CN118667888A - Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof - Google Patents
Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof Download PDFInfo
- Publication number
- CN118667888A CN118667888A CN202410769504.3A CN202410769504A CN118667888A CN 118667888 A CN118667888 A CN 118667888A CN 202410769504 A CN202410769504 A CN 202410769504A CN 118667888 A CN118667888 A CN 118667888A
- Authority
- CN
- China
- Prior art keywords
- recombinant
- seq
- baculovirus
- ifn
- interferon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/56—IFN-alpha
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6863—Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
- G01N33/6866—Interferon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14111—Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
- C12N2710/14141—Use of virus, viral particle or viral elements as a vector
- C12N2710/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/103—Plasmid DNA for invertebrates
- C12N2800/105—Plasmid DNA for invertebrates for insects
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/555—Interferons [IFN]
- G01N2333/56—IFN-alpha
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/26—Infectious diseases, e.g. generalised sepsis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及分子生物学技术领域,尤其涉及一种杆状病毒表达鸡干扰素重组转移质粒及制备、重组杆粒和应用。The invention relates to the technical field of molecular biology, and in particular to a baculovirus-expressed chicken interferon recombinant transfer plasmid and its preparation, recombinant bacmid and application.
背景技术Background Art
干扰素IFN是机体中重要的细胞调节因子之一,可以提高机体的免疫功能、诱导机体产生多种抗病毒蛋白,尤其是病毒感染的早期发挥重要作用。而且干扰素与传统药物如抗生素等相比,具有不产生耐药性、毒副作用小、见效快和无残留、安全等优点,应用前景广阔。Interferon IFN is one of the important cell regulatory factors in the body. It can improve the body's immune function and induce the body to produce a variety of antiviral proteins, especially playing an important role in the early stages of viral infection. Compared with traditional drugs such as antibiotics, interferon has the advantages of not producing drug resistance, less toxic side effects, quick effect, no residue, and safety, and has broad application prospects.
目前干扰素根据受体特异性、序列同源性和诱导ISG的不同,可将其分为三类:结合IFNαR1和IFNαR2受体的Ⅰ型干扰素,与IFNγR1和IFNγR2受体结合的Ⅱ型干扰素,以及那些与IL-28Rα和IL-10Rβ异二聚体受体结合的Ⅲ型干扰素。其中,Ⅰ型和Ⅲ型干扰素之间在功能和信号转导等方面有很多相似之处。At present, interferons can be divided into three categories according to their receptor specificity, sequence homology and induced ISG: type I interferons that bind to IFNαR1 and IFNαR2 receptors, type II interferons that bind to IFNγR1 and IFNγR2 receptors, and type III interferons that bind to IL-28Rα and IL-10Rβ heterodimer receptors. Among them, type I and type III interferons have many similarities in function and signal transduction.
对于Ⅰ型干扰素而言,哺乳动物的Ⅰ型干扰素成员众多,但在禽类中目前只发现了两种对酸和热稳定的Ⅰ型干扰素:IFN-α和IFN-β,两者血清学有差异。其中,IFN-α与哺乳动物相比,氨基酸序列同源性比较低,约为20%。但是鸡IFN-α的蛋白核心区结构与哺乳动物相比却有80%的相似性,证明其核心功能具有相似性。As for type I interferon, there are many members of mammalian type I interferon, but only two acid- and heat-stable type I interferons have been found in poultry: IFN-α and IFN-β, which have serological differences. Among them, IFN-α has a relatively low amino acid sequence homology with mammals, about 20%. However, the protein core region structure of chicken IFN-α has 80% similarity with that of mammals, proving that their core functions are similar.
禽IFN-α在抗病毒方面起着非常重要的作用,已有研究表明:它对流感病毒(AIV)、传染性法氏囊病病毒(IBDV)、传染性支气管炎病毒(IBV)等病毒都有着良好的抑制作用。Ⅰ型干扰素的抗病毒活性主要通过与IFNαR1和IFNαR2受体结合诱导ISGs来产生,但是由于两者与受体的结合能力不同,导致IFN-α的临床作用明显强于IFN-β。Avian IFN-α plays a very important role in antiviral treatment. Studies have shown that it has a good inhibitory effect on influenza virus (AIV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV) and other viruses. The antiviral activity of type I interferon is mainly produced by inducing ISGs by binding to IFNαR1 and IFNαR2 receptors. However, due to the different binding abilities of the two to the receptors, the clinical effect of IFN-α is significantly stronger than that of IFN-β.
鸡IFN-α在免疫调节过程中能够诱导机体产生免疫蛋白、抑制病毒的复制和扩散。然而,已有传统的鸡干扰素生产方法存在以下缺点:作用效果差、生产周期长、产量低、有效纯度低、活性不稳定等问题,因而导致使用效果较差。本发明对杆状病毒表达鸡干扰素重组转移质粒进行改造、构建,利用杆状病毒表达系统成功地在体外高效获得了可溶性鸡干扰素IFN-α,临床使用后可以有效减少禽流感病毒的复制。Chicken IFN-α can induce the body to produce immune proteins and inhibit the replication and spread of viruses during the immune regulation process. However, the existing traditional chicken interferon production methods have the following disadvantages: poor effect, long production cycle, low yield, low effective purity, unstable activity and other problems, resulting in poor use effect. The present invention transforms and constructs the baculovirus-expressed chicken interferon recombinant transfer plasmid, and successfully obtains soluble chicken interferon IFN-α in vitro using the baculovirus expression system, which can effectively reduce the replication of avian influenza virus after clinical use.
发明内容Summary of the invention
本发明提供了一种杆状病毒表达鸡干扰素重组转移质粒及制备、重组杆粒和应用,针对鸡干扰素核心区序列进行改造获得了优化后鸡IFN-α序列、并构建高效表达重组子,选用双启动子表达重组杆状病毒成功高效表达出IFN-α,有望为可溶性鸡干扰素IFN-α的大规模生产提供新的思路和方法,解决了现有技术中存在的问题。The present invention provides a baculovirus-expressed chicken interferon recombinant transfer plasmid and its preparation, recombinant bacmid and application, transforms the chicken interferon core region sequence to obtain an optimized chicken IFN-α sequence, constructs a high-efficiency expression recombinant, selects a double promoter to express the recombinant baculovirus to successfully and efficiently express IFN-α, and is expected to provide a new idea and method for the large-scale production of soluble chicken interferon IFN-α, solving the problems existing in the prior art.
本发明所采用的技术方案之一是:One of the technical solutions adopted by the present invention is:
提供了一种杆状病毒表达鸡干扰素重组转移质粒,所述重组转移质粒整合了如SEQ ID No.1和SEQ ID No.2所示的两段鸡IFN-α基因,SEQ ID No.1包含蜂素信号肽基因、His标签蛋白基因和终止密码子。Provided is a baculovirus-expressed chicken interferon recombinant transfer plasmid, wherein the recombinant transfer plasmid integrates two chicken IFN-α genes as shown in SEQ ID No. 1 and SEQ ID No. 2, wherein SEQ ID No. 1 comprises a bee pollen signal peptide gene, a His tag protein gene and a stop codon.
进一步地,SEQ ID No.1和SEQ ID No.2由目的基因--鸡IFN-α原序列优化得到,鸡IFN-α原序列如下SEQ ID No.3所示:Furthermore, SEQ ID No.1 and SEQ ID No.2 were obtained by optimizing the original sequence of the target gene, chicken IFN-α. The original sequence of chicken IFN-α is shown in SEQ ID No.3:
SEQ ID No.3:SEQ ID No.3:
CTACGCCTGCAACCACCTTCGCCCCCAGGATGCCACCTTCTCTCACGACAGCCTCCAGCTACGCCTGCAACCACCTTCGCCCCAAGGATGCCACCTTCTCTCACGACAGCCTCCAG
CTCCTCCGGGACATGGCTCCCACACTACCCCAGCTGTGCCCACAGCACAACGCGTCTTCTCCTCCGGGACATGGCTCCCACACTACCCCAGCTGTGCCCACAGCACAACGCGTCTT
GCTCCTTCAACGACACCATCCTGGACACCAGCAACACCCGGCAAGCCGACAAAACCAGCTCCTTCAACGACACCATCCTGGACACCAGCAACACCCGGCAAGCCGACAAAACCA
CCCACGACATCCTTCAGCACCTCTTCAAAATCCTCAGCAGCCCCAGCACTCCAGCCCACCCACGACATCCTTCAGCACCTCTTCAAAATCCTCAGCAGCCCCAGCACTCCAGCCCA
CTGGAACGGCAGCCAACGCCAAAGCCTCCTCAACCGGATCCACCGCTACACCCAGCACTGGAACGGCAGCCAACGCCAAAGCCTCCTCAACCGGATCCACCGCTACACCCAGCA
CCTCGAGCAATGCTTGGACAGCAGCGACACGCGCTCCCGGACGCGGTGGCCTCGCAACCTCGAGCAATGCTTGGACAGCAGCGACACGCGCTCCCGGACGCGGTGGCCTCGCAA
CCTTCACCTCACCATCAAAAAACACTTCAGCTGCCTCCACACCTTCCTCCAAGACAACCCTTCACCTCACCATCAAAAAACACTTCAGCTGCCTCCACACCTTCCTCCAAGACAAC
GATTACAGCGCCTGCGCCTGGGAACACGTCCGCCTGCAAGCTCGTGCCTGGTTCCTGCACATCCACAACCTCACAGGCAACACGCGCACT。GATTACAGCGCCTGCGCCTGGGAACACGTCCGCCTGCAAGCTCGTGCCTGGTTCCTGCACATCCACAACCTCACAGGCAACACGCGCACT.
进一步地,SEQ ID No.1经上述目的基因优化得到,为:Furthermore, SEQ ID No. 1 was obtained by optimizing the above target gene and is:
ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCT蜂素信号肽序列 ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCT bee pollen signal peptide sequence
TGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCCACGACTCCCTGCAGCTGCTGCTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCCACGACTCCCTGCAGCTGCTGC
GCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTCCTTGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTCCTT
CAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGA
CATCCTGCAGCACCTGTTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAACCATCCTGCAGCACCTGTTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAAC
GGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCCACCGCTACACCCAGCACCTGGAAGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCCACCGCTACACCCAGCACCTGGAA
CAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCTGCACCAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCTGCAC
CTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACACTGACCATCAAGAAGCACTTCTCCTGCCTGCACAACCTTCCTGCAGGACAACGACTACA
GCGCCTGCGCTTGGGAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACCACCACCATCAC(6X His标签)TAAGCGCCTGCGCTTGGGAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACC CACCACCACCACCATCAC (6X His tag)TAA
SEQ ID No.2(SEQ ID No.1的反向互补)为:SEQ ID No.2 (the reverse complement of SEQ ID No.1) is:
TTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAACCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCGCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGGCAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCAGGCACTGTTCCAGGTGCTGGGTGTAGCGGTGGATGCGGTTCAGCAGGCTTTGGCGCTGGGAGCCGTTCCAGTGGGCGGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTGTTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAGCCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGATGTAGGAGATGTACACGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCAT。TTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAACCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGGCAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCAGGCACTGTTCCAGGTGCTGGGTGTAGCGGTGGA TGCGGTTCAGCAGGCTTTGGCGCTGGGAGCCGTTCCAGTG GGCGGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTGTTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAGCCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGATGTAGGAGATGTACA CGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCAT.
进一步地,所述的杆状病毒表达鸡干扰素重组转移质粒的构建,是将如SEQ IDNo.1和SEQ ID No.2所示的鸡IFN-α基因同时构建至质粒pFastBac-Dual载体的克隆位点:BamHI--HindIII和XhoI--KpnI之间制得重组质粒。Furthermore, the construction of the baculovirus-expressed chicken interferon recombinant transfer plasmid is to simultaneously construct the chicken IFN-α genes shown in SEQ ID No. 1 and SEQ ID No. 2 into the cloning sites of the plasmid pFastBac-Dual vector: between BamHI--HindIII and XhoI--KpnI to obtain a recombinant plasmid.
进一步地,所述重组转移质粒命名为pFastBac Dual-DBL-IFN-α。Furthermore, the recombinant transfer plasmid was named pFastBac Dual-DBL-IFN-α.
进一步地,最终构建的重组转移质粒全序列如SEQ ID No.4所示。Furthermore, the complete sequence of the recombinant transfer plasmid finally constructed is shown in SEQ ID No.4.
SEQ ID No.4:SEQ ID No.4:
aaagtagccgaagatgacggtttgtcacatggagttggcaggatgtttgattaaaaacataacaggaagaaaaatgccccgctgtgggcggacaaaatagttgggaactgggaggggtggaaatggagtttttaaggattatttagggaagagtgacaaaatagatgggaactgggtgtagcgtcgtaagctaatacgaaaattaaaaatgacaaaatagtttggaactagatttcacttatctggttcggatctcctaggctcaagcagtgatcagatccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtatggctgattatgatcctctagtacttctcgacaagcttTTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAA CCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCGCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGG CAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCA GGCACTGTTCCAGGTGCTGGGTGTAGCGGTGGATGCGGTTCAGCAGGCTTTGGCGCTGGGAGCCGTTCCAGTGGGC GGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTG TTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAG CCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGAT GTAGGAGATGTACACGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCATggatcccgcgcccgatggtgggacggtatgaataatccggaatatttataggtttttttattacaaaactgttacgaaaacagtaaaatacttatttatttgcgagatggttatcattttaattatctccatgatctattaatattccggagtatacggacctttaattcaacccaacacaatatattatagttaaataagaattattatcaaatcatttgtatattaattaaaatactatactgtaaattacattttatttacaatcactcgacgaagacttgatcacccgggatctcgagATGAAGTTCCTGGTGAACGTGGCC CTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCTTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCC ACGACTCCCTGCAGCTGCTGCGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTC CTTCAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACATCCTGCAGCACCTG TTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAACGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCC ACCGCTACACCCAGCACCTGGAACAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCT GCACCTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACAGCGCCTGCGCTTGG GAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACC ACCACCATCACTAAggtaccgggagatgggggaggctaactgaaacacggaaggagacaataccggaaggaacccgcgctatgacggcaataaaaagacagaataaaacgcacgggtgttgggtcgtttgttcataaacgcggggttcggtcccagggctggcactctgtcgataccccaccgagaccccattgggaccaatacgcccgcgtttcttccttttccccaccccaacccccaagttcgggtgaaggcccagggctcgcagccaacgtcggggcggcaagccctgccatagccactacgggtacgtaggccaaccactagaactatagctagagtcctgggcgaacaaacgatgctcgccttccagaaaaccgaggatgcgaaccacttcatccggggtcagcaccaccggcaagcgccgcgacggccgaggtctaccgatctcctgaagccagggcagatccgtgcacagcaccttgccgtagaagaacagcaaggccgccaatgcctgacgatgcgtggagaccgaaaccttgcgctcgttcgccagccaggacagaaatgcctcgacttcgctgctgcccaaggttgccgggtgacgcacaccgtggaaacggatgaaggcacgaacccagttgacataagcctgttcggttcgtaaactgtaatgcaagtagcgtatgcgctcacgcaactggtccagaaccttgaccgaacgcagcggtggtaacggcgcagtggcggttttcatggcttgttatgactgtttttttgtacagtctatgcctcgggcatccaagcagcaagcgcgttacgccgtgggtcgatgtttgatgttatggagcagcaacgatgttacgcagcagcaacgatgttacgcagcagggcagtcgccctaaaacaaagttaggtggctcaagtatgggcatcattcgcacatgtaggctcggccctgaccaagtcaaatccatgcgggctgctcttgatcttttcggtcgtgagttcggagacgtagccacctactcccaacatcagccggactccgattacctcgggaacttgctccgtagtaagacattcatcgcgcttgctgccttcgaccaagaagcggttgttggcgctctcgcggcttacgttctgcccaggtttgagcagccgcgtagtgagatctatatctatgatctcgcagtctccggcgagcaccggaggcagggcattgccaccgcgctcatcaatctcctcaagcatgaggccaacgcgcttggtgcttatgtgatctacgtgcaagcagattacggtgacgatcccgcagtggctctctatacaaagttgggcatacgggaagaagtgatgcactttgatatcgacccaagtaccgccacctaacaattcgttcaagccgagatcggcttcccggccgcggagttgttcggtaaattgtcacaacgccgcgaatatagtctttaccatgcccttggccacgcccctctttaatacgacgggcaatttgcacttcagaaaatgaagagtttgctttagccataacaaaagtccagtatgctttttcacagcataactggactgatttcagtttacaactattctgtctagtttaagactttattgtcatagtttagatctattttgttcagtttaagactttattgtccgcccacacccgcttacgcagggcatccatttattactcaaccgtaaccgattttgccaggttacgcggctggtctgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgaaattgtaaacgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaaatcggaaccctaaagggagcccccgatttagagcttgacggggaaagccggcgaacgtggcgagaaaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccattcaggctgcaaataagcgttgatattcagtcaattacaaacattaataacgaagagatgacagaaaaattttcattctgtgacagagaa。 TTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAA CCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGG CAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCA GGCACTGTTCCAGGTGCTGGGTGTAGCGGTGG ATGCGGTTCAGCAGGCTTTGGCTGGGAGCCGTTCCAGTGGGC GGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTG TTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAG CCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGAT GTAGGAGATGTACACGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCAT ggatcccgcgcccgatggtgggacggtatgaataatccggaatatttataggtttttttattacaaaactgttacgaaaacagtaaaatacttatttattt gcgagatggttatcattttaattatctccatgatctattaatattccggagtatacggacctttaattcaacccaacaatatattatagttaaataagaattattatcaaatcatttgtatattaattaaaatactatactgtaaattacattttatttacaatcactcgacgaagacttgatcacccgggatctcgag ATGAAGTTCCTGGTGAACGTGGCC CTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCTTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCC ACGACTCCCTGCAGCTGCTGCGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTC CTTCAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACATCCTGCAGCACCTG TTCAAGATCCTGTCCAGCCCTCCACTCCCGCCCACTG GAACGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCC ACCGCTACACCCAGCACCTGGAACAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCT GCACCTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACAGCGCCTGCGCTTGG GAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACCACCACCATCACTAA .
进一步地,所述蜂素信号肽基因的核苷酸序列如SEQ ID No.5所示:Furthermore, the nucleotide sequence of the bee pollen signal peptide gene is shown in SEQ ID No.5:
ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTA CGCT;所述His标签蛋白基因序列如SEQ ID No.6所示:CACCACCACCACCATCAC。ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTA CGCT; the His tag protein gene sequence is shown in SEQ ID No.6: CACCACCACCACCATCAC.
本发明所采用的技术方案之二是:The second technical solution adopted by the present invention is:
提供了一种重组杆粒,将如前所述的杆状病毒表达鸡干扰素重组转移质粒转化大肠杆菌DH5α感受态细胞,得到的质粒DNA并鉴定正确后,继续转化DH10Bac感受态细胞得到重组杆粒rBacmid-double IFN-α。A recombinant bacmid is provided. The baculovirus-expressed chicken interferon recombinant transfer plasmid as described above is transformed into Escherichia coli DH5α competent cells. After the obtained plasmid DNA is correctly identified, it is further transformed into DH10Bac competent cells to obtain the recombinant bacmid rBacmid-double IFN-α.
进一步地,转化DH10Bac感受态细胞操作时,比例为50μL感受态:1μL质粒。Furthermore, when transforming DH10Bac competent cells, the ratio was 50 μL competent cells: 1 μL plasmid.
本发明所采用的技术方案之三是:The third technical solution adopted by the present invention is:
提供了上述重组杆粒的应用,包括如下步骤:Provided is a method for applying the above-mentioned recombinant bacmid, comprising the following steps:
(1)将重组杆粒rBacmid-double IFN-α转染sf9细胞得到重组杆状病毒;(1) Transfecting sf9 cells with the recombinant bacmid rBacmid-double IFN-α to obtain recombinant baculovirus;
(2)对获得的重组杆状病毒进行纯化;(2) purifying the obtained recombinant baculovirus;
(3)纯化的重组杆状病毒感染大量sf9细胞以纯化获得重组蛋白,得到重组干扰素。(3) The purified recombinant baculovirus is used to infect a large number of sf9 cells to purify the recombinant protein and obtain recombinant interferon.
进一步地,所述重组干扰素用于制备抗H9N2 AIV病毒感染的制剂。Furthermore, the recombinant interferon is used to prepare a preparation for resisting H9N2 AIV virus infection.
进一步地,所述抗H9N2 AIV病毒感染的制剂为亚单位疫苗。Furthermore, the preparation for resisting H9N2 AIV virus infection is a subunit vaccine.
进一步地,所述重组干扰素抗病毒活性为5.0×106U/ml。Furthermore, the antiviral activity of the recombinant interferon is 5.0×10 6 U/ml.
进一步地,所述重组干扰素用于制备检测H9N2 AIV病毒感染的产品。Furthermore, the recombinant interferon is used to prepare a product for detecting H9N2 AIV virus infection.
进一步地,所述检测H9N2 AIV病毒感染的产品为荧光定量试剂盒。Furthermore, the product for detecting H9N2 AIV virus infection is a fluorescence quantitative kit.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明通过利用昆虫细胞-杆状病毒表达系统,同时连接两段鸡IFN-α,并在重组序列前端加上一段蜂素信号肽序列便于其分泌表达,通过优化GC含量、密码子的使用来调控蛋白表达,进而优化了表达产量和质量,突破了以往传统IFN生产使用的瓶颈,获得了临床使用效果优异的可溶性鸡干扰素IFN-α。1. The present invention utilizes an insect cell-baculovirus expression system to simultaneously connect two segments of chicken IFN-α, and adds a beekeeper signal peptide sequence at the front end of the recombinant sequence to facilitate its secretory expression. Protein expression is regulated by optimizing GC content and codon usage, thereby optimizing expression yield and quality, breaking through the bottleneck of traditional IFN production and use, and obtaining soluble chicken interferon IFN-α with excellent clinical use effect.
2、本发明优化得到的两段鸡IFN-α序列,采用pFastBac-Dual载体实现了双倍表达,其与载体和宿主系统具备最佳匹配,相比采用未优化的鸡IFN-α原序列得到的重组质粒,蛋白表达产量可提升15%,且抗H9N2 AIV病毒活性也提升了10%。2. The two segments of chicken IFN-α sequences optimized by the present invention are doubled expressed using the pFastBac-Dual vector, which has the best match with the vector and the host system. Compared with the recombinant plasmid obtained by using the unoptimized chicken IFN-α original sequence, the protein expression yield can be increased by 15%, and the anti-H9N2 AIV virus activity is also increased by 10%.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明重组杆粒的PCR鉴定结果;FIG1 is a PCR identification result of the recombinant bacmid of the present invention;
图2为本发明重组杆状病毒拯救的感染病毒细胞核正常生长细胞对比;FIG2 is a comparison of virus-infected cells rescued by the recombinant baculovirus of the present invention and normal growth cells;
图3为向贴壁sf9细胞接种重组杆状病毒储液后间接免疫荧光鉴定结果;FIG3 is the result of indirect immunofluorescence identification after inoculating the recombinant baculovirus stock solution into adherent sf9 cells;
图4为Western-Blot鉴定重组杆状病毒IFN的表达结果。FIG4 is the result of Western-Blot identification of the expression of recombinant baculovirus IFN.
其中,图1中M:Marker DL2000(从上而下依次2000、1000、750、500、250、100bp);1-4:重组杆粒;5:空载体对照;Among them, in Figure 1, M: Marker DL2000 (2000, 1000, 750, 500, 250, 100 bp from top to bottom); 1-4: recombinant bacmid; 5: empty vector control;
图2中左图为感染病毒的细胞,右图为正常生长细胞;The left picture in Figure 2 shows cells infected with the virus, and the right picture shows normal growing cells;
图3中左图为接种重组杆状病毒的细胞在荧光显微镜下观察到明显的绿色荧光,右图为未感染的空载体细胞未出现荧光;The left picture in Figure 3 shows that cells inoculated with recombinant baculovirus showed obvious green fluorescence under a fluorescence microscope, and the right picture shows that uninfected empty vector cells showed no fluorescence;
图4中1:样品沉淀;2:样品上清;3:空白对照;M:蛋白Marker。In Figure 4, 1: sample precipitate; 2: sample supernatant; 3: blank control; M: protein marker.
具体实施方式DETAILED DESCRIPTION
为能清楚说明本方案的技术特点,下面通过具体实施方式,结合附图,对本发明进行详细阐述。在本发明实施例中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中所涉及的实验方法,检测方法等,若无特别说明,均为现有技术中已有的常规实验方法,检测方法等。In order to clearly illustrate the technical features of this solution, the present invention is described in detail below through specific implementation methods and in combination with the accompanying drawings. In the embodiments of the present invention, unless otherwise specified, all parts and percentages are weight units, and the equipment and raw materials used can be purchased from the market or are commonly used in the art. The experimental methods, detection methods, etc. involved in the following embodiments, unless otherwise specified, are all conventional experimental methods, detection methods, etc. in the prior art.
一、材料与方法1. Materials and Methods
1.1、材料1.1 Materials
1.1.1细胞及载体1.1.1 Cells and vectors
细胞sf9细胞系为山东省农科院家禽研究所保存;大肠杆菌DH5α感受态细胞和DH10Bac感受态细胞购自迈博德生物公司;SPF鸡来源于山东农业科学院家禽研究所SPF鸡实验动物中心。The sf9 cell line was preserved by the Poultry Research Institute of Shandong Academy of Agricultural Sciences; Escherichia coli DH5α competent cells and DH10Bac competent cells were purchased from MyBio Corporation; SPF chickens were from the SPF Chicken Experimental Animal Center of the Poultry Research Institute of Shandong Academy of Agricultural Sciences.
1.1.2试剂及试剂盒1.1.2 Reagents and kits
限制性内切酶、PCR Mix、DL2000/5000DNA Marker、蛋白Marker等购自TaKaRa公司;核酸提取试剂盒购自杭州博日有限公司;转染试剂cellfectin II购自Invitrogen公司;培养基、血清等购自Gibco公司。Restriction endonucleases, PCR Mix, DL2000/5000 DNA Marker, protein Marker, etc. were purchased from TaKaRa; nucleic acid extraction kit was purchased from Hangzhou Biori Co., Ltd.; transfection reagent cellfectin II was purchased from Invitrogen; culture medium, serum, etc. were purchased from Gibco.
1.1.3主要试剂配制1.1.3 Preparation of main reagents
氨苄青霉素(100mg/mL)、卡那霉素(10mg/mL)、四环素(10mg/mL):称量后溶解于足量灭菌水中,最后定容至10mL,用0.22μm滤器过滤除菌后,用避光的1.5mL离心管分装成小份,于-20℃储存。Ampicillin (100 mg/mL), kanamycin (10 mg/mL), and tetracycline (10 mg/mL): Weigh and dissolve in sufficient sterile water, and finally make up to 10 mL. After sterilization by filtering with a 0.22 μm filter, divide into small portions in light-proof 1.5 mL centrifuge tubes and store at -20°C.
X-gal(20mg/mL):50mL离心管中加入二甲基甲酰胺40mL,电子天平称量1g X-gal于离心管中充分混合使其溶解,定容至50mL,用0.22μm滤器过滤除菌后,置于-20℃避光保存。X-gal (20 mg/mL): Add 40 mL of dimethylformamide to a 50 mL centrifuge tube. Use an electronic balance to weigh 1 g of X-gal and mix thoroughly to dissolve it in the centrifuge tube. Make up to 50 mL of the solution. After sterilization by filtering with a 0.22 μm filter, store at -20°C away from light.
IPTG(24mg/mL):电子天平称量IPTG 1.2g,置于50mL离心管中,加入40mL灭菌水充分混合溶解后,定容至50mL,用0.22μm滤器过滤除菌后分装后,于-20℃储存。IPTG (24 mg/mL): Weigh 1.2 g of IPTG using an electronic balance, place in a 50 mL centrifuge tube, add 40 mL of sterile water and mix thoroughly to dissolve, then make up to 50 mL, filter with a 0.22 μm filter for sterilization, aliquot and store at -20°C.
三抗LB培养基:将LB液体培养基经高压灭菌,加入卡那霉素(50μg/mL)、四环素(10μg/mL)和庆大霉素(7μg/mL),放置4℃保存。Triple-antibody LB medium: Sterilize the LB liquid medium by high pressure, add kanamycin (50 μg/mL), tetracycline (10 μg/mL) and gentamicin (7 μg/mL), and store at 4°C.
1.2方法1.2 Methods
1.2.1目的基因的设计、改造1.2.1 Design and modification of target genes
鸡IFN-α原序列:Chicken IFN-α prosequence:
CTACGCCTGCAACCACCTTCGCCCCCAGGATGCCACCTTCTCTCACGACAGCCTCCAGCTACGCCTGCAACCACCTTCGCCCCAAGGATGCCACCTTCTCTCACGACAGCCTCCAG
CTCCTCCGGGACATGGCTCCCACACTACCCCAGCTGTGCCCACAGCACAACGCGTCTTCTCCTCCGGGACATGGCTCCCACACTACCCCAGCTGTGCCCACAGCACAACGCGTCTT
GCTCCTTCAACGACACCATCCTGGACACCAGCAACACCCGGCAAGCCGACAAAACCAGCTCCTTCAACGACACCATCCTGGACACCAGCAACACCCGGCAAGCCGACAAAACCA
CCCACGACATCCTTCAGCACCTCTTCAAAATCCTCAGCAGCCCCAGCACTCCAGCCCACCCACGACATCCTTCAGCACCTCTTCAAAATCCTCAGCAGCCCCAGCACTCCAGCCCA
CTGGAACGGCAGCCAACGCCAAAGCCTCCTCAACCGGATCCACCGCTACACCCAGCACTGGAACGGCAGCCAACGCCAAAGCCTCCTCAACCGGATCCACCGCTACACCCAGCA
CCTCGAGCAATGCTTGGACAGCAGCGACACGCGCTCCCGGACGCGGTGGCCTCGCAACCTCGAGCAATGCTTGGACAGCAGCGACACGCGCTCCCGGACGCGGTGGCCTCGCAA
CCTTCACCTCACCATCAAAAAACACTTCAGCTGCCTCCACACCTTCCTCCAAGACAACCCTTCACCTCACCATCAAAAAACACTTCAGCTGCCTCCACACCTTCCTCCAAGACAAC
GATTACAGCGCCTGCGCCTGGGAACACGTCCGCCTGCAAGCTCGTGCCTGGTTCCTGCACATCCACAACCTCACAGGCAACACGCGCACT(SEQ ID No.3)。GATTACAGCGCCTGCGCCTGGGAACACGTCCGCCTGCAAGCTCGTGCCTGGTTCCTGCACATCCACAACCTCACAGGCAACACGCGCACT (SEQ ID No. 3).
在昆虫杆状病毒表达系统中优化序列,命名为pFastBac Dual-DBL-IFN-α,C端-His标签,将优化后序列同时构建到pFastBac-Dual载体的克隆位点:BamHI--HindIII和XhoI--KpnI之间。The sequence was optimized in the insect baculovirus expression system and named pFastBac Dual-DBL-IFN-α, with a C-terminal-His tag, and the optimized sequence was simultaneously constructed into the cloning sites of the pFastBac-Dual vector: between BamHI--HindIII and XhoI--KpnI.
优化的序列如下SEQ ID No.1所示:The optimized sequence is shown in SEQ ID No. 1 below:
SEQ ID No.1:SEQ ID No.1:
ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCT蜂素信号肽序列 ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCT bee pollen signal peptide sequence
TGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCCACGACTCCCTGCAGCTGCTGCTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCCACGACTCCCTGCAGCTGCTGC
GCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTCCTTGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTCCTT
CAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGA
CATCCTGCAGCACCTGTTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAACCATCCTGCAGCACCTGTTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAAC
GGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCCACCGCTACACCCAGCACCTGGAAGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCCACCGCTACACCCAGCACCTGGAA
CAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCTGCACCAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCTGCAC
CTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACACTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACA
GCGCCTGCGCTTGGGAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACCACCACCATCAC(6X His标签)TAAGCGCCTGCGCTTGGGAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACC CACCACCACCACCATCAC (6X His tag)TAA
以上蜂素信号肽序列为:SEQ ID No.5:The above bee pollen signal peptide sequence is: SEQ ID No.5:
ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTA CGCT;6XHis标签序列为:SEQ ID No.6:CACCACCACCACCATCAC。ATGAAGTTCCTGGTGAACGTGGCCCTGGTGTTCATGGTCGTGTACATCTCCTACATCTA CGCT; the 6XHis tag sequence is: SEQ ID No. 6: CACCACCACCACCATCAC.
将上述SEQ ID No.1和其反向互补序列SEQ ID No.2构建至pFastBac-Dual载体的两克隆位点:BamHI--HindIII和XhoI--KpnI之间,最终构建的载体全序列如SEQ ID No.4:The above SEQ ID No.1 and its reverse complementary sequence SEQ ID No.2 were constructed into two cloning sites of pFastBac-Dual vector: between BamHI--HindIII and XhoI--KpnI. The full sequence of the vector finally constructed is shown in SEQ ID No.4:
aaagtagccgaagatgacggtttgtcacatggagttggcaggatgtttgattaaaaacataacaggaagaaaaatgccccgctgtgggcggacaaaatagttgggaactgggaggggtggaaatggagtttttaaggattatttagggaagagtgacaaaatagatgggaactgggtgtagcgtcgtaagctaatacgaaaattaaaaatgacaaaatagtttggaactagatttcacttatctggttcggatctcctaggctcaagcagtgatcagatccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtatggctgattatgatcctctagtacttctcgacaagcttTTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAA CCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCGCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGG CAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCA GGCACTGTTCCAGGTGCTGGGTGTAGCGGTGGATGCGGTTCAGCAGGCTTTGGCGCTGGGAGCCGTTCCAGTGGGC GGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTG TTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAG CCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGAT GTAGGAGATGTACACGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCATggatcccgcgcccgatggtgggacggtatgaataatccggaatatttataggtttttttattacaaaactgttacgaaaacagtaaaatacttatttatttgcgagatggttatcattttaattatctccatgatctattaatattccggagtatacggacctttaattcaacccaacacaatatattatagttaaataagaattattatcaaatcatttgtatattaattaaaatactatactgtaaattacattttatttacaatcactcgacgaagacttgatcacccgggatctcgagATGAAGTTCCTGGTGAACGTGGCC CTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCTTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCC ACGACTCCCTGCAGCTGCTGCGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTC CTTCAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACATCCTGCAGCACCTG TTCAAGATCCTGTCCAGCCCCTCCACTCCCGCCCACTGGAACGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCC ACCGCTACACCCAGCACCTGGAACAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCT GCACCTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACAGCGCCTGCGCTTGG GAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACC ACCACCATCACTAAggtaccgggagatgggggaggctaactgaaacacggaaggagacaataccggaaggaacccgcgctatgacggcaataaaaagacagaataaaacgcacgggtgttgggtcgtttgttcataaacgcggggttcggtcccagggctggcactctgtcgataccccaccgagaccccattgggaccaatacgcccgcgtttcttccttttccccaccccaacccccaagttcgggtgaaggcccagggctcgcagccaacgtcggggcggcaagccctgccatagccactacgggtacgtaggccaaccactagaactatagctagagtcctgggcgaacaaacgatgctcgccttccagaaaaccgaggatgcgaaccacttcatccggggtcagcaccaccggcaagcgccgcgacggccgaggtctaccgatctcctgaagccagggcagatccgtgcacagcaccttgccgtagaagaacagcaaggccgccaatgcctgacgatgcgtggagaccgaaaccttgcgctcgttcgccagccaggacagaaatgcctcgacttcgctgctgcccaaggttgccgggtgacgcacaccgtggaaacggatgaaggcacgaacccagttgacataagcctgttcggttcgtaaactgtaatgcaagtagcgtatgcgctcacgcaactggtccagaaccttgaccgaacgcagcggtggtaacggcgcagtggcggttttcatggcttgttatgactgtttttttgtacagtctatgcctcgggcatccaagcagcaagcgcgttacgccgtgggtcgatgtttgatgttatggagcagcaacgatgttacgcagcagcaacgatgttacgcagcagggcagtcgccctaaaacaaagttaggtggctcaagtatgggcatcattcgcacatgtaggctcggccctgaccaagtcaaatccatgcgggctgctcttgatcttttcggtcgtgagttcggagacgtagccacctactcccaacatcagccggactccgattacctcgggaacttgctccgtagtaagacattcatcgcgcttgctgccttcgaccaagaagcggttgttggcgctctcgcggcttacgttctgcccaggtttgagcagccgcgtagtgagatctatatctatgatctcgcagtctccggcgagcaccggaggcagggcattgccaccgcgctcatcaatctcctcaagcatgaggccaacgcgcttggtgcttatgtgatctacgtgcaagcagattacggtgacgatcccgcagtggctctctatacaaagttgggcatacgggaagaagtgatgcactttgatatcgacccaagtaccgccacctaacaattcgttcaagccgagatcggcttcccggccgcggagttgttcggtaaattgtcacaacgccgcgaatatagtctttaccatgcccttggccacgcccctctttaatacgacgggcaatttgcacttcagaaaatgaagagtttgctttagccataacaaaagtccagtatgctttttcacagcataactggactgatttcagtttacaactattctgtctagtttaagactttattgtcatagtttagatctattttgttcagtttaagactttattgtccgcccacacccgcttacgcagggcatccatttattactcaaccgtaaccgattttgccaggttacgcggctggtctgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgaaattgtaaacgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcgaaaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgaggtgccgtaaagcactaaatcggaaccctaaagggagcccccgatttagagcttgacggggaaagccggcgaacgtggcgagaaaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgccattcaggctgcaaataagcgttgatattcagtcaattacaaacattaataacgaagagatgacagaaaaattttcattctgtgacagagaa。 TTAGTGATGGTGGTGGTGGTGGGTACGAGTGTTGCCGGTCAGGTTGTGGATGTGCAGGAA CCAAGCGCGGGCCTGCAGGCGCACGTGTTCCCAAGCGCAGGCCTGTAGTCGTTGTCCTGCAGGAAGGTGTGCAGG CAGGAGAAGTGCTTCTTGATGGTCAGGTGCAGGTTCCTTGGCCAGCGGGTGCGGGAGCGAGTGTCGGAGGAGTCCA GGCACTGTTCCAGGTGCTGGGTGTAGCGGTGG ATGCGGTTCAGCAGGCTTTGGCTGGGAGCCGTTCCAGTGGGC GGGAGTGGAGGGGCTGGACAGGATCTTGAACAGGTGCTGCAGGATGTCGTGAGTAGTCTTGTCGGCCTGACGAGTG TTGGAGGTGTCCAGGATAGTGTCGTTGAAGGAGCAGCTGGCGTTGTGCTGAGGGCACAGCTGGGGCAGAGTGGGAG CCATGTCGCGCAGCAGCTGCAGGGAGTCGTGGCTGAAAGTAGCGTCCTGGGGACGCAGGTGGTTGCAAGCGTAGAT GTAGGAGATGTACACGACCATGAACACCAGGGCCACGTTCACCAGGAACTTCAT ggatcccgcgcccgatggtgggacggtatgaataatccggaatatttataggtttttttattacaaaactgttacgaaaacagtaaaatacttatttattt gcgagatggttatcattttaattatctccatgatctattaatattccggagtatacggacctttaattcaacccaacaatatattatagttaaataagaattattatcaaatcatttgtatattaattaaaatactatactgtaaattacattttatttacaatcactcgacgaagacttgatcacccgggatctcgag ATGAAGTTCCTGGTGAACGTGGCC CTGGTGTTCATGGTCGTGTACATCTCCTACATCTACGCTTGCAACCACCTGCGTCCCCAGGACGCTACTTTCAGCC ACGACTCCCTGCAGCTGCTGCGCGACATGGCTCCCACTCTGCCCCAGCTGTGCCCTCAGCACAACGCCAGCTGCTC CTTCAACGACACTATCCTGGACACCTCCAACACTCGTCAGGCCGACAAGACTACTCACGACATCCTGCAGCACCTG TTCAAGATCCTGTCCAGCCCTCCACTCCCGCCCACTG GAACGGCTCCCAGCGCCAAAGCCTGCTGAACCGCATCC ACCGCTACACCCAGCACCTGGAACAGTGCCTGGACTCCTCCGACACTCGCTCCCGCACCCGCTGGCCAAGGAACCT GCACCTGACCATCAAGAAGCACTTCTCCTGCCTGCACACCTTCCTGCAGGACAACGACTACAGCGCCTGCGCTTGG GAACACGTGCGCCTGCAGGCCCGCGCTTGGTTCCTGCACATCCACAACCTGACCGGCAACACTCGTACCCACCACCACCACCATCACTAA .
1.2.2重组杆粒的构建1.2.2 Construction of recombinant bacmid
将前述构建的pFastBac Dual-DBL-IFN-α克隆转化到DH5α感受态细胞:具体操作如下:Transform the pFastBac Dual-DBL-IFN-α clone constructed above into DH5α competent cells: The specific steps are as follows:
将DH5α感受态细胞从-80℃冰箱取出至于冰上,待菌体处于冰水混合物状态时迅速加入,置于冰上25min,42℃水浴45s,于冰上静置2min,于超净台中加入700uL不含抗生素的LB培养基混匀,在37℃摇床200rpm复苏1h。5000rpm离心1min,弃600uL上清,菌体轻轻吹散后涂于氨苄抗性的LB平板上,在37℃培养箱倒置培养过夜。挑取单克隆菌落接种到5mL含氨苄抗性的LB培养基中,在37℃摇床震荡培养8-12h。按质粒小量提取试剂盒说明书提取质粒,用50uL洗脱液获得质粒DNA,部分送去测序,余下-20℃保存。Take the DH5α competent cells out of the -80℃ refrigerator and place them on ice. When the bacteria are in an ice-water mixture, add them quickly, place them on ice for 25 minutes, place them in a 42℃ water bath for 45 seconds, and place them on ice for 2 minutes. Add 700uL of LB medium without antibiotics to the clean bench and mix them well. Resuscitate them at 200rpm at 37℃ for 1 hour. Centrifuge at 5000rpm for 1 minute, discard 600uL of supernatant, blow the bacteria gently and apply them on the ampicillin-resistant LB plate, and incubate them inverted in a 37℃ incubator overnight. Pick a monoclonal colony and inoculate it into 5mL of LB medium containing ampicillin resistance, and shake and culture it at 37℃ for 8-12 hours. Extract the plasmid according to the instructions of the plasmid small-scale extraction kit, use 50uL of elution buffer to obtain plasmid DNA, send part of it for sequencing, and store the rest at -20℃.
将鉴定正确的重组质粒转化DH10Bac感受态,比例为50μL感受态:1μL质粒。步骤同上述转化DH5α,将转化完毕的DH10Bac加入500μLSOC无抗液体培养基,避光摇菌6h。5000rpm离心1min,弃掉400μL上清液,将剩余的菌体重悬,用SOC培养基倍比稀释后,分别涂布蓝白斑筛选平板数个,于37℃恒温培养箱倒置培养48h,选择3-5个分得最开、长的较大的白色单克隆菌落,再做1次分区划线分离纯化,以便获得纯净的白色菌落。挑取白色菌斑于相同抗性的液体培养基中,37℃震荡培养16h,提取菌液中的重组杆粒并命名为rBacmid-doubleIFN-α。杆粒小提试剂盒提取重组杆粒,加入50μL ddH2O溶解,-20℃存放。The correctly identified recombinant plasmid was transformed into DH10Bac competent cells, with a ratio of 50 μL competent cells: 1 μL plasmid. The steps are the same as those for transforming DH5α. The transformed DH10Bac was added to 500 μL SOC non-antibiotic liquid medium and shaken for 6 hours in the dark. Centrifuge at 5000 rpm for 1 minute, discard 400 μL of supernatant, resuspend the remaining bacteria, dilute with SOC medium in multiple ratios, and spread on several blue-white screening plates, incubate in a 37°C constant temperature incubator for 48 hours, select 3-5 white monoclonal colonies that are the most open and long, and perform another partitioning and streaking separation and purification to obtain pure white colonies. Pick the white plaques and place them in a liquid medium with the same resistance, shake and culture at 37°C for 16 hours, extract the recombinant bacmid in the bacterial solution and name it rBacmid-doubleIFN-α. Extract the recombinant bacmid using the bacmid extraction kit, add 50 μL ddH 2 O to dissolve, and store at -20°C.
使用前,将重组杆粒浓度调整为103ng/μL,并用PCR鉴定重组杆粒是否构建成功。检测引物:F-5,AGGATGTCGTGAGTAGTCTT 3,,R-5,GTTCATGGTCGTGTACATCT 3,,片段长度213bp。反应体系:2×Premix Taq buffer(Dye Plus)25μL,重组杆粒0.5μL,F/R Primer各0.2μM,灭菌水补至50μL。Before use, adjust the concentration of the recombinant bacmid to 10 3 ng/μL, and use PCR to identify whether the recombinant bacmid is successfully constructed. Detection primers: F-5, AGGATGTCGTGAGTAGTCTT 3,, R-5, GTTCATGGTCGTGTACATCT 3,, fragment length 213bp. Reaction system: 2×Premix Taq buffer (Dye Plus) 25μL, recombinant bacmid 0.5μL, F/R Primer 0.2μM each, and sterile water to 50μL.
反应条件如下:98℃3min,98℃10sec、55℃30sec、72℃30sec,35个循环,72℃2min。反应结束后进行1%浓度琼脂糖凝胶电泳,紫外下观察扩增结果。The reaction conditions were as follows: 98°C for 3 min, 98°C for 10 sec, 55°C for 30 sec, 72°C for 30 sec, 35 cycles, and 72°C for 2 min. After the reaction, 1% agarose gel electrophoresis was performed and the amplification results were observed under ultraviolet light.
1.2.3重组杆状病毒的拯救1.2.3 Rescue of recombinant baculovirus
贴壁培养sf9细胞,将细胞铺于6孔板中,确保细胞生长状态良好并处于对数生长期,用1%双抗的sf900 II培养基27℃培养,细胞培养48-72h左右传代。Adherently culture sf9 cells, plate the cells in 6-well plates, ensure that the cells are in good growth state and in the logarithmic growth phase, culture them in 1% double-antibody sf900 II medium at 27°C, and subculture the cells after about 48-72 hours of culture.
重组杆粒DNA转染sf9细胞:Transfection of recombinant bacmid DNA into sf9 cells:
将1.2.2鉴定正确的重组杆粒转染对数生长期的Sf9细胞。将Sf9细胞铺6孔板,8×105cells/孔,每孔2mL,静置20min,待其贴壁。用cellfectinⅡ转染试剂进行转染。步骤:将含有2μg重组杆粒的100μL Grace培养基加入到含有8μL cellfectinⅡ转染试剂的100μLGrace培养基中,混匀孵育。将原SF9细胞培养基弃去,换为含双抗的无血清Grace培养基,2.5mL/孔,将孵育好的脂质体混合物逐滴加入到6孔板中,封口膜密封,置27℃生化培养箱转染4h。更换培养基为sf900-Ⅱ无血清培养基,观察3-5d,待有明显细胞病变CPE时,收集培养液,1000rpm离心10min,得到的上清为P1重组杆状病毒储液,为原始病毒。按此方法将重组杆状病毒盲传至P4代,病毒液在4℃避光保存,长期保存可置于-80℃。按照DNA提取试剂盒提供的方法提取P4代DNA,进行PCR鉴定。Transfect the Sf9 cells in the logarithmic growth phase with the recombinant bacmid identified correctly in 1.2.2. Plate Sf9 cells in a 6-well plate, 8×10 5 cells/well, 2mL per well, and let it stand for 20 minutes until it adheres to the wall. Transfect with cellfectinⅡ transfection reagent. Steps: Add 100μL Grace medium containing 2μg recombinant bacmid to 100μL Grace medium containing 8μL cellfectinⅡ transfection reagent, mix and incubate. Discard the original SF9 cell culture medium and replace it with serum-free Grace medium containing double antibodies, 2.5mL/well, add the incubated liposome mixture dropwise to the 6-well plate, seal it with a sealing film, and place it in a 27℃ biochemical incubator for transfection for 4h. Replace the culture medium with sf900-Ⅱ serum-free culture medium, observe for 3-5d, and when there is obvious cytopathic effect CPE, collect the culture medium and centrifuge it at 1000rpm for 10min. The supernatant obtained is the P1 recombinant baculovirus stock solution, which is the original virus. According to this method, the recombinant baculovirus was blindly propagated to the P4 generation, and the virus solution was stored at 4°C in the dark, and for long-term storage, it can be placed at -80°C. The P4 generation DNA was extracted according to the method provided by the DNA extraction kit and PCR identification was performed.
1.2.4重组杆状病毒的表达与鉴定1.2.4 Expression and identification of recombinant baculovirus
1.2.4.1间接免疫荧光鉴定1.2.4.1 Indirect immunofluorescence identification
重组杆状病毒PCR鉴定正确后,将P4代接种至贴壁sf9细胞,继续培养48h进行间接免疫荧光鉴定:病毒液接种到6孔细胞板中,每孔100μL;72h后,弃去营养液,使用无菌PBS洗涤3次;每孔加入预冷的4%多聚甲醛固定液200μL,固定30min,PBS洗涤3次,每次静置2min。每孔加入200μL 0.2% TritonX-100,室温下静置15min;每孔加入现配制的1% BSA封闭液200μL,室温下封闭30min,弃去封闭液后使用PBS洗涤3次,每次静置2min;用PBS按1:200例稀释的单克隆抗体,每孔200μL,37℃孵育1h,使用PBS洗涤3次,每次静置2min;每孔加入按1:5 000比例稀释的Alexa 488标记的山羊抗小鼠IgG二抗,避光37℃孵育1h,使用PBS洗涤3次,每次静置2min;使用倒置荧光显微镜进行观察。After the recombinant baculovirus PCR identification was correct, the P4 generation was inoculated into the adherent sf9 cells and continued to be cultured for 48 hours for indirect immunofluorescence identification: the virus solution was inoculated into a 6-well cell plate, 100 μL per well; after 72 hours, the nutrient solution was discarded and washed 3 times with sterile PBS; 200 μL of pre-cooled 4% paraformaldehyde fixative was added to each well, fixed for 30 minutes, washed 3 times with PBS, and allowed to stand for 2 minutes each time. 200 μL of 0.2% TritonX-100 was added to each well and allowed to stand at room temperature for 15 minutes; 200 μL of the freshly prepared 1% BSA blocking solution was added to each well, blocked at room temperature for 30 minutes, and the blocking solution was discarded and washed 3 times with PBS, each time standing for 2 minutes; monoclonal antibodies diluted 1:200 with PBS, 200 μL per well, incubated at 37°C for 1 hour, washed 3 times with PBS, and allowed to stand for 2 minutes each time; Alexa diluted 1:5 000 was added to each well The cells were incubated with 488-labeled goat anti-mouse IgG secondary antibody at 37°C for 1 h in the dark, washed three times with PBS, and left to stand for 2 min each time; the cells were observed under an inverted fluorescence microscope.
1.2.4.2SDS-PAGE和Western-Blot鉴定1.2.4.2 SDS-PAGE and Western-Blot Identification
SDS-PAGE:按试剂盒说明进行分离胶及5%浓缩胶的配置。设正常Sf9细胞作为对照,重组杆状病毒加样,每孔20μL。SDS-PAGE: Prepare separation gel and 5% concentrated gel according to the kit instructions. Set normal Sf9 cells as control and add recombinant baculovirus to each well, 20 μL.
Western-Blot:将收集的重组杆状病毒储液与4×SDS上样缓冲液按照4:1的比例混合均匀,用Western一抗稀释液1000倍稀释单克隆抗体,用封闭缓冲液5000倍稀释HRP标记的羊抗鼠IgG抗体。通过Chemi Doc MP凝胶成像系统进行曝光。Western-Blot: Mix the collected recombinant baculovirus stock solution with 4×SDS loading buffer at a ratio of 4:1, dilute the monoclonal antibody 1000 times with Western primary antibody diluent, and dilute the HRP-labeled goat anti-mouse IgG antibody 5000 times with blocking buffer. Expose using the Chemi Doc MP gel imaging system.
1.2.5重组杆状病毒的纯化1.2.5 Purification of recombinant baculovirus
离心收集Sf9细胞,冰浴超声破碎,超声3S,间隔5S,持续10min;12000rpm,4℃离心,20min离心收集上清和沉淀;将获得上清经过0.22um滤膜过滤后进行Ni柱亲和富集纯化,纯化产物加入loading buffer后,100℃煮样后进行SDS-PAGE分析纯度。Sf9 cells were collected by centrifugation and disrupted by ultrasonication in an ice bath for 3S, 5S intervals, and 10min. The cells were centrifuged at 12000rpm and 4℃ for 20min to collect the supernatant and precipitate. The supernatant was filtered through a 0.22um filter membrane and then purified by Ni column affinity enrichment. The purified product was added to loading buffer and boiled at 100℃ for SDS-PAGE analysis of purity.
1.2.6纯化蛋白的生物活性检测1.2.6 Biological activity detection of purified protein
利用VSV微量病变抑制法检测重组干扰素的抗病毒活性。细胞铺于96孔板中,于37℃在5% CO2培养箱中培养2h。将纯化的蛋白使用DMEM培养基进行倍比稀释,孵育培养12-24h。弃掉上清液,加入100μL DMEM培养基稀释的100TCID50的VSV,同时设置只加病毒的阴性对照和不加病毒的空白对照。置于37℃、5% CO2培养箱中培养48-72h,观察细胞病变情况,最后根据Reed-Muench法计算IFN的抗病毒活性。The antiviral activity of recombinant interferon was detected by VSV microlesion inhibition method. Cells were plated in 96-well plates and cultured at 37°C in a 5% CO 2 incubator for 2 hours. The purified protein was diluted in DMEM medium and incubated for 12-24 hours. The supernatant was discarded, and 100 TCID50 of VSV diluted in 100 μL DMEM medium was added. At the same time, a negative control with only virus added and a blank control without virus were set up. Place in a 37°C, 5% CO 2 incubator for 48-72 hours, observe the cell lesions, and finally calculate the antiviral activity of IFN according to the Reed-Muench method.
1.2.7临床应用-对病毒复制的影响1.2.7 Clinical Application - Effects on Viral Replication
将50只10日龄SPF鸡随机分为5组,每组10只。第1组、2组、3组分别为多点胸肌注射1000U、2000U、5000U干扰素试验组,第4组为只注射AIV(H9N2)不使用干扰素的攻毒组,第5组为只注射无菌生理盐水的阴性对照组,各组单独饲养。Fifty 10-day-old SPF chickens were randomly divided into 5 groups, 10 in each group. Groups 1, 2, and 3 were the test groups injected with 1000U, 2000U, and 5000U interferon at multiple points in the pectoral muscle, respectively; Group 4 was the challenge group injected with AIV (H9N2) without interferon; and Group 5 was the negative control group injected with sterile saline. Each group was raised separately.
第1-3组同时滴鼻点眼104EID50/0.2ml H9N2亚型禽流感病毒液,在常规饲养下观察15d。在攻毒后第3d、6d、9d、12d、15d,各组随机抽取5只,采集喉头和泄殖腔棉拭子,采用荧光定量PCR检测排毒情况。使用GM生物技术公司的检测试剂盒,反应体系为25μL:Mixbuffer 20μL、酶Mix 2μL、模板为3μL。阳性对照(质粒)和阴性对照(ddH2O)按照同样体系进行。低温配制n份反应液,充分混匀后分装反应管。选择相应的反应通道,扩增程序:40℃10min,95℃95℃3min,随后95℃10s、55℃30s进行40个循环,同时收集荧光信号。Groups 1-3 were simultaneously nasally and ocularly instilled with 10 4 EID50/0.2ml H9N2 subtype avian influenza virus solution and observed for 15 days under conventional feeding. On the 3rd, 6th, 9th, 12th, and 15th days after the challenge, 5 mice were randomly selected from each group, and laryngeal and cloacal swabs were collected to detect the detoxification status by fluorescence quantitative PCR. The detection kit of GM Biotechnology was used, and the reaction system was 25μL: Mixbuffer 20μL, enzyme Mix 2μL, and template 3μL. The positive control (plasmid) and negative control (ddH 2 O) were carried out according to the same system. Prepare n portions of reaction solution at low temperature, mix thoroughly, and then divide into reaction tubes. Select the corresponding reaction channel and amplification program: 40℃10min, 95℃95℃3min, followed by 95℃10s, 55℃30s for 40 cycles, and collect fluorescence signals at the same time.
当阳性对照Ct值≤28且出现典型的扩增曲线,阴性对照无Ct值且无扩增曲线时,此次检测成立。When the positive control Ct value is ≤28 and a typical amplification curve appears, and the negative control has no Ct value and no amplification curve, the test is established.
当被检样品出现典型的扩增曲线且Ct值≤30.0时,判为阳性;被检样品无Ct值或Ct值≥35,判为阴性;对于Ct值在30-35之间且出现典型扩增曲线的样品,重复检测后仍出现上述结果的判为阳性,否则判为阴性。When the sample shows a typical amplification curve and the Ct value is ≤30.0, it is judged as positive; when the sample has no Ct value or the Ct value is ≥35, it is judged as negative; for samples with a Ct value between 30-35 and a typical amplification curve, if the above results are still obtained after repeated testing, it is judged as positive, otherwise it is judged as negative.
二、结果2. Results
2.1重组杆粒rBacmid-double IFN-α的鉴定2.1 Identification of recombinant bacmid rBacmid-double IFN-α
将重组质粒转化DH10Bac感受态细胞中,经三抗蓝白斑筛选平板筛选出重组杆粒,通过PCR鉴定重组杆粒rBacmid-double IFN-α,结果显示,成功扩增出与目的片段大小相符的片段(213bp);同时经测序确认重组杆粒构建成功。参见图1。The recombinant plasmid was transformed into DH10Bac competent cells, and the recombinant bacmid was screened out by triple-antibody blue-white screening plate. The recombinant bacmid rBacmid-double IFN-α was identified by PCR. The results showed that a fragment (213 bp) with the size of the target fragment was successfully amplified. At the same time, sequencing confirmed that the recombinant bacmid was successfully constructed. See Figure 1.
2.2重组杆状病毒rBacmid-double IFN-α的拯救2.2 Rescue of recombinant baculovirus rBacmid-double IFN-α
将重组杆粒转染至已贴壁的SF9细胞,持续观察,约96h后转染后的细胞开始解离脱落,细胞核逐渐变得充盈等病变现象。参见图2中左图。The recombinant bacmid was transfected into the attached SF9 cells and observed continuously. After about 96 hours, the transfected cells began to dissociate and fall off, and the cell nuclei gradually became filled, etc. See the left picture in Figure 2.
2.3重组杆粒rBacmid-double IFN-α的鉴定2.3 Identification of recombinant bacmid rBacmid-double IFN-α
向贴壁sf9细胞接种重组杆状病毒储液,27℃继续培养48h后弃去培养液,进行间接免疫荧光鉴定。结果显示,接种杆状病毒可在荧光显微镜下观察到明显的绿色荧光,而未感染的细胞未出现荧光,参见图3。表明重组蛋白能与血清抗体发生抗原抗体特异性反应,证明重组杆状病毒构建成功。The recombinant baculovirus stock solution was inoculated into the adherent sf9 cells, and the culture medium was discarded after continued cultivation at 27°C for 48 hours, and indirect immunofluorescence identification was performed. The results showed that obvious green fluorescence could be observed under a fluorescence microscope after the inoculation of baculovirus, while no fluorescence appeared in the uninfected cells, see Figure 3. This indicates that the recombinant protein can react with serum antibodies in an antigen-antibody specific manner, proving that the recombinant baculovirus was successfully constructed.
用Western-Blot进一步鉴定重组杆状病毒IFN的表达,可见大小22KD左右的条带(如图4),符合预期结果。该结果表明,IFN-α在杆状病毒系统中表达成功,且绝大多数存在于上清中。The expression of recombinant baculovirus IFN was further identified by Western-Blot, and a band of about 22KD was observed (as shown in Figure 4), which was consistent with the expected result. This result showed that IFN-α was successfully expressed in the baculovirus system, and most of it was present in the supernatant.
2.4抗病毒活性检测2.4 Antiviral activity detection
利用VSV微量病变抑制法检测重组干扰素的抗病毒活性。根据Reed-Muench法计算IFN的抗病毒活性为5.0×106U/ml。The antiviral activity of recombinant interferon was detected by VSV microlesion inhibition method. According to the Reed-Muench method, the antiviral activity of IFN was calculated to be 5.0×10 6 U/ml.
2.5表达重组干扰素对H9N2 AIV病毒感染的影响2.5 Effect of expressing recombinant interferon on H9N2 AIV virus infection
第1组、2组、3组为分别注射1000U、2000U、5000U的表达干扰素的试验组,第4组为AIV(H9N2)的攻毒组,第5组为只注射无菌生理盐水的阴性对照组,各组单独隔离饲养。在攻毒后3d、6d、9d、12d、15d,各组随机抽取5只,采集喉头和泄殖腔棉拭子检测排毒情况。Groups 1, 2, and 3 were the experimental groups injected with 1000U, 2000U, and 5000U of interferon, respectively. Group 4 was the AIV (H9N2) challenge group. Group 5 was the negative control group injected with sterile saline. Each group was isolated and raised separately. Five mice were randomly selected from each group at 3, 6, 9, 12, and 15 days after the challenge, and larynx and cloaca swabs were collected to detect the detoxification.
接种H9N2 AIV后,每天记录鸡存活情况,并分析表达α干扰素对各组鸡的保护率。阴性对照组鸡群正常采食,未出现死亡。第4组为只注射AIV(H9N2)的攻毒组,死亡率30%,干扰素试验组中第1~3组均未出现死亡。After inoculation of H9N2 AIV, the survival of the chickens was recorded every day, and the protection rate of each group of chickens expressed by interferon α was analyzed. The chickens in the negative control group ate normally and no deaths occurred. Group 4 was the challenge group injected with AIV (H9N2) only, with a mortality rate of 30%. No deaths occurred in groups 1 to 3 of the interferon test group.
表1攻毒后不同时间的排毒情况Table 1 Detoxification at different times after infection
攻毒后,记录每组不同时间喉头、泄殖腔棉拭子排毒变化,如上表1所示。After the virus attack, the changes in virus excretion from laryngeal and cloacal cotton swabs were recorded at different times in each group, as shown in Table 1 above.
攻毒后3dpi-9dpi时,1~4组均可检出AIV;12~15dpi 1-3组检测不到病毒,但第4组仍有鸡可检出AIV。表明:不同剂量的杆状病毒表达干扰素均可抑制AIV的增殖,与第4组相比,1-3组都可以降低鸡群排毒率。1×103U、2×103U、5×103U三组考虑到性价比,可使用1×103U。但是5×103U的减毒效果更优。以上结果为进一步研究与制备禽用干扰素制剂奠定基础。At 3dpi-9dpi after infection, AIV was detected in groups 1 to 4; at 12-15dpi, no virus was detected in groups 1-3, but AIV was still detected in chickens in group 4. This shows that different doses of baculovirus-expressed interferon can inhibit the proliferation of AIV, and compared with group 4, groups 1-3 can reduce the excretion rate of chickens. Considering the cost-effectiveness, 1 ×10 3 U, 2×10 3 U, and 5×10 3 U can be used. However, the attenuation effect of 5×10 3 U is better. The above results lay the foundation for further research and preparation of poultry interferon preparations.
综上,本发明针对鸡干扰素核心区序列进行改造获得了优化后鸡IFN-α序列、并构建高效表达重组子,选用双启动子表达重组杆状病毒。基因组PCR鉴定结果显示:成功扩增出与相应目的片段大小相符的特异性产物;Western-Blot鉴定可见分子量为22kD左右的蛋白条带。In summary, the present invention transforms the chicken interferon core region sequence to obtain the optimized chicken IFN-α sequence, constructs a highly efficient expression recombinant, and selects a dual promoter to express the recombinant baculovirus. The genome PCR identification results show that a specific product consistent with the size of the corresponding target fragment was successfully amplified; Western-Blot identification shows a protein band with a molecular weight of about 22kD.
本发明改造后获得的重组杆状病毒表达量高、活性好、易于纯化,纯度高,相比未优化原序列得到的杆状病毒进行表达蛋白表达产量偏低,本发明改造后重组杆状病毒表达量提升15%,而且抗病毒活性也提升了10%,临床使用效果佳,成本低,可有效降低病毒的增殖。本发明运用杆状病毒表达系统成功高效表达出IFN-α,有望为可溶性鸡干扰素IFN-α的大规模生产提供新的思路和方法。The recombinant baculovirus obtained after the modification of the present invention has high expression amount, good activity, easy purification, high purity, and low protein expression yield compared to the baculovirus obtained by not optimizing the original sequence. The expression amount of the recombinant baculovirus after the modification of the present invention is increased by 15%, and the antiviral activity is also increased by 10%. The clinical use effect is good, the cost is low, and the proliferation of the virus can be effectively reduced. The present invention successfully and efficiently expresses IFN-α using the baculovirus expression system, and is expected to provide new ideas and methods for the large-scale production of soluble chicken interferon IFN-α.
上述具体实施方式不能作为对本发明保护范围的限制,对于本技术领域的技术人员来说,对本发明实施方式所做出的任何替代改进或变换均落在本发明的保护范围内。The above specific implementation manner cannot be used as a limitation on the protection scope of the present invention. For those skilled in the art, any substitution, improvement or change made to the implementation manner of the present invention falls within the protection scope of the present invention.
本发明未详述之处,均为本技术领域技术人员的公知技术。The matters not described in detail in the present invention are all known technologies to those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410769504.3A CN118667888A (en) | 2024-06-14 | 2024-06-14 | Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410769504.3A CN118667888A (en) | 2024-06-14 | 2024-06-14 | Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118667888A true CN118667888A (en) | 2024-09-20 |
Family
ID=92720537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410769504.3A Pending CN118667888A (en) | 2024-06-14 | 2024-06-14 | Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118667888A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221176A (en) * | 2007-01-12 | 2008-07-16 | 天津瑞普生物技术集团有限公司 | Expression of chicken interferon-gamma in regrouped bacilliform virus and its measurement of antivirus activity |
CN105602990A (en) * | 2016-01-27 | 2016-05-25 | 广西大学 | Method for secretory expression of honeybee melittin signal peptide-mediated IBV (infectious bronchitis virus) N protein |
-
2024
- 2024-06-14 CN CN202410769504.3A patent/CN118667888A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221176A (en) * | 2007-01-12 | 2008-07-16 | 天津瑞普生物技术集团有限公司 | Expression of chicken interferon-gamma in regrouped bacilliform virus and its measurement of antivirus activity |
CN105602990A (en) * | 2016-01-27 | 2016-05-25 | 广西大学 | Method for secretory expression of honeybee melittin signal peptide-mediated IBV (infectious bronchitis virus) N protein |
Non-Patent Citations (4)
Title |
---|
HYE KYUNG KIM等: ""Construction and Antiviral Activity of Recombinant Baculovirus Expressing Chicken Interferon-Alpha"", INTERNATIONAL MEETING OF THE FEDERATION OF KOREAN MICROBIOLOGICAL SOCIETIES, 31 December 2008 (2008-12-31), pages 201 * |
YUXIA ZHANG 等: ""Optimized production and antiviral activity evaluation of recombinant chicken interferon-alpha using an improved Baculovirus expression system"", POULTRY SCIENCE, vol. 104, 2 February 2025 (2025-02-02), pages 1 - 5 * |
燕丽娜等: ""重组犬α干扰素在昆虫细胞中的高效表达与抗病毒活性鉴定"", 中国病原生物学杂志, vol. 14, no. 1, 31 January 2019 (2019-01-31), pages 16 * |
王振亚: ""鸡干扰素α、γ在昆虫细胞中的共表达"", 中国学位论文全文数据库, 29 December 2011 (2011-12-29), pages 34 - 37 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111218459B (en) | A recombinant novel coronavirus vaccine using human replication-deficient adenovirus as a vector | |
CN111518773B (en) | CAR-T cell for resisting novel coronavirus S protein, preparation method and application thereof | |
CN113061586B (en) | Recombinant serotype 4 avian adenovirus expressing the spike protein of serotype 8 avian adenovirus and its preparation method | |
CN105695491B (en) | Preparation method of Newcastle disease glycoprotein virus antigen and product thereof | |
CN111534547A (en) | Construction method of recombinant baculovirus expressing avian adenovirus serotype 4 spike protein F2 | |
CN115260308B (en) | A high-affinity fully human monoclonal antibody against rabies virus and its use | |
CN111518777A (en) | A kind of construction method of recombinant baculovirus expressing serotype 4 avian adenovirus fiber spike protein F1 | |
CN112353939B (en) | Application of GTPBP4 protein as immunosuppressant and construction of cell line for knocking down or over expressing GTPBP4 | |
CN107164409A (en) | CDV sensitive cell line SLAM MDCK and its construction method and application | |
CN110144334B (en) | Preparation method and application of recombinant baculovirus co-expressing grass carp reovirus outer capsid proteins VP4 and VP35 | |
CN110129272B (en) | PK-15 cell strain for stably expressing MAP3K8 protein and construction and application thereof | |
CN105039268A (en) | Recombinant duck plague virus of expressing duck tembusu virus E protein as well as construction method and application of recombinant duck plague virus | |
CN118667888A (en) | Baculovirus expressed chicken interferon recombinant transfer plasmid and preparation, recombinant bacmid and application thereof | |
CN114773457B (en) | Recombinant adenovirus expressing pig-derived anti-porcine epidemic diarrhea virus N protein single-chain antibody and its construction and use | |
CN108017714B (en) | Monoclonal antibody against ORF92 protein of a type Ⅱ carp herpes virus and its application | |
CN117511888A (en) | A recombinant serotype 4 avian adenovirus expressing the VP2 protein of chicken infectious anemia virus T1P6 strain based on CRISPR-Cas9 technology and its preparation method | |
CN110358733A (en) | One plant is stablized the cell line and application for expressing A subgroup avian leucosis virus gp85 albumen | |
CN109295014B (en) | A kind of atypical swine fever virus E2 protein recombinant baculovirus and its preparation method and application | |
CN110408602B (en) | PCV2-PRRSV recombinant virus, and preparation method, gene, application and vaccine thereof | |
CN116286816B (en) | Construction of PPARgamma knockout cell line and application of PPARgamma knockout cell line as PRRSV production cell line | |
CN117625688B (en) | Subtype B avian metapneumovirus reverse genetics system and its application | |
CN110551696A (en) | Natural low virulent strain of avian infectious bronchitis virus and application thereof | |
CN117886950B (en) | Respiratory syncytial virus pseudovirus and preparation method thereof | |
CN114736878B (en) | Co-expression pig interferon L3 and pig interleukin 22 recombinant baculovirus and application thereof | |
CN117802097B (en) | SgRNA for knocking out ISG15 gene, ISG15 gene-deleted bovine kidney cell and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |