CN118645472A - Method for preparing a semiconductor device - Google Patents
Method for preparing a semiconductor device Download PDFInfo
- Publication number
- CN118645472A CN118645472A CN202411124579.2A CN202411124579A CN118645472A CN 118645472 A CN118645472 A CN 118645472A CN 202411124579 A CN202411124579 A CN 202411124579A CN 118645472 A CN118645472 A CN 118645472A
- Authority
- CN
- China
- Prior art keywords
- layer
- metal material
- groove
- silicon
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76805—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/3115—Doping the insulating layers
- H01L21/31155—Doping the insulating layers by ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明提供一种半导体器件的制备方法,包括以下步骤:提供一半导体衬底,半导体衬底中的凹槽贯通介电层和刻蚀停止层,并暴露出底部金属层;在介电层的表面以及凹槽靠近开口处的侧壁注入硅元素,并在凹槽中填充金属材料,以形成金属材料层,金属材料层覆盖介电层的表面,金属材料层与底部金属层接触;通过化学机械研磨工艺去除介电层表面的金属材料层。本发明通过在凹槽开口处的侧壁中注入硅元素,使得凹槽开口处的介电层富硅,同时在凹槽开口侧壁上形成金属薄层,使得凹槽开口处金属材料与介电层之间的附着力强,并在凹槽开口处没有缝隙,这就使得化学机械研磨工艺时不会出现研磨浆料对底部金属层的腐蚀,从而提升了半导体器件的良率和性能。
The present invention provides a method for preparing a semiconductor device, comprising the following steps: providing a semiconductor substrate, wherein a groove in the semiconductor substrate penetrates a dielectric layer and an etching stop layer, and exposes a bottom metal layer; injecting silicon elements into the surface of the dielectric layer and the sidewalls of the groove near the opening, and filling metal materials in the groove to form a metal material layer, wherein the metal material layer covers the surface of the dielectric layer, and the metal material layer contacts the bottom metal layer; and removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process. The present invention injects silicon elements into the sidewalls at the opening of the groove, so that the dielectric layer at the opening of the groove is silicon-rich, and at the same time forms a metal thin layer on the sidewalls of the opening of the groove, so that the adhesion between the metal material at the opening of the groove and the dielectric layer is strong, and there is no gap at the opening of the groove, which prevents the bottom metal layer from being corroded by the grinding slurry during the chemical mechanical polishing process, thereby improving the yield and performance of the semiconductor device.
Description
技术领域Technical Field
本发明涉及半导体制造技术领域,特别涉及一种半导体器件的制备方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular to a method for preparing a semiconductor device.
背景技术Background Art
目前,在先进生产技术的中段制程(MEOL)节点中,金属接触结构的工艺如下:Currently, in the middle-end of line (MEOL) node of advanced production technology, the process of metal contact structure is as follows:
首先,如图1所示,提供半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层1、刻蚀停止层2和介质层3,所述半导体衬底中形成有凹槽4,所述凹槽4贯通所述介质层3和刻蚀停止层2,并暴露出所述底部金属层1;接着,如图2所示,通过选择性钨填充工艺在所述凹槽4中填充钨材料,以形成钨材料填充层5。由于钨材料填充层5由下至上填充,该过程钨材料与凹槽4侧壁处的介质层3之间附着力差,造成钨材料填充层5与凹槽4侧壁之间存在缝隙41。最后,对凹槽4外的钨材料进行CMP(化学机械研磨工艺),以平坦化处理半导体器件的表面,在此过程中,CMP浆料(该浆料为酸性浆料)很容易从缝隙41中进入凹槽4的底部,并与底层金属层1发生反应,并形成腐蚀空洞11(如图3-图4所示),从而影响了半导体器件的性能和良率。First, as shown in FIG1 , a semiconductor substrate is provided, the semiconductor substrate includes a bottom metal layer 1, an etch stop layer 2 and a dielectric layer 3 sequentially arranged on the substrate, a groove 4 is formed in the semiconductor substrate, the groove 4 penetrates the dielectric layer 3 and the etch stop layer 2, and exposes the bottom metal layer 1; then, as shown in FIG2 , a tungsten material is filled in the groove 4 by a selective tungsten filling process to form a tungsten material filling layer 5. Since the tungsten material filling layer 5 is filled from bottom to top, the adhesion between the tungsten material and the dielectric layer 3 at the side wall of the groove 4 is poor, resulting in a gap 41 between the tungsten material filling layer 5 and the side wall of the groove 4. Finally, the tungsten material outside the groove 4 is subjected to CMP (chemical mechanical polishing process) to flatten the surface of the semiconductor device. In this process, the CMP slurry (the slurry is an acidic slurry) can easily enter the bottom of the groove 4 from the gap 41, react with the bottom metal layer 1, and form an etched cavity 11 (as shown in FIG3-FIG4), thereby affecting the performance and yield of the semiconductor device.
发明内容Summary of the invention
本发明的目的在于,提供一种半导体器件的制备方法,可以解决选择性钨填充工艺中钨材料与凹槽侧壁上的介质层之间附着力差的问题。The object of the present invention is to provide a method for preparing a semiconductor device, which can solve the problem of poor adhesion between a tungsten material and a dielectric layer on a groove sidewall in a selective tungsten filling process.
为了解决以上问题,本发明提供一种半导体器件的制备方法,包括以下步骤:In order to solve the above problems, the present invention provides a method for preparing a semiconductor device, comprising the following steps:
提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;A semiconductor substrate is provided, the semiconductor substrate comprising a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, a groove is formed in the semiconductor substrate, the groove passes through the dielectric layer and the etch stop layer and exposes the bottom metal layer;
在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面,所述金属材料层与所述底部金属层接触;Injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling the groove with metal material to form a metal material layer, wherein the metal material layer also covers the surface of the dielectric layer, and the metal material layer is in contact with the bottom metal layer;
通过化学机械研磨工艺去除所述介电层表面的金属材料层。The metal material layer on the surface of the dielectric layer is removed by a chemical mechanical polishing process.
可选的,“在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,所述金属材料覆盖所述介电层的表面”具体方法为:Optionally, the specific method of “injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling the groove with metal material, wherein the metal material covers the surface of the dielectric layer” is:
执行硅离子注入工艺,以在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,以形成富硅介电膜层;Performing a silicon ion implantation process to implant silicon elements on the surface of the dielectric layer and on the sidewalls of the groove near the opening to form a silicon-rich dielectric film layer;
通过CVD工艺在所述凹槽中选择性填充金属材料,同时在所述富硅介电膜层上沉积金属材料,以形成金属材料层。A metal material is selectively filled in the groove by a CVD process, and a metal material is deposited on the silicon-rich dielectric film layer to form a metal material layer.
进一步的,在所述凹槽的侧壁上的所述富硅介电膜层的长度占所述凹槽总深度的10%~80%。Furthermore, the length of the silicon-rich dielectric film layer on the sidewall of the groove accounts for 10% to 80% of the total depth of the groove.
进一步的,CVD工艺的反应气体包括:WF6和H2。Furthermore, the reaction gases of the CVD process include: WF6 and H2.
可选的,“在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,所述金属材料覆盖所述介电层的表面”具体方法为:Optionally, the specific method of “injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling the groove with metal material, wherein the metal material covers the surface of the dielectric layer” is:
通过CVD工艺在所述凹槽中形成第一金属材料层,所述第一金属材料层填充部分深度的所述凹槽,且所述第一金属材料与所述底部金属层接触;forming a first metal material layer in the groove by a CVD process, wherein the first metal material layer fills a portion of the depth of the groove, and the first metal material contacts the bottom metal layer;
执行硅离子注入工艺,以在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,以形成富硅介电膜层;Performing a silicon ion implantation process to implant silicon elements on the surface of the dielectric layer and on the sidewalls of the groove near the opening to form a silicon-rich dielectric film layer;
通过CVD工艺在所述凹槽中沉积金属材料同时在所述凹槽侧壁处的富硅介电层表面沉积金属材料,以形成第二金属材料层,其中,所述第二金属材料层位于所述第一金属材料层上方,且填充整个所述第一金属材料层上方的凹槽。A metal material is deposited in the groove by a CVD process and at the same time on the surface of the silicon-rich dielectric layer at the sidewall of the groove to form a second metal material layer, wherein the second metal material layer is located above the first metal material layer and fills the entire groove above the first metal material layer.
进一步的,所述第一金属材料层的高度大于所述刻蚀停止层的厚度且小于所述凹槽的总深度。Furthermore, the height of the first metal material layer is greater than the thickness of the etch stop layer and less than the total depth of the groove.
进一步的,所述第一金属材料层的高度较所述刻蚀停止层的厚度大5nm~40nm。Furthermore, the height of the first metal material layer is 5 nm to 40 nm greater than the thickness of the etch stop layer.
进一步的,形成第一金属材料层时的CVD工艺的反应气体包括:WF6和H2;形成第二金属材料层时的CVD工艺的反应气体包括:WF6和H2。Furthermore, the reaction gases of the CVD process when forming the first metal material layer include: WF6 and H2; the reaction gases of the CVD process when forming the second metal material layer include: WF6 and H2.
进一步的,硅离子注入时的工艺参数为:离子注入方向与垂直方向之间的夹角θ为20°~75°,离子注入能量为1KeV~60 KeV,离子注入剂量为1E14cm-2~1E16 cm-2。Furthermore, the process parameters for silicon ion implantation are: an angle θ between the ion implantation direction and the vertical direction is 20° to 75°, an ion implantation energy is 1 KeV to 60 KeV, and an ion implantation dose is 1E14 cm -2 to 1E16 cm -2 .
可选的,所述底部金属层的材料为钨、钴、铜、钛、钌、铝、钼中的至少一种;所述刻蚀停止层的材料包括氮化硅,所述介电层的材料包括氧化硅,所述金属材料材料层的材料为金属钨。Optionally, the material of the bottom metal layer is at least one of tungsten, cobalt, copper, titanium, ruthenium, aluminum, and molybdenum; the material of the etch stop layer includes silicon nitride, the material of the dielectric layer includes silicon oxide, and the material of the metal material layer is metal tungsten.
与现有技术相比,本发明具有以下意想不到的技术效果:Compared with the prior art, the present invention has the following unexpected technical effects:
本发明提供一种半导体器件的制备方法,包括以下步骤:提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面,所述金属材料层与所述底部金属层接触;通过化学机械研磨工艺去除所述介电层表面的金属材料层。本发明通过在凹槽开口处的侧壁中注入硅元素,使得凹槽开口处的介电层富硅,这就使得在填充金属材料的同时在凹槽开口处的侧壁上形成金属薄层,从而使得金属填充之后在凹槽开口处金属材料与介电层之间的附着力强,并在凹槽开口处金属材料与介电层之间没有缝隙,这就使得化学机械研磨工艺时不会出现研磨浆料对底部金属层的腐蚀,从而提升了半导体器件的良率和性能。The present invention provides a method for preparing a semiconductor device, comprising the following steps: providing a semiconductor substrate, the semiconductor substrate comprising a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, a groove formed in the semiconductor substrate, the groove penetrating the dielectric layer and the etch stop layer, and exposing the bottom metal layer; injecting silicon elements into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling metal materials in the groove to form a metal material layer, the metal material layer also covers the surface of the dielectric layer, and the metal material layer is in contact with the bottom metal layer; removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process. The present invention injects silicon elements into the sidewalls at the opening of the groove, so that the dielectric layer at the opening of the groove is silicon-rich, which makes it possible to form a metal thin layer on the sidewalls at the opening of the groove while filling the metal material, so that the adhesion between the metal material and the dielectric layer at the opening of the groove is strong after the metal is filled, and there is no gap between the metal material and the dielectric layer at the opening of the groove, which makes it possible to prevent the bottom metal layer from being corroded by the grinding slurry during the chemical mechanical polishing process, thereby improving the yield and performance of the semiconductor device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一种半导体器件的半导体衬底的结构示意图。FIG. 1 is a schematic structural diagram of a semiconductor substrate of a semiconductor device.
图2为一种半导体器件在钨填充后的结构示意图。FIG. 2 is a schematic diagram of the structure of a semiconductor device after tungsten filling.
图3为一种半导体器件在CMP后的结构示意图。FIG. 3 is a schematic diagram of the structure of a semiconductor device after CMP.
图4为一种半导体器件形成腐蚀空洞时的结构示意图。FIG. 4 is a schematic diagram of the structure of a semiconductor device when corrosion voids are formed.
图5为本发明实施例一提供的半导体衬底的结构示意图。FIG. 5 is a schematic diagram of the structure of a semiconductor substrate provided in Embodiment 1 of the present invention.
图6为本发明实施例一在形成凹槽后的结构示意图。FIG. 6 is a schematic diagram of the structure of the first embodiment of the present invention after the groove is formed.
图7为本发明实施例一在硅离子注入工艺时的结构示意图。FIG. 7 is a schematic diagram of the structure of the first embodiment of the present invention during the silicon ion implantation process.
图8为本发明实施例一在CVD工艺初期的结构示意图。FIG8 is a schematic diagram of the structure of the first embodiment of the present invention at the initial stage of the CVD process.
图9为本发明实施例一在CVD工艺后的结构示意图。FIG. 9 is a schematic diagram of the structure of the first embodiment of the present invention after the CVD process.
图10为本发明实施例一在形成黏附层和辅助金属膜层后的结构示意图。FIG. 10 is a schematic diagram of the structure of the first embodiment of the present invention after forming an adhesion layer and an auxiliary metal film layer.
图11为本发明实施例一提供的半导体器件的结构示意图。FIG. 11 is a schematic diagram of the structure of a semiconductor device provided in Embodiment 1 of the present invention.
图12为本发明实施例二在形成第一金属材料层后的结构示意图。FIG. 12 is a schematic diagram of the structure of the second embodiment of the present invention after forming the first metal material layer.
图13为本发明实施例二在硅离子注入工艺时的结构示意图。FIG. 13 is a schematic diagram of the structure of the second embodiment of the present invention during the silicon ion implantation process.
图14为本发明实施例二在形成第二金属材料层初期的结构示意图。FIG. 14 is a schematic structural diagram of the second embodiment of the present invention at the initial stage of forming the second metal material layer.
图15为本发明实施例二在形成第二金属材料层后的结构示意图。FIG. 15 is a schematic diagram of the structure of the second embodiment of the present invention after forming the second metal material layer.
附图标记说明:Description of reference numerals:
图1-图4中:In Figures 1 to 4:
1-底部金属层;11-腐蚀空洞;2-刻蚀停止层;3-介质层;4-凹槽;41-缝隙;5-钨材料填充层;1-bottom metal layer; 11-corrosion cavity; 2-etching stop layer; 3-dielectric layer; 4-groove; 41-gap; 5-tungsten material filling layer;
图5-图15中:In Figures 5 to 15:
101-底部金属层;201-凹槽;210-刻蚀停止层;220-介电层;221-富硅介电膜层;300-金属接触结构;310-金属材料层;311-第一金属材料层;312-第二金属材料层;320-黏附层;330-辅助金属膜层。101 - bottom metal layer; 201 - groove; 210 - etching stop layer; 220 - dielectric layer; 221 - silicon-rich dielectric film layer; 300 - metal contact structure; 310 - metal material layer; 311 - first metal material layer; 312 - second metal material layer; 320 - adhesion layer; 330 - auxiliary metal film layer.
具体实施方式DETAILED DESCRIPTION
以下将对本发明的一种半导体器件的制备方法作进一步的详细描述。下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The following is a further detailed description of a method for preparing a semiconductor device of the present invention. The present invention will be described in more detail below with reference to the accompanying drawings, in which preferred embodiments of the present invention are shown. It should be understood that those skilled in the art can modify the present invention described herein and still achieve the beneficial effects of the present invention. Therefore, the following description should be understood as being widely known to those skilled in the art and not as a limitation of the present invention.
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。For the sake of clarity, not all features of the actual embodiments are described. In the following description, well-known functions and structures are not described in detail because they would clutter the invention with unnecessary detail. It should be recognized that in the development of any actual embodiment, a large number of implementation details must be made to achieve the developer's specific goals, such as changing from one embodiment to another according to the limitations of the relevant system or the relevant business. In addition, it should be recognized that such development work may be complex and time-consuming, but it is just a routine task for those skilled in the art.
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。In order to make the purpose and features of the present invention more obvious and easy to understand, the specific implementation methods of the present invention are further described below in conjunction with the accompanying drawings. It should be noted that the accompanying drawings are all in a very simplified form and use inaccurate ratios, which are only used to conveniently and clearly assist in explaining the purpose of the embodiments of the present invention.
本发明提供一种半导体器件的制备方法,包括以下步骤:The present invention provides a method for preparing a semiconductor device, comprising the following steps:
步骤S1:提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;Step S1: providing a semiconductor substrate, wherein the semiconductor substrate comprises a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, wherein a groove is formed in the semiconductor substrate, the groove penetrates the dielectric layer and the etch stop layer and exposes the bottom metal layer;
步骤S2:在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面,所述金属材料层与所述底部金属层接触;Step S2: injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling the groove with metal material to form a metal material layer, wherein the metal material layer also covers the surface of the dielectric layer, and the metal material layer is in contact with the bottom metal layer;
步骤S3:通过化学机械研磨工艺去除所述介电层表面的金属材料层。Step S3: removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process.
本发明通过在凹槽开口处的侧壁中注入硅元素,使得凹槽开口处的介电层富硅,这就使得在填充金属材料的同时在凹槽开口处的侧壁上形成金属薄层,从而使得金属填充之后在凹槽开口处金属材料与介电层之间的附着力强,并在凹槽开口处金属材料与介电层之间没有缝隙,这就使得化学机械研磨工艺时不会出现研磨浆料对底部金属层的腐蚀,从而提升了半导体器件的良率和性能。The present invention injects silicon elements into the side walls at the groove opening so that the dielectric layer at the groove opening is silicon-rich, which allows a thin metal layer to be formed on the side walls at the groove opening while filling the metal material, so that after the metal is filled, the adhesion between the metal material and the dielectric layer at the groove opening is strong, and there is no gap between the metal material and the dielectric layer at the groove opening, which prevents the grinding slurry from corroding the bottom metal layer during the chemical mechanical polishing process, thereby improving the yield and performance of the semiconductor device.
实施例一Embodiment 1
本实施例提供一种半导体器件的制备方法,包括以下步骤:This embodiment provides a method for preparing a semiconductor device, comprising the following steps:
步骤S11:提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;Step S11: providing a semiconductor substrate, the semiconductor substrate comprising a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, a groove is formed in the semiconductor substrate, the groove penetrates the dielectric layer and the etch stop layer and exposes the bottom metal layer;
步骤S12:在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,再在所述凹槽中填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面,所述金属材料层与所述底部金属层接触;Step S12: injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and then filling the groove with metal material to form a metal material layer, wherein the metal material layer also covers the surface of the dielectric layer, and the metal material layer is in contact with the bottom metal layer;
步骤S13:通过化学机械研磨工艺去除所述介电层表面的金属材料层。Step S13: removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process.
以下结合图5-图11对本实施例提供的一种半导体器件的制备方法进行详细说明。A method for manufacturing a semiconductor device provided in this embodiment is described in detail below in conjunction with FIG. 5 to FIG. 11 .
请参阅图5-图6,首先执行步骤S11,提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层101、刻蚀停止层210和介电层220,所述半导体衬底中形成有凹槽201,所述凹槽201贯通所述介电层220和刻蚀停止层210,并暴露出所述底部金属层101。Please refer to Figures 5 and 6. First, step S11 is performed to provide a semiconductor substrate, which includes a bottom metal layer 101, an etch stop layer 210 and a dielectric layer 220 arranged in sequence on the substrate. A groove 201 is formed in the semiconductor substrate, and the groove 201 passes through the dielectric layer 220 and the etch stop layer 210 to expose the bottom metal layer 101.
本步骤具体为:The specific steps of this step are:
如图5所示,首先,提供一半导体衬底,所述半导体衬底包括衬底。As shown in FIG5 , first, a semiconductor substrate is provided, wherein the semiconductor substrate comprises a substrate.
接着,在所述衬底的表面依次沉积底部金属层101、刻蚀停止层210和介电层220。其中,所述底部金属层101的材料可以为钨、钴、铜、钛、钌、铝、钼中的至少一种。所述刻蚀停止层210的材料包括但不限于氮化硅,所述介电层220的材料包括但不限于氧化硅。Next, a bottom metal layer 101, an etch stop layer 210 and a dielectric layer 220 are sequentially deposited on the surface of the substrate. The material of the bottom metal layer 101 may be at least one of tungsten, cobalt, copper, titanium, ruthenium, aluminum and molybdenum. The material of the etch stop layer 210 includes but is not limited to silicon nitride, and the material of the dielectric layer 220 includes but is not limited to silicon oxide.
所述衬底可以为硅衬底,所述衬底中可以形成有器件,例如MOS晶体管。在本实施例中,所述衬底中形成有间隔设置的源区和漏区,所述源区和漏区之间的衬底上形成有栅极结构,所述底部金属层101可以位于所述源区表面以及漏区表面。所述底部金属层101可以为衬底表面的金属膜层,也可以为衬底表面且具有预设长度的导电接触柱(即插塞的下半部分),而后续形成的凹槽201位于其上方,且填充在凹槽201中的金属填充材料与其(导电接触柱)构成完整的金属接触(即插塞)。The substrate may be a silicon substrate, and a device, such as a MOS transistor, may be formed in the substrate. In this embodiment, a source region and a drain region are formed in the substrate, and a gate structure is formed on the substrate between the source region and the drain region. The bottom metal layer 101 may be located on the surface of the source region and the surface of the drain region. The bottom metal layer 101 may be a metal film layer on the surface of the substrate, or may be a conductive contact column (i.e., the lower half of the plug) on the surface of the substrate and having a preset length, and the groove 201 formed subsequently is located above it, and the metal filling material filled in the groove 201 forms a complete metal contact (i.e., the plug) with it (the conductive contact column).
如图6所示,接着,通过刻蚀工艺刻蚀所述介电层220和刻蚀停止层210,暴露出所述底部金属层101,并形成凹槽201。As shown in FIG. 6 , the dielectric layer 220 and the etch stop layer 210 are then etched through an etching process to expose the bottom metal layer 101 and form a groove 201 .
请参阅图7-图10,接着执行步骤S12,在所述介电层220的表面以及所述凹槽201靠近开口处的侧壁注入硅元素,再在所述凹槽201中填充金属材料,以形成金属材料层310,所述金属材料层310还覆盖所述介电层220的表面,所述金属材料层310与所述底部金属层101接触。Please refer to Figures 7-10, and then perform step S12 to inject silicon elements into the surface of the dielectric layer 220 and the side walls of the groove 201 near the opening, and then fill the groove 201 with metal material to form a metal material layer 310. The metal material layer 310 also covers the surface of the dielectric layer 220, and the metal material layer 310 is in contact with the bottom metal layer 101.
本步骤具体为:The specific steps of this step are:
如图7所示,首先,执行硅离子注入工艺,以在所述介电层220的表面以及所述凹槽201靠近开口处的侧壁注入硅元素,并在所述介电层220的表面以及所述凹槽201靠近开口处的侧壁形成富硅介电膜层221。本步骤硅离子注入工艺的参数为:离子注入方向与垂直方向之间的夹角θ为20°~75°,离子注入能量为1KeV~60 KeV,离子注入剂量为1E14cm-2~1E16cm-2。在离子注入后,所述富硅介电膜层221在所述凹槽201侧壁上的长度(即从所述凹槽开口朝向凹槽201底部的方向上的长度)占所述凹槽201总深度的10%~80%。As shown in FIG7 , first, a silicon ion implantation process is performed to implant silicon elements on the surface of the dielectric layer 220 and the sidewalls of the groove 201 near the opening, and a silicon-rich dielectric film layer 221 is formed on the surface of the dielectric layer 220 and the sidewalls of the groove 201 near the opening. The parameters of the silicon ion implantation process in this step are: the angle θ between the ion implantation direction and the vertical direction is 20°~75°, the ion implantation energy is 1KeV~60 KeV, and the ion implantation dose is 1E14cm -2 ~1E16cm -2 . After ion implantation, the length of the silicon-rich dielectric film layer 221 on the sidewall of the groove 201 (i.e., the length in the direction from the groove opening toward the bottom of the groove 201) accounts for 10%~80% of the total depth of the groove 201.
如图8-图9所示,通过CVD工艺在凹槽201中选择性填充金属材料,同时在所述富硅介电膜层221上沉积金属材料,从而形成金属材料层310。如图8所示,在CVD工艺初期,在所述凹槽201中由下至上逐渐沉积金属材料,同时,在所述富硅介电膜层221上沉积金属膜层。如图9所示,随着CVD工艺进行,金属材料由下至上填充凹槽201并在开口处的侧壁与侧壁处的金属膜层汇合,并更进一步的填充完这个凹槽201。这就使得金属材料层310与所述凹槽201侧壁处的介电层220之间具有良好的粘附性,从而在凹槽201的开口处金属材料层310与介电层220之间没有缝隙,其避免后续CMP时出现的底部金属层101腐蚀的问题。As shown in FIGS. 8 and 9, metal material is selectively filled in the groove 201 by a CVD process, and metal material is deposited on the silicon-rich dielectric film layer 221, thereby forming a metal material layer 310. As shown in FIG8, at the beginning of the CVD process, metal material is gradually deposited from bottom to top in the groove 201, and at the same time, a metal film layer is deposited on the silicon-rich dielectric film layer 221. As shown in FIG9, as the CVD process proceeds, the metal material fills the groove 201 from bottom to top and merges with the metal film layer at the sidewall at the opening, and further fills the groove 201. This allows the metal material layer 310 to have good adhesion with the dielectric layer 220 at the sidewall of the groove 201, so that there is no gap between the metal material layer 310 and the dielectric layer 220 at the opening of the groove 201, which avoids the problem of corrosion of the bottom metal layer 101 during subsequent CMP.
其中,CVD工艺的反应气体包括:WF6和H2。The reaction gases of the CVD process include: WF6 and H2.
在本步骤中:在CVD过程中,由于金属材料(例如金属钨)可以在不同衬底上形成钨膜层,但是,金属材料在不同衬底上的成核延迟时间存在差异,造成在不同衬底上的沉积速率不同,具体例如在金属和金属化合物表面成核延迟时间短,在介电层220如SIO2、SIN等表面成核延迟时间长,且其本质为:由于在成核初期反应气体中的WF6 和衬底表面元素会进行置换反应,以形成初始的成核层,而置换反应的难易程度(化学反应能的高低)决定了成核的快慢,比如:WF6+金属(如W、Co、Cu)得到 W+AFx (金属氟化物) 的置换反应比较容易发生;WF6+介电材料(如SiO2、SiN)得到W+SiF4的置换反应很难发生,究其原因为电介质中的Si-O键或Si-N键很稳定。In this step: during the CVD process, since metal materials (such as metal tungsten) can form tungsten film layers on different substrates, the nucleation delay time of metal materials on different substrates is different, resulting in different deposition rates on different substrates. Specifically, for example, the nucleation delay time is short on the surface of metals and metal compounds, and the nucleation delay time is long on the surface of dielectric layer 220 such as SIO2, SIN, etc., and its essence is: since WF6 in the reaction gas and the elements on the surface of the substrate will undergo a substitution reaction in the early stage of nucleation to form an initial nucleation layer, and the difficulty of the substitution reaction (the level of chemical reaction energy) determines the speed of nucleation, for example: the substitution reaction of WF6+metal (such as W, Co, Cu) to obtain W+AFx (metal fluoride) is relatively easy to occur; the substitution reaction of WF6+dielectric material (such as SiO2, SiN) to obtain W+SiF4 is difficult to occur, and the reason is that the Si-O bond or Si-N bond in the dielectric is very stable.
由于硅离子注入改变部分介电层220的表面性质,可以在一定区域形成硅富集的表面(即形成富硅介电膜层221),从而在CVD工艺时反应气体中的WF6+介电材料(如SiO2、SiN)得到W+SiF4,这个比较很难发生的反应变成WF6+Si得到W+ SiF4这个更容易发生的反应,从而在富硅介电膜层221表面较快成核,继而进行保形的CVD W生长(如图8所示)。硅离子能促进WF6在半导体衬底表面的成核。Since silicon ion implantation changes the surface properties of part of the dielectric layer 220, a silicon-rich surface can be formed in a certain area (i.e., a silicon-rich dielectric film layer 221 is formed), so that during the CVD process, the WF6+dielectric material (such as SiO2, SiN) in the reaction gas obtains W+SiF4, which is a relatively difficult reaction to occur, and becomes a more likely reaction of WF6+Si to obtain W+SiF4, so that nucleation is formed faster on the surface of the silicon-rich dielectric film layer 221, and then conformal CVD W growth is performed (as shown in FIG8). Silicon ions can promote the nucleation of WF6 on the surface of the semiconductor substrate.
如图10所示,接着,在所述金属材料层310上依次形成黏附层320和辅助金属膜层330,所述黏附层320包括氮化钛层或由下至上依次包括钛层和氮化钛层,所述黏附层320可以在所述金属材料层310的表面形成一平整、连续且粘附性好的膜层,避免后续研磨时发生辅助金属膜层330脱落的问题。所述辅助金属膜层330的材料与所述金属材料层310的材料相同,例如均为金属钨,所述辅助金属膜层330可以增加所述金属材料层310的厚度,并形成一平整的金属结构层,以增加后续CMP工艺的工艺窗口。As shown in FIG. 10 , an adhesion layer 320 and an auxiliary metal film layer 330 are then sequentially formed on the metal material layer 310. The adhesion layer 320 includes a titanium nitride layer or includes a titanium layer and a titanium nitride layer sequentially from bottom to top. The adhesion layer 320 can form a flat, continuous and well-adhesive film layer on the surface of the metal material layer 310 to avoid the problem of the auxiliary metal film layer 330 falling off during subsequent grinding. The material of the auxiliary metal film layer 330 is the same as that of the metal material layer 310, for example, both are metal tungsten. The auxiliary metal film layer 330 can increase the thickness of the metal material layer 310 and form a flat metal structure layer to increase the process window of the subsequent CMP process.
请参阅图11,接着执行步骤S13,通过化学机械研磨工艺去除所述介电层220表面的金属材料层310。详细的,通过化学机械研磨工艺依次去除辅助金属膜层330、黏附层320、凹槽201外侧的金属材料层310和富硅介电膜层221,以得到金属接触结构300,所述凹槽201侧壁上依然具有部分长度的所述富硅介电膜层,使得所述金属接触结构300在所述凹槽201开口处可以与所述介电层220之间紧密接触。Please refer to FIG. 11 , and then perform step S13 to remove the metal material layer 310 on the surface of the dielectric layer 220 by chemical mechanical polishing. In detail, the auxiliary metal film layer 330, the adhesion layer 320, the metal material layer 310 outside the groove 201, and the silicon-rich dielectric film layer 221 are removed in sequence by chemical mechanical polishing to obtain the metal contact structure 300. The sidewall of the groove 201 still has a partial length of the silicon-rich dielectric film layer, so that the metal contact structure 300 can be in close contact with the dielectric layer 220 at the opening of the groove 201.
实施例二Embodiment 2
本实施例的半导体器件的制备方法的步骤S22与实施例一中的步骤S12不同,本实施例的半导体器件的制备方法的步骤S21与实施例一中的步骤S11相同,本实施例的半导体器件的制备方法的步骤S23与实施例一中的步骤S13相同。因此,本实施例的半导体器件的制备方法包括以下步骤:Step S22 of the method for preparing a semiconductor device of this embodiment is different from step S12 of the first embodiment, step S21 of the method for preparing a semiconductor device of this embodiment is the same as step S11 of the first embodiment, and step S23 of the method for preparing a semiconductor device of this embodiment is the same as step S13 of the first embodiment. Therefore, the method for preparing a semiconductor device of this embodiment includes the following steps:
步骤S21:提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;Step S21: providing a semiconductor substrate, the semiconductor substrate comprising a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, a groove is formed in the semiconductor substrate, the groove penetrates the dielectric layer and the etch stop layer and exposes the bottom metal layer;
步骤S22:在所述凹槽中填充部分高度的金属材料,再在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,再在所述凹槽的剩余部分填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面;Step S22: filling a portion of the height of the groove with metal material, then injecting silicon into the surface of the dielectric layer and the sidewall of the groove near the opening, and then filling the remaining portion of the groove with metal material to form a metal material layer, wherein the metal material layer also covers the surface of the dielectric layer;
步骤S23:通过化学机械研磨工艺去除所述介电层表面的金属材料层。Step S23: removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process.
请参阅图12-图15,步骤S22具体包括以下步骤:Please refer to FIG. 12 to FIG. 15 , step S22 specifically includes the following steps:
如图12所示,首先,通过CVD工艺,在所述凹槽201中形成第一金属材料层311,所述第一金属材料层311填充部分深度的所述凹槽201,所述第一金属材料层311的高度大于所述刻蚀停止层210的厚度且小于所述凹槽201的总深度,进一步的,所述第一金属材料层311的高度较所述刻蚀停止层210的厚度大5nm~40nm。其中,形成第一金属材料层311时的CVD工艺的反应气体包括:WF6和H2。As shown in FIG12 , first, a first metal material layer 311 is formed in the groove 201 by a CVD process, the first metal material layer 311 fills a portion of the depth of the groove 201, the height of the first metal material layer 311 is greater than the thickness of the etch stop layer 210 and less than the total depth of the groove 201, and further, the height of the first metal material layer 311 is 5 nm to 40 nm greater than the thickness of the etch stop layer 210. The reaction gases of the CVD process when forming the first metal material layer 311 include: WF6 and H2.
如图13所示,接着,执行硅离子注入工艺,以在所述介电层220的表面以及所述凹槽201靠近开口处的侧壁注入硅元素,并在所述介电层220的表面以及所述凹槽201靠近开口处的侧壁形成富硅介电膜层221。本步骤硅离子注入工艺的参数为:离子注入方向与垂直方向之间的夹角为20°~75°,离子注入能量为1KeV~60 KeV,离子注入剂量为1E14cm-2~1E16cm-2。在离子注入后,所述富硅介电膜层221在所述凹槽201侧壁上的长度(即从所述凹槽201开口朝向凹槽201底部的方向上的长度)占所述凹槽201总深度的10%~80%,同时,所述富硅介电膜层221在所述凹槽201侧壁上的长度小于所述凹槽201总深度与所述第一金属材料层311高度的差值。As shown in FIG13 , then, a silicon ion implantation process is performed to implant silicon elements on the surface of the dielectric layer 220 and the sidewalls of the groove 201 near the opening, and a silicon-rich dielectric film layer 221 is formed on the surface of the dielectric layer 220 and the sidewalls of the groove 201 near the opening. The parameters of the silicon ion implantation process in this step are: the angle between the ion implantation direction and the vertical direction is 20°~75°, the ion implantation energy is 1KeV~60 KeV, and the ion implantation dose is 1E14cm -2 ~1E16cm -2 . After ion implantation, the length of the silicon-rich dielectric film layer 221 on the sidewall of the groove 201 (i.e., the length in the direction from the opening of the groove 201 toward the bottom of the groove 201) accounts for 10%~80% of the total depth of the groove 201, and at the same time, the length of the silicon-rich dielectric film layer 221 on the sidewall of the groove 201 is less than the difference between the total depth of the groove 201 and the height of the first metal material layer 311.
如图14-图15所示,接着,通过CVD工艺在所述凹槽201中沉积金属材料同时在所述凹槽201侧壁的富硅介电层220的表面沉积金属材料,以形成第二金属材料层312,其中,所述第二金属材料层312位于所述第一金属材料层311上方,且填充整个所述第一金属材料层311上方的整个凹槽201。As shown in Figures 14 and 15, then, a metal material is deposited in the groove 201 through a CVD process and at the same time, a metal material is deposited on the surface of the silicon-rich dielectric layer 220 on the side wall of the groove 201 to form a second metal material layer 312, wherein the second metal material layer 312 is located above the first metal material layer 311 and fills the entire groove 201 above the first metal material layer 311.
如图14,在形成第二金属材料层312初期,所述第一金属材料层311在所述凹槽201中的第一金属材料层311上由下至上沉积金属材料,同时在所述凹槽201开口侧壁处的富硅介电膜层221表面沉积金属材料。如图15,随着工艺的进行,金属材料填充侧壁处的富硅介电膜层221下方的凹槽201,并于侧壁处的富硅介电膜层221内壁上的金属材料回合,并进一步填充凹槽201,至上整个凹槽201填满金属,并得到第二金属材料层312。本实施例的步骤S22通过先形成第一金属材料层311,再对凹槽201开口处的侧壁执行离子注入工艺,最后再进一步填充凹槽201,以在金属填充时避免凹槽201开口提前封口。其中,所述第一金属材料层311和第二金属材料层312共同构成所述金属材料层310。其中,形成第二金属材料层312时的CVD工艺的反应气体包括:WF6和H2。As shown in FIG14, at the beginning of forming the second metal material layer 312, the first metal material layer 311 deposits metal material from bottom to top on the first metal material layer 311 in the groove 201, and at the same time deposits metal material on the surface of the silicon-rich dielectric film layer 221 at the side wall of the opening of the groove 201. As shown in FIG15, as the process proceeds, the metal material fills the groove 201 below the silicon-rich dielectric film layer 221 at the side wall, and the metal material on the inner wall of the silicon-rich dielectric film layer 221 at the side wall, and further fills the groove 201, until the entire groove 201 is filled with metal, and the second metal material layer 312 is obtained. Step S22 of this embodiment forms the first metal material layer 311 first, then performs an ion implantation process on the side wall at the opening of the groove 201, and finally further fills the groove 201 to avoid premature sealing of the opening of the groove 201 during metal filling. Among them, the first metal material layer 311 and the second metal material layer 312 together constitute the metal material layer 310. The reaction gases of the CVD process when forming the second metal material layer 312 include: WF6 and H2.
综上所述,本发明提供一种半导体器件的制备方法,包括以下步骤:提供一半导体衬底,所述半导体衬底包括依次设置在衬底上的底部金属层、刻蚀停止层和介电层,所述半导体衬底中形成有凹槽,所述凹槽贯通所述介电层和刻蚀停止层,并暴露出所述底部金属层;在所述介电层的表面以及所述凹槽靠近开口处的侧壁注入硅元素,并在所述凹槽中填充金属材料,以形成金属材料层,所述金属材料层还覆盖所述介电层的表面,所述金属材料层与所述底部金属层接触;通过化学机械研磨工艺去除所述介电层表面的金属材料层。本发明通过在凹槽开口处的侧壁中注入硅元素,使得凹槽开口处的介电层富硅,这就使得在填充金属材料的同时在凹槽开口处的侧壁上形成金属薄层,从而使得金属填充之后在凹槽开口处金属材料与介电层之间的附着力强,并在凹槽开口处金属材料与介电层之间没有缝隙,这就使得化学机械研磨工艺时不会出现研磨浆料对底部金属层的腐蚀,从而提升了半导体器件的良率和性能。In summary, the present invention provides a method for preparing a semiconductor device, comprising the following steps: providing a semiconductor substrate, the semiconductor substrate comprising a bottom metal layer, an etch stop layer and a dielectric layer sequentially arranged on the substrate, a groove being formed in the semiconductor substrate, the groove penetrating the dielectric layer and the etch stop layer and exposing the bottom metal layer; injecting silicon elements into the surface of the dielectric layer and the sidewall of the groove near the opening, and filling the groove with metal material to form a metal material layer, the metal material layer also covering the surface of the dielectric layer, and the metal material layer is in contact with the bottom metal layer; removing the metal material layer on the surface of the dielectric layer by a chemical mechanical polishing process. The present invention injects silicon elements into the side walls at the groove opening so that the dielectric layer at the groove opening is silicon-rich, which allows a thin metal layer to be formed on the side walls at the groove opening while filling the metal material, so that after the metal is filled, the adhesion between the metal material and the dielectric layer at the groove opening is strong, and there is no gap between the metal material and the dielectric layer at the groove opening, which prevents the grinding slurry from corroding the bottom metal layer during the chemical mechanical polishing process, thereby improving the yield and performance of the semiconductor device.
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语 “第一”、“第二”的描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。In addition, it should be noted that, unless otherwise specified or indicated, the terms "first" and "second" in the specification are only used to distinguish the various components, elements, steps, etc. in the specification, and are not used to indicate the logical relationship or sequential relationship between the various components, elements, steps, etc.
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。It is to be understood that, although the present invention has been disclosed as a preferred embodiment, the above embodiment is not intended to limit the present invention. For any person skilled in the art, without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make many possible changes and modifications to the technical solution of the present invention, or modified into equivalent embodiments of equivalent changes. Therefore, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solution of the present invention still falls within the scope of protection of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411124579.2A CN118645472B (en) | 2024-08-16 | 2024-08-16 | Method for preparing a semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411124579.2A CN118645472B (en) | 2024-08-16 | 2024-08-16 | Method for preparing a semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118645472A true CN118645472A (en) | 2024-09-13 |
CN118645472B CN118645472B (en) | 2024-11-29 |
Family
ID=92661486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411124579.2A Active CN118645472B (en) | 2024-08-16 | 2024-08-16 | Method for preparing a semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118645472B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010059542A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | Method for forming metal line of semiconductor device |
US20030022472A1 (en) * | 2001-07-26 | 2003-01-30 | Chartered Semiconductor Manufacturing Ltd. | Method to improve adhesion of dielectric films in damascene interconnects |
US20030211725A1 (en) * | 2002-05-09 | 2003-11-13 | Chia-Chi Chung | Dual damascene processing method using silicon rich oxide layer thereof and its structure |
KR20050028665A (en) * | 2003-09-19 | 2005-03-23 | 동부아남반도체 주식회사 | Formation method of barrier metal in semiconductor device |
CN105140172A (en) * | 2014-05-27 | 2015-12-09 | 中芯国际集成电路制造(北京)有限公司 | Interconnection structure and formation method thereof |
US20200006127A1 (en) * | 2018-06-29 | 2020-01-02 | Taiwan Semiconductor Manuracturing Co., Ltd. | Semiconductor Structure with Material Modification and Low Resistance Plug |
CN111566800A (en) * | 2018-01-12 | 2020-08-21 | 泰塞拉公司 | Low-Resistivity Metal Interconnect Structures with Self-Forming Diffusion Barriers |
CN114496907A (en) * | 2020-11-12 | 2022-05-13 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
CN115132701A (en) * | 2021-03-25 | 2022-09-30 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
-
2024
- 2024-08-16 CN CN202411124579.2A patent/CN118645472B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010059542A (en) * | 1999-12-30 | 2001-07-06 | 박종섭 | Method for forming metal line of semiconductor device |
US20030022472A1 (en) * | 2001-07-26 | 2003-01-30 | Chartered Semiconductor Manufacturing Ltd. | Method to improve adhesion of dielectric films in damascene interconnects |
US20030211725A1 (en) * | 2002-05-09 | 2003-11-13 | Chia-Chi Chung | Dual damascene processing method using silicon rich oxide layer thereof and its structure |
KR20050028665A (en) * | 2003-09-19 | 2005-03-23 | 동부아남반도체 주식회사 | Formation method of barrier metal in semiconductor device |
CN105140172A (en) * | 2014-05-27 | 2015-12-09 | 中芯国际集成电路制造(北京)有限公司 | Interconnection structure and formation method thereof |
CN111566800A (en) * | 2018-01-12 | 2020-08-21 | 泰塞拉公司 | Low-Resistivity Metal Interconnect Structures with Self-Forming Diffusion Barriers |
US20200006127A1 (en) * | 2018-06-29 | 2020-01-02 | Taiwan Semiconductor Manuracturing Co., Ltd. | Semiconductor Structure with Material Modification and Low Resistance Plug |
CN114496907A (en) * | 2020-11-12 | 2022-05-13 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
CN115132701A (en) * | 2021-03-25 | 2022-09-30 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN118645472B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6774048B2 (en) | Method of manufacturing a semiconductor device | |
CN103311178B (en) | Methods of forming copper-based conductive structures on an integrated circuit device | |
JP2001291716A (en) | Method of reducing unnecessary insulator etching due to increased boron concentration | |
TW200425226A (en) | Method of manufacturing semiconductor device | |
KR100562657B1 (en) | Recess gate and manufacturing method of semiconductor device having same | |
CN115084024B (en) | Semiconductor device and method for manufacturing the same | |
CN118645472A (en) | Method for preparing a semiconductor device | |
US5888901A (en) | Multilevel interconnection and method for making | |
CN113314454B (en) | Interconnect structure and method of forming the same | |
CN114496907B (en) | Method for forming semiconductor structure | |
US11990415B2 (en) | Semiconductor device and method for forming the same | |
US7566924B2 (en) | Semiconductor device with gate spacer of positive slope and fabrication method thereof | |
CN114078774B (en) | Semiconductor device and method for manufacturing the same | |
US6174795B1 (en) | Method for preventing tungsten contact plug loss after a backside pressure fault | |
JPH11307625A (en) | Semiconductor device and manufacturing method thereof | |
JPH05152292A (en) | Wiring formation | |
TW594914B (en) | Fabrication method for shallow trench isolation region | |
CN113314455A (en) | Interconnect structure and method of forming the same | |
CN113497148B (en) | Semiconductor structure and method for forming semiconductor structure | |
US5976987A (en) | In-situ corner rounding during oxide etch for improved plug fill | |
CN102592988A (en) | Method for improving uniformity of chemical mechanical planarization process for opening polycrystalline grid top | |
JP2001267418A (en) | Semiconductor device and its manufacturing method | |
CN108630526B (en) | Method for improving cavity of interlayer dielectric layer | |
JPH0794448A (en) | Manufacture of semiconductor device | |
CN118676112A (en) | Semiconductor device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |