CN118656107B - Intelligent and efficient error detection and repair method and system - Google Patents
Intelligent and efficient error detection and repair method and system Download PDFInfo
- Publication number
- CN118656107B CN118656107B CN202411147172.1A CN202411147172A CN118656107B CN 118656107 B CN118656107 B CN 118656107B CN 202411147172 A CN202411147172 A CN 202411147172A CN 118656107 B CN118656107 B CN 118656107B
- Authority
- CN
- China
- Prior art keywords
- repair
- code
- error
- errors
- report
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008439 repair process Effects 0.000 title claims abstract description 188
- 238000001514 detection method Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004458 analytical method Methods 0.000 claims abstract description 35
- 230000003068 static effect Effects 0.000 claims abstract description 33
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 26
- 230000007547 defect Effects 0.000 claims abstract description 14
- 206010000117 Abnormal behaviour Diseases 0.000 claims abstract description 13
- 238000010801 machine learning Methods 0.000 claims abstract description 13
- 238000003909 pattern recognition Methods 0.000 claims abstract description 9
- 238000012549 training Methods 0.000 claims description 32
- 230000035943 smell Effects 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 21
- 238000013515 script Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 13
- 230000003993 interaction Effects 0.000 claims description 12
- 238000007689 inspection Methods 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 10
- 238000003339 best practice Methods 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000007637 random forest analysis Methods 0.000 claims description 7
- 238000002790 cross-validation Methods 0.000 claims description 4
- 230000008713 feedback mechanism Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 abstract description 3
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 235000019645 odor Nutrition 0.000 abstract 1
- 230000008676 import Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000010921 in-depth analysis Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004579 scanning voltage microscopy Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3604—Analysis of software for verifying properties of programs
- G06F11/3608—Analysis of software for verifying properties of programs using formal methods, e.g. model checking, abstract interpretation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3672—Test management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Stored Programmes (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及软件工程与人工智能技术领域,具体地说是一种智能高效的错误检测与修复方法及系统。The present invention relates to the field of software engineering and artificial intelligence technology, and in particular to an intelligent and efficient error detection and repair method and system.
背景技术Background Art
在软件开发过程中,代码错误的检测与修复是保障软件质量的关键环节。传统的错误检测方法通常依赖于手动检查和动态测试,存在效率低、覆盖率不足的问题。同时,现有的自动化错误检测工具往往只能检测特定类型的错误,缺乏智能化的分析与修复能力。In the software development process, code error detection and repair are key links in ensuring software quality. Traditional error detection methods usually rely on manual inspection and dynamic testing, which have problems of low efficiency and insufficient coverage. At the same time, existing automated error detection tools can often only detect specific types of errors and lack intelligent analysis and repair capabilities.
发明内容Summary of the invention
本发明的技术任务是针对以上不足之处,提供一种智能高效的错误检测与修复方法及系统,能够实现高效的错误检测与修复,提升软件质量和开发效率。The technical task of the present invention is to address the above deficiencies and provide an intelligent and efficient error detection and repair method and system, which can achieve efficient error detection and repair, and improve software quality and development efficiency.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problem is:
一种智能高效的错误检测与修复方法,包括:An intelligent and efficient error detection and repair method, comprising:
静态代码分析:通过分析源代码,识别潜在的错误和代码异味;对源代码进行全面扫描,识别潜在的语法错误、逻辑漏洞和代码异味,并生成初步的错误报告,展示检测到的所有问题;Static code analysis: Identify potential errors and code smells by analyzing the source code; perform a comprehensive scan of the source code to identify potential syntax errors, logic vulnerabilities, and code smells, and generate a preliminary error report showing all detected issues;
异常检测算法:通过机器学习和模式识别,检测代码中的异常行为和潜在缺陷,结合静态分析结果,生成综合性的错误报告;Anomaly detection algorithm: detects abnormal behaviors and potential defects in the code through machine learning and pattern recognition, and generates comprehensive error reports based on static analysis results;
智能修复:根据综合性的错误报告,生成修复建议,并展示在用户界面上;对于常见错误,自动执行修复操作,并记录修复过程。Intelligent repair: Generate repair suggestions based on comprehensive error reports and display them on the user interface; for common errors, automatically perform repair operations and record the repair process.
进一步的,所述静态代码分析,在不运行程序的情况下,对源代码进行全面的语法和语义检查,识别潜在的错误和代码异味;其实现包括:Furthermore, the static code analysis performs a comprehensive syntax and semantic check on the source code without running the program to identify potential errors and code smells; its implementation includes:
代码扫描:使用静态分析工具(如ESLint、SonarQube等)对源代码进行扫描,识别基本错误,包括语法错误、未定义变量、未使用的变量;扫描所有代码路径,确保全面覆盖;Code scanning: Use static analysis tools (such as ESLint, SonarQube, etc.) to scan the source code and identify basic errors, including syntax errors, undefined variables, and unused variables; scan all code paths to ensure comprehensive coverage;
代码检查:结合规则库进行深度检查,识别潜在的逻辑漏洞和代码异味;通过AST(抽象语法树)分析代码结构,检测潜在的逻辑错误;Code inspection: In-depth inspection combined with the rule base to identify potential logic vulnerabilities and code smells; analyze the code structure through AST (abstract syntax tree) to detect potential logic errors;
错误报告生成:将检测到的所有错误和代码异味生成初步的错误报告,分类展示每个问题的具体位置和类型;Error report generation: Generate a preliminary error report for all detected errors and code smells, and categorize and display the specific location and type of each problem;
代码扫描包括工具选择与配置、执行扫描、扫描报告解析,使用SonarQube进行代码扫描,在项目根目录下运行以下命令来执行代码扫描:sonar-scanner;扫描生成问题报告,包含代码中的语法错误、未使用变量问题;使用Python脚本解析SonarQube生成的报告文件,提取错误信息并分类;所述代码检查,包括AST生成与解析、逻辑漏洞检测,使用JavaParser库生成代码的AST;使用符号执行工具对代码路径进行模拟执行,检测可能存在的逻辑漏洞;所述错误报告生成,合并SonarQube和AST解析的结果,生成最终的错误报告。Code scanning includes tool selection and configuration, scanning execution, and scanning report parsing. SonarQube is used for code scanning. The following command is run in the project root directory to perform code scanning: sonar-scanner. The scan generates a problem report, including syntax errors and unused variable problems in the code. The report file generated by SonarQube is parsed using a Python script to extract and classify error information. The code inspection includes AST generation and parsing, and logical vulnerability detection. The JavaParser library is used to generate the AST of the code. The symbolic execution tool is used to simulate the execution of the code path to detect possible logical vulnerabilities. The error report is generated by merging the results of SonarQube and AST parsing to generate a final error report.
进一步的,所述规则库包括编码规范、最佳实践;Furthermore, the rule base includes coding standards and best practices;
潜在的逻辑漏洞和代码异味包括重复代码、复杂度高的函数。Potential logic vulnerabilities and code smells include duplicate code and highly complex functions.
进一步的,所述异常检测算法,其实现包括:Furthermore, the anomaly detection algorithm may be implemented by:
数据预处理:收集和整理历史代码错误数据,作为训练数据集;对训练数据进行清洗和标准化处理,确保数据质量;Data preprocessing: Collect and organize historical code error data as training data sets; clean and standardize training data to ensure data quality;
模型训练:选择合适的机器学习算法(如SVM、随机森林、神经网络等),对训练数据进行模型训练;使用交叉验证方法,优化模型参数,以确保模型的准确性和泛化能力;Model training: Select appropriate machine learning algorithms (such as SVM, random forest, neural network, etc.) to train the model on the training data; use cross-validation methods to optimize model parameters to ensure the accuracy and generalization ability of the model;
异常检测:将待检测的代码输入训练好的模型,进行异常行为和潜在缺陷的识别;结合静态分析结果,生成综合性的错误报告,标注出所有检测到的异常;Anomaly detection: Input the code to be detected into the trained model to identify abnormal behaviors and potential defects; combine the static analysis results to generate a comprehensive error report, marking all detected anomalies;
数据预处理使用Git命令从代码仓库中提取提交历史,并过滤掉噪声数据,使用Python脚本将提交历史转换为训练数据;模型训练进行特征提取与训练,使用Scikit-learn进行特征提取和模型训练,并使用TF-IDF方法对日志进行文本特征提取,并训练一个随机森林分类器以识别代码提交中的潜在错误;进行异常检测与优先级排序,将代码片段输入到训练好的模型中,并结合静态代码分析结果,生成最终的错误报告。Data preprocessing uses Git commands to extract submission history from the code repository, filters out noise data, and uses Python scripts to convert submission history into training data; model training performs feature extraction and training, uses Scikit-learn for feature extraction and model training, and uses the TF-IDF method to extract text features from logs, and trains a random forest classifier to identify potential errors in code submissions; performs anomaly detection and priority sorting, inputs code snippets into the trained model, and combines the static code analysis results to generate the final error report.
进一步的,所述智能修复,其实现包括:Furthermore, the intelligent repair may include:
修复建议生成:分析错误报告中的每个问题,结合规则库和最佳实践,生成对应的修复建议;使用自然语言生成技术,将修复建议转换为人类可读的形式,展示在用户界面上;Generation of repair suggestions: Analyze each problem in the error report, combine the rule base and best practices, and generate corresponding repair suggestions; use natural language generation technology to convert the repair suggestions into human-readable form and display them on the user interface;
自动修复:对常见且容易修复的错误,直接进行修复操作,包括变量命名错误、简单的语法错误;修复后记录修复过程,确保可追溯性。Automatic repair: Directly repair common and easy-to-repair errors, including variable naming errors and simple syntax errors; after repair, the repair process is recorded to ensure traceability.
对于每个检测到的错误,使用预定义的规则库生成修复建议,使用Python脚本自动生成自然语言描述的修复建议;自动修复步骤使用Java中的AST进行修改,使用JUnit自动化测试工具运行修复后的代码,以确保修复没有引入新的错误;测试结果将自动记录在报告中。For each detected error, a predefined rule base is used to generate repair suggestions, and a Python script is used to automatically generate repair suggestions described in natural language. The automatic repair steps are modified using AST in Java, and the repaired code is run using the JUnit automated testing tool to ensure that the repair does not introduce new errors. The test results are automatically recorded in the report.
进一步的,该方法还包括用户交互部分,用于提供图形化界面,展示检测结果和修复建议;开发者查看详细的错误报告和修复建议,并选择接受自动修复,或根据建议手动修复错误;Furthermore, the method also includes a user interaction part for providing a graphical interface to display the detection results and repair suggestions; the developer views the detailed error report and repair suggestions, and chooses to accept the automatic repair, or manually repair the error according to the suggestions;
最后对修复后的代码进行再次分析,确保所有错误均已修复且未引入新的问题;用户对该检测进行反馈,系统根据用户反馈和检测结果,持续优化检测算法和修复策略。Finally, the repaired code is analyzed again to ensure that all errors have been fixed and no new problems have been introduced; users provide feedback on the detection, and the system continuously optimizes the detection algorithm and repair strategy based on user feedback and detection results.
进一步的,所述用户交互部分,具体实现包括:Furthermore, the user interaction part is specifically implemented as follows:
界面设计:设计直观、易用的用户界面,展示错误报告、修复建议和修复历史;界面包括代码编辑器、错误列表、详细错误描述和修复建议区域;Interface design: Design an intuitive and easy-to-use user interface to display error reports, repair suggestions, and repair history; the interface includes a code editor, error list, detailed error description, and repair suggestion area;
交互功能:提供错误定位功能,开发者点击错误列表中的问题,直接跳转到代码中的对应位置;支持修复建议的查看和应用,开发者可选择自动修复或手动修复;Interactive function: Provides error location function. Developers can click on the problem in the error list to jump directly to the corresponding position in the code; supports viewing and applying repair suggestions, and developers can choose automatic repair or manual repair;
反馈机制:提供用户反馈功能,开发者可对修复建议和自动修复结果进行评价和反馈;收集用户反馈,持续优化检测算法和修复策略。Feedback mechanism: Provides user feedback function, developers can evaluate and provide feedback on repair suggestions and automatic repair results; collect user feedback and continuously optimize detection algorithms and repair strategies.
本发明还要求保护一种智能高效的错误检测与修复系统,包括:The present invention also claims an intelligent and efficient error detection and repair system, comprising:
静态代码分析模块,用于分析源代码,识别潜在的错误和代码异味;Static code analysis module, which is used to analyze source code and identify potential errors and code smells;
异常检测算法模块,用于通过机器学习和模式识别技术,检测代码中的异常行为和潜在缺陷;Anomaly detection algorithm module, which is used to detect abnormal behaviors and potential defects in the code through machine learning and pattern recognition technology;
智能修复模块,根据异常检测结果,提供修复建议,或直接进行部分错误修复;The intelligent repair module provides repair suggestions or directly performs partial error repair based on the anomaly detection results;
用户交互模块,用于提供图形化界面,展示检测结果和修复建议;User interaction module, used to provide a graphical interface to display detection results and repair suggestions;
该系统通过上述的智能高效的错误检测与修复方法实现代码错误与修复。The system implements code error detection and repair through the above-mentioned intelligent and efficient error detection and repair method.
本发明还要求保护一种智能高效的错误检测与修复装置,包括:至少一个存储器和至少一个处理器;The present invention also claims an intelligent and efficient error detection and repair device, comprising: at least one memory and at least one processor;
所述至少一个存储器,用于存储机器可读程序;The at least one memory is used to store a machine-readable program;
所述至少一个处理器,用于调用所述机器可读程序,实现上述的方法。The at least one processor is used to call the machine-readable program to implement the above method.
本发明还要求保护计算机可读介质,其特征在于,所述计算机可读介质上存储有计算机指令,所述计算机指令在被处理器执行时,实现上述的方法。The present invention also claims protection for a computer-readable medium, characterized in that the computer-readable medium stores computer instructions, and when the computer instructions are executed by a processor, the above method is implemented.
本发明的一种智能高效的错误检测与修复方法及系统与现有技术相比,具有以下有益效果:Compared with the prior art, the intelligent and efficient error detection and repair method and system of the present invention has the following beneficial effects:
1、全面性:通过静态代码分析,覆盖所有代码路径,检测潜在错误。1. Comprehensiveness: Cover all code paths and detect potential errors through static code analysis.
2、高效性:利用异常检测算法,快速识别异常模式,提高检测效率。2. Efficiency: Use anomaly detection algorithms to quickly identify abnormal patterns and improve detection efficiency.
3、智能修复:系统不仅能检测错误,还能自动提供修复建议,甚至自动修复部分错误;提升软件质量和开发效率。3. Intelligent repair: The system can not only detect errors, but also automatically provide repair suggestions and even automatically repair some errors, improving software quality and development efficiency.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明一个实施例提供的智能高效的错误检测与修复方法流程示图。FIG1 is a flowchart of an intelligent and efficient error detection and repair method provided by an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
本发明实施例提供一种智能高效的错误检测与修复方法,包括:The embodiment of the present invention provides an intelligent and efficient error detection and repair method, including:
静态代码分析:通过分析源代码,识别潜在的错误和代码异味;对源代码进行全面扫描,识别潜在的语法错误、逻辑漏洞和代码异味,并生成初步的错误报告,展示检测到的所有问题;Static code analysis: Identify potential errors and code smells by analyzing the source code; perform a comprehensive scan of the source code to identify potential syntax errors, logic vulnerabilities, and code smells, and generate a preliminary error report showing all detected issues;
异常检测算法:通过机器学习和模式识别,对代码进行深度分析,检测代码中的异常行为和潜在缺陷,结合静态分析结果,生成综合性的错误报告;Anomaly detection algorithm: Through machine learning and pattern recognition, it conducts in-depth analysis of the code to detect abnormal behaviors and potential defects in the code, and generates a comprehensive error report based on the static analysis results;
智能修复:根据综合性的错误报告,生成修复建议,并展示在用户界面上;对于常见错误,自动执行修复操作,并记录修复过程。Intelligent repair: Generate repair suggestions based on comprehensive error reports and display them on the user interface; for common errors, automatically perform repair operations and record the repair process.
用户交互部分:用于提供图形化界面,展示检测结果和修复建议,供开发者参考和操作;开发者可以查看详细的错误报告和修复建议,可以选择接受自动修复,或根据建议手动修复错误;User interaction part: used to provide a graphical interface to display detection results and repair suggestions for developers to refer to and operate; developers can view detailed error reports and repair suggestions, and can choose to accept automatic repairs or manually repair errors according to suggestions;
最后对修复后的代码进行再次分析,确保所有错误均已修复且未引入新的问题;用户对该检测进行反馈,系统根据用户反馈和检测结果,持续优化检测算法和修复策略。Finally, the repaired code is analyzed again to ensure that all errors have been fixed and no new problems have been introduced; users provide feedback on the detection, and the system continuously optimizes the detection algorithm and repair strategy based on user feedback and detection results.
该方法的具体实现如下:The specific implementation of this method is as follows:
1、静态代码分析:1. Static code analysis:
静态代码分析用于在不运行程序的情况下,对源代码进行全面的语法和语义检查,识别潜在的错误和代码异味。该部分的实现方式和步骤为:Static code analysis is used to perform comprehensive syntax and semantic checks on source code without running the program to identify potential errors and code smells. The implementation method and steps of this part are:
(1)代码扫描:使用静态分析工具(如ESLint、SonarQube等)对源代码进行扫描,识别语法错误、未定义变量、未使用的变量等基本错误。扫描所有代码路径,确保全面覆盖。(1) Code scanning: Use static analysis tools (such as ESLint, SonarQube, etc.) to scan the source code and identify basic errors such as syntax errors, undefined variables, and unused variables. Scan all code paths to ensure comprehensive coverage.
(2)代码检查:结合规则库(包括编码规范、最佳实践等)进行深度检查,识别潜在的逻辑漏洞和代码异味(如重复代码、复杂度高的函数等)。通过AST(抽象语法树)分析代码结构,检测潜在的逻辑错误。(2) Code inspection: In-depth inspection is performed in combination with the rule base (including coding standards, best practices, etc.) to identify potential logic vulnerabilities and code smells (such as duplicate code, highly complex functions, etc.). The code structure is analyzed through AST (abstract syntax tree) to detect potential logic errors.
(3)错误报告生成:将检测到的所有错误和代码异味生成初步的错误报告,分类展示每个问题的具体位置和类型。(3) Error report generation: A preliminary error report is generated for all detected errors and code smells, which is categorized to show the specific location and type of each problem.
代码扫描主要分三步实现,分别为:工具选择与配置、执行扫描、扫描报告解析。Code scanning is mainly implemented in three steps: tool selection and configuration, scanning execution, and scanning report analysis.
①工具选择与配置:使用SonarQube进行代码扫描。配置SonarQube的规则库,包含通用的编码规范,例如,如未使用变量、未定义变量等。配置文件可以通过sonar-project.properties文件来指定项目路径、编码规范、报告输出路径等。代码示例如下:① Tool selection and configuration: Use SonarQube for code scanning. Configure SonarQube's rule base, including common coding standards, such as unused variables, undefined variables, etc. The configuration file can specify the project path, coding standards, report output path, etc. through the sonar-project.properties file. The code example is as follows:
sonar.projectKey=my_projectsonar.projectKey=my_project
sonar.sources=srcsonar.sources=src
sonar.language=javasonar.language=java
sonar.java.binaries=target/classessonar.java.binaries=target/classes
sonar.sourceEncoding=UTF-8sonar.sourceEncoding=UTF-8
②执行扫描:在项目根目录下运行以下命令来执行代码扫描:sonar-scanner。扫描会生成一份报告,包含代码中的语法错误、未使用变量等问题。报告以JSON或HTML格式输出。②Execute the scan: Run the following command in the project root directory to perform code scanning: sonar-scanner. The scan will generate a report containing syntax errors, unused variables and other issues in the code. The report is output in JSON or HTML format.
③扫描报告解析:使用Python脚本解析SonarQube生成的JSON报告文件,提取错误信息并分类。代码示例如下:③Scan report parsing: Use Python script to parse the JSON report file generated by SonarQube, extract error information and classify it. The code example is as follows:
import jsonimport json
with open('sonar-report.json') as f:with open('sonar-report.json') as f:
report = json.load(f)report = json.load(f)
errors = []errors = []
for issue in report['issues']:for issue in report['issues']:
if issue['severity'] in ['BLOCKER', 'CRITICAL']:if issue['severity'] in ['BLOCKER', 'CRITICAL']:
errors.append({errors.append({
'file': issue['component'],'file': issue['component'],
'line': issue['line'],'line': issue['line'],
'message': issue['message'],'message': issue['message'],
'severity': issue['severity']'severity': issue['severity']
})})
# 将错误信息输出到报告中# Output error information to the report
with open('error-report.txt', 'w') as f:with open('error-report.txt', 'w') as f:
for error in errors:for error in errors:
f.write(f"{error['file']}:{error['line']} - {error['severity']}:{error['message']}\n")f.write(f"{error['file']}:{error['line']} - {error['severity']}:{error['message']}\n")
代码检查分两步:AST生成与解析、逻辑漏洞检测。Code checking is divided into two steps: AST generation and parsing, and logic vulnerability detection.
①使用JavaParser库生成代码的抽象语法树(AST)。JavaParser能够解析Java代码并生成AST,便于对代码结构和逻辑进行分析。代码示例如下:① Use the JavaParser library to generate an abstract syntax tree (AST) of the code. JavaParser can parse Java code and generate AST, which is convenient for analyzing the code structure and logic. The code example is as follows:
import com.github.javaparser.JavaParser;import com.github.javaparser.JavaParser;
import com.github.javaparser.ast.CompilationUnit;import com.github.javaparser.ast.CompilationUnit;
import java.io.File;import java.io.File;
public class ASTExample {public class ASTExample {
public static void main(String[] args) {public static void main(String[] args) {
File file = new File("src/MyClass.java");File file = new File("src/MyClass.java");
CompilationUnit cu = JavaParser.parse(file);CompilationUnit cu = JavaParser.parse(file);
cu.findAll(MethodDeclaration.class).forEach(method ->{cu.findAll(MethodDeclaration.class).forEach(method ->{
System.out.println("Method: " + method.getName());System.out.println("Method: " + method.getName());
System.out.println("Complexity: " + method.calculateComplexity());System.out.println("Complexity: " + method.calculateComplexity());
});});
}}
}}
在上述代码示例中,calculateComplexity()方法可以计算代码的McCabe复杂度。如果复杂度超过10,输出警告。In the above code example, the calculateComplexity() method can calculate the McCabe complexity of the code. If the complexity exceeds 10, a warning is output.
②逻辑漏洞检测:使用符号执行工具Symbolic PathFinder(该执行工具针对Java,本方法以Java语言为主,如果使用C/C++则可以使用KLEE),对代码路径进行模拟执行,检测可能存在的逻辑漏洞如空指针、数组越界等。示例命令为:②Logical vulnerability detection: Use the symbolic execution tool Symbolic PathFinder (this execution tool is for Java, this method is mainly based on Java language, if you use C/C++, you can use KLEE) to simulate the execution of the code path and detect possible logical vulnerabilities such as null pointers, array out of bounds, etc. The sample command is:
java -jar SPF.jar -symbolic.method=MyClass.mainsrc/MyClass.javajava -jar SPF.jar -symbolic.method=MyClass.mainsrc/MyClass.java
通过命令行运行Symbolic PathFinder,并指定要分析的Java文件及方法。输出报告中包括检测到的路径条件和可能的逻辑错误。Run Symbolic PathFinder from the command line and specify the Java files and methods to be analyzed. The output report includes the detected path conditions and possible logic errors.
所述错误报告生成,合并SonarQube和AST解析的结果,生成最终的错误报告。报告内容包括每个错误的类型、严重性、所在文件及行号,报告可以用Python脚本生成。代码示例:The error report generation combines the results of SonarQube and AST parsing to generate the final error report. The report content includes the type, severity, file and line number of each error. The report can be generated using Python scripts. Code example:
final_report = []final_report = []
# 合并SonarQube结果# Merge SonarQube results
with open('sonar-report.json') as f:with open('sonar-report.json') as f:
sonar_issues = json.load(f)sonar_issues = json.load(f)
for issue in sonar_issues['issues']:for issue in sonar_issues['issues']:
final_report.append({final_report.append({
'file': issue['component'],'file': issue['component'],
'line': issue['line'],'line': issue['line'],
'message': issue['message'],'message': issue['message'],
'severity': issue['severity']'severity': issue['severity']
})})
# 合并AST分析结果# Merge AST analysis results
with open('ast-report.json') as f:with open('ast-report.json') as f:
ast_issues = json.load(f)ast_issues = json.load(f)
for issue in ast_issues:for issue in ast_issues:
final_report.append(issue)final_report.append(issue)
# 输出最终报告# Output final report
with open('final-error-report.txt', 'w') as f:with open('final-error-report.txt', 'w') as f:
for issue in final_report:for issue in final_report:
f.write(f"{issue['file']}:{issue['line']} - {issue['severity']}:{issue['message']}\n")f.write(f"{issue['file']}:{issue['line']} - {issue['severity']}:{issue['message']}\n")
2、异常检测算法:2. Anomaly Detection Algorithm:
异常检测算法通过机器学习和模式识别技术,对代码进行深度分析,识别代码中的异常行为和潜在缺陷。实现方式及步骤如下:The anomaly detection algorithm uses machine learning and pattern recognition technology to conduct in-depth analysis of the code to identify abnormal behaviors and potential defects in the code. The implementation method and steps are as follows:
(1)数据预处理:收集和整理历史代码错误数据,作为训练数据集。对训练数据进行清洗和标准化处理,确保数据质量。(1) Data preprocessing: Collect and organize historical code error data as training data sets. Clean and standardize the training data to ensure data quality.
(2)模型训练:选择合适的机器学习算法(如SVM、随机森林、神经网络等),对训练数据进行模型训练。使用交叉验证方法,优化模型参数,确保模型的准确性和泛化能力。(2) Model training: Select an appropriate machine learning algorithm (such as SVM, random forest, neural network, etc.) and train the model on the training data. Use the cross-validation method to optimize the model parameters to ensure the accuracy and generalization ability of the model.
(3)异常检测:将待检测的代码输入训练好的模型,进行异常行为和潜在缺陷的识别。结合静态分析结果,生成综合性的错误报告,标注出所有检测到的异常。(3) Anomaly detection: The code to be tested is input into the trained model to identify abnormal behaviors and potential defects. Combined with the static analysis results, a comprehensive error report is generated, marking all detected anomalies.
所述数据预处理,使用Git命令从代码仓库中提取提交历史,并过滤掉噪声数据(如无关的文档修改)。使用Python脚本将提交历史转换为训练数据,脚本示例:The data preprocessing uses Git commands to extract the commit history from the code repository and filter out noise data (such as irrelevant document modifications). Use Python scripts to convert the commit history into training data. The script example is:
import subprocessimport subprocess
defget_git_log(repo_path):defget_git_log(repo_path):
log_data = subprocess.check_output(log_data = subprocess.check_output(
["git", "log", "--pretty=format:'%H %s'"], cwd=repo_path)["git", "log", "--pretty=format:'%H %s'"], cwd=repo_path)
return log_data.decode('utf-8').splitlines()return log_data.decode('utf-8').splitlines()
defclean_data(log_data):defclean_data(log_data):
clean_logs = []clean_logs = []
for entry in log_data:for entry in log_data:
if 'bug' in entry or 'fix' in entry:if 'bug' in entry or 'fix' in entry:
clean_logs.append(entry)clean_logs.append(entry)
return clean_logsreturn clean_logs
repo_path = "/path/to/repo"repo_path = "/path/to/repo"
raw_log = get_git_log(repo_path)raw_log = get_git_log(repo_path)
clean_log = clean_data(raw_log)clean_log = clean_data(raw_log)
with open('clean_log.txt', 'w') as f:with open('clean_log.txt', 'w') as f:
for entry in clean_log:for entry in clean_log:
f.write(f"{entry}\n")f.write(f"{entry}\n")
所述模型训练,进行特征提取与训练,使用Scikit-learn进行特征提取和模型训练。特征可以包括代码复杂度、修改频率等。代码示例:The model training is performed by extracting features and training them, using Scikit-learn for feature extraction and model training. Features may include code complexity, modification frequency, etc. Code example:
from sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_scorefrom sklearn.metrics import accuracy_score
# 假设已提取的日志数据# Assuming the extracted log data
logs = [...] # 日志数据logs = [...] # Log data
labels = [...] # 标签数据:1表示错误修复,0表示正常提交labels = [...] # Label data: 1 indicates error fix, 0 indicates normal submission
vectorizer = TfidfVectorizer()vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(logs)X = vectorizer.fit_transform(logs)
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2)X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2)
model = RandomForestClassifier(n_estimators=100)model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)model.fit(X_train, y_train)
y_pred = model.predict(X_test)y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy}")print(f"Model Accuracy: {accuracy}")
上述示例代码中使用TF-IDF方法对日志进行文本特征提取,并训练一个随机森林分类器以识别代码提交中的潜在错误。The above sample code uses the TF-IDF method to extract text features from logs and trains a random forest classifier to identify potential errors in code submissions.
所述异常检测:异常检测与优先级排序,将代码片段输入到训练好的模型中,并结合静态代码分析结果,生成最终的错误报告。代码示例:The anomaly detection: anomaly detection and priority sorting, input code snippets into the trained model, and combine with the static code analysis results to generate the final error report. Code example:
# 假设X_new是新代码片段的特征表示# Assume X_new is the feature representation of the new code snippet
anomalies = model.predict(X_new)anomalies = model.predict(X_new)
# 根据严重性排序# Sort by severity
sorted_anomalies = sorted(anomalies, key=lambda x: x['severity'],reverse=True)sorted_anomalies = sorted(anomalies, key=lambda x: x['severity'],reverse=True)
with open('anomaly-report.txt', 'w') as f:with open('anomaly-report.txt', 'w') as f:
for anomaly in sorted_anomalies:for anomaly in sorted_anomalies:
f.write(f"{anomaly['file']} - Severity: {anomaly['severity']}\n")f.write(f"{anomaly['file']} - Severity: {anomaly['severity']}\n")
输出的异常报告按严重性排序,供开发者优先处理。The output exception reports are sorted by severity for developers to handle first.
3、智能修复:3. Intelligent repair:
智能修复根据检测结果,生成自动修复建议,并在部分情况下直接进行错误修复。实现方式及步骤如下:Smart repair generates automatic repair suggestions based on the detection results, and directly repairs the errors in some cases. The implementation method and steps are as follows:
(1)修复建议生成:分析错误报告中的每个问题,结合规则库和最佳实践,生成对应的修复建议。使用自然语言生成技术,将修复建议转换为人类可读的形式,展示在用户界面上。(1) Generation of repair suggestions: Analyze each problem in the error report, combine the rule base and best practices, and generate corresponding repair suggestions. Use natural language generation technology to convert the repair suggestions into human-readable form and display them on the user interface.
(2)自动修复:对常见且容易修复的错误,系统直接进行修复操作,如变量命名错误、简单的语法错误等。修复后记录修复过程,确保可追溯性。(2) Automatic repair: For common and easy-to-repair errors, the system directly performs repair operations, such as variable naming errors, simple syntax errors, etc. After the repair, the repair process is recorded to ensure traceability.
所述修复建议生成,对于每个检测到的错误,使用预定义的规则库生成修复建议。使用Python脚本自动生成自然语言描述的修复建议。脚本示例:The repair suggestion generation uses a predefined rule base to generate repair suggestions for each detected error. A Python script is used to automatically generate repair suggestions described in natural language. Script example:
repair_suggestions = []repair_suggestions = []
for error in final_report:for error in final_report:
if error['severity'] == 'CRITICAL':if error['severity'] == 'CRITICAL':
repair_suggestions.append({repair_suggestions.append({
'file': error['file'],'file': error['file'],
'line': error['line'],'line': error['line'],
'suggestion': "Consider refactoring this complex functionto reduce its McCabe complexity."'suggestion': "Consider refactoring this complex function to reduce its McCabe complexity."
})})
# 更多规则可以加入# More rules can be added
with open('repair-suggestions.txt', 'w') as f:with open('repair-suggestions.txt', 'w') as f:
for suggestion in repair_suggestions:for suggestions in repair_suggestions:
f.write(f"{suggestion['file']}:{suggestion['line']} - {suggestion['suggestion']}\n")f.write(f"{suggestion['file']}:{suggestion['line']} - {suggestion['suggestion']}\n")
自动修复步骤使用Java中的AST进行修改。例如,自动更正变量命名,代码示例:The automatic repair step uses the AST in Java to make modifications. For example, it automatically corrects variable naming. Code example:
import com.github.javaparser.JavaParser;import com.github.javaparser.JavaParser;
import com.github.javaparser.ast.CompilationUnit;import com.github.javaparser.ast.CompilationUnit;
import com.github.javaparser.ast.body.VariableDeclarator;import com.github.javaparser.ast.body.VariableDeclarator;
import java.io.File;import java.io.File;
public class AutoFixExample {public class AutoFixExample {
public static void main(String[] args) {public static void main(String[] args) {
File file = new File("src/MyClass.java");File file = new File("src/MyClass.java");
CompilationUnit cu = JavaParser.parse(file);CompilationUnit cu = JavaParser.parse(file);
cu.findAll(VariableDeclarator.class).forEach(var ->{cu.findAll(VariableDeclarator.class).forEach(var ->{
if (var.getNameAsString().startsWith("temp")) {if (var.getNameAsString().startsWith("temp")) {
var.setName("improved" + var.getNameAsString().substring(4));var.setName("improved" + var.getNameAsString().substring(4));
}}
});});
System.out.println(cu.toString());System.out.println(cu.toString());
}}
}}
示例代码中自动修正以temp开头的变量名,重新命名以提高代码的可读性。最后,使用JUnit自动化测试工具运行修复后的代码,确保修复没有引入新的错误。测试结果将自动记录在报告中,确保修复的有效性。The variable names starting with temp are automatically corrected in the sample code and renamed to improve the readability of the code. Finally, the fixed code is run using the JUnit automated testing tool to ensure that the fix does not introduce new errors. The test results are automatically recorded in the report to ensure the effectiveness of the fix.
4、用户交互:4. User Interaction:
用户交互部分提供图形化界面,展示检测结果和修复建议,供开发者参考和操作。实现方式和步骤为:The user interaction part provides a graphical interface to display the detection results and repair suggestions for developers to refer to and operate. The implementation method and steps are as follows:
(1)界面设计:设计直观、易用的用户界面,展示错误报告、修复建议和修复历史。界面包括代码编辑器、错误列表、详细错误描述和修复建议区域。(1) Interface design: Design an intuitive and easy-to-use user interface to display error reports, repair suggestions, and repair history. The interface includes a code editor, error list, detailed error description, and repair suggestion area.
(2)交互功能:提供错误定位功能,开发者点击错误列表中的问题,可以直接跳转到代码中的对应位置。支持修复建议的查看和应用,开发者可以选择自动修复或手动修复。(2) Interactive function: It provides error location function. Developers can directly jump to the corresponding position in the code by clicking on the problem in the error list. It supports viewing and applying repair suggestions. Developers can choose automatic repair or manual repair.
(3)反馈机制:提供用户反馈功能,开发者可以对修复建议和自动修复结果进行评价和反馈。收集用户反馈,持续优化检测算法和修复策略。(3) Feedback mechanism: Provide user feedback function, developers can evaluate and provide feedback on repair suggestions and automatic repair results. Collect user feedback and continuously optimize detection algorithms and repair strategies.
使用前端框架如React.js设计用户界面,显示错误报告、修复建议、历史修复记录。通过用户界面,开发者可以查看错误详细信息,直接定位到错误代码,并应用修复建议。并提供收集用户对修复建议和自动修复效果的反馈。Use front-end frameworks such as React.js to design user interfaces that display error reports, repair suggestions, and historical repair records. Through the user interface, developers can view error details, directly locate error codes, and apply repair suggestions. It also provides feedback from users on repair suggestions and automatic repair effects.
本发明实施例还提供一种智能高效的错误检测与修复系统,该系统通过上述实施例中所述的智能高效的错误检测与修复方法实现代码错误与修复。该系统包括:The embodiment of the present invention also provides an intelligent and efficient error detection and repair system, which implements code error and repair through the intelligent and efficient error detection and repair method described in the above embodiment. The system includes:
1、静态代码分析模块:1. Static code analysis module:
该模块主要用于分析源代码,识别潜在的错误和代码异味。该模块对源代码进行全面扫描,识别潜在的语法错误、逻辑漏洞和代码异味,并生成初步的错误报告,展示检测到的所有问题。This module is mainly used to analyze source code and identify potential errors and code smells. This module performs a comprehensive scan of the source code to identify potential syntax errors, logic vulnerabilities and code smells, and generates a preliminary error report showing all detected problems.
2、异常检测算法模块:2. Anomaly detection algorithm module:
该模块通过机器学习和模式识别技术,检测代码中的异常行为和潜在缺陷。该模块对代码进行深度分析,识别代码中的异常模式和潜在缺陷,结合静态分析结果,生成综合性的错误报告。This module detects abnormal behavior and potential defects in the code through machine learning and pattern recognition technology. This module conducts in-depth analysis of the code, identifies abnormal patterns and potential defects in the code, and generates a comprehensive error report based on the static analysis results.
3、智能修复模块:3. Intelligent repair module:
该模块根据检测结果,提供修复建议,甚至直接进行部分错误修复。根据综合错误报告,智能修复模块生成修复建议,并展示在用户界面上。对于部分常见错误,系统自动执行修复操作,并记录修复过程。Based on the detection results, the module provides repair suggestions and even directly repairs some errors. Based on the comprehensive error report, the intelligent repair module generates repair suggestions and displays them on the user interface. For some common errors, the system automatically performs repair operations and records the repair process.
4、用户交互模块:4. User interaction module:
该模块提供图形化界面,展示检测结果和修复建议,供开发者参考和操作。通过用户交互模块,开发者可以查看详细的错误报告和修复建议,开发者可以选择接受自动修复,或者根据建议手动修复错误。This module provides a graphical interface to display detection results and repair suggestions for developers to refer to and operate. Through the user interaction module, developers can view detailed error reports and repair suggestions. Developers can choose to accept automatic repairs or manually repair errors according to the suggestions.
最后对修复后的代码进行再次分析,确保所有错误均已修复且未引入新的问题。用户可以对该检测进行反馈。系统根据用户反馈和检测结果,持续优化检测算法和修复策略。Finally, the repaired code is analyzed again to ensure that all errors have been fixed and no new problems have been introduced. Users can provide feedback on the detection. The system continuously optimizes the detection algorithm and repair strategy based on user feedback and detection results.
其中,静态代码分析模块用于在不运行程序的情况下,对源代码进行全面的语法和语义检查,识别潜在的错误和代码异味。该模块的实现方式和步骤如下:The static code analysis module is used to perform a comprehensive syntax and semantic check on the source code without running the program to identify potential errors and code smells. The implementation method and steps of this module are as follows:
(1)代码扫描:使用静态分析工具(如ESLint、SonarQube等)对源代码进行扫描,识别语法错误、未定义变量、未使用的变量等基本错误。扫描所有代码路径,确保全面覆盖。(1) Code scanning: Use static analysis tools (such as ESLint, SonarQube, etc.) to scan the source code and identify basic errors such as syntax errors, undefined variables, and unused variables. Scan all code paths to ensure comprehensive coverage.
(2)代码检查:结合规则库(包括编码规范、最佳实践等)进行深度检查,识别潜在的逻辑漏洞和代码异味(如重复代码、复杂度高的函数等)。通过AST(抽象语法树)分析代码结构,检测潜在的逻辑错误。(2) Code inspection: In-depth inspection is performed in combination with the rule base (including coding standards, best practices, etc.) to identify potential logic vulnerabilities and code smells (such as duplicate code, highly complex functions, etc.). Code structure is analyzed through AST (abstract syntax tree) to detect potential logic errors.
(3)错误报告生成:将检测到的所有错误和代码异味生成初步的错误报告,分类展示每个问题的具体位置和类型。(3) Error report generation: A preliminary error report is generated for all detected errors and code smells, which is categorized to show the specific location and type of each problem.
所述代码扫描主要分三步实现,分别为:工具选择与配置、执行扫描、扫描报告解析。The code scanning is mainly implemented in three steps: tool selection and configuration, execution scanning, and scanning report analysis.
①工具选择与配置:使用SonarQube进行代码扫描。配置SonarQube的规则库,包含通用的编码规范,例如,如未使用变量、未定义变量等。配置文件可以通过sonar-project.properties文件来指定项目路径、编码规范、报告输出路径等。① Tool selection and configuration: Use SonarQube for code scanning. Configure SonarQube's rule base, including common coding standards, such as unused variables, undefined variables, etc. The configuration file can specify the project path, coding standards, report output path, etc. through the sonar-project.properties file.
②执行扫描:在项目根目录下运行以下命令来执行代码扫描:sonar-scanner。扫描会生成一份报告,包含代码中的语法错误、未使用变量等问题。报告以JSON或HTML格式输出。②Execute the scan: Run the following command in the project root directory to perform code scanning: sonar-scanner. The scan will generate a report containing syntax errors, unused variables and other issues in the code. The report is output in JSON or HTML format.
③扫描报告解析:使用Python脚本解析SonarQube生成的JSON报告文件,提取错误信息并分类。③Scan report parsing: Use Python script to parse the JSON report file generated by SonarQube, extract error information and classify it.
所述代码检查分两步:AST生成与解析、逻辑漏洞检测。The code checking is divided into two steps: AST generation and parsing, and logic vulnerability detection.
①使用JavaParser库生成代码的抽象语法树(AST)。JavaParser能够解析Java代码并生成AST,便于对代码结构和逻辑进行分析。① Use the JavaParser library to generate an abstract syntax tree (AST) of the code. JavaParser can parse Java code and generate AST, which is convenient for analyzing the code structure and logic.
②逻辑漏洞检测:使用符号执行工具Symbolic PathFinder(该执行工具针对Java,本方法以Java语言为主,如果使用C/C++则可以使用KLEE),对代码路径进行模拟执行,检测可能存在的逻辑漏洞如空指针、数组越界等。②Logical vulnerability detection: Use the symbolic execution tool Symbolic PathFinder (this execution tool is for Java, and this method is mainly based on the Java language. If you use C/C++, you can use KLEE) to simulate the execution of the code path and detect possible logical vulnerabilities such as null pointers and array out-of-bounds.
通过命令行运行Symbolic PathFinder,并指定要分析的Java文件及方法。输出报告中包括检测到的路径条件和可能的逻辑错误。Run Symbolic PathFinder from the command line and specify the Java files and methods to be analyzed. The output report includes the detected path conditions and possible logic errors.
所述错误报告生成,合并SonarQube和AST解析的结果,生成最终的错误报告。报告内容包括每个错误的类型、严重性、所在文件及行号,报告可以用Python脚本生成。The error report generation combines the results of SonarQube and AST parsing to generate a final error report. The report content includes the type, severity, file and line number of each error, and the report can be generated using a Python script.
异常检测算法模块通过机器学习和模式识别技术,对代码进行深度分析,识别代码中的异常行为和潜在缺陷。实现方式及步骤如下:The anomaly detection algorithm module uses machine learning and pattern recognition technology to conduct in-depth analysis of the code to identify abnormal behaviors and potential defects in the code. The implementation method and steps are as follows:
(1)数据预处理:收集和整理历史代码错误数据,作为训练数据集。对训练数据进行清洗和标准化处理,确保数据质量。(1) Data preprocessing: Collect and organize historical code error data as training data sets. Clean and standardize the training data to ensure data quality.
(2)模型训练:选择合适的机器学习算法(如SVM、随机森林、神经网络等),对训练数据进行模型训练。使用交叉验证方法,优化模型参数,确保模型的准确性和泛化能力。(2) Model training: Select an appropriate machine learning algorithm (such as SVM, random forest, neural network, etc.) and train the model on the training data. Use the cross-validation method to optimize the model parameters to ensure the accuracy and generalization ability of the model.
(3)异常检测:将待检测的代码输入训练好的模型,进行异常行为和潜在缺陷的识别。结合静态分析结果,生成综合性的错误报告,标注出所有检测到的异常。(3) Anomaly detection: The code to be tested is input into the trained model to identify abnormal behaviors and potential defects. Combined with the static analysis results, a comprehensive error report is generated, marking all detected anomalies.
所述数据预处理,使用Git命令从代码仓库中提取提交历史,并过滤掉噪声数据(如无关的文档修改)。使用Python脚本将提交历史转换为训练数据。The data preprocessing uses Git commands to extract the commit history from the code repository and filter out noise data (such as irrelevant document modifications). A Python script is used to convert the commit history into training data.
所述模型训练,进行特征提取与训练,使用Scikit-learn进行特征提取和模型训练。特征可以包括代码复杂度、修改频率等。使用TF-IDF方法对日志进行文本特征提取,并训练一个随机森林分类器以识别代码提交中的潜在错误。The model training, feature extraction and training, uses Scikit-learn for feature extraction and model training. Features may include code complexity, modification frequency, etc. The TF-IDF method is used to extract text features from the logs, and a random forest classifier is trained to identify potential errors in code submissions.
所述异常检测:异常检测与优先级排序,将代码片段输入到训练好的模型中,并结合静态代码分析结果,生成最终的错误报告。输出的异常报告按严重性排序,供开发者优先处理。The anomaly detection: anomaly detection and priority sorting, input the code snippet into the trained model, and combine it with the static code analysis results to generate the final error report. The output anomaly report is sorted by severity for developers to handle first.
智能修复模块根据检测结果,生成自动修复建议,并在部分情况下直接进行错误修复。实现方式及步骤包括:The intelligent repair module generates automatic repair suggestions based on the detection results, and directly repairs the errors in some cases. The implementation methods and steps include:
(1)修复建议生成:分析错误报告中的每个问题,结合规则库和最佳实践,生成对应的修复建议。使用自然语言生成技术,将修复建议转换为人类可读的形式,展示在用户界面上。(1) Generation of repair suggestions: Analyze each problem in the error report, combine the rule base and best practices, and generate corresponding repair suggestions. Use natural language generation technology to convert the repair suggestions into human-readable form and display them on the user interface.
(2)自动修复:对常见且容易修复的错误,系统直接进行修复操作,如变量命名错误、简单的语法错误等。修复后记录修复过程,确保可追溯性。(2) Automatic repair: For common and easy-to-repair errors, the system directly performs repair operations, such as variable naming errors, simple syntax errors, etc. After the repair, the repair process is recorded to ensure traceability.
所述修复建议生成,对于每个检测到的错误,使用预定义的规则库生成修复建议。使用Python脚本自动生成自然语言描述的修复建议。The repair suggestion generation, for each detected error, generates a repair suggestion using a predefined rule base and automatically generates a repair suggestion described in natural language using a Python script.
自动修复步骤使用Java中的AST进行修改。自动修正以temp开头的变量名,重新命名以提高代码的可读性。最后,使用JUnit自动化测试工具运行修复后的代码,确保修复没有引入新的错误。测试结果将自动记录在报告中,确保修复的有效性。The automatic repair step uses the AST in Java to make modifications. Variable names starting with temp are automatically corrected and renamed to improve the readability of the code. Finally, the repaired code is run using the JUnit automated testing tool to ensure that the repair has not introduced new errors. The test results are automatically recorded in the report to ensure the effectiveness of the repair.
用户交互模块提供图形化界面,展示检测结果和修复建议,供开发者参考和操作。实现方式和步骤包括:The user interaction module provides a graphical interface to display the detection results and repair suggestions for developers to refer to and operate. The implementation methods and steps include:
(1)界面设计:设计直观、易用的用户界面,展示错误报告、修复建议和修复历史。界面包括代码编辑器、错误列表、详细错误描述和修复建议区域。(1) Interface design: Design an intuitive and easy-to-use user interface to display error reports, repair suggestions, and repair history. The interface includes a code editor, error list, detailed error description, and repair suggestion area.
(2)交互功能:提供错误定位功能,开发者点击错误列表中的问题,可以直接跳转到代码中的对应位置。支持修复建议的查看和应用,开发者可以选择自动修复或手动修复。(2) Interactive function: It provides error location function. Developers can directly jump to the corresponding position in the code by clicking on the problem in the error list. It supports viewing and applying repair suggestions. Developers can choose automatic repair or manual repair.
(3)反馈机制:提供用户反馈功能,开发者可以对修复建议和自动修复结果进行评价和反馈。收集用户反馈,持续优化检测算法和修复策略。(3) Feedback mechanism: Provide user feedback function, developers can evaluate and provide feedback on repair suggestions and automatic repair results. Collect user feedback and continuously optimize detection algorithms and repair strategies.
使用前端框架如React.js设计用户界面,显示错误报告、修复建议、历史修复记录。通过用户界面,开发者可以查看错误详细信息,直接定位到错误代码,并应用修复建议。并提供收集用户对修复建议和自动修复效果的反馈。Use front-end frameworks such as React.js to design user interfaces that display error reports, repair suggestions, and historical repair records. Through the user interface, developers can view error details, directly locate error codes, and apply repair suggestions. It also provides feedback from users on repair suggestions and automatic repair effects.
本发明实施例还提供一种智能高效的错误检测与修复装置,包括:至少一个存储器和至少一个处理器;An embodiment of the present invention also provides an intelligent and efficient error detection and repair device, comprising: at least one memory and at least one processor;
所述至少一个存储器,用于存储机器可读程序;The at least one memory is used to store a machine-readable program;
所述至少一个处理器,用于调用所述机器可读程序,实现上述实施例中所述的智能高效的错误检测与修复方法。The at least one processor is used to call the machine-readable program to implement the intelligent and efficient error detection and repair method described in the above embodiment.
本发明实施例还提供一种计算机可读介质,所述计算机可读介质上存储有计算机指令,所述计算机指令在被处理器执行时,使所述处理器执行上述实施例中所述的智能高效的错误检测与修复方法。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施例的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。The embodiment of the present invention further provides a computer-readable medium, on which computer instructions are stored, and when the computer instructions are executed by a processor, the processor executes the intelligent and efficient error detection and repair method described in the above embodiment. Specifically, a system or device equipped with a storage medium can be provided, on which software program codes for implementing the functions of any of the above embodiments are stored, and a computer (or CPU or MPU) of the system or device reads and executes the program code stored in the storage medium.
在这种情况下,从存储介质读取的程序代码本身可实现上述实施例中任何一项实施例的功能,因此程序代码和存储程序代码的存储介质构成了本发明的一部分。In this case, the program code itself read from the storage medium can realize the function of any one of the above-mentioned embodiments, and thus the program code and the storage medium storing the program code constitute a part of the present invention.
用于提供程序代码的存储介质实施例包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上下载程序代码。The storage medium embodiments for providing the program code include a floppy disk, a hard disk, a magneto-optical disk, an optical disk (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), a magnetic tape, a non-volatile memory card, and a ROM. Alternatively, the program code can be downloaded from a server computer via a communication network.
此外,应该清楚的是,不仅可以通过执行计算机所读出的程序代码,而且可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作,从而实现上述实施例中任意一项实施例的功能。In addition, it should be clear that the functions of any of the above embodiments can be implemented not only by executing the program code read by the computer, but also by enabling an operating system operating on the computer to complete part or all of the actual operations based on instructions from the program code.
此外,可以理解的是,将由存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施例中任一实施例的功能。In addition, it can be understood that the program code read from the storage medium is written to a memory provided in an expansion board inserted into the computer or written to a memory provided in an expansion unit connected to the computer, and then based on the instructions of the program code, a CPU installed on the expansion board or the expansion unit is enabled to perform part or all of the actual operations, thereby realizing the functions of any of the above-mentioned embodiments.
上文通过附图和优选实施例对本发明进行了详细展示和说明,然而本发明不限于这些已揭示的实施例,基与上述多个实施例本领域技术人员可以知晓,可以组合上述不同实施例中的代码审核手段得到本发明更多的实施例,这些实施例也在本发明的保护范围之内。The present invention is shown and described in detail above through the accompanying drawings and preferred embodiments. However, the present invention is not limited to these disclosed embodiments. Based on the above multiple embodiments, those skilled in the art can know that the code review methods in the above different embodiments can be combined to obtain more embodiments of the present invention, and these embodiments are also within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411147172.1A CN118656107B (en) | 2024-08-21 | 2024-08-21 | Intelligent and efficient error detection and repair method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411147172.1A CN118656107B (en) | 2024-08-21 | 2024-08-21 | Intelligent and efficient error detection and repair method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118656107A CN118656107A (en) | 2024-09-17 |
CN118656107B true CN118656107B (en) | 2024-10-29 |
Family
ID=92705932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411147172.1A Active CN118656107B (en) | 2024-08-21 | 2024-08-21 | Intelligent and efficient error detection and repair method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118656107B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119201214A (en) * | 2024-09-26 | 2024-12-27 | 江苏卓易信息科技股份有限公司 | An intelligent code optimization and refactoring system based on large models |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118092998A (en) * | 2024-04-03 | 2024-05-28 | 北京云起无垠科技有限公司 | Vulnerability code repairing method and system based on pre-training large model |
CN118114252A (en) * | 2024-02-07 | 2024-05-31 | 国网江苏省电力有限公司扬州供电分公司 | Method and system for real-time identification of high-risk vulnerabilities based on machine learning |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11568055B2 (en) * | 2019-08-23 | 2023-01-31 | Praetorian | System and method for automatically detecting a security vulnerability in a source code using a machine learning model |
CN117234785B (en) * | 2023-11-09 | 2024-02-02 | 华能澜沧江水电股份有限公司 | Centralized control platform error analysis system based on artificial intelligence self-query |
CN117892316A (en) * | 2024-01-25 | 2024-04-16 | 厦门理工学院 | Computer software protection system and method based on cloud computing |
-
2024
- 2024-08-21 CN CN202411147172.1A patent/CN118656107B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118114252A (en) * | 2024-02-07 | 2024-05-31 | 国网江苏省电力有限公司扬州供电分公司 | Method and system for real-time identification of high-risk vulnerabilities based on machine learning |
CN118092998A (en) * | 2024-04-03 | 2024-05-28 | 北京云起无垠科技有限公司 | Vulnerability code repairing method and system based on pre-training large model |
Also Published As
Publication number | Publication date |
---|---|
CN118656107A (en) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Siddiq et al. | An empirical study of code smells in transformer-based code generation techniques | |
Zhang et al. | Repairing bugs in python assignments using large language models | |
Kim et al. | Memories of bug fixes | |
US8875110B2 (en) | Code inspection executing system for performing a code inspection of ABAP source codes | |
US9235493B2 (en) | System and method for peer-based code quality analysis reporting | |
US8312440B2 (en) | Method, computer program product, and hardware product for providing program individuality analysis for source code programs | |
CN108932192A (en) | A kind of Python Program Type defect inspection method based on abstract syntax tree | |
CN118656107B (en) | Intelligent and efficient error detection and repair method and system | |
CN103257919B (en) | Inspection method and device for script programs | |
CN107862327B (en) | Security defect identification system and method based on multiple features | |
Yang et al. | Vuldigger: A just-in-time and cost-aware tool for digging vulnerability-contributing changes | |
CN112131120A (en) | Source code defect detection method and device | |
CN112947985A (en) | Method and system for intelligently detecting and repairing codes | |
CN112464237A (en) | Static code safety diagnosis method and device | |
Silva et al. | Flacoco: Fault localization for java based on industry-grade coverage | |
Dalton et al. | Is exceptional behavior testing an exception? an empirical assessment using java automated tests | |
Wuisang et al. | An evaluation of the effectiveness of openai's chatGPT for automated python program bug fixing using quixbugs | |
Thooriqoh et al. | Selenium framework for web automation testing: A systematic literature review | |
Taniguchi et al. | JTDog: A gradle plugin for dynamic test smell detection | |
Yaraghi et al. | Automated test case repair using language models | |
CN1908895B (en) | System and method for application program globalization problem verification | |
Li et al. | Classification of software defect detected by black-box testing: An empirical study | |
CN112231212A (en) | Method for detecting syntax error of program code | |
CN118503110A (en) | A method for identifying and repairing source code defects | |
Petrulio et al. | SZZ in the time of pull requests |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |