as the Retinex algorithm, methods that use filtering or equation optimization to extract high frequencies for image enhancement, etc.; learning-based image enhancement algorithms, such as sparse coding methods, deep learning methods, etc.
目前的图像增强算法存在对图像高亮区域的对比度增强效果不理想、因为梯度反转造成的图像失真等问题。The current image enhancement algorithms have problems such as unsatisfactory contrast enhancement effect on image highlight areas and image distortion caused by gradient inversion.
发明内容Summary of the invention
为了解决上述技术问题,本申请至少提供一种图像增强方法、设备及存储介质。In order to solve the above technical problems, the present application at least provides an image enhancement method, device and storage medium.
本申请第一方面提供了一种图像增强方法,方法包括:获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;以及,基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像。The first aspect of the present application provides an image enhancement method, which includes: obtaining an original image and pixel weight values corresponding to each pixel in the original image, and using multiple preset transformation relationships to transform the pixel values in the original image respectively to obtain multiple transformed images; performing definite integral operations on the multiple preset transformation relationships, and using the multiple definite integral formulas obtained to calculate the definite integral images corresponding to the original image; and, based on the pixel weight values, performing weighted filtering processing on the multiple transformed images respectively to obtain multiple weighted filtered images; and using the multiple weighted filtered images to perform weighted fusion processing on the multiple definite integral images to obtain an enhanced image.
在一实施例中,多个预设变换关系式包括多个递推的拉盖尔多项式;利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像,包括:利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像。In one embodiment, the plurality of preset transformation relationships include a plurality of recursive Laguerre polynomials; the pixel values in the original image are transformed respectively using the plurality of preset transformation relationships to obtain a plurality of transformed images, including: the pixel values in the original image are transformed respectively using the plurality of recursive Laguerre polynomials to obtain a plurality of transformed images.
在一实施例中,针对每个拉盖尔多项式分别预存有像素值映射表,像素值映射表用于存储不同像素值经过对应的拉盖尔多项式变换后得到的像素值;利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像,包括:获取每个拉盖尔多项式对应的像素值映射表;利用每个像素值映射表分别对原始图像中的像素值进行变换,得到多个变换图像。In one embodiment, a pixel value mapping table is pre-stored for each Laguerre polynomial, and the pixel value mapping table is used to store pixel values obtained after different pixel values are transformed by the corresponding Laguerre polynomial; the pixel values in the original image are transformed respectively using multiple recursive Laguerre polynomials to obtain multiple transformed images, including: obtaining the pixel value mapping table corresponding to each Laguerre polynomial; and using each pixel value mapping table to transform the pixel values in the original image respectively to obtain multiple transformed images.
在一实施例中,对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像,包括:确定在递推次序中相邻的拉盖尔多项式,得到相邻的多项式对;对每个多项式对分别进行减法运算,得到多个定积分公式;利用多个定积分公式,分别计算得到原始图像对应的定积分图像。In one embodiment, definite integral operations are performed on multiple preset transformation relationships, and the definite integral images corresponding to the original image are calculated using the multiple definite integral formulas obtained, including: determining adjacent Laguerre polynomials in a recursive order to obtain adjacent polynomial pairs; performing subtraction operations on each polynomial pair to obtain multiple definite integral formulas; and using the multiple definite integral formulas to calculate the definite integral images corresponding to the original image.
在一实施例中,利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像,包括:对原始图像中的像素值进行归一化处理,得到归一化图像;利用多个递推的拉盖尔多项式分别对归一化图像中的像素值进行变换,得到多个变换图像。In one embodiment, multiple recursive Laguerre polynomials are used to transform pixel values in the original image to obtain multiple transformed images, including: normalizing the pixel values in the original image to obtain a normalized image; and using multiple recursive Laguerre polynomials to transform pixel values in the normalized image to obtain multiple transformed images.
在一实施例中,基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像,包括:基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到加权融合图像;将加权融合图像中的像素值映射至原始图像的原始像素空间,得到增强图像。In one embodiment, a plurality of definite integral images are weighted fused based on a plurality of weighted filtered images to obtain an enhanced image, including: a plurality of definite integral images are weighted fused based on a plurality of weighted filtered images to obtain a weighted fused image; and pixel values in the weighted fused image are mapped to the original pixel space of the original image to obtain an enhanced image.
在一实施例中,基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像,包括:基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到加权融合图像:分别获取加权融合图像和原始图像的加权权重;利用加权权重,对加权融合图像和原始图像进行加权求和,得到增强图像。In one embodiment, a plurality of definite integral images are weightedly fused based on a plurality of weighted filtered images to obtain an enhanced image, including: a plurality of definite integral images are weightedly fused based on a plurality of weighted filtered images to obtain a weighted fused image; respectively obtaining weighted weights of the weighted fused image and the original image; and using the weighted weights, performing weighted summation on the weighted fused image and the original image to obtain an enhanced image.
在一实施例中,基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到加权融合图像,包括:对与同一预设变换关系式关联的加权滤波图像和定积分图像分别进行乘法运算,得到多个加权图像;对多个加权图像进行求和运算,得到加权融合图像。In one embodiment, a weighted fusion process is performed on a plurality of definite integral images based on a plurality of weighted filter images to obtain a weighted fused image, including: performing multiplication operations on the weighted filter images and the definite integral images associated with the same preset transformation relationship to obtain a plurality of weighted images; and performing a sum operation on the plurality of weighted images to obtain a weighted fused image.
本申请第二方面提供了一种图像增强装置,装置包括:权重获取及像素变换模块,用于获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;定积分计算模块,用于对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;加权滤波模块,用于基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;加权融合模块,用于利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像。The second aspect of the present application provides an image enhancement device, which includes: a weight acquisition and pixel transformation module, which is used to obtain the original image and the pixel weight values corresponding to each pixel in the original image, and use multiple preset transformation relationships to transform the pixel values in the original image respectively to obtain multiple transformed images; a definite integral calculation module, which is used to perform definite integral operations on multiple preset transformation relationships, and use the calculated multiple definite integral formulas to calculate the definite integral images corresponding to the original image; a weighted filtering module, which is used to perform weighted filtering processing on multiple transformed images based on pixel weight values to obtain multiple weighted filtered images; a weighted fusion module, which is used to perform weighted fusion processing on multiple definite integral images using multiple weighted filtered images to obtain an enhanced image.
本申请第三方面提供了一种电子设备,包括存储器和处理器,处理器用于执行存储器中存储的程序指令,以实现上述图像增强方法。A third aspect of the present application provides an electronic device, including a memory and a processor, wherein the processor is used to execute program instructions stored in the memory to implement the above-mentioned image enhancement method.
本申请第四方面提供了一种计算机可读存储介质,其上存储有程序指令,程序指令被处理器执行时实现上述图像增强方法。A fourth aspect of the present application provides a computer-readable storage medium having program instructions stored thereon, which implement the above-mentioned image enhancement method when the program instructions are executed by a processor.
上述方案,通过获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;以及,基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像,可以将一个离散的图像进行连续化处理,使得增强后的图像的对比度不突兀,避免图像失真,提高图像增强效果。The above scheme obtains the original image and the pixel weight values corresponding to each pixel in the original image, and uses multiple preset transformation relationships to transform the pixel values in the original image respectively to obtain multiple transformed images; performs definite integral operations on the multiple preset transformation relationships, and uses the multiple definite integral formulas obtained to calculate the definite integral images corresponding to the original image; and, based on the pixel weight values, performs weighted filtering processing on the multiple transformed images respectively to obtain multiple weighted filtered images; uses the multiple weighted filtered images to perform weighted fusion processing on the multiple definite integral images to obtain an enhanced image. A discrete image can be processed continuously, so that the contrast of the enhanced image is not abrupt, image distortion is avoided, and the image enhancement effect is improved.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本申请。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present application.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并与说明书一起用于说明本申请的技术方案。The drawings herein are incorporated into the specification and constitute a part of the specification. These drawings illustrate embodiments consistent with the present application and are used together with the specification to illustrate the technical solution of the present application.
图1是本申请的一个实施例提供的方案实施环境的示意图;FIG1 is a schematic diagram of an implementation environment of a solution provided by an embodiment of the present application;
图2是本申请的一示例性实施例示出的图像增强方法的流程图;FIG2 is a flow chart of an image enhancement method shown in an exemplary embodiment of the present application;
图3是本申请的另一示例性实施例示出的图像增强方法的流程图;FIG3 is a flow chart of an image enhancement method shown in another exemplary embodiment of the present application;
图4是本申请的一示例性实施例示出的图像增强装置的框图;FIG4 is a block diagram of an image enhancement device shown in an exemplary embodiment of the present application;
图5是本申请的一示例性实施例示出的电子设备的结构示意图;FIG5 is a schematic diagram of the structure of an electronic device shown in an exemplary embodiment of the present application;
图6是本申请的一示例性实施例示出的计算机可读存储介质的结构示意图。FIG. 6 is a schematic diagram of the structure of a computer-readable storage medium according to an exemplary embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
下面结合说明书附图,对本申请实施例的方案进行详细说明。The scheme of the embodiment of the present application is described in detail below in conjunction with the drawings of the specification.
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。In the following description, for the purpose of explanation rather than limitation, specific details such as specific system structures, interfaces, and technologies are provided to facilitate a thorough understanding of the present application.
本文中术语“和/或”,仅仅是一种描述关联对象的关联信息,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。此外,本文中的“多”表示两个或者多于两个。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。The term "and/or" in this article is only an association information describing the associated objects, indicating that there may be three relationships. For example, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/" in this article generally indicates that the previous and next associated objects are in an "or" relationship. In addition, "many" in this article means two or more than two. In addition, the term "at least one" in this article means any combination of at least two of any one or more of a plurality of, for example, including at least one of A, B, and C, can mean including any one or more elements selected from the set consisting of A, B, and C.
下面对本申请实施例所提供的图像增强方法进行说明。The image enhancement method provided in the embodiments of the present application is described below.
请参考图1,其示出了本申请一个实施例提供的方案实施环境的示意图。该方案实施环境可以包括终端110和服务器120,终端110和服务器120之间相互通信连接。Please refer to Figure 1, which shows a schematic diagram of a solution implementation environment provided by an embodiment of the present application. The solution implementation environment may include a terminal 110 and a server 120, and the terminal 110 and the server 120 are connected to each other for communication.
终端110的数量可以是一个或多个。终端110可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能手表等,但并不局限于此。The number of the terminal 110 may be one or more. The terminal 110 may be a smart phone, a tablet computer, a laptop computer, a desktop computer, a smart watch, etc., but is not limited thereto.
服务器120可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(Content Delivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。Server 120 can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers. It can also be a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, content delivery networks (CDNs), as well as big data and artificial intelligence platforms.
在一个示例中,服务器120可以为从终端110中获取到的原始图像进行增强处理,得到增强后的图像,当然,服务器120可以将增强后的图像存储在本地、回传至终端110或者传输至其他终端。In one example, the server 120 may enhance the original image obtained from the terminal 110 to obtain an enhanced image. Of course, the server 120 may store the enhanced image locally, transmit it back to the terminal 110, or transmit it to other terminals.
在一个示例中,终端110中安装运行有目标应用程序的客户端,如该目标应用程序可以是提供图像增强功能的应用程序。服务器120可以是该目标应用程序的后台服务器,用于为该目标应用程序的客户端提供后台服务。In one example, a client running a target application is installed in the terminal 110, such as an application providing image enhancement function. The server 120 may be a background server of the target application, configured to provide background services for the client of the target application.
本申请实施例提供的图像增强方法,各步骤的执行主体可以是终端110,如终端110中安装运行的目标应用程序的客户端,也可以是服务器120,或者由终端110和服务器120交互配合执行,即将方法的一部分步骤交由终端110执行而另一部分步骤则交由服务器120执行。In the image enhancement method provided in the embodiment of the present application, the execution subject of each step can be the terminal 110, such as the client of the target application installed and running in the terminal 110, or the server 120, or the terminal 110 and the server 120 interact and cooperate to execute, that is, part of the steps of the method are executed by the terminal 110 and the other steps are executed by the server 120.
请参阅图2,图2是本申请的一示例性实施例示出的图像增强方法的流程图。该图像增强方法可以应用于图1所示的实施环境,并由该实施环境中的服务器具体执行。应理解的是,该方法也可以适用于其它的示例性实施环境,并由其它实施环境中的设备具体执行,本实施例不对该方法所适用的实施环境进行限制。Please refer to FIG. 2, which is a flow chart of an image enhancement method shown in an exemplary embodiment of the present application. The image enhancement method can be applied to the implementation environment shown in FIG. 1, and is specifically executed by a server in the implementation environment. It should be understood that the method can also be applied to other exemplary implementation environments, and is specifically executed by devices in other implementation environments. This embodiment does not limit the implementation environment to which the method is applicable.
如图2所示,图像增强方法至少包括步骤S210至步骤S240,详细介绍如下:As shown in FIG. 2 , the image enhancement method includes at least steps S210 to S240, which are described in detail as follows:
步骤S210:获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像。Step S210: obtaining an original image and pixel weight values corresponding to each pixel in the original image, and using a plurality of preset transformation equations to transform the pixel values in the original image respectively to obtain a plurality of transformed images.
其中,原始图像是需要进行增强的图像。The original image is the image that needs to be enhanced.
获取原始图像中各个像素对应的像素权重值,具体地,根据像素的像素值的大小,确定像素权重值。The pixel weight value corresponding to each pixel in the original image is obtained. Specifically, the pixel weight value is determined according to the size of the pixel value of the pixel.
在一些实施方式中,基于指数运算将像素的像素值映射为对应的像素权重值。由于权重映射公式中含有指数运算,指数运算(x为输入的像素值)的运算资源需求量大,因此,预先建立权重查询表,该权重查询表用于存储每个像素值对应的像素权重值,例如,针对8位(bit)的图像,像素包括256个像素值,则预先计算256个像素值分别对应的像素权重值,并存储至权重查询表中,后续直接查询权重查询表,得到原始图像中各个像素对应的像素权重值。In some embodiments, the pixel value of a pixel is mapped to a corresponding pixel weight value based on an exponential operation. (x is the input pixel value) requires a lot of computing resources, so a weight lookup table is established in advance, and the weight lookup table is used to store the pixel weight value corresponding to each pixel value. For example, for an 8-bit image, a pixel includes 256 pixel values, then the pixel weight values corresponding to the 256 pixel values are calculated in advance and stored in the weight lookup table. The weight lookup table can be directly queried later to obtain the pixel weight value corresponding to each pixel in the original image.
可选地,查询执行主体的可使用存储资源,若可使用存储资源大于预设存储资源阈值,则将权重查询表发送至执行主体进行存储,以在后续响应于对原始图像的增强请求,从权重查询表中查询原始图像中各个像素对应的像素权重值;若可使用存储资源不大于预设存储资源阈值,则不将权重查询表存储至执行主体,响应于对原始图像的增强请求,使用预设的权重映射公式将原始图像中各个像素的像素值映射为对应的像素权重值。Optionally, the available storage resources of the execution entity are queried. If the available storage resources are greater than a preset storage resource threshold, the weight query table is sent to the execution entity for storage, so that in a subsequent response to an enhancement request for the original image, the pixel weight values corresponding to each pixel in the original image can be queried from the weight query table; if the available storage resources are not greater than the preset storage resource threshold, the weight query table is not stored in the execution entity, and in response to the enhancement request for the original image, the pixel values of each pixel in the original image are mapped to corresponding pixel weight values using a preset weight mapping formula.
进一步地,获取预设变换关系式,该预设变换关系式用于将原始图像变换至另一域中去,预设变换关系式可以是基于拉盖尔多项式、牛顿插值公式、多项式插值公式等实现的,可以根据实际应用情况灵活选择,本申请对此不进行限定。Furthermore, a preset transformation relationship is obtained, which is used to transform the original image into another domain. The preset transformation relationship can be implemented based on Laguerre polynomials, Newton interpolation formulas, polynomial interpolation formulas, etc., and can be flexibly selected according to actual application conditions. This application does not limit this.
利用多个预设变换关系式,分别对所述原始图像中各个像素的像素值进行变换,得到多个变换图像。The pixel values of each pixel in the original image are transformed respectively using a plurality of preset transformation relationships to obtain a plurality of transformed images.
其中,原始图像对应的预设变换关系式可以是预先设定的;还可以是关系式集合中含有多个可选择的预设变换关系式,根据当前原始图像的类别、增强强度、执行主体可使用的运算资源量等,确定需要选择的关系式数量和/或关系式类型,以按照关系式数量和/或关系式类型从关系式集合中选取出对应的预设变换关系式。Among them, the preset transformation relationship corresponding to the original image can be pre-set; or the relationship set can contain multiple selectable preset transformation relationships. According to the category of the current original image, the enhancement strength, the amount of computing resources available to the execution subject, etc., the number of relationships and/or the type of relationships to be selected are determined, so as to select the corresponding preset transformation relationship from the relationship set according to the number of relationships and/or the type of relationships.
在一些实施方式中,在执行上述步骤之前,还需要对原始图像进行预处理,如图像裁剪、图像降噪、像素归一化等预处理。In some implementations, before executing the above steps, the original image needs to be preprocessed, such as image cropping, image denoising, pixel normalization, etc.
步骤S220:对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像。Step S220: performing definite integral operations on a plurality of preset transformation relations, and using the plurality of definite integral formulas obtained by calculation to calculate a definite integral image corresponding to the original image.
示例性地,假设预处理后的原始图像表示为,对应的多个预设变换关系式包括,则对预设变换关系式进行定积分运算可以表示为下述公式1:For example, assume that the original image after preprocessing is represented as , the corresponding multiple preset transformation relations include , then the definite integral operation of the preset transformation relationship can be expressed as the following formula 1:
(公式1) (Formula 1)
其中,i的取值为1到m的整数,为计算得到的定积分公式。The value of i is an integer from 1 to m. is the calculated definite integral formula.
通过上述公式1计算得到的定积分公式,对预处理后的原始图像中的像素进行映射计算,得到多个定积分图像,定积分图像可以记为。The definite integral formula calculated by the above formula 1 is used to map the pixels in the preprocessed original image to obtain multiple definite integral images. The definite integral images can be recorded as .
步骤S230:基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像。Step S230: performing weighted filtering processing on the plurality of transformed images based on pixel weight values to obtain a plurality of weighted filtered images.
另外,根据像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像。其中,可以采用均值滤波、高斯滤波、双边滤波等分别对多个变换图像进行加权滤波处理。In addition, weighted filtering is performed on the plurality of transformed images according to pixel weight values to obtain a plurality of weighted filtered images, wherein the weighted filtering can be performed on the plurality of transformed images by using mean filtering, Gaussian filtering, bilateral filtering, etc.
例如,以均值滤波为例,获取预处理后的原始图像中的每个像素对应的像素权重值,得到权重图,权重图表示为,假设变换图像为,则对该变换图像进行加权滤波处理可以参见下述公式2:For example, taking mean filtering as an example, obtain the original image after preprocessing The pixel weight value corresponding to each pixel in the image is obtained, and the weight map is expressed as , assuming the transformed image is , then the weighted filtering process for the transformed image can refer to the following formula 2:
(公式2) (Formula 2)
其中,是指对应的加权滤波图像,i的取值为1到m的整数,m为变换图像的数量,为滤波范围。其中,用于控制图像增强的局部性,越大,图像增强越趋向于全局,图像增强的对比度效果较差,但更不容易出现黑白边,越小,图像增强越趋向于局部,图像的纹理细节更加凸显,但容易出现黑白边,因此,可以根据当前原始图像的类别、尺寸、增强强度等,确定的值。in, means The corresponding weighted filtered image, i is an integer from 1 to m, m is the number of transformed images, is the filtering range. Used to control the locality of image enhancement, The larger the value, the more the image enhancement tends to be global, the contrast effect of image enhancement is poor, but it is less likely to have black and white edges. The smaller the value, the more local the image enhancement tends to be, and the texture details of the image are more prominent, but black and white edges are prone to appear. Therefore, the value can be determined based on the category, size, enhancement strength, etc. of the current original image. The value of .
步骤S240:利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像。Step S240: using a plurality of weighted filter images to perform weighted fusion processing on a plurality of definite integral images to obtain an enhanced image.
将加权滤波图像作为其关联的定积分图像的权重,以对多个定积分图像进行加权融合处理,以得到增强图像。The weighted filtered image is used as the weight of its associated definite integral image to perform weighted fusion processing on multiple definite integral images to obtain an enhanced image.
本申请使用积分的形式,将一个离散的图像进行连续化处理,使得增强后的图像的对比度不突兀,避免图像失真,提高图像增强效果。The present application uses the form of integration to process a discrete image continuously, so that the contrast of the enhanced image is not abrupt, image distortion is avoided, and the image enhancement effect is improved.
接下来对本申请的部分实施例进行详细说明。Next, some embodiments of the present application are described in detail.
在一些实施方式中,多个预设变换关系式包括多个递推的拉盖尔多项式;步骤S210中利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像,包括:利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像。In some embodiments, the plurality of preset transformation relationships include a plurality of recursive Laguerre polynomials; in step S210, the pixel values in the original image are transformed respectively using the plurality of preset transformation relationships to obtain a plurality of transformed images, including: the pixel values in the original image are transformed respectively using the plurality of recursive Laguerre polynomials to obtain a plurality of transformed images.
可选地,在利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换之前,对原始图像中的像素值进行归一化处理,得到归一化图像。然后,利用多个递推的拉盖尔多项式分别对归一化图像中的像素值进行变换,得到多个变换图像。Optionally, before using multiple recursive Laguerre polynomials to transform the pixel values in the original image respectively, the pixel values in the original image are normalized to obtain a normalized image. Then, using multiple recursive Laguerre polynomials to transform the pixel values in the normalized image respectively, a plurality of transformed images are obtained.
具体地,将原始图像中的像素值映射至[0,1]区间,以实现归一化处理,相关公式可以参见下述公式3:Specifically, the pixel values in the original image are mapped to the interval [0, 1] to achieve normalization processing. The relevant formula can be found in the following formula 3:
(公式3) (Formula 3)
其中,为归一化处理后的归一化图像,I为原始图像中任一像素的像素值,M为原始图像的位数,M的值为8、10、12等。in, is the normalized image after normalization processing, I is the pixel value of any pixel in the original image, M is the number of bits of the original image, and the value of M is 8, 10, 12, etc.
例如,针对8bit的原始图像,其像素值的取值为256个,从0到255,对原始图像的各个像素进行归一化处理后,像素值的范围为0到1,如128对应0.5。For example, for an 8-bit original image, the pixel value ranges from 256, from 0 to 255. After normalizing each pixel of the original image, the pixel value ranges from 0 to 1, such as 128 corresponds to 0.5.
由于拉盖尔多项式在非负数域具有正交性,以及为了统一化不同位宽的图像处理,因此,对预先对原始图像进行归一化处理。Since Laguerre polynomials are orthogonal in the non-negative number domain, and in order to unify the image processing of different bit widths, the original image is normalized in advance.
然后,利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像。Then, the pixel values in the original image are transformed respectively using a plurality of recursive Laguerre polynomials to obtain a plurality of transformed images.
举例说明,使用9级拉盖尔多项式,具体包括:For example, using the 9th degree Laguerre polynomial, specifically including:
其中,x为输入值,即对应上述得到的归一化图像。Among them, x is the input value, which corresponds to the normalized image obtained above .
通过上述各个拉盖尔多项式,分别计算得到多个变换图像,变换图像包括、、...、。Through the above-mentioned Laguerre polynomials, multiple transformation images are calculated respectively, and the transformation images include , ,..., .
当然,还可以选择更多的拉盖尔多项式,本申请对此不进行限定。Of course, more Laguerre polynomials may be selected, and this application does not limit this.
在一些实施方式中,考虑到直接使用拉盖尔多项式进行计算导致计算量较大,可以使用递推式拉盖尔多项式进行计算,递推式拉盖尔多项式的公式表示为下述公式4:In some embodiments, considering that directly using the Laguerre polynomial for calculation results in a large amount of calculation, a recursive Laguerre polynomial may be used for calculation. The formula of the recursive Laguerre polynomial is expressed as the following formula 4:
(公式4) (Formula 4)
其中,x为输入值,即对应上述得到的归一化图像;n为公式等级,其取值为0、1、2....等,具体取值可以根据实际情况灵活设定。Among them, x is the input value, which corresponds to the normalized image obtained above ; n is the formula level, and its value can be 0, 1, 2, etc. The specific value can be flexibly set according to actual conditions.
通过递推式拉盖尔多项式依次计算得到多个变换图像。Multiple transformation images are obtained by sequentially calculating the recursive Laguerre polynomials.
在一些实施方式中,为了进一步减少计算量,针对每个拉盖尔多项式分别预存有像素值映射表,像素值映射表用于存储不同像素值经过对应的拉盖尔多项式变换后得到的像素值;利用多个递推的拉盖尔多项式分别对原始图像中的像素值进行变换,得到多个变换图像,包括:获取每个拉盖尔多项式对应的像素值映射表;利用每个像素值映射表分别对原始图像中的像素值进行变换,得到多个变换图像。In some embodiments, in order to further reduce the amount of calculation, a pixel value mapping table is pre-stored for each Laguerre polynomial, and the pixel value mapping table is used to store pixel values obtained after different pixel values are transformed by the corresponding Laguerre polynomial; multiple recursive Laguerre polynomials are used to transform the pixel values in the original image to obtain multiple transformed images, including: obtaining the pixel value mapping table corresponding to each Laguerre polynomial; using each pixel value mapping table to transform the pixel values in the original image to obtain multiple transformed images.
例如,针对8bit的原始图像,其像素值的取值为256个,计算256个像素值分别基于到的拉盖尔多项式变换后的数值,由于的值均为1,因此只需要计算到的数值,得到每个拉盖尔多项式对应的像素值映射表,每个像素值映射表的长度是256。在计算每个拉盖尔多项式对应的变换图像时,获取每个拉盖尔多项式对应的像素值映射表,根据每个像素值映射表进行像素值查询,得到多个变换图像。For example, for an 8-bit original image, the number of pixel values is 256. The calculation of 256 pixel values is based on arrive The value after the Laguerre polynomial transformation, due to The value of is 1, so we only need to calculate arrive The pixel value mapping table corresponding to each Laguerre polynomial is obtained by using the value of , and the length of each pixel value mapping table is 256. When calculating the transformed image corresponding to each Laguerre polynomial, the pixel value mapping table corresponding to each Laguerre polynomial is obtained, and the pixel value is queried according to each pixel value mapping table to obtain multiple transformed images.
可选地,可以根据执行主体的可使用存储资源确定变换图像的计算方式。例如,查询执行主体的可使用存储资源,若可使用存储资源大于预设存储资源阈值,则将每个拉盖尔多项式对应的像素值映射表发送至执行主体进行存储,以在后续根据像素值映射表生成变换图像;若可使用存储资源不大于预设存储资源阈值,则利用公式4生成变换图像。Optionally, the calculation method of the transformed image can be determined according to the available storage resources of the execution subject. For example, the available storage resources of the execution subject are queried, and if the available storage resources are greater than a preset storage resource threshold, the pixel value mapping table corresponding to each Laguerre polynomial is sent to the execution subject for storage, so that the transformed image can be generated according to the pixel value mapping table later; if the available storage resources are not greater than the preset storage resource threshold, the transformed image is generated using Formula 4.
在一些实施方式中,步骤S220中对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算所述原始图像对应的定积分图像,包括:确定在递推次序中相邻的拉盖尔多项式,得到相邻的多项式对;对多项式对进行减法运算,得到多个定积分公式;利用多个定积分公式,分别计算得到原始图像对应的定积分图像。In some embodiments, in step S220, definite integral operations are performed on multiple preset transformation relationships, and the definite integral images corresponding to the original image are calculated using the multiple definite integral formulas obtained, including: determining adjacent Laguerre polynomials in a recursive order to obtain adjacent polynomial pairs; performing subtraction operations on the polynomial pairs to obtain multiple definite integral formulas; and using multiple definite integral formulas to respectively calculate the definite integral images corresponding to the original image.
以上述实施例示出的9级拉盖尔多项式为例,计算得到的定积分公式包括:Taking the 9th-order Laguerre polynomial shown in the above embodiment as an example, the calculated definite integral formula includes:
通过上述多个定积分公式,分别计算得到原始图像对应的定积分图像,分别表示为、、...、。Through the above multiple definite integral formulas, the definite integral images corresponding to the original image are calculated respectively, which are expressed as , ,..., .
需要说明的是,预设变换关系式越多,即拉盖尔多项式等级越多,对应的定积分公式等级越多,图像增强效果越好。It should be noted that the more preset transformation relations there are, that is, the more levels of Laguerre polynomials there are, the more levels of corresponding definite integral formulas there are, and the better the image enhancement effect is.
可以根据实际情况灵活确定预设变换关系式的数量,例如,获取原始图像的明亮区域对应的区域关键度,区域关键度可以根据明亮区域的区域面积和/或图像内容的重要程度确定,根据明亮区域对应的区域关键度确定预设变换关系式的数量,如区域关键度越高,则预设变换关系式的数量越大,以平衡图像对比度增强效果和运算资源需求量。The number of preset transformation equations can be flexibly determined according to actual conditions. For example, the regional criticality corresponding to the bright area of the original image is obtained. The regional criticality can be determined according to the regional area of the bright area and/or the importance of the image content. The number of preset transformation equations is determined according to the regional criticality corresponding to the bright area. For example, the higher the regional criticality, the larger the number of preset transformation equations is, so as to balance the image contrast enhancement effect and the computing resource requirement.
当然,还可以预先设定预设变换关系式的数量,如经过实验测得,9级拉盖尔多项式(对应8级定积分公式)为对比度增强效果和且运算资源需求量均较理想的方案。Of course, the number of preset transformation relations can also be preset. For example, it has been experimentally measured that the 9th-order Laguerre polynomial (corresponding to the 8th-order definite integral formula) is an ideal solution for contrast enhancement effect and computing resource requirements.
在得到多个变换图像和定积分图像后,根据像素权重值分别对每个变换图像进行加权滤波处理,得到多个加权滤波图像。After obtaining a plurality of transformed images and definite integral images, weighted filtering is performed on each transformed image according to pixel weight values to obtain a plurality of weighted filtered images.
例如,若变换图像包括、、...、,基于公式2对每个变换图像进行加权滤波处理,得到多个加权滤波图像包括、、...、。For example, if the transformed image includes , ,..., , based on formula 2, each transformed image is weighted filtered to obtain multiple weighted filtered images including , ,..., .
再利用每个加权滤波图像对每个定积分图像进行加权融合处理,得到增强图像。Each weighted filter image is then used to perform weighted fusion processing on each definite integral image to obtain an enhanced image.
示例性地,基于多个加权滤波图像对多个定积分图像进行加权融合处理,得到加权融合图像:分别获取加权融合图像和原始图像的加权权重;利用加权权重,对加权融合图像和所述原始图像进行加权求和,得到增强图像。Exemplarily, a weighted fusion process is performed on a plurality of definite integral images based on a plurality of weighted filter images to obtain a weighted fused image: weighted weights of the weighted fused image and the original image are respectively obtained; and the weighted weights are used to perform a weighted summation on the weighted fused image and the original image to obtain an enhanced image.
具体地,对与同一预设变换关系式关联的加权滤波图像和定积分图像分别进行乘法运算,得到多个加权图像;对多个加权图像进行求和运算,得到加权融合图像。Specifically, multiplication operations are performed on the weighted filter image and the definite integral image associated with the same preset transformation relation to obtain a plurality of weighted images; and a summation operation is performed on the plurality of weighted images to obtain a weighted fusion image.
例如,结合上述实施例,加权滤波图像包括、、...、,定积分图像包括、、...、,根据多个加权滤波图像对多个定积分图像进行加权融合处理的具体实现方式可以参见下述公式5:For example, in combination with the above embodiment, the weighted filtered image includes , ,..., , the definite integral image includes , ,..., , the specific implementation method of weighted fusion processing of multiple definite integral images according to multiple weighted filter images can be referred to the following formula 5:
(公式5) (Formula 5)
其中,Res为加权融合图像;i的取值为1到7的整数;的数值均为1,因此不用和加权计算。Where Res is the weighted fusion image; the value of i is an integer from 1 to 7; The value of is 1, so there is no need to Weighted calculation.
进一步地,若对原始图像存在归一化处理,则需要将加权融合图像中的像素值映射至原始图像的原始像素空间,得到最终的加权融合图像,将最终的加权融合图像和原始图像进行加权求和,得到增强图像。Furthermore, if the original image is normalized, the pixel values in the weighted fusion image need to be mapped to the original pixel space of the original image to obtain the final weighted fusion image, and the final weighted fusion image and the original image are weighted summed to obtain an enhanced image.
具体地,将加权融合图像中的像素值映射至原始图像的原始像素空间可以参见下述公式6:Specifically, mapping the pixel values in the weighted fusion image to the original pixel space of the original image can refer to the following formula 6:
(公式6) (Formula 6)
其中,X为原始图像的位数,为最终的加权融合图像。Where X is the number of bits of the original image, is the final weighted fusion image.
可选地,可以直接将最终的加权融合图像作为增强图像,也可以将最终的加权融合图像和原始图像进行比例融合,得到增强图像。Optionally, the final weighted fusion image may be directly used as the enhanced image, or the final weighted fusion image and the original image may be proportionally fused to obtain the enhanced image.
举例说明,对最终的加权融合图像和原始图像进行比例融合可以参见下述公式7:For example, the ratio fusion of the final weighted fusion image and the original image can be referred to the following formula 7:
(公式7) (Formula 7)
其中,Ide为增强图像;为加权权重。的取值为0到1,越大,增强图像Ide越趋向于原始图像I,增强强度越弱;越小,增强图像Ide越趋向于加权融合图像,增强强度越强。Among them, Ide is the enhanced image; is the weighted weight. The value of is between 0 and 1. The larger it is, the closer the enhanced image Ide is to the original image I, and the weaker the enhancement strength is. The smaller it is, the more the enhanced image Ide tends to be the weighted fusion image , the stronger the enhancement.
的值可以是预先设定的,也可以是灵活计算的。 The value can be pre-set or flexibly calculated.
例如,基于原始图像的明亮区域对应的区域关键度和/或预设变换关系式的数量,确定的值。明亮区域对应的区域关键度越高,则表明原始图像对应的图像对比度增强需求越高,且预设变换关系式的数量越多,则的越小,以保证关键区域的图像增强效果。For example, based on the region keyness corresponding to the bright region of the original image and/or the number of preset transformation relations, determine The higher the regional criticality corresponding to the bright area, the higher the image contrast enhancement requirement corresponding to the original image, and the more the number of preset transformation relations, the higher the The smaller the value, the better to ensure the image enhancement effect in the key area.
在一些实施方式中,请参阅图3,图3为本申请的另一示例性实施例示出的图像增强方法的流程图,如图3所示,对原始图像进行像素归一化处理,然后利用拉盖尔多项式计算变换图像,再利用拉盖尔多项式对应的定积分公式计算定积分图像;同时,根据权重查询表获取原始图像中各个像素对应的像素权重值,根据像素权重值对变换图像进行加权滤波处理得到加权滤波图像;进一步地,对定积分图像和加权滤波图像进行加权融合,对加权融合图像中的像素值映射至原始图像的原始像素空间;最后,对加权融合图像和原始图像进行加权求和,得到增强图像。In some embodiments, please refer to Figure 3, which is a flow chart of an image enhancement method shown in another exemplary embodiment of the present application. As shown in Figure 3, the original image is pixel normalized, and then the transformed image is calculated using Laguerre polynomials, and then the definite integral image is calculated using the definite integral formula corresponding to the Laguerre polynomials; at the same time, the pixel weight values corresponding to each pixel in the original image are obtained according to the weight query table, and the transformed image is weighted filtered according to the pixel weight values to obtain a weighted filtered image; further, the definite integral image and the weighted filtered image are weighted fused, and the pixel values in the weighted fused image are mapped to the original pixel space of the original image; finally, the weighted fused image and the original image are weighted summed to obtain an enhanced image.
本申请提供的图像增强方法,通过获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;以及,基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像,可以将一个离散的图像进行连续化处理,使得增强后的图像的对比度不突兀,避免图像失真,提高图像增强效果。The image enhancement method provided by the present application obtains an original image and a pixel weight value corresponding to each pixel in the original image, and uses a plurality of preset transformation relationships to transform the pixel values in the original image respectively to obtain a plurality of transformed images; performs definite integral operations on the plurality of preset transformation relationships, and uses the plurality of calculated definite integral formulas to calculate the definite integral images corresponding to the original image; and, based on the pixel weight values, performs weighted filtering processing on the plurality of transformed images respectively to obtain a plurality of weighted filtered images; and uses the plurality of weighted filtered images to perform weighted fusion processing on the plurality of definite integral images to obtain an enhanced image. A discrete image can be processed continuously, so that the contrast of the enhanced image is not abrupt, image distortion is avoided, and the image enhancement effect is improved.
图4是本申请的一示例性实施例示出的图像增强装置的框图。如图4所示,该示例性的图像增强装置400包括:权重获取及像素变换模块410、定积分计算模块420、加权滤波模块430和加权融合模块440。具体地:FIG4 is a block diagram of an image enhancement device shown in an exemplary embodiment of the present application. As shown in FIG4 , the exemplary image enhancement device 400 includes: a weight acquisition and pixel transformation module 410, a definite integral calculation module 420, a weighted filtering module 430 and a weighted fusion module 440. Specifically:
权重获取及像素变换模块410,用于获取原始图像和原始图像中各个像素对应的像素权重值,并利用多个预设变换关系式分别对原始图像中的像素值进行变换,得到多个变换图像;The weight acquisition and pixel transformation module 410 is used to acquire the original image and the pixel weight values corresponding to each pixel in the original image, and transform the pixel values in the original image respectively using a plurality of preset transformation relations to obtain a plurality of transformed images;
定积分计算模块420,用于对多个预设变换关系式进行定积分运算,利用计算得到的多个定积分公式计算原始图像对应的定积分图像;The definite integral calculation module 420 is used to perform definite integral operations on a plurality of preset transformation relations, and calculate a definite integral image corresponding to the original image using the calculated plurality of definite integral formulas;
加权滤波模块430,用于基于像素权重值分别对多个变换图像进行加权滤波处理,得到多个加权滤波图像;A weighted filtering module 430 is used to perform weighted filtering processing on the multiple transformed images based on pixel weight values to obtain multiple weighted filtered images;
加权融合模块440,用于利用多个加权滤波图像对多个定积分图像进行加权融合处理,得到增强图像。The weighted fusion module 440 is used to perform weighted fusion processing on multiple definite integral images using multiple weighted filter images to obtain an enhanced image.
需要说明的是,上述实施例所提供的图像增强装置与上述实施例所提供的图像增强方法属于同一构思,其中各个模块和单元执行操作的具体方式已经在方法实施例中进行了详细描述,此处不再赘述。上述实施例所提供的图像增强装置在实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能,本处不对此进行限制。It should be noted that the image enhancement device provided in the above embodiment and the image enhancement method provided in the above embodiment belong to the same concept, wherein the specific manner in which each module and unit performs the operation has been described in detail in the method embodiment, and will not be repeated here. In practical applications, the image enhancement device provided in the above embodiment can distribute the above functions to different functional modules as needed, that is, divide the internal structure of the device into different functional modules to complete all or part of the functions described above, and this is not limited here.
请参阅图5,图5是本申请电子设备一实施例的结构示意图。电子设备500包括存储器501和处理器502,处理器502用于执行存储器501中存储的程序指令,以实现上述任一图像增强方法实施例中的步骤。在一个具体的实施场景中,电子设备500可以包括但不限于:微型计算机、服务器,此外,电子设备500还可以包括笔记本电脑、平板电脑等移动设备,在此不做限定。Please refer to FIG5 , which is a schematic diagram of the structure of an embodiment of an electronic device of the present application. The electronic device 500 includes a memory 501 and a processor 502, and the processor 502 is used to execute program instructions stored in the memory 501 to implement the steps in any of the above-mentioned image enhancement method embodiments. In a specific implementation scenario, the electronic device 500 may include but is not limited to: a microcomputer, a server, and in addition, the electronic device 500 may also include a mobile device such as a laptop computer and a tablet computer, which is not limited here.
具体而言,处理器502用于控制其自身以及存储器501以实现上述任一图像增强方法实施例中的步骤。处理器502还可以称为中央处理单元(Central Processing Unit,CPU)。处理器502可能是一种集成电路芯片,具有信号的处理能力。处理器502还可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(ApplicationSpecific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。另外,处理器502可以由集成电路芯片共同实现。Specifically, the processor 502 is used to control itself and the memory 501 to implement the steps in any of the above-mentioned image enhancement method embodiments. The processor 502 can also be called a central processing unit (CPU). The processor 502 may be an integrated circuit chip with signal processing capabilities. The processor 502 can also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components. The general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc. In addition, the processor 502 can be implemented by an integrated circuit chip.
请参阅图6,图6是本申请计算机可读存储介质一实施例的结构示意图。计算机可读存储介质600存储有能够被处理器运行的程序指令610,程序指令610用于实现上述任一图像增强方法实施例中的步骤。Please refer to Figure 6, which is a schematic diagram of the structure of an embodiment of a computer-readable storage medium of the present application. The computer-readable storage medium 600 stores program instructions 610 that can be executed by a processor, and the program instructions 610 are used to implement the steps in any of the above-mentioned image enhancement method embodiments.
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。In some embodiments, the functions or modules included in the device provided by the embodiments of the present disclosure can be used to execute the method described in the above method embodiments. The specific implementation can refer to the description of the above method embodiments, and for the sake of brevity, it will not be repeated here.
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。The above description of various embodiments tends to emphasize the differences between the various embodiments. The same or similar aspects can be referenced to each other, and for the sake of brevity, they will not be repeated herein.
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性、机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed methods and devices can be implemented in other ways. For example, the device implementation described above is only schematic. For example, the division of modules or units is only a logical function division. There may be other division methods in actual implementation, such as units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, and the indirect coupling or communication connection of devices or units can be electrical, mechanical or other forms.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, each functional unit in each embodiment of the present application can be integrated into a processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit. The above-mentioned integrated unit can be implemented in the form of hardware or in the form of a software functional unit. If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (processor) to perform all or part of the steps of each implementation method of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), disk or optical disk and other media that can store program code.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411166382.5A CN118674665B (en) | 2024-08-23 | 2024-08-23 | Image enhancement method, device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411166382.5A CN118674665B (en) | 2024-08-23 | 2024-08-23 | Image enhancement method, device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118674665A true CN118674665A (en) | 2024-09-20 |
CN118674665B CN118674665B (en) | 2024-11-29 |
Family
ID=92721466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411166382.5A Active CN118674665B (en) | 2024-08-23 | 2024-08-23 | Image enhancement method, device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118674665B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7787655B1 (en) * | 2003-02-27 | 2010-08-31 | Adobe Systems Incorporated | Sub-pixel image registration |
CN111179181A (en) * | 2019-11-15 | 2020-05-19 | 南京大学 | Image edge enhancement and copying device based on Laguerre Gaussian mode |
CN114429549A (en) * | 2020-10-28 | 2022-05-03 | 北京小米移动软件有限公司 | Image edge extraction method, image edge extraction device and storage medium |
WO2023091230A2 (en) * | 2021-11-18 | 2023-05-25 | University Of Southern California | Multiwavelet-based operator learning for differential equations |
US20230237763A1 (en) * | 2021-12-07 | 2023-07-27 | Contemporary Amperex Technology Co., Limited | Image processing method and system |
CN116630179A (en) * | 2023-04-20 | 2023-08-22 | 浙江大华技术股份有限公司 | Image enhancement method, device and storage medium |
-
2024
- 2024-08-23 CN CN202411166382.5A patent/CN118674665B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7787655B1 (en) * | 2003-02-27 | 2010-08-31 | Adobe Systems Incorporated | Sub-pixel image registration |
CN111179181A (en) * | 2019-11-15 | 2020-05-19 | 南京大学 | Image edge enhancement and copying device based on Laguerre Gaussian mode |
CN111179181B (en) * | 2019-11-15 | 2023-05-09 | 南京大学 | Image edge enhancement and copying device based on Laguerre Gaussian mode |
CN114429549A (en) * | 2020-10-28 | 2022-05-03 | 北京小米移动软件有限公司 | Image edge extraction method, image edge extraction device and storage medium |
WO2023091230A2 (en) * | 2021-11-18 | 2023-05-25 | University Of Southern California | Multiwavelet-based operator learning for differential equations |
US20230237763A1 (en) * | 2021-12-07 | 2023-07-27 | Contemporary Amperex Technology Co., Limited | Image processing method and system |
CN116630179A (en) * | 2023-04-20 | 2023-08-22 | 浙江大华技术股份有限公司 | Image enhancement method, device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN118674665B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108830816B (en) | Image enhancement method and device | |
Poddar et al. | Non‐parametric modified histogram equalisation for contrast enhancement | |
WO2022022154A1 (en) | Facial image processing method and apparatus, and device and storage medium | |
WO2019238029A1 (en) | Convolutional neural network system, and method for quantifying convolutional neural network | |
US10547618B2 (en) | Method and apparatus for setting access privilege, server and storage medium | |
CN114511576B (en) | Scale-adaptive feature-enhanced deep neural network for image segmentation method and system | |
CN112614110B (en) | Method and device for evaluating image quality and terminal equipment | |
CN111652330A (en) | Image processing method, apparatus, system, electronic device and readable storage medium | |
CN113160042B (en) | Image style migration model training method and device and electronic equipment | |
CN110796250A (en) | Convolution processing method and system applied to convolutional neural network and related components | |
CN111757100B (en) | Method and device for determining camera motion variation, electronic equipment and medium | |
CN118674664B (en) | Image enhancement method, device and storage medium | |
CN110489955B (en) | Image processing, device, computing device and medium applied to electronic equipment | |
CN118195925B (en) | Image fusion method, device and storage medium | |
CN108596120B (en) | Target detection method and device based on deep learning | |
CN118674665A (en) | Image enhancement method, device and storage medium | |
WO2021139179A1 (en) | Image sample generation method and apparatus based on local shadow special effect | |
CN111754411B (en) | Image noise reduction method, image noise reduction device and terminal equipment | |
CN112084371A (en) | Film multi-label classification method and device, electronic equipment and storage medium | |
CN112036418A (en) | Method and device for extracting user features | |
CN117423047A (en) | Counting method and device based on characteristic images, electronic equipment and storage medium | |
CN116630179A (en) | Image enhancement method, device and storage medium | |
CN111988597B (en) | Virtual viewpoint synthesis method, apparatus, electronic device and readable storage medium | |
CN114399495A (en) | Calculation method, device, equipment and storage medium for image sharpness | |
WO2021232708A1 (en) | Image processing method and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |