[go: up one dir, main page]

CN118645475B - Method for forming semiconductor device - Google Patents

Method for forming semiconductor device Download PDF

Info

Publication number
CN118645475B
CN118645475B CN202411127334.5A CN202411127334A CN118645475B CN 118645475 B CN118645475 B CN 118645475B CN 202411127334 A CN202411127334 A CN 202411127334A CN 118645475 B CN118645475 B CN 118645475B
Authority
CN
China
Prior art keywords
layer
forming
type transistor
metal silicide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411127334.5A
Other languages
Chinese (zh)
Other versions
CN118645475A (en
Inventor
郭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Shengweixu Technology Co ltd
Original Assignee
Shenzhen Shengweixu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Shengweixu Technology Co ltd filed Critical Shenzhen Shengweixu Technology Co ltd
Priority to CN202411127334.5A priority Critical patent/CN118645475B/en
Publication of CN118645475A publication Critical patent/CN118645475A/en
Application granted granted Critical
Publication of CN118645475B publication Critical patent/CN118645475B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本公开提供了一种半导体器件的形成方法,涉及半导体技术领域。该形成方法包括:提供包括衬底的初始半导体结构,衬底包括第一区域和第二区域,第一区域形成有P型晶体管,第二区域形成有N型晶体管,P型晶体管包括第一栅极、第一源极和第一漏极,N型晶体管包括第二栅极、第二源极和第二漏极;在第一栅极、第一源极、第一漏极、第二栅极、第二源极、第二漏极的顶部分别形成第一金属硅化物层;形成随形覆盖于具有第一金属硅化物层的初始半导体结构的表面的应力层,应力层包括硅元素和氮元素,且硅元素和氮元素之间的比例大于3:4。通过在器件内形成硅含量较高的应力层,可以平衡P型晶体管和N型晶体管内的应力,降低器件内金属硅化物层的阻值。

The present disclosure provides a method for forming a semiconductor device, and relates to the field of semiconductor technology. The formation method includes: providing an initial semiconductor structure including a substrate, the substrate including a first region and a second region, a P-type transistor is formed in the first region, an N-type transistor is formed in the second region, the P-type transistor includes a first gate, a first source and a first drain, and the N-type transistor includes a second gate, a second source and a second drain; forming a first metal silicide layer on the top of the first gate, the first source, the first drain, the second gate, the second source, and the second drain respectively; forming a stress layer conformally covering the surface of the initial semiconductor structure having the first metal silicide layer, the stress layer includes silicon and nitrogen, and the ratio between silicon and nitrogen is greater than 3:4. By forming a stress layer with a high silicon content in the device, the stress in the P-type transistor and the N-type transistor can be balanced, and the resistance of the metal silicide layer in the device can be reduced.

Description

半导体器件的形成方法Method for forming semiconductor device

技术领域Technical Field

本公开涉及半导体技术领域,具体而言,涉及一种半导体器件的形成方法。The present disclosure relates to the field of semiconductor technology, and in particular, to a method for forming a semiconductor device.

背景技术Background Art

在半导体器件领域中,随着集成电路的特征线宽微缩到纳米级别以下,器件内部膜层间的作用力也在发生着变化,尤其是在CMOS(Complementary Metal-Oxide-Semiconductor Transistor,互补金属氧化物半导体)器件的制造过程中,在形成金属硅化物形成后,会在硅片上形成一层CESL(Contact Etch Stop Layer,通孔刻蚀停止层)膜层,该膜层会对位于其下方的器件结构产生应力作用,而应力可以使得晶格发生变化,以影响器件内部载流子迁移率发生变化,同一膜层对PMOS(Positive-channel-Metal-Oxide-Semiconductor,P型金属氧化物半导体场效应晶体管,简称P型晶体管)器件和NMOS(N-Metal-Oxide-Semiconductor,N型金属氧化物半导体场效应晶体管,简称N型晶体管)器件所产生的应力对载流子迁移率的影响是不同的。In the field of semiconductor devices, as the characteristic line width of integrated circuits shrinks to below the nanometer level, the forces between the film layers inside the device are also changing, especially in the manufacturing process of CMOS (Complementary Metal-Oxide-Semiconductor Transistor) devices. After the metal silicide is formed, a CESL (Contact Etch Stop Layer) film layer will be formed on the silicon wafer. This film layer will exert stress on the device structure located below it, and the stress can cause the lattice to change, thereby affecting the carrier mobility inside the device. The stress generated by the same film layer on PMOS (Positive-channel-Metal-Oxide-Semiconductor, P-type metal oxide semiconductor field effect transistor, referred to as P-type transistor) devices and NMOS (N-Metal-Oxide-Semiconductor, N-type metal oxide semiconductor field effect transistor, referred to as N-type transistor) devices has different effects on carrier mobility.

在CMOS器件中,金属硅化物的形成不仅受温度的影响,还受到应力膜层所产生的应力的影响,在不同的应力作用下,金属硅化物内部原子结构的相变温度不同,导致在同一CMOS器件中,P型晶体管和N型晶体管内的金属硅化物完成相变的温度有所差异,在部分金属硅化物正处于相变的温度条件下,另一部分金属硅化物已经发生团聚缺陷,造成器件的制造缺陷,进而影响了器件的良率。In CMOS devices, the formation of metal silicide is not only affected by temperature, but also by the stress generated by the stress film layer. Under different stresses, the phase change temperature of the atomic structure inside the metal silicide is different, resulting in different temperatures for the metal silicide to complete the phase change in the P-type transistor and the N-type transistor in the same CMOS device. When some metal silicides are at the temperature of phase change, other parts of the metal silicides have already undergone agglomeration defects, causing manufacturing defects of the device, which in turn affects the yield of the device.

需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。It should be noted that the information disclosed in the above background technology section is only used to enhance the understanding of the background of the present disclosure, and therefore may include information that does not constitute the prior art known to ordinary technicians in the field.

发明内容Summary of the invention

有鉴于此,提供了一种半导体器件的形成方法,该形成方法通过在N型晶体管和P型晶体管上同时覆盖硅元素含量较高的应力层,可以平衡N型晶体管和P型晶体管上的应力,且可以降低金属硅化物层的阻值,提高器件的性能和可靠性。In view of this, a method for forming a semiconductor device is provided. The method can balance the stress on the N-type transistor and the P-type transistor by simultaneously covering the N-type transistor and the P-type transistor with a stress layer with a high silicon content, and can reduce the resistance of the metal silicide layer, thereby improving the performance and reliability of the device.

本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。Other features and advantages of the present disclosure will become apparent from the following detailed description, or may be learned in part by the practice of the present disclosure.

根据本公开的一个方面,提供了一种半导体器件的形成方法,该形成方法包括:According to one aspect of the present disclosure, a method for forming a semiconductor device is provided, the method comprising:

提供初始半导体结构,所述初始半导体结构包括衬底,所述衬底包括第一区域和第二区域,所述第一区域形成有P型晶体管,所述第二区域形成有N型晶体管,所述P型晶体管包括第一栅极以及位于所述第一栅极两侧的第一源极和第一漏极,所述N型晶体管包括第二栅极以及位于所述第二栅极两侧的第二源极和第二漏极;Providing an initial semiconductor structure, the initial semiconductor structure comprising a substrate, the substrate comprising a first region and a second region, the first region forming a P-type transistor, the second region forming an N-type transistor, the P-type transistor comprising a first gate and a first source and a first drain located on both sides of the first gate, the N-type transistor comprising a second gate and a second source and a second drain located on both sides of the second gate;

在所述第一栅极、所述第一源极、所述第一漏极、所述第二栅极、所述第二源极、所述第二漏极的顶部分别形成第一金属硅化物层;forming a first metal silicide layer on top of the first gate, the first source, the first drain, the second gate, the second source, and the second drain respectively;

形成应力层,所述应力层随形覆盖于具有所述第一金属硅化物层的所述初始半导体结构的表面,以形成目标半导体结构,其中,所述应力层包括硅元素和氮元素,且所述硅元素和所述氮元素之间的比例大于3:4。A stress layer is formed, and the stress layer conformally covers the surface of the initial semiconductor structure having the first metal silicide layer to form a target semiconductor structure, wherein the stress layer includes silicon and nitrogen elements, and the ratio between the silicon element and the nitrogen element is greater than 3:4.

在本公开的一种示例性实施例中,所述方法还包括:In an exemplary embodiment of the present disclosure, the method further includes:

对所述目标半导体结构进行第一热处理,以使所述应力层内的硅元素扩散至所述第一金属硅化物层内,形成第二金属硅化物层;Performing a first heat treatment on the target semiconductor structure to diffuse the silicon element in the stress layer into the first metal silicide layer to form a second metal silicide layer;

其中,所述第二金属硅化物层的电阻率小于所述第一金属硅化物层的电阻率。The resistivity of the second metal silicide layer is smaller than the resistivity of the first metal silicide layer.

在本公开的一种示例性实施例中,所述第一热处理包括激光退火处理,所述第一热处理的温度大于700℃,所述第一热处理的时间为10ns~100ms。In an exemplary embodiment of the present disclosure, the first heat treatment includes laser annealing, the temperature of the first heat treatment is greater than 700° C., and the time of the first heat treatment is 10 ns to 100 ms.

在本公开的一种示例性实施例中,所述形成第一金属硅化物层,包括:In an exemplary embodiment of the present disclosure, the forming of the first metal silicide layer includes:

形成金属层,所述金属层随形覆盖于所述初始半导体结构的表面;forming a metal layer, wherein the metal layer conformally covers the surface of the initial semiconductor structure;

对具有所述金属层的所述初始半导体结构进行第二热处理,以使所述金属层内的金属离子扩散至所述N型晶体管和所述P型晶体管内;Performing a second heat treatment on the initial semiconductor structure having the metal layer so as to diffuse metal ions in the metal layer into the N-type transistor and the P-type transistor;

去除剩余所述金属层。The remaining metal layer is removed.

在本公开的一种示例性实施例中,所述第二热处理的温度小于750℃。In an exemplary embodiment of the present disclosure, the temperature of the second heat treatment is less than 750°C.

在本公开的一种示例性实施例中,所述形成金属层之后,所述方法还包括:In an exemplary embodiment of the present disclosure, after forming the metal layer, the method further includes:

形成阻挡层,所述阻挡层随形覆盖于所述金属层的表面上。A barrier layer is formed, wherein the barrier layer conformally covers the surface of the metal layer.

在本公开的一种示例性实施例中,所述方法还包括:In an exemplary embodiment of the present disclosure, the method further includes:

在所述衬底内形成隔离结构,所述隔离结构用于间隔所述P型晶体管和所述N型晶体管。An isolation structure is formed in the substrate, wherein the isolation structure is used to separate the P-type transistor and the N-type transistor.

在本公开的一种示例性实施例中,形成所述金属层之前,所述方法还包括:In an exemplary embodiment of the present disclosure, before forming the metal layer, the method further includes:

形成钝化层,所述钝化层随形覆盖于所述初始半导体结构的表面;forming a passivation layer, wherein the passivation layer conformally covers the surface of the initial semiconductor structure;

在所述钝化层上形成光阻层;forming a photoresist layer on the passivation layer;

以所述光阻层为掩膜,对所述钝化层进行蚀刻,以形成子钝化层,所述子钝化层覆盖所述隔离结构的表面。The passivation layer is etched using the photoresist layer as a mask to form a sub-passivation layer, wherein the sub-passivation layer covers the surface of the isolation structure.

在本公开的一种示例性实施例中,所述形成第二金属硅化物层之后,所述方法还包括:In an exemplary embodiment of the present disclosure, after forming the second metal silicide layer, the method further includes:

形成绝缘层,所述绝缘层覆盖所述目标半导体结构,且填充所述P型晶体管和所述N型晶体管之间的间隙。An insulating layer is formed, where the insulating layer covers the target semiconductor structure and fills a gap between the P-type transistor and the N-type transistor.

在本公开的一种示例性实施例中,所述应力层内的硅元素和氮元素之间的比例为7:8~15:8。In an exemplary embodiment of the present disclosure, the ratio between silicon element and nitrogen element in the stress layer is 7:8-15:8.

在本公开的一种示例性实施例中,所述应力层采用等离子体增强化学气相沉积法、化学气相沉积法或原子层沉积法形成。In an exemplary embodiment of the present disclosure, the stress layer is formed by plasma enhanced chemical vapor deposition, chemical vapor deposition or atomic layer deposition.

在本公开的一种示例性实施例中,形成所述应力层的前驱体包括硅烷和氨气;或形成所述应力层的前驱体包括硅烷和氮气。In an exemplary embodiment of the present disclosure, a precursor for forming the stress layer includes silane and ammonia; or a precursor for forming the stress layer includes silane and nitrogen.

本公开提供的半导体器件的形成方法,该方法通过在N型晶体管和P型晶体管上形成第一金属硅化物层,并在第一金属硅化物层上形成应力层,应力层内的硅元素和氮元素之间的比例大于3:4,使得应力层内的硅含量较高,一方面,可以通过应力层平衡P型晶体管和N型晶体管内的压力,另一方面,由于应力层内的硅元素含量较高,可以平衡P型晶体管和N型晶体管内的金属硅化物的相变温度,形成均匀的且电阻率较小的金属硅化物层,避免团聚缺陷的形成,进而提升了器件的良率。The present invention provides a method for forming a semiconductor device. The method forms a first metal silicide layer on an N-type transistor and a P-type transistor, and forms a stress layer on the first metal silicide layer. The ratio between silicon and nitrogen in the stress layer is greater than 3:4, so that the silicon content in the stress layer is relatively high. On the one hand, the stress layer can be used to balance the pressure in the P-type transistor and the N-type transistor. On the other hand, due to the high silicon content in the stress layer, the phase change temperature of the metal silicide in the P-type transistor and the N-type transistor can be balanced to form a uniform metal silicide layer with low resistivity, thereby avoiding the formation of agglomeration defects and improving the yield of the device.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。The accompanying drawings herein are incorporated into the specification and constitute a part of the specification, illustrate embodiments consistent with the present disclosure, and together with the specification are used to explain the principles of the present disclosure. Obviously, the accompanying drawings described below are only some embodiments of the present disclosure, and for ordinary technicians in this field, other accompanying drawings can be obtained based on these accompanying drawings without creative work.

图1为本公开一种示例性实施例中半导体器件的形成方法的流程图。FIG. 1 is a flow chart of a method for forming a semiconductor device in an exemplary embodiment of the present disclosure.

图2为本公开一种示例性实施例中初始半导体结构的结构示意图。FIG. 2 is a schematic structural diagram of an initial semiconductor structure in an exemplary embodiment of the present disclosure.

图3为本公开一种示例性实施例中具有钝化层的初始半导体结构的结构示意图。FIG. 3 is a schematic structural diagram of an initial semiconductor structure having a passivation layer in an exemplary embodiment of the present disclosure.

图4为本公开一种示例性实施例中具有子钝化层的初始半导体结构的结构示意图。FIG. 4 is a schematic structural diagram of an initial semiconductor structure having a sub-passivation layer in an exemplary embodiment of the present disclosure.

图5为本公开一种示例性实施例中形成金属层的器件结构示意图。FIG. 5 is a schematic diagram of a device structure for forming a metal layer in an exemplary embodiment of the present disclosure.

图6为本公开一种示例性实施例中形成阻挡层的器件结构示意图。FIG. 6 is a schematic diagram of a device structure for forming a barrier layer in an exemplary embodiment of the present disclosure.

图7为本公开一种示例性实施例中形成第一金属硅化物层的器件结构示意图。FIG. 7 is a schematic diagram of a device structure for forming a first metal silicide layer in an exemplary embodiment of the present disclosure.

图8为本公开一种示例性实施例中目标半导体结构的结构示意图。FIG. 8 is a schematic structural diagram of a target semiconductor structure in an exemplary embodiment of the present disclosure.

图9为本公开一种示例性实施例中形成第二金属硅化物层的器件结构示意图。FIG. 9 is a schematic diagram of a device structure for forming a second metal silicide layer in an exemplary embodiment of the present disclosure.

图10为本公开一种示例性实施例中形成绝缘层的器件结构示意图。FIG. 10 is a schematic diagram of a device structure for forming an insulating layer in an exemplary embodiment of the present disclosure.

其中,附图标记说明如下:The reference numerals are described as follows:

100、衬底;210、N型晶体管;211、第二栅极;11、第二栅极氧化层;12、第二栅极层;13、第二栅极保护层;131、绝缘材料层;132、介电层;212、第二源极;213、第二漏极;220、P型晶体管;221、第一栅极;21、第一栅极氧化层;22、第一栅极层;23、第一栅极保护层;222、第一源极;223、第一漏极;310、第一金属硅化物层;320、第二金属硅化物层;330、金属层;400、应力层;500、阻挡层;600、钝化层;610、光阻层;601、子钝化层;700、绝缘层;1000、隔离结构;A、第一区域;B、第二区域。100, substrate; 210, N-type transistor; 211, second gate; 11, second gate oxide layer; 12, second gate layer; 13, second gate protection layer; 131, insulating material layer; 132, dielectric layer; 212, second source; 213, second drain; 220, P-type transistor; 221, first gate; 21, first gate oxide layer; 22, first gate layer; 23, first gate protection layer; 222, first source; 223, first drain; 310, first metal silicide layer; 320, second metal silicide layer; 330, metal layer; 400, stress layer; 500, blocking layer; 600, passivation layer; 610, photoresist layer; 601, sub-passivation layer; 700, insulating layer; 1000, isolation structure; A, first region; B, second region.

具体实施方式DETAILED DESCRIPTION

现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。Example embodiments will now be described more fully with reference to the accompanying drawings. However, the example embodiments can be implemented in a variety of forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that the present disclosure will be comprehensive and complete and fully convey the concepts of the example embodiments to those skilled in the art. The same reference numerals in the figures represent the same or similar structures, and thus their detailed description will be omitted. In addition, the drawings are only schematic illustrations of the present disclosure and are not necessarily drawn to scale.

虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。Although relative terms such as "upper" and "lower" are used in this specification to describe the relative relationship of one component of the illustration to another component, these terms are used in this specification only for convenience, such as according to the orientation of the examples described in the drawings. It is understood that if the device of the illustration is turned upside down, the component described as "upper" will become the component "lower". When a structure is "on" other structures, it may mean that the structure is formed integrally on the other structure, or that the structure is "directly" disposed on the other structure, or that the structure is "indirectly" disposed on the other structure through another structure.

用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。The terms "a", "an", "the", "said" and "at least one" are used to indicate the presence of one or more elements/components/etc.; the terms "including" and "having" are used to express an open-ended inclusive meaning and mean that additional elements/components/etc. may exist in addition to the listed elements/components/etc.; the terms "first", "second" and "third" etc. are used merely as labels and are not intended to limit the quantity of their objects.

在相关技术中,CMOS器件作为一种集成电路技术被广泛应用于现代微电子学中,尤其是在微处理器、存储器和其他数字逻辑电路中,其结合了N型金属-氧化物-半导体(NMOS)晶体管和P型金属-氧化物-半导体(PMOS)晶体管。CMOS器件具有低功耗和高性能等特点。In related technologies, CMOS devices are widely used in modern microelectronics as an integrated circuit technology, especially in microprocessors, memories and other digital logic circuits, which combine N-type metal-oxide-semiconductor (NMOS) transistors and P-type metal-oxide-semiconductor (PMOS) transistors. CMOS devices have the characteristics of low power consumption and high performance.

随着半导体工艺的不断进步,CMOS器件的尺寸不断缩小,对CMOS的工艺制程提出了更高的要求。目前,为了减小由于器件尺寸微缩化而带来的短沟道效应等问题,通常会在器件的表面上金属硅化物层,并可以通过进一步的热处理工艺,使得器件内部的硅离子扩散至已形成的金属硅化物层内,形成电阻率较小的金属硅化物层,以减小器件的接触电阻。With the continuous advancement of semiconductor technology, the size of CMOS devices continues to shrink, which puts higher requirements on the CMOS process. At present, in order to reduce the short channel effect and other problems caused by the miniaturization of device size, a metal silicide layer is usually formed on the surface of the device, and further heat treatment process can be used to diffuse the silicon ions inside the device into the formed metal silicide layer to form a metal silicide layer with a lower resistivity, so as to reduce the contact resistance of the device.

在形成金属硅化物层后,还会在器件上形成一层CESL膜层,以为后续器件的制造提供基础,CESL膜层会对器件产生应力作用,尤其是对P型晶体管,其源漏极可以使用硅锗(SiGe)工艺形成,而硅锗膜层在应力的作用下,其内部的载流子迁移量大幅度提高,但应力会对金属硅化物层的相变产生影响,其中,对于P型晶体管来说,应力越大,金属硅化物层相变温度越低,其可以在较低的温度下形成低阻相的金属硅化物层,而N型晶体管完成低阻相金属硅化物层的转变则需要更高的温度,而提高温度,则会导致P型晶体管区域内先形成的低阻相的金属硅化物层发生团聚缺陷,进而影响器件的性能。After the metal silicide layer is formed, a CESL film layer is also formed on the device to provide a basis for the subsequent device manufacturing. The CESL film layer will produce stress on the device, especially for P-type transistors, whose source and drain can be formed using silicon germanium (SiGe) process. Under the action of stress, the carrier migration amount inside the silicon germanium film layer is greatly improved, but the stress will affect the phase change of the metal silicide layer. Among them, for P-type transistors, the greater the stress, the lower the phase change temperature of the metal silicide layer, and it can form a low-resistance metal silicide layer at a lower temperature. N-type transistors require a higher temperature to complete the transformation of the low-resistance metal silicide layer. Increasing the temperature will cause the low-resistance metal silicide layer formed first in the P-type transistor area to have agglomeration defects, thereby affecting the performance of the device.

基于此,本公开实施方式提供了一种半导体器件的形成方法,如图1所示,结合图2至图10,该形成方法包括:步骤S10~步骤S30。Based on this, an embodiment of the present disclosure provides a method for forming a semiconductor device, as shown in FIG. 1 , in combination with FIGS. 2 to 10 , the method includes: step S10 to step S30 .

其中,步骤S10:提供初始半导体结构,初始半导体结构包括衬底100,衬底100包括第一区域A和第二区域B,第一区域A形成有P型晶体管220,第二区域B形成有N型晶体管210,P型晶体管220包括第一栅极221以及位于第一栅极221两侧的第一源极222和第一漏极223,N型晶体管210包括第二栅极211以及位于第二栅极211两侧的第二源极212和第二漏极213;Wherein, step S10: providing an initial semiconductor structure, the initial semiconductor structure includes a substrate 100, the substrate 100 includes a first region A and a second region B, a P-type transistor 220 is formed in the first region A, an N-type transistor 210 is formed in the second region B, the P-type transistor 220 includes a first gate 221 and a first source 222 and a first drain 223 located on both sides of the first gate 221, and the N-type transistor 210 includes a second gate 211 and a second source 212 and a second drain 213 located on both sides of the second gate 211;

步骤S20:在第一栅极221、第一源极222、第一漏极223、第二栅极211、第二源极212、第二漏极213的顶部分别形成第一金属硅化物层310;Step S20: forming a first metal silicide layer 310 on the top of the first gate 221 , the first source 222 , the first drain 223 , the second gate 211 , the second source 212 , and the second drain 213 , respectively;

步骤S30:形成应力层400,应力层400随形覆盖于具有第一金属硅化物层310的初始半导体结构的表面,以形成目标半导体结构,其中,应力层400包括硅元素和氮元素,且硅元素和氮元素之间的比例大于3:4。Step S30: forming a stress layer 400, which conformally covers the surface of the initial semiconductor structure having the first metal silicide layer 310 to form a target semiconductor structure, wherein the stress layer 400 includes silicon and nitrogen elements, and the ratio between silicon and nitrogen elements is greater than 3:4.

本公开提供的半导体器件的形成方法,该方法通过在N型晶体管210和P型晶体管220上形成第一金属硅化物层310,并在第一金属硅化物层310上形成应力层400,应力层400内的硅元素和氮元素之间的比例大于3:4,使得应力层400内的硅含量较高,一方面,可以通过应力层400平衡P型晶体管和N型晶体管内的压力,另一方面,由于应力层400内的硅元素含量较高,可以平衡P型晶体管和N型晶体管内的金属硅化物的相变温度,形成均匀的且电阻率较小的金属硅化物层,避免团聚缺陷的形成,进而提升了器件的良率。The present disclosure provides a method for forming a semiconductor device. The method forms a first metal silicide layer 310 on an N-type transistor 210 and a P-type transistor 220, and forms a stress layer 400 on the first metal silicide layer 310. The ratio between silicon and nitrogen in the stress layer 400 is greater than 3:4, so that the silicon content in the stress layer 400 is relatively high. On the one hand, the stress layer 400 can be used to balance the pressure in the P-type transistor and the N-type transistor. On the other hand, due to the high silicon content in the stress layer 400, the phase change temperature of the metal silicide in the P-type transistor and the N-type transistor can be balanced to form a uniform metal silicide layer with a low resistivity, thereby avoiding the formation of agglomeration defects and improving the yield of the device.

下面将结合附图对本公开实施例提供的半导体器件的形成方法的各个步骤进行详细说明:The following will describe in detail the steps of the method for forming a semiconductor device according to the embodiment of the present disclosure in conjunction with the accompanying drawings:

在本公开提供的实施例中,如图2所示,在步骤S10中,提供初始半导体结构,初始半导体结构包括衬底100,衬底100包括第一区域A和第二区域B,第一区域A形成有P型晶体管220,第二区域B形成有N型晶体管210。In an embodiment provided in the present disclosure, as shown in FIG. 2 , in step S10 , an initial semiconductor structure is provided, the initial semiconductor structure includes a substrate 100 , the substrate 100 includes a first region A and a second region B, the first region A is formed with a P-type transistor 220 , and the second region B is formed with an N-type transistor 210 .

在本公开提供的实施例中,衬底100上可以包括至少一个第一区域A和至少一个第二区域B,各第一区域A和各第二区域B可以根据器件的实际结构需求在衬底100上进行定义和划分,虽然在本公开的实施例中以一个第一区域A上形成一个P型晶体管220,一个第二区域B形成一个N型晶体管210为例进行说明,但并不形成对衬底100上第一区域A、第二区域B以及P型晶体管220、N型晶体管210的数量和排布形式做限定。In the embodiment provided in the present disclosure, the substrate 100 may include at least one first region A and at least one second region B. Each first region A and each second region B may be defined and divided on the substrate 100 according to the actual structural requirements of the device. Although in the embodiment of the present disclosure, a P-type transistor 220 is formed on a first region A and an N-type transistor 210 is formed on a second region B as an example, it does not limit the number and arrangement of the first region A, the second region B, the P-type transistor 220, and the N-type transistor 210 on the substrate 100.

其中,衬底100可以为半导体衬底,例如,可以是硅(Si)衬底、锗(Ge)衬底、锗硅(GeSi)衬底、SOI(绝缘体上硅,Silicon On Insulator)、SOS(蓝宝石上硅,Silicon-on-Sapphire)或GOI(绝缘体上锗,Germanium On Insulator)。在一些实施例中,半导体衬底还可以为包括其他元素半导体或者化合物半导体的衬底,例如,碳化硅(SiC)、磷化铟(InP)或砷化镓(GaAs)等。本公开提供的实施例以衬底100为P型硅(Si)衬底为例进行说明,当然,对于其他类型衬底100,可以通过对本公开的实施方式进行相应的变形或者改进,均在本公开的保护范围内。The substrate 100 may be a semiconductor substrate, for example, a silicon (Si) substrate, a germanium (Ge) substrate, a germanium silicon (GeSi) substrate, SOI (Silicon On Insulator), SOS (Silicon-on-Sapphire) or GOI (Germanium On Insulator). In some embodiments, the semiconductor substrate may also be a substrate including other element semiconductors or compound semiconductors, for example, silicon carbide (SiC), indium phosphide (InP) or gallium arsenide (GaAs). The embodiments provided in the present disclosure are described by taking the substrate 100 as a P-type silicon (Si) substrate as an example. Of course, for other types of substrates 100, corresponding deformations or improvements can be made to the embodiments of the present disclosure, all of which are within the protection scope of the present disclosure.

衬底100包括第一区域A,第一区域A可以为衬底100上形成的N型阱,第一区域A内形成有P型晶体管220,P型晶体管220包括第一栅极221以及位于第一栅极221两侧的第一源极222和第一漏极223。The substrate 100 includes a first region A, which may be an N-type well formed on the substrate 100 . A P-type transistor 220 is formed in the first region A. The P-type transistor 220 includes a first gate 221 and a first source 222 and a first drain 223 located on both sides of the first gate 221 .

如图2所示,在第一区域A内形成P型晶体管220可以包括:在衬底100的第一区域A上进行外延生长,形成与衬底100晶体匹配的外延膜层;向具有外延膜层的衬底100内掺杂P型杂质元素,以在衬底100上形成第一源极222和第一漏极223;在第一源极222和第一漏极223之间形成第一栅极氧化层21;在第一栅极氧化层21上形成第一栅极层22;在第一栅极层22以及第一栅极氧化层21共同构成的侧壁上形成第一栅极保护层23,第一栅极氧化层21、第一栅极层22和第一栅极保护层23共同构成第一栅极221。As shown in Figure 2, forming a P-type transistor 220 in the first area A may include: performing epitaxial growth on the first area A of the substrate 100 to form an epitaxial film layer crystal-matched with the substrate 100; doping P-type impurity elements into the substrate 100 having the epitaxial film layer to form a first source 222 and a first drain 223 on the substrate 100; forming a first gate oxide layer 21 between the first source 222 and the first drain 223; forming a first gate layer 22 on the first gate oxide layer 21; forming a first gate protection layer 23 on the sidewall jointly formed by the first gate layer 22 and the first gate oxide layer 21, and the first gate oxide layer 21, the first gate layer 22 and the first gate protection layer 23 jointly constitute the first gate 221.

其中,P型杂质元素可以为III族元素,例如,可以为硼(B)、铝(Al)、镓(Ga)、铟(In)或铊(Tl)等,在本公开中,为了达到较好的掺杂效果,提高杂质元素在硅衬底100中的扩散速度,利于制造工艺的控制,可以选择硼(B)元素作为P型杂质元素,但P型晶体管220内具体的掺杂元素可以根据工艺需求和器件设计需求选择其他元素。Among them, the P-type impurity element can be a Group III element, for example, it can be boron (B), aluminum (Al), gallium (Ga), indium (In) or thallium (Tl), etc. In the present disclosure, in order to achieve a better doping effect, increase the diffusion rate of the impurity element in the silicon substrate 100, and facilitate the control of the manufacturing process, boron (B) element can be selected as the P-type impurity element, but the specific doping element in the P-type transistor 220 can be selected from other elements according to process requirements and device design requirements.

外延膜层可以通过化学气相沉积(Chemical Vapor Deposition,CVD)或分子束外延(Molecular Beam Epitaxy,MBE)等方法形成,而外延膜层形成的尺寸和采用的方法可以根据器件的实际设计需求进行选择和调整。The epitaxial film layer can be formed by methods such as Chemical Vapor Deposition (CVD) or Molecular Beam Epitaxy (MBE), and the size of the epitaxial film layer and the method used can be selected and adjusted according to the actual design requirements of the device.

第一栅极氧化层21可以为二氧化硅(SiO2)或其他高K介质材料层,如氧化铪(HfO2)、氧化锆(ZrO2)、氧化铝(Al2O3)、氧化镧(La2O3)或氧化钇(Y2O3)中的一种或者多种。其可以通过化学气相沉积(CVD)、原子层沉积(Atomic Layer Deposition,ALD)、溅射(Sputtering)、分子束外延(MBE)或等离子增强化学气相沉积(Plasma Enhanced ChemicalVapor Deposition,PECVD)等方法中的一种或者多种形成,具体的形成方法可以根据第一栅极氧化层21的材料等特性进行适应性的选择和调整。The first gate oxide layer 21 may be silicon dioxide (SiO 2 ) or other high-K dielectric material layer, such as one or more of hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ) or yttrium oxide (Y 2 O 3 ). It may be formed by one or more of chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, molecular beam epitaxy (MBE) or plasma enhanced chemical vapor deposition (PECVD). The specific formation method may be adaptively selected and adjusted according to the material and other characteristics of the first gate oxide layer 21 .

第一栅极层22形成于第一栅极氧化层21的表面上,第一栅极层22可以为多晶硅(poly)或其他金属材料,如铝(Al)、铜(Cu)、钨(W)、钛(Ti)、钽(Ta)、铂(Pt)、钴(Co)、镍(Ni)、钌(Ru)或铱(Ir)中的一种或多种。其可以通过化学气相沉积(CVD)、原子层沉积(ALD)、溅射(Sputtering)、光刻(Photolithography)或刻蚀(Etching)等方法中的一种或者多种结合形成,可根据第一栅极层22的材料等特性进行选择。在本公开所提供的实施例中,以第一栅极层22为多晶硅为例进行说明,但需要说明的是,本公开的第一栅极层22也可以采用除多晶硅以外的材料制成。The first gate layer 22 is formed on the surface of the first gate oxide layer 21. The first gate layer 22 can be polysilicon (poly) or other metal materials, such as one or more of aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), platinum (Pt), cobalt (Co), nickel (Ni), ruthenium (Ru) or iridium (Ir). It can be formed by one or more of chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, photolithography or etching, and can be selected according to the material and other characteristics of the first gate layer 22. In the embodiment provided in the present disclosure, the first gate layer 22 is polysilicon as an example for explanation, but it should be noted that the first gate layer 22 of the present disclosure can also be made of materials other than polysilicon.

第一栅极保护层23形成于第一栅极氧化层21与第一栅极层22共同构成的侧壁上。其中,第一栅极保护层23可以包括沿远离第一栅极层22的侧壁方向上依次形成的至少一个绝缘材料层131和至少一个介电层132,当然,也可以根据器件的实际结构需求,第一栅极保护层23也可以是由一个绝缘材料层131或一个介电层132形成。若绝缘材料层131和介电层132的数量为多个,多个绝缘材料层131和多个介电层132沿远离第一栅极层22的侧壁方向上依次交替分布在第一栅极层22的侧壁上。The first gate protection layer 23 is formed on the sidewall formed by the first gate oxide layer 21 and the first gate layer 22. The first gate protection layer 23 may include at least one insulating material layer 131 and at least one dielectric layer 132 sequentially formed along the sidewall direction away from the first gate layer 22. Of course, the first gate protection layer 23 may also be formed by one insulating material layer 131 or one dielectric layer 132 according to the actual structural requirements of the device. If there are multiple insulating material layers 131 and multiple dielectric layers 132, the multiple insulating material layers 131 and the multiple dielectric layers 132 are alternately distributed on the sidewall of the first gate layer 22 in sequence along the sidewall direction away from the first gate layer 22.

第一栅极保护层23内的绝缘材料层131可以为二氧化硅(SiO2)或其他高介电常数材料层,如氧化铪(HfO2)、氧化锆(ZrO2)、氧化铝(Al2O3)、氧化镧(La2O3)或氧化钇(Y2O3)中的一种或者多种。其可以通过化学气相沉积(CVD)、原子层沉积(ALD)、溅射、分子束外延(MBE)、等离子增强化学气相沉积(PECVD)或物理气相沉积(Physical Vapor Deposition,PVD)等方法中的一种或者多种形成,具体的形成方法可以根据绝缘材料层131的材料等特性进行适应性的选择和调整。The insulating material layer 131 in the first gate protection layer 23 may be silicon dioxide (SiO 2 ) or other high dielectric constant material layer, such as one or more of hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ) or yttrium oxide (Y 2 O 3 ). It may be formed by one or more of chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, molecular beam epitaxy (MBE), plasma enhanced chemical vapor deposition (PECVD) or physical vapor deposition (PVD). The specific formation method may be adaptively selected and adjusted according to the material characteristics of the insulating material layer 131 .

介电层132可以是氮化硅(Si3N4)等材料制成,其可以采用化学气相沉积(CVD)或等离子体增强化学气相沉积(PECVD)等方法形成,当然,介电层132的材料也可以根据器件的实际结构需求采用其他材料以及工艺形成方法。The dielectric layer 132 may be made of materials such as silicon nitride (Si 3 N 4 ) and may be formed by methods such as chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD). Of course, the material of the dielectric layer 132 may also be formed by other materials and processes according to the actual structural requirements of the device.

衬底100包括第二区域B,第二区域B可以为衬底100上形成的P型阱,第二区域B内形成有N型晶体管210,N型晶体管210包括第二栅极211以及位于第二栅极211两侧的第二源极212和第二漏极213。The substrate 100 includes a second region B, which may be a P-type well formed on the substrate 100 . An N-type transistor 210 is formed in the second region B. The N-type transistor 210 includes a second gate 211 and a second source 212 and a second drain 213 located on both sides of the second gate 211 .

如图2所示,在第二区域B内形成N型晶体管210可以包括:向衬底100的第二区域B内掺杂N型杂质元素,以在衬底100上形成第二源极212和第二漏极213;在第二源极212和第二漏极213之间形成第二栅极氧化层11;在第二栅极氧化层11上形成第二栅极层12;在第二栅极层12以及第二栅极氧化层11共同构成的侧壁上形成第二栅极保护层13,第二栅极氧化层11、第二栅极层12和第二栅极保护层13共同构成第二栅极211。As shown in Figure 2, forming an N-type transistor 210 in the second region B may include: doping N-type impurity elements into the second region B of the substrate 100 to form a second source 212 and a second drain 213 on the substrate 100; forming a second gate oxide layer 11 between the second source 212 and the second drain 213; forming a second gate layer 12 on the second gate oxide layer 11; forming a second gate protection layer 13 on the sidewall jointly formed by the second gate layer 12 and the second gate oxide layer 11, and the second gate oxide layer 11, the second gate layer 12 and the second gate protection layer 13 together constitute the second gate 211.

其中,N型杂质元素可以为V族元素,例如,可以为磷(P)、砷(As)、锑(Sb)、铋(Bi)等,N型晶体管210内具体的掺杂元素可以根据工艺需求和器件设计需求选择其他元素。另外,N型晶体管210中的第二栅极211包括第二栅极氧化层11、第二栅极层12和第二栅极保护层13,且第二栅极211与第一栅极221内各膜层采用的材料和制造工艺相同或者大致相同,此处不再复述。Among them, the N-type impurity element can be a V group element, for example, it can be phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), etc. The specific doping element in the N-type transistor 210 can select other elements according to the process requirements and device design requirements. In addition, the second gate 211 in the N-type transistor 210 includes a second gate oxide layer 11, a second gate layer 12, and a second gate protection layer 13, and the materials and manufacturing processes used in each film layer of the second gate 211 and the first gate 221 are the same or substantially the same, which will not be repeated here.

在本公开提供的实施例中,如图2所示,在衬底100上形成P型晶体管220和N型晶体管210之前,该方法还包括:在衬底100内形成隔离结构1000,隔离结构1000用于间隔P型晶体管220和N型晶体管210。其中,隔离结构1000可以为形成于衬底100内的浅沟槽隔离结构,其可以防止器件间的电流泄露,提高器件的性能和可靠性。具体的,可以通过光刻处理在衬底100上定义出形成隔离结构1000的区域,并通过干法或湿法蚀刻在定义区域内蚀刻出浅沟槽;在浅沟槽内填充绝缘材料,如氧化硅(SiO2),以在浅沟槽内形成隔离膜层;再进行平坦化处理,以露出衬底100的表面。隔离结构1000的数量为至少一个,且在其数量为多个时,多个隔离结构1000可以呈阵列分布于衬底100上。In an embodiment provided by the present disclosure, as shown in FIG. 2 , before forming a P-type transistor 220 and an N-type transistor 210 on a substrate 100 , the method further includes: forming an isolation structure 1000 in the substrate 100 , the isolation structure 1000 being used to separate the P-type transistor 220 and the N-type transistor 210 . Among them, the isolation structure 1000 may be a shallow trench isolation structure formed in the substrate 100 , which may prevent current leakage between devices and improve the performance and reliability of the device. Specifically, a region for forming the isolation structure 1000 may be defined on the substrate 100 by photolithography, and a shallow trench may be etched in the defined region by dry or wet etching; an insulating material, such as silicon oxide (SiO 2 ), may be filled in the shallow trench to form an isolation film layer in the shallow trench; and then a planarization process may be performed to expose the surface of the substrate 100 . The number of the isolation structures 1000 is at least one, and when the number is multiple, the multiple isolation structures 1000 may be distributed in an array on the substrate 100 .

在本公开提供的实施例中,为了避免在器件后续制程中对隔离结构1000产生损伤或破坏,影响器件的可靠性,在衬底100上形成P型晶体管220和N型晶体管210之后,如图3所示,该形成方法还包括:形成钝化层600,钝化层600随形覆盖于初始半导体结构的表面;在钝化层600上形成光阻层610;以光阻层610为掩膜,对钝化层600进行蚀刻,以形成子钝化层601,子钝化层601覆盖隔离结构1000的表面。通过在隔离结构1000的表面上形成子钝化层601,如图4所示,在后续工艺中,可以防止隔离结构1000受到损伤,保证了隔离结构1000的完整性。In the embodiment provided by the present disclosure, in order to avoid damage or destruction to the isolation structure 1000 in the subsequent device manufacturing process, thereby affecting the reliability of the device, after forming the P-type transistor 220 and the N-type transistor 210 on the substrate 100, as shown in FIG3, the formation method further includes: forming a passivation layer 600, the passivation layer 600 conformally covers the surface of the initial semiconductor structure; forming a photoresist layer 610 on the passivation layer 600; using the photoresist layer 610 as a mask, etching the passivation layer 600 to form a sub-passivation layer 601, the sub-passivation layer 601 covers the surface of the isolation structure 1000. By forming the sub-passivation layer 601 on the surface of the isolation structure 1000, as shown in FIG4, in the subsequent process, the isolation structure 1000 can be prevented from being damaged, thereby ensuring the integrity of the isolation structure 1000.

其中,子钝化层601由钝化层600蚀刻得到,两者的材料相同,两者均可采用氮化硅(Si3N4)等材料制成,其中,钝化层600可以采用化学气相沉积(CVD)或等离子体增强化学气相沉积(PECVD)等方法形成,当然,钝化层600的材料也可以根据器件的实际结构需求采用其他材料以及工艺形成方法。Among them, the sub-passivation layer 601 is obtained by etching the passivation layer 600, and the materials of the two are the same. Both can be made of materials such as silicon nitride ( Si3N4 ) . Among them, the passivation layer 600 can be formed by methods such as chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD). Of course, the material of the passivation layer 600 can also be formed by other materials and process methods according to the actual structural requirements of the device.

在本公开提供的实施例中,在步骤S20中,如图7所示,在第一栅极221、第一源极222、第一漏极223、第二栅极211、第二源极212、第二漏极213的顶部分别形成第一金属硅化物层310。In the embodiment provided in the present disclosure, in step S20, as shown in FIG. 7 , a first metal silicide layer 310 is formed on the top of the first gate 221 , the first source 222 , the first drain 223 , the second gate 211 , the second source 212 , and the second drain 213 , respectively.

其中,如图5所示,形成第一金属硅化物层310包括:形成金属层330,金属层330随形覆盖于初始半导体结构的表面;对具有金属层330的初始半导体结构进行第二热处理,以使金属层330内的金属离子扩散至N型晶体管210和P型晶体管220内;去除剩余金属层330。As shown in FIG. 5 , forming the first metal silicide layer 310 includes: forming a metal layer 330, wherein the metal layer 330 conformally covers the surface of the initial semiconductor structure; performing a second heat treatment on the initial semiconductor structure having the metal layer 330 so that the metal ions in the metal layer 330 diffuse into the N-type transistor 210 and the P-type transistor 220; and removing the remaining metal layer 330.

在形成金属层330之后,为了避免外部杂质对金属层330的影响,尤其是避免氧气对金属层330的氧化作用,在形成金属层330之后,如图6所示,该方法还包括:形成阻挡层500,阻挡层500随形覆盖于金属层330的表面上。其中,阻挡层500可以为氮化钛(TiN)、氮化钽(TaN)、氮化钨(WN)、氮化钼(MoN)等材料中的一种或者多种,其可以通过物理气相沉积(PVD)、化学气相沉积(CVD)或原子层沉积(ALD)等方法形成,阻挡层500具体的材料和形成工艺可以根据器件工艺设计进行适应性的选择和调整。以阻挡层500为氮化钛(TiN)为例,阻挡层500的厚度可以为5nm~15nm,例如,阻挡层500可以为5nm、8nm、10nm、13nm、15nm等厚度,阻挡层500的厚度可以根据器件工艺的实际需求进行选择。After forming the metal layer 330, in order to avoid the influence of external impurities on the metal layer 330, especially to avoid the oxidation of the metal layer 330 by oxygen, after forming the metal layer 330, as shown in FIG6, the method further includes: forming a barrier layer 500, and the barrier layer 500 is conformally covered on the surface of the metal layer 330. Among them, the barrier layer 500 can be one or more of materials such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), molybdenum nitride (MoN), etc., which can be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic layer deposition (ALD) and other methods. The specific material and formation process of the barrier layer 500 can be adaptively selected and adjusted according to the device process design. Taking the barrier layer 500 as titanium nitride (TiN) as an example, the thickness of the barrier layer 500 can be 5nm~15nm, for example, the barrier layer 500 can be 5nm, 8nm, 10nm, 13nm, 15nm, etc. The thickness of the barrier layer 500 can be selected according to the actual requirements of the device process.

其中,为了使得衬底100内的硅元素由晶态转化为非晶态结构物,即增加硅离子的游离性,使得硅离子可以通过扩散等方式进入到其他膜层内,在形成金属层330之前,该方法还可以包括:采用离子注入法激活衬底100内的硅离子,尤其是第一栅极层22、第二栅极层12以及第一源极222、第一漏极223、第二源极212和第二漏极213内的硅离子,在后续工艺中,上述膜层内的硅离子可与其他离子结合形成不同的分子结构。Among them, in order to transform the silicon element in the substrate 100 from a crystalline state to an amorphous structure, that is, to increase the mobility of silicon ions so that the silicon ions can enter other film layers by diffusion and the like, before forming the metal layer 330, the method may also include: using ion implantation to activate the silicon ions in the substrate 100, especially the silicon ions in the first gate layer 22, the second gate layer 12, the first source 222, the first drain 223, the second source 212 and the second drain 213. In subsequent processes, the silicon ions in the above-mentioned film layers can combine with other ions to form different molecular structures.

此外,为了增大第一栅极221和第二栅极211的反应面积,可以适当的去除部分第一栅极保护层23和部分第二栅极保护层13,以露出第一栅极层22和第二栅极层12的顶部的侧壁。进一步的,为了更好的为后续工艺提供基础,还可以对器件进行清洗,以去除器件表面上的污染物,以保证器件表面的清洁度,为后续膜层形成提供良好的结构基础。In addition, in order to increase the reaction area of the first gate 221 and the second gate 211, part of the first gate protection layer 23 and part of the second gate protection layer 13 may be appropriately removed to expose the sidewalls of the tops of the first gate layer 22 and the second gate layer 12. Furthermore, in order to better provide a basis for subsequent processes, the device may be cleaned to remove contaminants on the device surface to ensure the cleanliness of the device surface and provide a good structural basis for subsequent film layer formation.

在初始半导体结构的表面上形成金属层330,其中,金属层330可以为钴(Co)膜层,金属层330也可以采用金属镍(Ni)制成,本公开以金属层330为钴(Co)膜层进行说明,而对于其他金属材料需对本公开提供的实施例进行适应性变形或调整以获取后续的工艺步骤。A metal layer 330 is formed on the surface of the initial semiconductor structure, wherein the metal layer 330 may be a cobalt (Co) film layer, or may be made of metal nickel (Ni). The present disclosure is illustrative with the metal layer 330 being a cobalt (Co) film layer, and for other metal materials, the embodiments provided in the present disclosure need to be adaptively deformed or adjusted to obtain subsequent process steps.

金属层330(钴)的厚度可以为5nm~20nm,例如,可以是5nm、10nm、15nm、20nm等厚度。金属层330可以通过物理气相沉积(PVD)、化学气相沉积(CVD)或其他方法形成于初始半导体结构的表面。对具有金属层330的初始半导体结构进行第二热处理,以使得金属层330内的金属离子扩散至具有游离硅离子的N型晶体管210和P型晶体管220内,以在第一栅极221、第一源极222、第一漏极223、第二栅极211、第二源极212和第二漏极213的顶部形成第一金属硅化物层310。The thickness of the metal layer 330 (cobalt) can be 5nm to 20nm, for example, 5nm, 10nm, 15nm, 20nm, etc. The metal layer 330 can be formed on the surface of the initial semiconductor structure by physical vapor deposition (PVD), chemical vapor deposition (CVD) or other methods. The initial semiconductor structure with the metal layer 330 is subjected to a second heat treatment so that the metal ions in the metal layer 330 diffuse into the N-type transistor 210 and the P-type transistor 220 with free silicon ions to form a first metal silicide layer 310 on top of the first gate 221, the first source 222, the first drain 223, the second gate 211, the second source 212, and the second drain 213.

在形成第一金属硅化物层310后,需要去除剩余金属层330以及阻挡层500。其中,可以采用干法蚀刻或者湿法蚀刻去除阻挡层500后,再去除剩余金属层330,去除方法可以根据实际工艺需求进行选择。After forming the first metal silicide layer 310, it is necessary to remove the remaining metal layer 330 and the barrier layer 500. The barrier layer 500 may be removed by dry etching or wet etching, and then the remaining metal layer 330 may be removed. The removal method may be selected according to actual process requirements.

其中,第一金属硅化物层310可以包括二钴化硅(Co2Si)和钴化硅(CoSi),第一金属硅化物层310的厚度可以为5nm~30nm,例如,可以是5nm、8nm、15nm、20nm、22nm、25nm、29nm或30nm等厚度,根据第一金属硅化物层310内二钴化硅(Co2Si)和钴化硅(CoSi)两者之间的比例不同,形成的第一金属硅化物层310的厚度不同。在本文中,厚度指的是膜层在垂直于衬底100方向上的尺寸,其中,上述厚度可以指的是最大厚度、最小厚度或平均厚度中的一种,对于不同膜层厚度的比较和衡量可以采用上述三种厚度中的任一种。The first metal silicide layer 310 may include dicobalt silicon (Co 2 Si) and cobalt silicon (CoSi), and the thickness of the first metal silicide layer 310 may be 5nm to 30nm, for example, 5nm, 8nm, 15nm, 20nm, 22nm, 25nm, 29nm or 30nm, etc. The thickness of the first metal silicide layer 310 formed is different according to the different ratios between dicobalt silicon (Co 2 Si) and cobalt silicon (CoSi) in the first metal silicide layer 310. In this article, thickness refers to the size of the film layer in the direction perpendicular to the substrate 100, wherein the above thickness may refer to one of the maximum thickness, the minimum thickness or the average thickness, and any of the above three thicknesses may be used for the comparison and measurement of the thicknesses of different film layers.

第二热处理的温度小于750℃,具体的,第二热处理工艺可包括第一子热处理和第二子热处理,其中,第一子热处理包括:在温度为250℃~410℃下,以金属层330内的钴离子为扩散源,使得钴离子掺杂至N型晶体管210和P型晶体管220内,尤其是在第一栅极221、第一源极222、第一漏极223、第二栅极211、第二源极212和第二漏极213的顶部靠近表面的位置上,钴离子的浓度较高,形成较多的二钴化硅(Co2Si)。第二子热处理包括:在温度为410℃~700℃下,钴离子继续作为扩散源,进一步向N型晶体管210和P型晶体管220内扩散,在第一栅极221、第一源极222、第一漏极223、第二栅极211、第二源极212和第二漏极213内形成钴化硅(CoSi)。其中,在第二热处理后,二钴化硅(Co2Si)和钴化硅(CoSi)可以同时存在于第一金属硅化物层310内,二钴化硅(Co2Si)和钴化硅(CoSi)的电阻率均较高,形成的第一金属硅化物的阻值也较大。上述第二热处理中的第一子热处理和第二子热处理的温度范围仅作为示例性实施例示出,在实际的热处理工艺中,上述温度范围并不具备严格的界限,可根据实际工艺需求进行适应性的调整。The temperature of the second heat treatment is less than 750°C. Specifically, the second heat treatment process may include a first sub-heat treatment and a second sub-heat treatment, wherein the first sub-heat treatment includes: at a temperature of 250°C to 410°C, using cobalt ions in the metal layer 330 as a diffusion source, so that cobalt ions are doped into the N-type transistor 210 and the P-type transistor 220, especially at the top of the first gate 221, the first source 222, the first drain 223, the second gate 211, the second source 212, and the second drain 213, the concentration of cobalt ions is high, and more dicobalt silicon (Co 2 Si) is formed. The second sub-heat treatment includes: at a temperature of 410°C to 700°C, the cobalt ions continue to be used as a diffusion source, further diffused into the N-type transistor 210 and the P-type transistor 220, and cobalt silicon (CoSi) is formed in the first gate 221, the first source 222, the first drain 223, the second gate 211, the second source 212, and the second drain 213. After the second heat treatment, dicobaltized silicon (Co 2 Si) and cobaltized silicon (CoSi) can exist in the first metal silicide layer 310 at the same time. The resistivity of dicobaltized silicon (Co 2 Si) and cobaltized silicon (CoSi) are both high, and the resistance value of the formed first metal silicide is also large. The temperature range of the first sub-heat treatment and the second sub-heat treatment in the second heat treatment is only shown as an exemplary embodiment. In the actual heat treatment process, the above temperature range does not have a strict limit and can be adaptively adjusted according to the actual process requirements.

而随着热处理的温度进一步升高,如温度升高至大于700℃后,此时,器件内的硅离子作为扩散源向第一金属硅化物层310内扩散,已形成的二钴化硅(Co2Si)和钴化硅(CoSi)继续与硅离子结合,形成二硅化钴(CoSi2),二硅化钴(CoSi2)的电阻率较二钴化硅(Co2Si)和钴化硅(CoSi)均小,二硅化钴(CoSi2)的阻值较小,可以有效的减小接触电阻,提升器件整体的电性能。As the temperature of the heat treatment further increases, such as when the temperature increases to greater than 700°C, at this time, the silicon ions in the device diffuse into the first metal silicide layer 310 as a diffusion source, and the formed dicobalt silicon (Co 2 Si) and cobalt silicon (CoSi) continue to combine with the silicon ions to form cobalt disilicide (CoSi 2 ). The resistivity of cobalt disilicide (CoSi 2 ) is smaller than that of dicobalt silicon (Co 2 Si) and cobalt silicon (CoSi). The resistance value of cobalt disilicide (CoSi 2 ) is small, which can effectively reduce the contact resistance and improve the overall electrical performance of the device.

但发明人发现,在CMOS器件中,在形成应力层400后,N型晶体管210和P型晶体管220由于在应力的作用下,两者内部的载流子迁移率也产生了较大的差异,同时在不同的应力下,P型晶体管220和N型晶体管210内的硅离子向第一金属硅化物层310内的扩散效率不同,导致金属硅化物层的相变温度也不同。在N型晶体管210内的第一金属硅化物层310发生相变时,需要较高的温度条件,而在此温度条件下,P型晶体管220已完成相变过程,形成了低阻相的金属硅化物膜层,尤其是器件上形成应力层400后,P型晶体管220内低阻相的金属硅化物膜层由于高温和应力的双重作用发生团聚,形成团聚缺陷,无法形成性能较好的金属硅化物膜层,导致了器件整体性能的下降。其中,相变指的是对于金属硅化物层内,分子由二钴化硅(Co2Si)或钴化硅(CoSi)向二硅化钴(CoSi2)的转变。However, the inventors have found that in a CMOS device, after the stress layer 400 is formed, the N-type transistor 210 and the P-type transistor 220 have a large difference in the carrier mobility due to the stress. At the same time, under different stresses, the diffusion efficiency of silicon ions in the P-type transistor 220 and the N-type transistor 210 into the first metal silicide layer 310 is different, resulting in different phase change temperatures of the metal silicide layer. When the first metal silicide layer 310 in the N-type transistor 210 undergoes a phase change, a higher temperature condition is required. Under this temperature condition, the P-type transistor 220 has completed the phase change process and formed a metal silicide film layer with a low resistance phase. In particular, after the stress layer 400 is formed on the device, the metal silicide film layer with a low resistance phase in the P-type transistor 220 agglomerates due to the dual effects of high temperature and stress, forming agglomeration defects, and cannot form a metal silicide film layer with good performance, resulting in a decrease in the overall performance of the device. The phase change refers to the transformation of molecules from dicobalt silicon (Co 2 Si) or cobalt silicon (CoSi) to cobalt disilicide (CoSi 2 ) in the metal silicide layer.

因此,为了避免衬底100的第一区域A和第二区域B内金属硅化物膜层形成的工艺条件的差异,在步骤S30中,如图8所示,形成应力层400,应力层400随形覆盖于具有第一金属硅化物层310的初始半导体结构的表面,以形成目标半导体结构,其中,应力层400包括硅元素和氮元素,且硅元素和氮元素之间的比例大于3:4。由于应力层400内的硅元素含量较高,可以提高膜层内部的拉应力,平衡在P型晶体管220内产生的压应力,避免P型晶体管220内的金属硅化物膜层发生团聚缺陷,同时可以通过此应力层400产生的应力提高N型晶体管210内部的电子迁移率,此外,此应力层400内的硅元素还可以作为硅源进一步向第一金属硅化物层310内扩散,有利于低阻相的金属硅化物膜层的形成。Therefore, in order to avoid the difference in process conditions for forming the metal silicide film layer in the first region A and the second region B of the substrate 100, in step S30, as shown in FIG8, a stress layer 400 is formed, and the stress layer 400 conformally covers the surface of the initial semiconductor structure having the first metal silicide layer 310 to form a target semiconductor structure, wherein the stress layer 400 includes silicon and nitrogen, and the ratio between the silicon and nitrogen is greater than 3:4. Due to the high content of silicon in the stress layer 400, the tensile stress inside the film layer can be increased, the compressive stress generated in the P-type transistor 220 can be balanced, and the agglomeration defect of the metal silicide film layer in the P-type transistor 220 can be avoided. At the same time, the electron mobility inside the N-type transistor 210 can be increased by the stress generated by the stress layer 400. In addition, the silicon in the stress layer 400 can also be used as a silicon source to further diffuse into the first metal silicide layer 310, which is conducive to the formation of a low-resistance metal silicide film layer.

在本公开提供的实施例中,应力层400内的硅元素和氮元素之间的比例可以为7:8~15:8,例如,硅氮比例可以为7:8、8:8、9:8、10:8、11:8、12:8、13:8、14:8、15:8等,如应力层400可以为Si4N4、Si5N4等。应力层400的厚度可以为10nm(纳米)~60nm,例如,可以是10nm、20nm、30nm、40nm、50nm、60nm等。In the embodiment provided by the present disclosure, the ratio between silicon and nitrogen in the stress layer 400 may be 7:8-15:8, for example, the silicon-nitrogen ratio may be 7:8, 8:8, 9:8, 10:8, 11:8, 12:8, 13:8, 14:8, 15:8, etc. For example, the stress layer 400 may be Si 4 N 4 , Si 5 N 4 , etc. The thickness of the stress layer 400 may be 10 nm (nanometer)-60 nm, for example, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, etc.

形成应力层400的前驱体可以包括硅烷(SiH4)和氨气(NH3),其反应过程为SiH4+NH3→SixNy+H2↑,其中,X≥Y。形成应力层400的前驱体也可以包括硅烷(SiH4)和氮气(N2),其反应过程为SiH4+N2→SixNy+H2↑,其中,X≥Y。在上述两实施例中,反应过程中产生的氢气可以排出,或者收集后进行循环利用。前驱体还可以为包括硅离子和氮离子的物质,其反应过程为Si++N→SixNy,其中,X≥Y,前驱体具体的物质类型可以根据形成方法的改变而选择不同类型的物质。The precursor for forming the stress layer 400 may include silane (SiH 4 ) and ammonia (NH 3 ), and the reaction process thereof is SiH 4 +NH 3SixNy + H2 ↑, wherein X≥Y. The precursor for forming the stress layer 400 may also include silane (SiH 4 ) and nitrogen (N 2 ), and the reaction process thereof is SiH 4 +N 2SixNy + H2 ↑, wherein X≥Y. In the above two embodiments, the hydrogen generated during the reaction may be discharged or collected for recycling. The precursor may also be a substance including silicon ions and nitrogen ions , and the reaction process thereof is Si + +N SixNy , wherein X≥Y. The specific substance type of the precursor may be selected from different types of substances according to the change of the formation method.

需要说明的是,在反应过程中,为了控制应力层400的组成和性能,还可以引入辅助气体或者掺杂元素,如氢气、氧气等,用以提高应力层400的性能。此外,还可以采用其他的前驱体的组合形式形成硅含量较高的应力层400,但需配合以相应的工艺形成方法和温度、压力、流量等反应条件。It should be noted that, during the reaction process, in order to control the composition and performance of the stress layer 400, auxiliary gas or doping elements, such as hydrogen, oxygen, etc., may be introduced to improve the performance of the stress layer 400. In addition, other combinations of precursors may be used to form a stress layer 400 with a high silicon content, but they must be combined with corresponding process formation methods and reaction conditions such as temperature, pressure, and flow rate.

应力层400可以采用化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)、原子层沉积(ALD)、原子层外延生长(ALE)法、溅射或溶胶-凝胶法等方法形成。例如,化学气相沉积(CVD)可以通过使用前驱体,通过调节前驱体的流量比和反应条件(如温度、压力等),可以有效控制应力层400内的硅含量;等离子体增强化学气相沉积(PECVD)可以在CVD的基础上引入等离子体,以降低沉积温度并提高膜层的质量,更精确地控制应力层400的组成和结构;原子层沉积(ALD)可以通过交替地引入硅和氮的前驱体,并在每个循环中进行自限性表面反应,可以精确地控制应力层400的厚度和组成;溅射可以通过使用硅和氮的靶材,在高能粒子的轰击下将材料溅射到器件的表面上形成应力层400,通过调节溅射参数,可以控制应力层400的硅含量;溶胶-凝胶法可以通过溶胶-凝胶过程制备硅含量较高的应力层400的前驱体溶液,然后通过旋涂、浸渍或喷涂等方法将溶液涂覆在器件的表面上,并通过热处理形成应力层400。The stress layer 400 may be formed by chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), atomic layer epitaxy (ALE), sputtering or sol-gel method. For example, chemical vapor deposition (CVD) can effectively control the silicon content in the stress layer 400 by using precursors and adjusting the flow ratio and reaction conditions (such as temperature, pressure, etc.) of the precursors. Plasma enhanced chemical vapor deposition (PECVD) can introduce plasma on the basis of CVD to reduce the deposition temperature and improve the quality of the film layer, and more accurately control the composition and structure of the stress layer 400. Atomic layer deposition (ALD) can accurately control the thickness and composition of the stress layer 400 by alternately introducing silicon and nitrogen precursors and performing self-limiting surface reactions in each cycle. Sputtering can form the stress layer 400 by using silicon and nitrogen targets and sputtering materials onto the surface of the device under the bombardment of high-energy particles. The silicon content of the stress layer 400 can be controlled by adjusting the sputtering parameters. The sol-gel method can prepare a precursor solution of the stress layer 400 with a high silicon content through a sol-gel process, and then coat the solution on the surface of the device by spin coating, dipping or spraying, and form the stress layer 400 by heat treatment.

其中,第一金属硅化物层310可以包括二钴化硅(Co2Si)、钴化硅(CoSi)或二钴化硅(Co2Si)和钴化硅(CoSi)的混合形式,同时,由于在第二子热处理过程中,温度可以达到700℃左右,在此温度条件下,实际上器件衬底100内的硅离子也以扩散源的形式扩散至第一金属硅化物层310内,在第一金属硅化物层310内也存在低阻相的二硅化钴(CoSi2),但由于硅离子的扩散受到边界抑制作用和温度条件的作用,低阻相的二硅化钴(CoSi2)存在于第一金属硅化物层310的底部,无法扩散至其顶部,即第一金属硅化物层310的顶部仍然以高阻相的二钴化硅(Co2Si)或钴化硅(CoSi)的形式存在。The first metal silicide layer 310 may include dicobalt silicon (Co 2 Si), cobalt silicon (CoSi), or a mixture of dicobalt silicon (Co 2 Si) and cobalt silicon (CoSi). Meanwhile, since the temperature can reach about 700° C. during the second sub-heat treatment process, under this temperature condition, silicon ions in the device substrate 100 actually diffuse into the first metal silicide layer 310 as diffusion sources, and low-resistance cobalt disilicide (CoSi 2 ) also exists in the first metal silicide layer 310 . However, since the diffusion of silicon ions is inhibited by the boundary and the temperature condition, the low-resistance cobalt disilicide (CoSi 2 ) exists at the bottom of the first metal silicide layer 310 and cannot diffuse to the top thereof, that is, the top of the first metal silicide layer 310 still exists in the form of high-resistance dicobalt silicon (Co 2 Si) or cobalt silicon (CoSi).

为了减小金属硅化物层内的电阻率,如图9所示,该形成方法还包括:对目标半导体结构进行第一热处理,以使应力层400内的硅元素扩散至第一金属硅化物层310内,形成第二金属硅化物层320;其中,第二金属硅化物层320的电阻率小于第一金属硅化物层310的电阻率。第二金属硅化物膜层可以包括二硅化钴(CoSi2),第二金属硅化物层320的厚度可以为15nm~55nm,例如,可以是15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm等厚度。In order to reduce the resistivity in the metal silicide layer, as shown in FIG9 , the formation method further includes: performing a first heat treatment on the target semiconductor structure to diffuse the silicon element in the stress layer 400 into the first metal silicide layer 310 to form a second metal silicide layer 320; wherein the resistivity of the second metal silicide layer 320 is less than the resistivity of the first metal silicide layer 310. The second metal silicide film layer may include cobalt disilicide (CoSi 2 ), and the thickness of the second metal silicide layer 320 may be 15 nm to 55 nm, for example, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, etc.

由于应力层400内硅含量较高,因此应力层400可以作为硅源,即应力层400内的硅离子在第一热处理的工艺条件下向第一金属硅化物膜层内扩散,以提高第一金属硅化物层310顶部的硅离子的含量,以促进金属硅化物由高阻相向低阻相的转变。同时,器件内部的硅离子同时向第一金属硅化物层310内扩散,通过两个硅源的同时作用,形成了具有均匀的二硅化钴(CoSi2)的第二金属硅化物层320,改善了由于应力和高温的双重作用导致的在P型晶体管220内形成的团聚缺陷,并平衡了P型晶体管220和N型晶体管210间的应力,形成的第二金属硅化物层320电阻率较小,具有较好的电性能。Since the silicon content in the stress layer 400 is relatively high, the stress layer 400 can be used as a silicon source, that is, the silicon ions in the stress layer 400 diffuse into the first metal silicide film layer under the process conditions of the first heat treatment to increase the silicon ion content at the top of the first metal silicide layer 310, so as to promote the transformation of the metal silicide from a high resistance phase to a low resistance phase. At the same time, the silicon ions inside the device diffuse into the first metal silicide layer 310 at the same time, and through the simultaneous action of two silicon sources, a second metal silicide layer 320 with uniform cobalt disilicide (CoSi 2 ) is formed, which improves the agglomeration defects formed in the P-type transistor 220 due to the dual effects of stress and high temperature, and balances the stress between the P-type transistor 220 and the N-type transistor 210. The formed second metal silicide layer 320 has a small resistivity and good electrical properties.

其中,第一热处理可以包括激光退火处理,第一热处理的温度大于700℃,第一热处理的时间为10ns~100ms。由于第一热处理工艺需要促进器件内的硅离子以及应力层400内的硅离子向第一金属硅化物层310内扩散,因此,需要提供高温条件,如第一热处理的温度可以为750℃、800℃、850℃、900℃、950℃、1000℃、1050℃、1100℃或甚至更高温度。第一热处理的时间也可以根据温度条件内的温度的不同采用不同的处理时间,第一热处理时间可以在纳秒级至毫秒级,如在温度较高条件下,可以适当缩短处理时间;在温度较低条件下,可以适当增加处理时间。第一热处理可以为激光退火处理工艺,激光退火可以快速加热至1100℃或以上,并激活硅原子,使其进入第一金属硅化物层310内的晶格位置,从而改变金属硅化物的阻相,且激光退火工艺可以减少对周围膜层的热损伤。Wherein, the first heat treatment may include laser annealing treatment, the temperature of the first heat treatment is greater than 700°C, and the time of the first heat treatment is 10ns~100ms. Since the first heat treatment process needs to promote the diffusion of silicon ions in the device and silicon ions in the stress layer 400 into the first metal silicide layer 310, it is necessary to provide high temperature conditions, such as the temperature of the first heat treatment can be 750°C, 800°C, 850°C, 900°C, 950°C, 1000°C, 1050°C, 1100°C or even higher temperatures. The time of the first heat treatment can also be different according to the temperature in the temperature condition. The first heat treatment time can be in the nanosecond level to the millisecond level. For example, under the condition of higher temperature, the processing time can be appropriately shortened; under the condition of lower temperature, the processing time can be appropriately increased. The first heat treatment may be a laser annealing process, which can rapidly heat to 1100°C or above and activate silicon atoms to enter the lattice position within the first metal silicide layer 310, thereby changing the resistance phase of the metal silicide. The laser annealing process can also reduce thermal damage to surrounding film layers.

在本公开提供的实施例中,为了防止P型晶体管220和N型晶体管210之间的电容耦合和短路,在形成第二金属硅化物层320之后,如图10所示,该形成方法还可以包括:形成绝缘层700,绝缘层700覆盖目标半导体结构,且填充P型晶体管220和N型晶体管210之间的间隙。在形成绝缘层700后,该形成方法还可以包括:对绝缘层700进行平坦化处理。In the embodiment provided by the present disclosure, in order to prevent capacitive coupling and short circuit between the P-type transistor 220 and the N-type transistor 210, after forming the second metal silicide layer 320, as shown in FIG10, the formation method may further include: forming an insulating layer 700, the insulating layer 700 covers the target semiconductor structure and fills the gap between the P-type transistor 220 and the N-type transistor 210. After forming the insulating layer 700, the formation method may further include: performing a planarization process on the insulating layer 700.

其中,绝缘层700可以为二氧化硅(SiO2)或其他高介电常数材料层,如氧化铪(HfO2)、氧化锆(ZrO2)、氧化铝(Al2O3)、氧化镧(La2O3)或氧化钇(Y2O3)等材料中的一种或者多种,其可以通过化学气相沉积(CVD)、原子层沉积(ALD)、溅射、分子束外延(MBE)、等离子增强化学气相沉积(PECVD)或物理气相沉积(PVD)等方法中的一种或者多种形成,具体的形成方法可以根据绝缘层700的材料等特性进行适应性的选择和调整。Among them, the insulating layer 700 can be silicon dioxide (SiO 2 ) or other high dielectric constant material layer, such as one or more of hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ) or yttrium oxide (Y 2 O 3 ), etc. It can be formed by one or more of methods such as chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, molecular beam epitaxy (MBE), plasma enhanced chemical vapor deposition (PECVD) or physical vapor deposition (PVD). The specific formation method can be adaptively selected and adjusted according to the characteristics of the material of the insulating layer 700 .

对绝缘层700进行平坦化处理可采用化学机械研磨法(Chemical MechanicalPolishing,CMP),以为后续工艺制程提供良好的结构基础,同时确保器件的隔离可靠性。The insulating layer 700 may be planarized by chemical mechanical polishing (CMP) to provide a good structural foundation for subsequent process steps and ensure the isolation reliability of the device.

本公开提供的半导体器件的形成方法,该方法通过在N型晶体管210和P型晶体管220上形成第一金属硅化物层310,并在第一金属硅化物层310上形成含硅量较高的应力层400,一方面,可以通过应力层400平衡PMOS和NMOS内的压力,另一方面,由于应力层400内的硅元素含量较高,可以平衡PMOS和NMOS内的金属硅化物的相变温度,形成均匀的且电阻率较小的金属硅化物层,避免团聚缺陷的形成,进而提升了器件的良率。The present disclosure provides a method for forming a semiconductor device. The method forms a first metal silicide layer 310 on an N-type transistor 210 and a P-type transistor 220, and forms a stress layer 400 with a high silicon content on the first metal silicide layer 310. On the one hand, the stress layer 400 can balance the pressure in the PMOS and NMOS. On the other hand, since the silicon content in the stress layer 400 is high, the phase change temperature of the metal silicide in the PMOS and NMOS can be balanced to form a uniform metal silicide layer with a low resistivity, thereby avoiding the formation of agglomeration defects and improving the yield of the device.

需要说明的是,尽管在附图中以特定顺序描述了本公开中半导体器件的形成方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。It should be noted that, although the steps of the method for forming a semiconductor device in the present disclosure are described in a specific order in the accompanying drawings, this does not require or imply that the steps must be performed in this specific order, or that all the steps shown must be performed to achieve the desired results. Additionally or alternatively, some steps may be omitted, multiple steps may be combined into one step, and/or one step may be decomposed into multiple steps, etc.

本公开实施方式还提供了一种半导体器件,如图10所示,该半导体器件可以采用上述半导体器件的形成方法制造而成。该半导体器件具有电阻率较小的金属硅化物膜层,且应力层400可以较好的平衡其内部P型晶体管220和N型晶体管210之间的应力,器件整体具有较好的性能和较高的良率。The present disclosure also provides a semiconductor device, as shown in FIG10 , which can be manufactured using the above-mentioned method for forming a semiconductor device. The semiconductor device has a metal silicide film layer with a relatively low resistivity, and the stress layer 400 can better balance the stress between the P-type transistor 220 and the N-type transistor 210 inside it, and the device as a whole has better performance and higher yield.

本公开提供的半导体器件可以应用于动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)、静态随机存取存储器(Static random access memory,SRAM)、闪存(Flash Memory)等存储器中。当然,还可以应用于其它未列举的存储装置内,在此不再一一列举。The semiconductor device provided by the present disclosure can be applied to dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, etc. Of course, it can also be applied to other storage devices not listed here, which will not be listed one by one.

本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。Those skilled in the art will readily appreciate other embodiments of the present disclosure after considering the specification and practicing the invention disclosed herein. This application is intended to cover any modification, use or adaptation of the present disclosure, which follows the general principles of the present disclosure and includes common knowledge or customary techniques in the art that are not disclosed in the present disclosure. The specification and examples are intended to be exemplary only, and the true scope and spirit of the present disclosure are indicated by the appended claims.

Claims (9)

1. A method of forming a semiconductor device, comprising:
Providing an initial semiconductor structure, wherein the initial semiconductor structure comprises a substrate, the substrate comprises a first region and a second region, a P-type transistor is formed in the first region, an N-type transistor is formed in the second region, the P-type transistor comprises a first grid, a first source electrode and a first drain electrode which are positioned on two sides of the first grid, and the N-type transistor comprises a second grid, a second source electrode and a second drain electrode which are positioned on two sides of the second grid;
forming an isolation structure in the substrate, wherein the isolation structure is used for isolating the P-type transistor and the N-type transistor;
forming a passivation layer which covers the surface of the initial semiconductor structure in a conformal manner;
Forming a photoresist layer on the passivation layer;
Etching the passivation layer by taking the photoresist layer as a mask to form a sub-passivation layer, wherein the sub-passivation layer covers the surface of the isolation structure;
forming first metal silicide layers on top of the first grid electrode, the first source electrode, the first drain electrode, the second grid electrode, the second source electrode and the second drain electrode respectively;
Forming a stress layer which covers the surface of the initial semiconductor structure with the first metal silicide layer in a conformal manner to form a target semiconductor structure, wherein the stress layer comprises silicon elements and nitrogen elements, and the ratio between the silicon elements and the nitrogen elements is greater than 3:4;
performing first heat treatment on the target semiconductor structure to diffuse silicon element in the stress layer into the first metal silicide layer to form a second metal silicide layer;
wherein the resistivity of the second metal silicide layer is smaller than the resistivity of the first metal silicide layer.
2. The method of forming a semiconductor device according to claim 1, wherein the first heat treatment includes a laser annealing treatment, the temperature of the first heat treatment is greater than 700 ℃, and the time of the first heat treatment is 10ns to 100ms.
3. The method of forming a semiconductor device according to claim 1, wherein the forming a first metal silicide layer comprises:
forming a metal layer which is conformal and covers the surface of the initial semiconductor structure;
Performing a second heat treatment on the initial semiconductor structure with the metal layer to diffuse metal ions in the metal layer into the N-type transistor and the P-type transistor;
And removing the residual metal layer.
4. The method for forming a semiconductor device according to claim 3, wherein a temperature of the second heat treatment is less than 750 ℃.
5. The method for forming a semiconductor device according to claim 4, wherein after the forming of the metal layer, the method further comprises:
and forming a barrier layer which is conformal to cover the surface of the metal layer.
6. The method of forming a semiconductor device of claim 1, wherein after the forming the second metal silicide layer, the method further comprises:
An insulating layer is formed that covers the target semiconductor structure and fills a gap between the P-type transistor and the N-type transistor.
7. The method of forming a semiconductor device according to claim 1, wherein a ratio between silicon element and nitrogen element in the stress layer is 7:8 to 15:8.
8. The method of forming a semiconductor device according to any one of claims 1 to 7, wherein the stress layer is formed by a plasma enhanced chemical vapor deposition method, a chemical vapor deposition method, or an atomic layer deposition method.
9. The method for forming a semiconductor device according to any one of claims 1 to 7, wherein a precursor for forming the stress layer includes silane and ammonia; or precursors for forming the stress layer include silane and nitrogen.
CN202411127334.5A 2024-08-16 2024-08-16 Method for forming semiconductor device Active CN118645475B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411127334.5A CN118645475B (en) 2024-08-16 2024-08-16 Method for forming semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411127334.5A CN118645475B (en) 2024-08-16 2024-08-16 Method for forming semiconductor device

Publications (2)

Publication Number Publication Date
CN118645475A CN118645475A (en) 2024-09-13
CN118645475B true CN118645475B (en) 2024-10-29

Family

ID=92668374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411127334.5A Active CN118645475B (en) 2024-08-16 2024-08-16 Method for forming semiconductor device

Country Status (1)

Country Link
CN (1) CN118645475B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660621B1 (en) * 2002-06-07 2003-12-09 Advanced Micro Devices, Inc. Method of forming ultra-shallow junctions in a semiconductor wafer with silicon layer deposited from a gas precursor to reduce silicon consumption during salicidation
CN101030541A (en) * 2006-02-28 2007-09-05 联华电子股份有限公司 Semiconductor transistor element and manufacturing method thereof
CN101086967A (en) * 2006-06-09 2007-12-12 台湾积体电路制造股份有限公司 Manufacturing method of semiconductor element
CN103855001A (en) * 2012-12-04 2014-06-11 中芯国际集成电路制造(上海)有限公司 Transistor and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449784C (en) * 2006-08-11 2009-01-07 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN102832221B (en) * 2011-06-16 2016-10-26 三星电子株式会社 There is semiconductor device of vertical device and non-vertical device and forming method thereof
CN103915341B (en) * 2013-01-08 2016-12-28 中芯国际集成电路制造(上海)有限公司 Transistor and forming method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660621B1 (en) * 2002-06-07 2003-12-09 Advanced Micro Devices, Inc. Method of forming ultra-shallow junctions in a semiconductor wafer with silicon layer deposited from a gas precursor to reduce silicon consumption during salicidation
CN101030541A (en) * 2006-02-28 2007-09-05 联华电子股份有限公司 Semiconductor transistor element and manufacturing method thereof
CN101086967A (en) * 2006-06-09 2007-12-12 台湾积体电路制造股份有限公司 Manufacturing method of semiconductor element
CN103855001A (en) * 2012-12-04 2014-06-11 中芯国际集成电路制造(上海)有限公司 Transistor and manufacturing method thereof

Also Published As

Publication number Publication date
CN118645475A (en) 2024-09-13

Similar Documents

Publication Publication Date Title
JP7266352B2 (en) Method and semiconductor device for forming self-aligned bottom spacers for vertical transistors
US9997631B2 (en) Methods for reducing contact resistance in semiconductors manufacturing process
US9379012B2 (en) Oxide mediated epitaxial nickel disilicide alloy contact formation
US7056782B2 (en) CMOS silicide metal gate integration
US12183826B2 (en) Vertical field effect transistor with low-resistance bottom source-drain contact
US8790991B2 (en) Method and structure for shallow trench isolation to mitigate active shorts
CN109216459A (en) The method being used for producing the semiconductor devices
US20100052079A1 (en) Semiconductor devices and fabrication process thereof
KR100343653B1 (en) Semiconductor device with metal silicide layer and method of manufacturing the same
US8207040B2 (en) Methods of manufacturing semiconductor devices including forming (111) facets in silicon capping layers on source/drain regions
KR20080032220A (en) Metal gate MOSPFET by fully converted semiconductor metal alloy
CN110692119A (en) Dual-Channel CMOS with Shared Gate Stack
US6100204A (en) Method of making ultra thin gate oxide using aluminum oxide
US10461174B1 (en) Vertical field effect transistors with self aligned gate and source/drain contacts
US10727310B2 (en) Contact formation on germanium-containing substrates using hydrogenated silicon
US6342422B1 (en) Method for forming MOSFET with an elevated source/drain
US20210091200A1 (en) Transistor structure with overlying gate on polysilicon gate structure and related method
US7419867B2 (en) CMOS gate structure comprising predoped semiconductor gate material with improved uniformity of dopant distribution and method of forming the structure
CN118645475B (en) Method for forming semiconductor device
CN203134802U (en) Semiconductor structure
KR20230074584A (en) Vertical transfer CMOS transistor with asymmetric threshold voltage
US6294797B1 (en) MOSFET with an elevated source/drain
CN113284803A (en) Method of forming semiconductor device
CN222928738U (en) Semiconductor Devices
US20230387316A1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant