CN118631997A - Inter-frame prediction method and device - Google Patents
Inter-frame prediction method and device Download PDFInfo
- Publication number
- CN118631997A CN118631997A CN202410634304.7A CN202410634304A CN118631997A CN 118631997 A CN118631997 A CN 118631997A CN 202410634304 A CN202410634304 A CN 202410634304A CN 118631997 A CN118631997 A CN 118631997A
- Authority
- CN
- China
- Prior art keywords
- image block
- current image
- mode
- flag
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 120
- 230000004927 fusion Effects 0.000 claims abstract description 396
- 238000012545 processing Methods 0.000 claims description 100
- 230000015654 memory Effects 0.000 claims description 55
- 238000004590 computer program Methods 0.000 claims description 8
- 238000009795 derivation Methods 0.000 description 86
- 238000013139 quantization Methods 0.000 description 74
- 239000013598 vector Substances 0.000 description 67
- 230000008569 process Effects 0.000 description 29
- 230000006854 communication Effects 0.000 description 26
- 238000004891 communication Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 21
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 17
- 238000005070 sampling Methods 0.000 description 14
- 230000003044 adaptive effect Effects 0.000 description 11
- 230000002123 temporal effect Effects 0.000 description 11
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 10
- 238000003491 array Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- 241000023320 Luma <angiosperm> Species 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/107—Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/56—Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本申请提供一种帧间预测方法及装置。该方法包括:在确定对当前图像块使用融合模式进行帧间预测后,确定所述当前图像块是否允许使用K个备选融合模式中的各个融合模式;在所述当前图像块允许使用当前融合模式,且所述当前图像块允许使用所述K个备选融合模式中除所述当前融合模式外的融合模式的情况下,从码流中解析获得所述当前融合模式的第一标识的值;在所述第一标识的值指示所述当前图像块进行帧间预测的融合模式为所述当前融合模式的情况下,使用所述当前融合模式对所述当前图像块进行帧间预测,以得到所述当前图像块的预测块。在本申请中,实现去除融合语法元素的解析冗余,在一定程度上降低解码的复杂度,提升解码效率。
The present application provides an inter-frame prediction method and device. The method includes: after determining to use a fusion mode for inter-frame prediction of a current image block, determining whether the current image block is allowed to use each fusion mode of K candidate fusion modes; when the current image block is allowed to use the current fusion mode, and the current image block is allowed to use a fusion mode other than the current fusion mode among the K candidate fusion modes, parsing from the code stream to obtain the value of a first identifier of the current fusion mode; when the value of the first identifier indicates that the fusion mode for inter-frame prediction of the current image block is the current fusion mode, using the current fusion mode to perform inter-frame prediction on the current image block to obtain a prediction block of the current image block. In the present application, the parsing redundancy of the fusion syntax elements is removed, the decoding complexity is reduced to a certain extent, and the decoding efficiency is improved.
Description
本申请是分案申请,原申请的申请号是201910600591.9,原申请日是2019年07月04日,原申请的全部内容通过引用结合在本申请中。This application is a divisional application. The application number of the original application is 201910600591.9, and the original application date is July 4, 2019. The entire contents of the original application are incorporated into this application by reference.
技术领域Technical Field
本申请涉及视频图像处理技术领域,特别涉及一种帧间预测方法及装置。The present application relates to the technical field of video image processing, and in particular to an inter-frame prediction method and device.
背景技术Background Art
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分高级视频编码(AVC)定义的标准、视频编码标准H.265/高效视频编码(HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。Digital video capabilities may be incorporated into a wide variety of devices, including digital televisions, digital live broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, electronic book readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio telephones (so-called "smart phones"), video teleconferencing devices, video streaming devices, and the like. Digital video devices implement video compression techniques, such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4 Part 10 Advanced Video Coding (AVC), Video Coding Standard H.265/High Efficiency Video Coding (HEVC) standards, and extensions of such standards. Video devices may transmit, receive, encode, decode, and/or store digital video information more efficiently by implementing such video compression techniques.
视频压缩技术执行空间(图像内)预测和/或时间(图像间)预测以减少或去除视频序列中固有的冗余。对于基于块的视频编码,视频条带(即,视频帧或视频帧的一部分)可分割成若干图像块,所述图像块也可被称作树块、编码单元(coding unit,CU)和/或编码节点。使用关于同一图像中的相邻块中的参考样本的空间预测来编码图像的待帧内编码(I)条带中的图像块。图像的待帧间编码(P或B)条带中的图像块可使用相对于同一图像中的相邻块中的参考样本的空间预测或相对于其它参考图像中的参考样本的时间预测。图像可被称作帧,且参考图像可被称作参考帧。Video compression techniques perform spatial (intra-image) prediction and/or temporal (inter-image) prediction to reduce or remove redundancy inherent in video sequences. For block-based video coding, a video slice (i.e., a video frame or a portion of a video frame) may be partitioned into several image blocks, which may also be referred to as tree blocks, coding units (CUs), and/or coding nodes. Image blocks in an intra-coded (I) slice of an image are encoded using spatial predictions with respect to reference samples in neighboring blocks in the same image. Image blocks in an inter-coded (P or B) slice of an image may use spatial predictions with respect to reference samples in neighboring blocks in the same image or temporal predictions with respect to reference samples in other reference images. Images may be referred to as frames, and reference images may be referred to as reference frames.
目前,融合(merge)技术是一种帧间预测技术,通过构建候选运动矢量列表,将列表中率失真(rate-distortion,RD)代价最小的运动信息确定为当前块的运动矢量预测值(motion vector predictor,MVP)。如果当前图像块使用融合技术进行帧间预测,则需要选择一种融合模式来获取帧间预测参数,以对当前图像块进行帧间预测,融合模式可以包括:传统的融合模式、融合运动矢量差(merge with motion vector difference,MMVD)模式、子块融合模式(sub-block merge mode,SBMM)、联合帧内预测模式和帧间预测模式(combined inter and intra prediction,CIIP)、三角预测单元模式(triangleprediction unit mode,TPM)中的一个或者多个。在融合数据(merge data)的语法解析过程中,须要依次判断最终会使用哪一种或者哪几种融合模式对当前图像块进行帧间预测,如此,就会存在解析冗余,导致解码的复杂度较高,且在某些情况下解码效率较低。At present, the merge technology is an inter-frame prediction technology. By constructing a candidate motion vector list, the motion information with the lowest rate-distortion (RD) cost in the list is determined as the motion vector predictor (MVP) of the current block. If the current image block uses the fusion technology for inter-frame prediction, it is necessary to select a fusion mode to obtain inter-frame prediction parameters to perform inter-frame prediction on the current image block. The fusion mode may include: one or more of the traditional fusion mode, merge with motion vector difference (MMVD) mode, sub-block merge mode (SBMM), combined intra prediction mode and inter prediction mode (CIIP), and triangle prediction unit mode (TPM). In the syntax parsing process of merge data, it is necessary to determine in turn which one or several fusion modes will be used to perform inter-frame prediction on the current image block. In this way, there will be parsing redundancy, resulting in high decoding complexity and low decoding efficiency in some cases.
发明内容Summary of the invention
本申请提供了一种帧间预测方法及装置,在一定程度上降低解码的复杂度,提升解码效率。The present application provides an inter-frame prediction method and device, which can reduce the complexity of decoding and improve decoding efficiency to a certain extent.
第一方面,本申请提供了一种帧间预测方法,可以应用于视频解码器中。该方法可以包括:在确定对当前图像块使用融合模式进行帧间预测后,确定当前图像块是否允许使用K个备选融合模式中的各个融合模式,K为大于或者等于2的正整数;在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值;在第一标识的值指示当前图像块进行帧间预测的融合模式为当前融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。In a first aspect, the present application provides an inter-frame prediction method that can be applied to a video decoder. The method may include: after determining to use a fusion mode for inter-frame prediction of a current image block, determining whether the current image block is allowed to use each fusion mode of K candidate fusion modes, where K is a positive integer greater than or equal to 2; when the current image block is allowed to use the current fusion mode, and the current image block is allowed to use a fusion mode other than the current fusion mode among the K candidate fusion modes, parsing the value of a first identifier of the current fusion mode from the bitstream; when the value of the first identifier indicates that the fusion mode for inter-frame prediction of the current image block is the current fusion mode, using the current fusion mode to perform inter-frame prediction on the current image block to obtain a prediction block of the current image block.
在本申请中,上述第二标识用于指示当前图像块是否使用对应的融合模式。第一标识可以包括且不限于:regular_merge_flag、mmvd_merge_flag、merge_subblock_flag、ciip_flag、merge_triangle_flag等标识中的一种或者多种。In the present application, the second flag is used to indicate whether the current image block uses the corresponding fusion mode. The first flag may include but is not limited to: one or more of regular_merge_flag, mmvd_merge_flag, merge_subblock_flag, ciip_flag, merge_triangle_flag and the like.
其中,merge_triangle_flag也可以是MergeTriangleFlag。Among them, merge_triangle_flag can also be MergeTriangleFlag.
在本申请中,在解码器确定当前图像块使用融合模式进行帧间预测的前提下,如果当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式,则解码器根据码流中解析获得的当前图像块的第一标识的值的指示,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块,而无需再解析K个备选融合模式中除当前融合模式外的各个融合模式的第一标识的值,由此去除了融合语法元素的解析冗余,在一定程度上降低解码的复杂度,提升解码效率。In the present application, on the premise that the decoder determines that the current image block uses a fusion mode for inter-frame prediction, if the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the decoder uses the current fusion mode to perform inter-frame prediction on the current image block according to the indication of the value of the first identifier of the current image block obtained by parsing in the bitstream, so as to obtain a prediction block of the current image block, without having to parse the values of the first identifiers of each fusion mode other than the current fusion mode among the K alternative fusion modes, thereby removing the parsing redundancy of the fusion syntax elements, reducing the complexity of decoding to a certain extent, and improving decoding efficiency.
基于第一方面,在一些可能的实施方式中,方法还包括:在当前图像块不允许使用K个备选融合模式除当前融合模式外的融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。Based on the first aspect, in some possible implementations, the method further includes: when the current image block does not allow the use of K alternative fusion modes other than the current fusion mode, using the current fusion mode to perform inter-frame prediction on the current image block to obtain a prediction block of the current image block.
基于第一方面,在一些可能的实施方式中,确定当前图像块是否允许使用K个备选融合模式中的各个融合模式,包括:获取当前图像块对应的预测参数;根据预测参数,确定当前图像块是否允许使用各个融合模式;其中,预测参数包括以下一个或者多个:与当前图像块相关的上级视频处理单元的语法元素的指示、当前图像块的尺寸、用于指示当前图像块是否具有残差的指示信息、上级视频处理单元的类型。Based on the first aspect, in some possible implementations, determining whether the current image block is allowed to use each fusion mode of K alternative fusion modes includes: obtaining prediction parameters corresponding to the current image block; determining whether the current image block is allowed to use each fusion mode based on the prediction parameters; wherein the prediction parameters include one or more of the following: an indication of a syntax element of an upper-level video processing unit related to the current image block, the size of the current image block, indication information for indicating whether the current image block has a residual, and the type of the upper-level video processing unit.
基于第一方面,在一些可能的实施方式中,上级视频处理单元包括当前图像块所在片、当前图像块所在片组、当前图像块所在图像或者当前图像块所在视频序列。Based on the first aspect, in some possible implementations, the upper-level video processing unit includes a slice where the current image block is located, a slice group where the current image block is located, an image where the current image block is located, or a video sequence where the current image block is located.
基于第一方面,在一些可能的实施方式中,在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值,包括:在当前图像块允许使用MMVD模式、SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得传统的融合模式的regular_merge_flag的值;其中,regular_merge_flag为传统的融合模式的第一标识。Based on the first aspect, in some possible implementations, when the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the value of the first identifier of the current fusion mode is parsed from the bitstream, including: when the current image block allows the use of at least one of the MMVD mode, SBMM, CIIP mode, and TPM, the value of regular_merge_flag of the traditional fusion mode is parsed from the bitstream; wherein regular_merge_flag is the first identifier of the traditional fusion mode.
基于第一方面,在一些可能的实施方式中,在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值,包括:在当前图像块允许使用MMVD模式,且当前图像块允许使用SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得MMVD模式的mmvd_merge_flag的值;其中,mmvd_merge_flag为MMVD模式的第一标识。Based on the first aspect, in some possible implementations, when the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the value of the first identifier of the current fusion mode is parsed from the bitstream, including: when the current image block allows the use of the MMVD mode, and the current image block allows the use of at least one of the SBMM, CIIP mode, and TPM, the value of mmvd_merge_flag of the MMVD mode is parsed from the bitstream; wherein mmvd_merge_flag is the first identifier of the MMVD mode.
基于第一方面,在一些可能的实施方式中,在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值,包括:在当前图像块允许使用SBMM模式,且当前图像块允许使用CIIP模式和/或TPM的情况下,从码流中解析获得SBMM的merge_subblock_flag的值;其中,merge_subblock_flag为SBMM的第一标识。Based on the first aspect, in some possible implementations, when the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the value of the first identifier of the current fusion mode is parsed from the bitstream, including: when the current image block allows the use of the SBMM mode, and the current image block allows the use of the CIIP mode and/or TPM, the value of the merge_subblock_flag of the SBMM is parsed from the bitstream; wherein merge_subblock_flag is the first identifier of the SBMM.
基于第一方面,在一些可能的实施方式中,在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值,包括:在当前图像块允许使用CIIP模式和TPM的情况下,从码流中解析获得CIIP模式的ciip_flag的值;其中,ciip_flag为CIIP模式的第一标识。Based on the first aspect, in some possible implementations, when the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the value of the first identifier of the current fusion mode is parsed from the bitstream, including: when the current image block allows the use of the CIIP mode and TPM, the value of ciip_flag of the CIIP mode is parsed from the bitstream; wherein ciip_flag is the first identifier of the CIIP mode.
基于第一方面,在一些可能的实施方式中,方法还包括:当当前图像块不允许使用当前融合模式,或者当前图像块不允许使用K个备选融合模式中除当前融合模式外的融合模式时,通过推导获得当前融合模式的第一标识的值。Based on the first aspect, in some possible implementations, the method further includes: when the current image block does not allow the use of the current fusion mode, or the current image block does not allow the use of a fusion mode other than the current fusion mode among K alternative fusion modes, obtaining the value of the first identifier of the current fusion mode by deduction.
基于第一方面,在一些可能的实施方式中,方法还包括:当无法从码流中解析获得当前融合模式的第一标识的值时,通过推导获得当前融合模式的第一标识的值。Based on the first aspect, in some possible implementations, the method further includes: when the value of the first identifier of the current fusion mode cannot be parsed from the bitstream, obtaining the value of the first identifier of the current fusion mode by deduction.
基于第一方面,在一些可能的实施方式中,当前融合模式为传统的融合模式,通过推导获得当前融合模式的第一标识的值,包括:将general_merge_flag设置为regular_merge_flag的值;或者,将regular_merge_flag的值设置为第一值;其中,general_merge_flag用于指示当前图像块的帧间预测参数是否由相邻的帧间预测块获取得到,regular_merge_flag为传统的融合模式的第一标识。Based on the first aspect, in some possible implementations, the current fusion mode is a traditional fusion mode, and the value of the first identifier of the current fusion mode is obtained by deduction, including: setting general_merge_flag to the value of regular_merge_flag; or, setting the value of regular_merge_flag to a first value; wherein general_merge_flag is used to indicate whether the inter-frame prediction parameters of the current image block are obtained from adjacent inter-frame prediction blocks, and regular_merge_flag is the first identifier of the traditional fusion mode.
基于第一方面,在一些可能的实施方式中,当前融合模式为MMVD模式,在满足第一推导条件的情况下,将MMVD模式的第一标识mmvd_merge_flag的值设置为第一值;其中,第一推导条件包括:当前图像块允许使用MMVD模式。Based on the first aspect, in some possible implementations, the current fusion mode is the MMVD mode, and when a first derivation condition is met, the value of the first identifier mmvd_merge_flag of the MMVD mode is set to a first value; wherein the first derivation condition includes: the current image block allows the use of the MMVD mode.
基于第一方面,在一些可能的实施方式中,当前融合模式为SBMM,通过推导获得当前融合模式的第一标识的值,包括:在满足第二推导条件的情况下,将SBMM的第一标识merge_subblock_flag的值设置为第一值;其中,第二推导条件包括:当前图像块允许使用SBMM。Based on the first aspect, in some possible implementations, the current fusion mode is SBMM, and the value of the first identifier of the current fusion mode is obtained by derivation, including: when a second derivation condition is met, setting the value of the first identifier merge_subblock_flag of SBMM to a first value; wherein the second derivation condition includes: the current image block allows the use of SBMM.
基于第一方面,在一些可能的实施方式中,当前融合模式为CIIP模式,通过推导获得当前融合模式的第一标识的值,包括:在满足第三推导条件的情况下,将CIIP模式的第一标识ciip_flag的值设置为第一值;其中,第三推导条件包括:当前图像块允许使用CIIP模式。Based on the first aspect, in some possible implementations, the current fusion mode is the CIIP mode, and the value of the first identifier of the current fusion mode is obtained by derivation, including: when a third derivation condition is met, setting the value of the first identifier ciip_flag of the CIIP mode to a first value; wherein the third derivation condition includes: the current image block allows the use of the CIIP mode.
基于第一方面,在一些可能的实施方式中,当前融合模式为TPM,通过推导获得当前融合模式的第一标识的值,包括:在满足第四推导条件的情况下,将TPM的第一标识merge_triangle_flag的值设置为第一值;其中,第四推导条件包括:当前图像块允许使用TPM。Based on the first aspect, in some possible implementations, the current fusion mode is TPM, and the value of the first identifier of the current fusion mode is obtained by derivation, including: when a fourth derivation condition is met, setting the value of the first identifier merge_triangle_flag of TPM to a first value; wherein the fourth derivation condition includes: the current image block allows the use of TPM.
其中,merge_triangle_flag也可以是MergeTriangleFlag。Among them, merge_triangle_flag can also be MergeTriangleFlag.
基于第一方面,在一些可能的实施方式中,K个备选融合模式包括以下多个:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM。Based on the first aspect, in some possible implementations, the K candidate fusion modes include the following: a traditional fusion mode, an MMVD mode, a SBMM, a CIIP mode, and a TPM.
第二方面,本申请提供了一种帧间预测装置,可以应用于视频解码器中。该装置可以包括:确定模块,用于在确定对当前图像块使用融合模式进行帧间预测后,确定当前图像块是否允许使用K个备选融合模式中的各个融合模式,K为大于或者等于2的正整数;解析模块,用于在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值;预测模块,用于在第一标识的值指示当前图像块进行帧间预测的融合模式为当前融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。In a second aspect, the present application provides an inter-frame prediction device that can be applied to a video decoder. The device may include: a determination module, which is used to determine whether the current image block is allowed to use each fusion mode in K candidate fusion modes after determining that the current image block uses a fusion mode for inter-frame prediction, where K is a positive integer greater than or equal to 2; a parsing module, which is used to parse and obtain the value of a first identifier of the current fusion mode from a bitstream when the current image block is allowed to use the current fusion mode and the current image block is allowed to use a fusion mode other than the current fusion mode in the K candidate fusion modes; a prediction module, which is used to perform inter-frame prediction on the current image block using the current fusion mode when the value of the first identifier indicates that the fusion mode for inter-frame prediction of the current image block is the current fusion mode, so as to obtain a prediction block of the current image block.
基于第二方面,在一些可能的实施方式中,预测模块,还用于在当前图像块不允许使用K个备选融合模式除当前融合模式外的融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。Based on the second aspect, in some possible implementations, the prediction module is also used to perform inter-frame prediction on the current image block using the current fusion mode when the current image block does not allow the use of K alternative fusion modes other than the current fusion mode to obtain a prediction block of the current image block.
基于第二方面,在一些可能的实施方式中,确定模块,用于获取当前图像块对应的预测参数;根据预测参数,确定当前图像块是否允许使用各个融合模式;其中,预测参数包括以下一个或者多个:与当前图像块相关的上级视频处理单元的语法元素的指示、当前图像块的尺寸、用于指示当前图像块是否具有残差的指示信息、上级视频处理单元的类型。Based on the second aspect, in some possible implementations, a determination module is used to obtain prediction parameters corresponding to the current image block; based on the prediction parameters, it is determined whether the current image block is allowed to use various fusion modes; wherein the prediction parameters include one or more of the following: an indication of a syntax element of a parent video processing unit related to the current image block, the size of the current image block, indication information for indicating whether the current image block has a residual, and the type of the parent video processing unit.
基于第二方面,在一些可能的实施方式中,上级视频处理单元包括当前图像块所在片、当前图像块所在片组、当前图像块所在图像或者当前图像块所在视频序列。Based on the second aspect, in some possible implementations, the upper-level video processing unit includes a slice where the current image block is located, a slice group where the current image block is located, an image where the current image block is located, or a video sequence where the current image block is located.
基于第二方面,在一些可能的实施方式中,解析模块,用于在当前图像块允许使用MMVD模式、SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得传统的融合模式的regular_merge_flag的值;其中,regular_merge_flag为传统的融合模式的第一标识。Based on the second aspect, in some possible implementations, the parsing module is used to parse and obtain the value of regular_merge_flag of the traditional fusion mode from the bitstream when the current image block allows the use of at least one of the MMVD mode, SBMM, CIIP mode, and TPM; wherein regular_merge_flag is the first identifier of the traditional fusion mode.
基于第二方面,在一些可能的实施方式中,解析模块,用于在当前图像块允许使用MMVD模式,且当前图像块允许使用SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得MMVD模式的mmvd_merge_flag的值;其中,mmvd_merge_flag为MMVD模式的第一标识。Based on the second aspect, in some possible implementations, the parsing module is used to parse the value of mmvd_merge_flag of the MMVD mode from the bitstream when the current image block allows the use of the MMVD mode and the current image block allows the use of at least one of the SBMM, CIIP mode, and TPM; wherein mmvd_merge_flag is the first identifier of the MMVD mode.
基于第二方面,在一些可能的实施方式中,解析模块,用于在当前图像块允许使用SBMM模式,且当前图像块允许使用CIIP模式和/或TPM的情况下,从码流中解析获得SBMM的merge_subblock_flag的值;其中,merge_subblock_flag为SBMM的第一标识。Based on the second aspect, in some possible implementations, the parsing module is used to parse and obtain the value of merge_subblock_flag of SBMM from the bitstream when the current image block allows the use of SBMM mode and the current image block allows the use of CIIP mode and/or TPM; wherein merge_subblock_flag is the first identifier of SBMM.
基于第二方面,在一些可能的实施方式中,解析模块,用于在当前图像块允许使用CIIP模式和TPM的情况下,从码流中解析获得CIIP模式的ciip_flag的值;其中,ciip_flag为CIIP模式的第一标识。Based on the second aspect, in some possible implementations, the parsing module is used to parse and obtain the value of ciip_flag of the CIIP mode from the code stream when the current image block allows the use of the CIIP mode and TPM; wherein ciip_flag is the first identifier of the CIIP mode.
基于第二方面,在一些可能的实施方式中,装置还包括:推导模块,用于当当前图像块不允许使用当前融合模式,或者当前图像块不允许使用K个备选融合模式中除当前融合模式外的融合模式时,通过推导获得当前融合模式的第一标识的值。Based on the second aspect, in some possible implementations, the device also includes: a derivation module, which is used to obtain the value of the first identifier of the current fusion mode by derivation when the current image block does not allow the use of the current fusion mode, or the current image block does not allow the use of a fusion mode other than the current fusion mode among K alternative fusion modes.
基于第二方面,在一些可能的实施方式中,装置还包括:推导模块,用于当无法从码流中解析获得当前融合模式的第一标识的值时,通过推导获得当前融合模式的第一标识的值。Based on the second aspect, in some possible implementations, the device further includes: a derivation module, configured to obtain the value of the first identifier of the current fusion mode by derivation when the value of the first identifier of the current fusion mode cannot be obtained by parsing the code stream.
基于第二方面,在一些可能的实施方式中,当前融合模式为传统的融合模式,推导模块,用于将general_merge_flag设置为regular_merge_flag的值;或者,将regular_merge_flag的值设置为第一值;其中,general_merge_flag用于指示当前图像块的帧间预测参数是否由相邻的帧间预测块获取得到,regular_merge_flag为传统的融合模式的第一标识。Based on the second aspect, in some possible implementations, the current fusion mode is a traditional fusion mode, and the derivation module is used to set general_merge_flag to the value of regular_merge_flag; or, set the value of regular_merge_flag to a first value; wherein general_merge_flag is used to indicate whether the inter-frame prediction parameters of the current image block are obtained from adjacent inter-frame prediction blocks, and regular_merge_flag is the first identifier of the traditional fusion mode.
基于第二方面,在一些可能的实施方式中,当前融合模式为MMVD模式,推导模块,用于在满足第一推导条件的情况下,将MMVD模式的第一标识mmvd_merge_flag的值设置为第一值;其中,第一推导条件包括:当前图像块允许使用MMVD模式。Based on the second aspect, in some possible implementations, the current fusion mode is the MMVD mode, and the derivation module is used to set the value of the first identifier mmvd_merge_flag of the MMVD mode to a first value when a first derivation condition is met; wherein the first derivation condition includes: the current image block allows the use of the MMVD mode.
基于第二方面,在一些可能的实施方式中,当前融合模式为SBMM时,推导模块,用于在满足第二推导条件的情况下,将SBMM的第一标识merge_subblock_flag的值设置为第一值;其中,第二推导条件包括:当前图像块允许使用SBMM。Based on the second aspect, in some possible implementations, when the current fusion mode is SBMM, the derivation module is used to set the value of the first identifier merge_subblock_flag of SBMM to a first value when a second derivation condition is met; wherein the second derivation condition includes: the current image block allows the use of SBMM.
基于第二方面,在一些可能的实施方式中,当前融合模式为CIIP模式,推导模块,用于在满足第三推导条件的情况下,将CIIP模式的第一标识ciip_flag的值设置为第一值;其中,第三推导条件包括:当前图像块允许使用CIIP模式。Based on the second aspect, in some possible implementations, the current fusion mode is the CIIP mode, and the derivation module is used to set the value of the first identifier ciip_flag of the CIIP mode to a first value when a third derivation condition is met; wherein the third derivation condition includes: the current image block allows the use of the CIIP mode.
基于第二方面,在一些可能的实施方式中,当前融合模式为TPM模式,推导模块,用于在满足第四推导条件的情况下,将TPM的第一标识merge_triangle_flag的值设置为第一值;其中,第四推导条件包括:当前图像块允许使用TPM。Based on the second aspect, in some possible implementations, the current fusion mode is a TPM mode, and the derivation module is used to set the value of the first identifier merge_triangle_flag of TPM to a first value when a fourth derivation condition is met; wherein the fourth derivation condition includes: the current image block allows the use of TPM.
基于第二方面,在一些可能的实施方式中,K个备选融合模式包括以下多个:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM。Based on the second aspect, in some possible implementations, the K candidate fusion modes include the following: traditional fusion mode, MMVD mode, SBMM, CIIP mode, TPM.
第三方面,本申请提供一种视频解码器,视频解码器用于从码流中解码出图像块,包括:熵解码模块,用于从码流中解码出索引标识,索引标识用于指示当前解码图像块的目标候选运动信息;如上述第二方面中任一项的帧间预测装置,帧间预测装置用于基于索引标识指示的目标候选运动信息预测当前解码图像块的运动信息,基于当前解码图像块的运动信息确定当前解码图像块的预测像素值;重建模块,用于基于预测像素值重建当前解码图像块。In a third aspect, the present application provides a video decoder, which is used to decode an image block from a bitstream, comprising: an entropy decoding module, used to decode an index identifier from the bitstream, the index identifier being used to indicate target candidate motion information of a currently decoded image block; an inter-frame prediction device as described in any one of the second aspects above, the inter-frame prediction device being used to predict motion information of a currently decoded image block based on the target candidate motion information indicated by the index identifier, and determining a predicted pixel value of the currently decoded image block based on the motion information of the currently decoded image block; and a reconstruction module, used to reconstruct the currently decoded image block based on the predicted pixel value.
第四方面,本申请提供一种用于解码视频数据的设备,所述设备包括:存储器,用于存储码流形式的视频数据;视频解码器,用于从码流中解码出所述视频数据。In a fourth aspect, the present application provides a device for decoding video data, the device comprising: a memory for storing video data in the form of a code stream; and a video decoder for decoding the video data from the code stream.
第五方面,本申请提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面的任意一种方法的部分或全部步骤。In a fifth aspect, the present application provides a decoding device, comprising: a non-volatile memory and a processor coupled to each other, wherein the processor calls a program code stored in the memory to execute part or all of the steps of any one method of the first aspect.
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面的任意一种方法的部分或全部步骤的指令。In a sixth aspect, the present application provides a computer-readable storage medium storing a program code, wherein the program code includes instructions for executing part or all of the steps of any one of the methods of the first aspect.
第七方面,本申请提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面的任意一种方法的部分或全部步骤。In a seventh aspect, the present application provides a computer program product, which, when executed on a computer, enables the computer to execute part or all of the steps of any one of the methods of the first aspect.
应当理解的是,本申请的第二至七方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。It should be understood that the second to seventh aspects of the present application are consistent with the technical solutions of the first aspect of the present application, and the beneficial effects achieved by each aspect and the corresponding feasible implementation methods are similar and will not be repeated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the background technology, the drawings required for use in the embodiments of the present application or the background technology will be described below.
图1A是用于实现本申请实施例的视频编码及解码系统10实例的框图;FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 for implementing an embodiment of the present application;
图1B是用于实现本申请实施例的视频译码系统40实例的框图;FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present application;
图2是用于实现本申请实施例的编码器20实例结构的框图;FIG2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present application;
图3是用于实现本申请实施例的解码器30实例结构的框图;FIG3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present application;
图4是用于实现本申请实施例的视频译码设备400实例的框图;FIG4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present application;
图5是用于实现本申请实施例的另一种编码装置或解码装置实例的框图;FIG5 is a block diagram of another example of an encoding device or a decoding device for implementing an embodiment of the present application;
图6为本申请实施例中的当前图像块空域和时域的示意图;FIG6 is a schematic diagram of the current image block in the spatial domain and the temporal domain in an embodiment of the present application;
图7A为本申请实施例中的MMVD搜索点的示意图;FIG7A is a schematic diagram of an MMVD search point in an embodiment of the present application;
图7B为本申请实施例中的MMVD搜索过程示意图;FIG7B is a schematic diagram of the MMVD search process in an embodiment of the present application;
图8为本申请实施例中的当前图像块的划分示意图;FIG8 is a schematic diagram of dividing the current image block in an embodiment of the present application;
图9为本申请实施例中的帧间预测方法的流程示意图一;FIG9 is a flowchart diagram 1 of the inter-frame prediction method in an embodiment of the present application;
图10为本申请实施例中的帧间预测方法的流程示意图二;FIG10 is a second flow chart of the inter-frame prediction method in an embodiment of the present application;
图11为本申请实施例中的帧间预测装置的结构示意图。FIG. 11 is a schematic diagram of the structure of an inter-frame prediction device in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。The following is a description of the embodiments of the present application in conjunction with the drawings in the embodiments of the present application. In the following description, reference is made to the drawings that form a part of the present disclosure and show the specific aspects of the embodiments of the present application or the specific aspects of the embodiments of the present application in an illustrative manner. It should be understood that the embodiments of the present application can be used in other aspects and may include structural or logical changes not depicted in the drawings. Therefore, the following detailed description should not be understood in a restrictive sense, and the scope of the present application is defined by the appended claims. For example, it should be understood that the disclosure of the described method can be equally applicable to the corresponding device or system for performing the method, and vice versa. For example, if one or more specific method steps are described, the corresponding device may include one or more units such as functional units to perform the one or more method steps described (for example, one unit performs one or more steps, or multiple units, each of which performs one or more of the multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings. On the other hand, for example, if a specific device is described based on one or more units such as functional units, the corresponding method may include a step to perform the functionality of the one or more units (e.g., a step to perform the functionality of the one or more units, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings. Further, it should be understood that, unless otherwise explicitly stated, the features of the various exemplary embodiments and/or aspects described herein may be combined with each other.
本申请实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。The technical solutions involved in the embodiments of the present application may not only be applied to existing video coding standards (such as H.264, HEVC and other standards), but may also be applied to future video coding standards (such as H.266 standards). The terms used in the implementation method section of this application are only used to explain the specific embodiments of this application, and are not intended to limit this application. The following is a brief introduction to some concepts that may be involved in the embodiments of this application.
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。Video coding generally refers to processing a sequence of pictures that form a video or video sequence. In the field of video coding, the terms "picture", "frame" or "image" can be used as synonyms. Video coding used in this article means video encoding or video decoding. Video encoding is performed on the source side and generally includes processing (for example, by compression) the original video picture to reduce the amount of data required to represent the video picture, thereby more efficiently storing and/or transmitting. Video decoding is performed on the destination side and generally includes inverse processing relative to the encoder to reconstruct the video picture. The "encoding" of video pictures involved in the embodiments should be understood as involving "encoding" or "decoding" of video sequences. The combination of the encoding part and the decoding part is also referred to as codec (encoding and decoding).
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency videocoding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如视频编码标准把一帧图像分割成互不重叠的编码树单元(CTU),再把一个CTU划分为若干个子节点,这些子节点可以按照四叉树(quad tree,QT)进行划分为更小的子节点,而更小的子节点还可以继续划分,从而形成一种四叉树结构。如果节点不再划分,则叫做CU。CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。A video sequence consists of a series of pictures, which are further divided into slices, which are further divided into blocks. Video coding is performed in blocks. In some new video coding standards, the concept of blocks is further expanded. For example, in the H.264 standard, there are macroblocks (MB), which can be further divided into multiple prediction blocks (partitions) that can be used for predictive coding. In the high-efficiency video coding (HEVC) standard, basic concepts such as coding units (CU), prediction units (PU) and transform units (TU) are used to functionally divide various block units and describe them using a new tree-based structure. For example, the video coding standard divides a frame of an image into non-overlapping coding tree units (CTUs), and then divides a CTU into several child nodes. These child nodes can be divided into smaller child nodes according to the quad tree (QT), and the smaller child nodes can continue to be divided, thus forming a quad tree structure. If a node is no longer divided, it is called a CU. CU is the basic unit for dividing and encoding the coded image. There are similar tree structures for PU and TU. PU can correspond to the prediction block and is the basic unit of prediction coding. CU is further divided into multiple PUs according to the division mode. TU can correspond to the transform block and is the basic unit for transforming the prediction residual. However, whether CU, PU or TU, they all belong to the concept of block (or image block) in essence.
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transformunit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binarytree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。For example, in HEVC, a CTU is split into multiple CUs using a quadtree structure represented as a coding tree. A decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode a picture area. Each CU can be further split into one, two or four PUs according to the PU split type. The same prediction process is applied within a PU, and relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU split type, the CU can be divided into transform units (TUs) according to other quadtree structures similar to the coding tree for the CU. In the latest developments in video compression technology, quadtree and binarytree (QTBT) are used to split frames to split coding blocks. In the QTBT block structure, the CU can be square or rectangular in shape.
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。In this article, for the convenience of description and understanding, the image block to be encoded in the current encoded image may be referred to as the current block. For example, in encoding, it refers to the block currently being encoded; in decoding, it refers to the block currently being decoded. The decoded image block in the reference image used to predict the current block is referred to as a reference block, that is, the reference block is a block that provides a reference signal for the current block, wherein the reference signal represents the pixel value in the image block. The block in the reference image that provides a prediction signal for the current block may be referred to as a prediction block, wherein the prediction signal represents the pixel value or sampling value or sampling signal in the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block, and this block is referred to as a prediction block.
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。In the case of lossless video coding, the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission). In the case of lossy video coding, further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is lower or worse than the quality of the original video picture.
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前图像块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。Several video coding standards of H.261 belong to the category of "lossy hybrid video codecs" (i.e., combining spatial and temporal prediction in the sample domain with 2D transform coding in the transform domain for applying quantization). Each picture of a video sequence is usually divided into a set of non-overlapping blocks, which are usually encoded at the block level. In other words, the encoder side usually processes, i.e., encodes the video at the block (video block) level, for example, by generating a prediction block through spatial (intra-picture) prediction and temporal (inter-picture) prediction, subtracting the prediction block from the current block (currently processed or to be processed block) to obtain a residual block, transforming the residual block in the transform domain and quantizing the residual block to reduce the amount of data to be transmitted (compressed), while the decoder side applies the inverse processing part relative to the encoder to the coded or compressed block to reconstruct the current image block for representation. In addition, the encoder replicates the decoder processing cycle, so that the encoder and decoder generate the same prediction (e.g., intra-frame prediction and inter-frame prediction) and/or reconstruction for processing, i.e., encoding subsequent blocks.
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。The system architecture used in the embodiment of the present application is described below. Referring to FIG. 1A, FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 used in the embodiment of the present application. As shown in FIG. 1A, the video encoding and decoding system 10 may include a source device 12 and a destination device 14, and the source device 12 generates encoded video data, so the source device 12 may be referred to as a video encoding device. The destination device 14 may decode the encoded video data generated by the source device 12, so the destination device 14 may be referred to as a video decoding device. Various embodiments of the source device 12, the destination device 14, or both may include one or more processors and a memory coupled to the one or more processors. The memory may include, but is not limited to, RAM, ROM, EEPROM, flash memory, or any other media that can be used to store desired program code in the form of instructions or data structures that can be accessed by a computer, as described herein. Source device 12 and destination device 14 may include a variety of devices, including desktop computers, mobile computing devices, notebook (e.g., laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。Although FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices, device embodiments may also include both the source device 12 and the destination device 14 or the functionality of both, i.e., the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality. In such embodiments, the source device 12 or the corresponding functionality and the destination device 14 or the corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof.
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。The source device 12 and the destination device 14 may be communicatively connected via a link 13, and the destination device 14 may receive the encoded video data from the source device 12 via the link 13. The link 13 may include one or more media or devices capable of moving the encoded video data from the source device 12 to the destination device 14. In one example, the link 13 may include one or more communication media that enable the source device 12 to transmit the encoded video data directly to the destination device 14 in real time. In this example, the source device 12 may modulate the encoded video data according to a communication standard (e.g., a wireless communication protocol), and may transmit the modulated video data to the destination device 14. The one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines. The one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (e.g., the Internet). The one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from the source device 12 to the destination device 14.
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:The source device 12 includes an encoder 20. Optionally, the source device 12 may also include a picture source 16, a picture preprocessor 18, and a communication interface 22. In a specific implementation, the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmentedreality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。The picture source 16 may include or may be any type of picture capture device, for example, for capturing real-world pictures, and/or any type of pictures or comments (for screen content encoding, some text on the screen is also considered to be part of the picture or image to be encoded) generating device, for example, a computer graphics processor for generating computer animation pictures, or any type of device for acquiring and/or providing real-world pictures, computer animation pictures (e.g., screen content, virtual reality (VR) pictures), and/or any combination thereof (e.g., augmented reality (AR) pictures). The picture source 16 may be a camera for capturing pictures or a memory for storing pictures, and the picture source 16 may also include any type of (internal or external) interface for storing previously captured or generated pictures and/or acquiring or receiving pictures. When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be, for example, a local or integrated memory integrated in the source device. When the picture source 16 includes an interface, the interface may be, for example, an external interface for receiving pictures from an external video source, such as an external picture capture device, such as a camera, an external memory, or an external picture generating device, such as an external computer graphics processor, a computer, or a server. The interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。Among them, the picture can be regarded as a two-dimensional array or matrix of pixels (picture element). The pixels in the array can also be called sampling points. The number of sampling points in the array or picture in the horizontal and vertical directions (or axes) defines the size and/or resolution of the picture. In order to represent the color, three color components are usually used, that is, the picture can be represented as or include three sampling arrays. For example, in the RBG format or color space, the picture includes corresponding red, green and blue sampling arrays. However, in video coding, each pixel is usually represented in a brightness/chroma format or color space, such as for a picture in the YUV format, including a brightness component indicated by Y (sometimes also indicated by L) and two chroma components indicated by U and V. The brightness (luma) component Y represents the brightness or grayscale level intensity (for example, the two are the same in a grayscale picture), and the two chroma (chroma) components U and V represent the chroma or color information components. Accordingly, the picture in the YUV format includes a brightness sampling array of brightness sampling values (Y), and two chroma sampling arrays of chroma values (U and V). An image in RGB format may be converted or transformed into YUV format, and vice versa, which process is also referred to as color conversion or transformation. If the image is black and white, the image may only include a brightness sampling array. In the embodiment of the present application, the image transmitted from the image source 16 to the image processor may also be referred to as raw image data 17.
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。The image preprocessor 18 is used to receive the original image data 17 and perform preprocessing on the original image data 17 to obtain a preprocessed image 19 or preprocessed image data 19. For example, the preprocessing performed by the image preprocessor 18 may include refurbishment, color format conversion (e.g., from RGB format to YUV format), color adjustment, or denoising.
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请实施例所描述的色度块预测方法在编码侧的应用。The encoder 20 (or video encoder 20) is used to receive the preprocessed picture data 19, and process the preprocessed picture data 19 using a relevant prediction mode (such as the prediction mode in each embodiment of this document), thereby providing encoded picture data 21 (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5). In some embodiments, the encoder 20 can be used to execute the various embodiments described below to implement the application of the chroma block prediction method described in the embodiments of this application on the encoding side.
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。The communication interface 22 can be used to receive the encoded picture data 21 and transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction. The other device can be any device for decoding or storage. The communication interface 22 can, for example, be used to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:The destination device 14 includes a decoder 30. Optionally, the destination device 14 may also include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。The communication interface 28 can be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device. The communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network, such as a direct wired or wireless connection, any type of network, such as a wired or wireless network or any combination thereof, or any type of private network and public network, or any combination thereof. The communication interface 28 can be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。Both communication interface 28 and communication interface 22 may be configured as unidirectional communication interfaces or bidirectional communication interfaces and may be used, for example, to send and receive messages to establish connections, confirm and exchange any other information related to communication links and/or data transmissions such as encoded picture data transmissions.
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请实施例所描述的色度块预测方法在解码侧的应用。The decoder 30 (or decoder 30) is used to receive the encoded picture data 21 and provide decoded picture data 31 or decoded picture 31 (the structural details of the decoder 30 will be further described below based on FIG. 3 or FIG. 4 or FIG. 5). In some embodiments, the decoder 30 can be used to execute the various embodiments described below to implement the application of the chroma block prediction method described in the embodiments of the present application on the decoding side.
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。The picture post-processor 32 is used to perform post-processing on the decoded picture data 31 (also called reconstructed picture data) to obtain post-processed picture data 33. The post-processing performed by the picture post-processor 32 may include: color format conversion (for example, from YUV format to RGB format), color adjustment, repair or resampling, or any other processing, and can also be used to transmit the post-processed picture data 33 to the display device 34.
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digitallight processor,DLP)或任何类别的其它显示器。A display device 34 is provided for receiving the post-processed picture data 33 to display the picture to, for example, a user or viewer. The display device 34 may be or may include any type of display for presenting the reconstructed picture, such as an integrated or external display or monitor. For example, the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro-LED display, a liquid crystal on silicon (LCoS), a digital light processor (DLP), or any other type of display.
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。Although FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices, device embodiments may also include both the source device 12 and the destination device 14 or both functionalities, i.e., the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality. In such embodiments, the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof.
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。It is obvious to those skilled in the art based on the description that the functionality of different units or the existence and (accurate) division of the functionality of the source device 12 and/or the destination device 14 shown in FIG1A may vary according to actual devices and applications. The source device 12 and the destination device 14 may include any of a variety of devices, including any type of handheld or stationary device, such as a notebook or laptop computer, a mobile phone, a smart phone, a tablet or tablet computer, a camera, a desktop computer, a set-top box, a television, a camera, a car device, a display device, a digital media player, a video game console, a video streaming device (such as a content service server or a content distribution server), a broadcast receiver device, a broadcast transmitter device, etc., and may not use or use any type of operating system.
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。Both the encoder 20 and the decoder 30 may be implemented as any of a variety of suitable circuits, such as one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), discrete logic, hardware, or any combination thereof. If the technology is implemented in part in software, the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the technology of the present disclosure. Any of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be considered one or more processors.
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请实施例的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。In some cases, the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the embodiment of the present application can be applied to video encoding settings (e.g., video encoding or video decoding) that do not necessarily include any data communication between the encoding and decoding devices. In other examples, data can be retrieved from a local memory, streamed over a network, etc. A video encoding device can encode data and store the data in a memory, and/or a video decoding device can retrieve data from a memory and decode the data. In some examples, encoding and decoding are performed by devices that do not communicate with each other but only encode data to a memory and/or retrieve data from a memory and decode data.
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。Referring to FIG. 1B , FIG. 1B is an illustrative diagram of an example of a video decoding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment. The video decoding system 40 may implement a combination of various techniques of the embodiments of the present application. In the illustrated embodiment, the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video codec implemented by a logic circuit 47 of a processing unit 46), an antenna 42, one or more processors 43, one or more memories 44, and/or a display device 45.
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。1B , imaging device 41, antenna 42, processing unit 46, logic circuit 47, encoder 20, decoder 30, processor 43, memory 44, and/or display device 45 are capable of communicating with each other. As discussed, although video decoding system 40 is illustrated with encoder 20 and decoder 30, in different examples, video decoding system 40 may include only encoder 20 or only decoder 30.
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integratedcircuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integratedcircuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(staticrandom access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。In some examples, antenna 42 can be used to transmit or receive a coded bit stream of video data. In addition, in some examples, display device 45 can be used to present video data. In some examples, logic circuit 47 can be implemented by processing unit 46. Processing unit 46 can include application-specific integrated circuit (ASIC) logic, graphics processor, general processor, etc. Video decoding system 40 can also include optional processor 43, which can similarly include application-specific integrated circuit (ASIC) logic, graphics processor, general processor, etc. In some examples, logic circuit 47 can be implemented by hardware, such as video encoding dedicated hardware, etc., and processor 43 can be implemented by general software, operating system, etc. In addition, memory 44 can be any type of memory, such as volatile memory (e.g., static random access memory (SRAM), dynamic random access memory (DRAM), etc.) or non-volatile memory (e.g., flash memory, etc.). In a non-limiting example, memory 44 can be implemented by cache memory. In some examples, logic circuitry 47 may access memory 44 (eg, for implementing an image buffer). In other examples, logic circuitry 47 and/or processing unit 46 may include memory (eg, cache, etc.) for implementing an image buffer, etc.
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。In some examples, encoder 20 implemented by logic circuits may include an image buffer (e.g., implemented by processing unit 46 or memory 44) and a graphics processing unit (e.g., implemented by processing unit 46). The graphics processing unit may be communicatively coupled to the image buffer. The graphics processing unit may include encoder 20 implemented by logic circuits 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein. The logic circuits may be used to perform the various operations discussed herein.
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元43或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。In some examples, the decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to the decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein. In some examples, the decoder 30 implemented by logic circuit may include an image buffer (implemented by processing unit 43 or memory 44) and a graphics processing unit (implemented, for example, by processing unit 46). The graphics processing unit may be communicatively coupled to the image buffer. The graphics processing unit may include the decoder 30 implemented by logic circuit 47 to implement the various modules discussed with reference to FIG. 3 and/or any other decoder systems or subsystems described herein.
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。In some examples, antenna 42 may be used to receive an encoded bitstream of video data. As discussed, the encoded bitstream may include data related to the encoded video frames discussed herein, indicators, index values, mode selection data, etc., such as data related to the encoded partitions (e.g., transform coefficients or quantized transform coefficients, (as discussed) optional indicators, and/or data defining the encoded partitions). Video decoding system 40 may also include decoder 30 coupled to antenna 42 and used to decode the encoded bitstream. Display device 45 is used to present the video frames.
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令预测参数,解码器30可以用于接收并解析这种预测参数,相应地解码相关视频数据。在一些例子中,编码器20可以将预测参数熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种预测参数,并相应地解码相关视频数据。It should be understood that in the embodiments of the present application, for the examples described with reference to encoder 20, decoder 30 can be used to perform the reverse process. With respect to signaling prediction parameters, decoder 30 can be used to receive and parse such prediction parameters and decode the relevant video data accordingly. In some examples, encoder 20 can entropy encode the prediction parameters into a coded video bitstream. In such examples, decoder 30 can parse such prediction parameters and decode the relevant video data accordingly.
需要说明的是,本申请实施例描述的用于融合运动矢量差技术的优化处理方法主要用于帧间预测过程,此过程在编码器20和解码器30均存在,本申请实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。It should be noted that the optimization processing method for integrating motion vector difference technology described in the embodiment of the present application is mainly used for the inter-frame prediction process, which exists in both the encoder 20 and the decoder 30. The encoder 20 and the decoder 30 in the embodiment of the present application can be, for example, H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9 and other video standard protocols or encoders/decoders corresponding to the next-generation video standard protocols (such as H.266, etc.).
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。Referring to FIG. 2 , FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application. In the example of FIG. 2 , the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter unit 220, a decoded picture buffer (decoded picture buffer, DPB) 230, a prediction processing unit 260, and an entropy coding unit 270. The prediction processing unit 260 may include an inter-frame prediction unit 244, an intra-frame prediction unit 254, and a mode selection unit 262. The inter-frame prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown). The encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder according to a hybrid video codec.
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。For example, the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260 and the entropy coding unit 270 form a forward signal path of the encoder 20, while for example, the inverse quantization unit 210, the inverse transform processing unit 212, the reconstruction unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form a backward signal path of the encoder, wherein the backward signal path of the encoder corresponds to the signal path of the decoder (see the decoder 30 in Figure 3).
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。The encoder 20 receives a picture 201 or an image block 203 of the picture 201, e.g., a picture in a sequence of pictures forming a video or a video sequence, via, e.g., an input 202. The image block 203 may also be referred to as a current picture block or a picture block to be encoded, and the picture 201 may be referred to as a current picture or a picture to be encoded (particularly when the current picture is distinguished from other pictures in video coding, e.g., previously encoded and/or decoded pictures in the same video sequence, i.e., a video sequence that also includes the current picture).
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。An embodiment of the encoder 20 may include a segmentation unit (not shown in FIG. 2 ) for segmenting the picture 201 into a plurality of blocks, such as image blocks 203 , typically into a plurality of non-overlapping blocks. The segmentation unit may be used to use the same block size for all pictures in the video sequence and define a corresponding grid of block sizes, or to change the block size between pictures or subsets or groups of pictures and segment each picture into corresponding blocks.
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。In one example, prediction processing unit 260 of encoder 20 may be used to perform any combination of the above-described segmentation techniques.
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。Like the picture 201, the image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than that of the picture 201. In other words, the image block 203 may include, for example, one sampling array (e.g., a luminance array in the case of the black and white picture 201) or three sampling arrays (e.g., one luminance array and two chrominance arrays in the case of a color picture) or any other number and/or type of arrays depending on the color format applied. The number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。The encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, performing encoding and prediction on each image block 203 .
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。The residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the prediction block 265 from the sample value of the picture image block 203 sample by sample (pixel by pixel) to obtain the residual block 205 in the sample domain.
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。The transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) on the sample values of the residual block 205 to obtain a transform coefficient 207 in the transform domain. The transform coefficient 207 may also be referred to as a transform residual coefficient and represents the residual block 205 in the transform domain.
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。The transform processing unit 206 can be used to apply an integer approximation of the DCT/DST, such as the transform specified for HEVC/H.265. Compared to the orthogonal DCT transform, this integer approximation is usually scaled by a certain factor. In order to maintain the norm of the residual block processed by the forward transform and the inverse transform, an additional scaling factor is applied as part of the transform process. The scaling factor is usually selected based on certain constraints, such as the scaling factor is a power of 2 for the shift operation, the bit depth of the transform coefficients, the trade-off between accuracy and implementation cost, etc. For example, a specific scaling factor is specified for the inverse transform on the decoder 30 side by, for example, the inverse transform processing unit 212 (and for the corresponding inverse transform on the encoder 20 side by, for example, the inverse transform processing unit 212), and accordingly, a corresponding scaling factor can be specified for the forward transform on the encoder 20 side by the transform processing unit 206.
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过QP指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。The quantization unit 208 is used to quantize the transform coefficients 207, for example, by applying scalar quantization or vector quantization, to obtain quantized transform coefficients 209. The quantized transform coefficients 209 may also be referred to as quantized residual coefficients 209. The quantization process may reduce the bit depth associated with some or all of the transform coefficients 207. For example, an n-bit transform coefficient may be rounded down to an m-bit transform coefficient during quantization, where n is greater than m. The degree of quantization may be modified by adjusting a quantization parameter (QP). For example, for scalar quantization, different scales may be applied to achieve finer or coarser quantization. A smaller quantization step size corresponds to finer quantization, while a larger quantization step size corresponds to coarser quantization. A suitable quantization step size may be indicated by the QP. For example, the quantization parameter may be an index of a predefined set of suitable quantization step sizes. For example, a smaller quantization parameter may correspond to fine quantization (smaller quantization step size), a larger quantization parameter may correspond to coarse quantization (larger quantization step size), and vice versa. Quantization may include dividing by the quantization step size and corresponding quantization or inverse quantization, for example, performed by inverse quantization 210, or may include multiplying by the quantization step size. Embodiments according to some standards such as HEVC may use a quantization parameter to determine the quantization step size. In general, the quantization step size may be calculated based on the quantization parameter using a fixed-point approximation of an equation containing division. Additional scaling factors may be introduced for quantization and inverse quantization to recover the norm of the residual block that may be modified by the scale used in the fixed-point approximation of the equation for the quantization step size and the quantization parameter. In an example implementation, the scales for the inverse transform and inverse quantization may be combined. Alternatively, a custom quantization table may be used and signaled from an encoder to a decoder in, for example, a bitstream. Quantization is a lossy operation, where the larger the quantization step size, the greater the loss.
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。The inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain inverse quantized coefficients 211, for example, applying an inverse quantization scheme of the quantization scheme applied by the quantization unit 208 based on or using the same quantization step size as the quantization unit 208. The inverse quantized coefficients 211 may also be referred to as inverse quantized residual coefficients 211, corresponding to the transform coefficients 207, although the loss due to quantization is generally different from that of the transform coefficients.
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sinetransform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。The inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, such as an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), to obtain an inverse transform block 213 in the sample domain. The inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。The reconstruction unit 214 (e.g., the summer 214) is used to add the inverse transform block 213 (i.e., the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, by adding the sample values of the reconstructed residual block 213 to the sample values of the prediction block 265.
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。Optionally, a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed blocks 215 and corresponding sample values for, for example, intra-frame prediction. In other embodiments, the encoder can be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra-frame prediction.
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。For example, embodiments of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed blocks 215 for the intra-frame prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2 ), and/or, for example, such that the buffer unit 216 and the decoded picture buffer unit 230 form one buffer. Other embodiments may be used to use the filtered blocks 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2 ) as input or basis for the intra-frame prediction 254.
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。The loop filter unit 220 (or simply "loop filter" 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality. The loop filter unit 220 is intended to represent one or more loop filters, such as a deblocking filter, a sample adaptive offset (sample-adaptive offset, SAO) filter or other filters, such as a bilateral filter, an adaptive loop filter (adaptive loop filter, ALF), or a sharpening or smoothing filter, or a collaborative filter. Although the loop filter unit 220 is shown as an in-loop filter in Figure 2, in other configurations, the loop filter unit 220 can be implemented as a post-loop filter. The filtered block 221 can also be referred to as a filtered reconstructed block 221. The decoded picture buffer 230 can store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。Embodiments of the encoder 20 (correspondingly, the loop filter unit 220) can be used to output loop filter parameters (e.g., sample adaptive offset information), for example, directly or after entropy encoding by the entropy encoding unit 270 or any other entropy encoding unit, such that the decoder 30 can receive and apply the same loop filter parameters for decoding.
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picturebuffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。The decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for use by the encoder 20 in encoding video data. The DPB 230 may be formed by any of a variety of memory devices, such as a dynamic random access memory (DRAM) (including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM)) or other types of memory devices. The DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices. In one example, the decoded picture buffer (DPB) 230 is used to store the filtered block 221. The decoded picture buffer 230 may further be used to store other previously filtered blocks of the same current picture or a different picture, such as a previously reconstructed picture, such as the previously reconstructed and filtered block 221, and may provide a complete previously reconstructed, i.e., decoded picture (and corresponding reference blocks and samples) and/or a portion of the reconstructed current picture (and corresponding reference blocks and samples), such as for inter-frame prediction. In one example, if the reconstructed block 215 is reconstructed without in-loop filtering, the decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。The prediction processing unit 260, also referred to as the block prediction processing unit 260, is used to receive or obtain an image block 203 (a current image block 203 of a current image 201) and reconstructed image data, such as reference samples of the same (current) image from the buffer 216 and/or reference image data 231 of one or more previously decoded images from the decoded image buffer 230, and to process such data for prediction, i.e., to provide a prediction block 265 which may be an inter-prediction block 245 or an intra-prediction block 255.
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。The mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or a corresponding prediction block 245 or 255 for use as a prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215 .
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。Embodiments of the mode selection unit 262 may be used to select a prediction mode (e.g., from those prediction modes supported by the prediction processing unit 260) that provides the best match or minimum residual (minimum residual means better compression in transmission or storage), or provides minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or considers or balances both. The mode selection unit 262 may be used to determine the prediction mode based on rate distortion optimization (RDO), i.e., select a prediction mode that provides minimum rate distortion optimization, or select a prediction mode whose associated rate distortion at least satisfies the prediction mode selection criteria.
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。The prediction processing performed by an example of encoder 20 (eg, by prediction processing unit 260) and the mode selection performed (eg, by mode selection unit 262) will be explained in detail below.
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。As described above, the encoder 20 is used to determine or select the best or optimal prediction mode from a (predetermined) prediction mode set. The prediction mode set may include, for example, an intra-frame prediction mode and/or an inter-frame prediction mode.
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。The intra-frame prediction mode set may include 35 different intra-frame prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 different intra-frame prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.266 under development.
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(advanced motion vector prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。In a possible implementation, the inter-frame prediction mode set depends on the available reference picture (i.e., at least part of the decoded picture stored in the DBP 230 as described above) and other inter-frame prediction parameters, such as whether to use the entire reference picture or only a part of the reference picture, such as a search window area around the current block, to search for the best matching reference block, and/or, for example, whether to apply pixel interpolation such as half-pixel and/or quarter-pixel interpolation. The inter-frame prediction mode set may include, for example, an advanced motion vector prediction (AMVP) mode and a merge mode. In a specific implementation, the inter-frame prediction mode set may include an improved control point-based AMVP mode according to an embodiment of the present application, and an improved control point-based merge mode. In one example, the intra-frame prediction unit 254 may be used to perform any combination of the inter-frame prediction techniques described below.
除了以上预测模式,本申请实施例也可以应用跳过(skip)模式和/或直接模式。In addition to the above prediction modes, the embodiments of the present application may also apply a skip mode and/or a direct mode.
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。The prediction processing unit 260 can be further used to partition the image block 203 into smaller block partitions or sub-blocks, for example, by iteratively using quad-tree (QT) partitioning, binary-tree (BT) partitioning or triple-tree (TT) partitioning, or any combination thereof, and for performing prediction for each of the block partitions or sub-blocks, for example, wherein the mode selection includes selecting a tree structure of the partitioned image block 203 and selecting a prediction mode to be applied to each of the block partitions or sub-blocks.
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。The inter-frame prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2 ) and a motion compensation (MC) unit (not shown in FIG. 2 ). The motion estimation unit is used to receive or obtain a picture image block 203 (a current picture image block 203 of a current picture 201 ) and a decoded picture 231 , or at least one or more previously reconstructed blocks, for example, reconstructed blocks of one or more other/different previously decoded pictures 231 , to perform motion estimation. For example, a video sequence may include a current picture and a previously decoded picture 31 , or in other words, the current picture and the previously decoded picture 31 may be part of a picture sequence forming a video sequence, or form the picture sequence.
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。For example, the encoder 20 may be configured to select a reference block from a plurality of reference blocks of the same or different pictures in a plurality of other pictures, and provide the reference picture and/or provide an offset (spatial offset) between the position (X, Y coordinates) of the reference block and the position of the current block as an inter-frame prediction parameter to a motion estimation unit (not shown in FIG. 2 ). The offset is also referred to as a motion vector (MV).
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的预测参数,以供解码器30在解码视频条带的图片块时使用。The motion compensation unit is used to obtain inter-frame prediction parameters and perform inter-frame prediction based on or using the inter-frame prediction parameters to obtain an inter-frame prediction block 245. Motion compensation performed by the motion compensation unit (not shown in Figure 2) may include retrieving or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation to sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, thereby potentially increasing the number of candidate prediction blocks that can be used to encode the picture block. Upon receiving the motion vector for the PU of the current picture block, the motion compensation unit 246 can locate the prediction block pointed to by the motion vector in a reference picture list. The motion compensation unit 246 can also generate prediction parameters associated with blocks and video slices for use by the decoder 30 when decoding picture blocks of the video slice.
具体的,上述帧间预测单元244可向熵编码单元270传输预测参数,所述预测参数包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在预测参数中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。Specifically, the inter-frame prediction unit 244 may transmit prediction parameters to the entropy coding unit 270, wherein the prediction parameters include inter-frame prediction parameters (such as indication information of selecting an inter-frame prediction mode for current block prediction after traversing multiple inter-frame prediction modes). In a possible application scenario, if there is only one inter-frame prediction mode, the inter-frame prediction parameters may not be carried in the prediction parameters, and the decoding end 30 may directly use the default prediction mode for decoding. It can be understood that the inter-frame prediction unit 244 can be used to perform any combination of inter-frame prediction techniques.
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。The intra prediction unit 254 is used to obtain, for example, receive a picture block 203 (current picture block) of the same picture and one or more previously reconstructed blocks, for example, reconstructed adjacent blocks, for intra estimation. For example, the encoder 20 can be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。Embodiments of the encoder 20 may be configured to select an intra prediction mode based on an optimization criterion, such as minimum residual (eg, the intra prediction mode that provides a prediction block 255 most similar to the current picture block 203) or minimum rate distortion.
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。The intra prediction unit 254 is further configured to determine an intra prediction block 255 based on the intra prediction parameters of the selected intra prediction mode. In any case, after selecting the intra prediction mode for the block, the intra prediction unit 254 is further configured to provide the intra prediction parameters, i.e., information indicating the selected intra prediction mode for the block, to the entropy encoding unit 270. In one example, the intra prediction unit 254 can be configured to perform any combination of intra prediction techniques.
具体的,上述帧内预测单元254可向熵编码单元270传输预测参数,所述预测参数包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在预测参数中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。Specifically, the intra-frame prediction unit 254 may transmit prediction parameters to the entropy coding unit 270, wherein the prediction parameters include intra-frame prediction parameters (such as indication information of selecting an intra-frame prediction mode for current block prediction after traversing multiple intra-frame prediction modes). In a possible application scenario, if there is only one intra-frame prediction mode, the intra-frame prediction parameters may not be carried in the prediction parameters, and the decoding end 30 may directly use the default prediction mode for decoding.
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable lengthcoding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binaryarithmetic coding,SBAC)、概率区间分割熵(probability interval partitioningentropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它预测参数。The entropy coding unit 270 is used to apply an entropy coding algorithm or scheme (e.g., a variable length coding (VLC) scheme, a context adaptive VLC (CAVLC) scheme, an arithmetic coding scheme, a context adaptive binary arithmetic coding (CABAC), a syntax-based context-adaptive binary arithmetic coding (SBAC), a probability interval partitioning entropy (PIPE) coding, or other entropy coding methods or techniques) to a single or all (or none) of the quantized residual coefficients 209, inter-frame prediction parameters, intra-frame prediction parameters, and/or loop filter parameters to obtain the encoded picture data 21 that can be output through the output 272 in the form of, for example, an encoded bitstream 21. The encoded bitstream can be transmitted to the video decoder 30, or archived for later transmission or retrieval by the video decoder 30. The entropy coding unit 270 can also be used to entropy encode other prediction parameters of the current video slice being encoded.
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。Other structural variations of the video encoder 20 may be used to encode the video stream. For example, a non-transform based encoder 20 may directly quantize the residual signal without a transform processing unit 206 for certain blocks or frames. In another embodiment, the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的用于融合运动矢量差技术的优化处理方法。Specifically, in the embodiment of the present application, the encoder 20 may be used to implement the optimization processing method for fusing motion vector difference technology described in the embodiments below.
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。It should be understood that other structural changes of the video encoder 20 can be used to encode the video stream. For example, for some image blocks or image frames, the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, it does not need to be processed by the inverse transform processing unit 212; or, for some image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly, it does not need to be processed by the transform processing unit 206, the quantization unit 208, the inverse quantization unit 210 and the inverse transform processing unit 212; or, the video encoder 20 can directly store the reconstructed image block as a reference block without being processed by the filter 220; or, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 can be combined together. The loop filter 220 is optional, and in the case of lossless compression encoding, the transform processing unit 206, the quantization unit 208, the inverse quantization unit 210 and the inverse transform processing unit 212 are optional. It should be understood that, according to different application scenarios, the inter-frame prediction unit 244 and the intra-frame prediction unit 254 may be selectively enabled.
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的预测参数。3, which shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application. The video decoder 30 is used to receive encoded picture data (e.g., encoded bitstream) 21, for example, encoded by the encoder 20, to obtain a decoded picture 231. During the decoding process, the video decoder 30 receives video data from the video encoder 20, such as an encoded video bitstream representing picture blocks of an encoded video slice and associated prediction parameters.
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。3 , decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (e.g., summer 314), a buffer 316, a loop filter 320, a decoded picture buffer 330, and a prediction processing unit 360. Prediction processing unit 360 may include an inter-prediction unit 344, an intra-prediction unit 354, and a mode selection unit 362. In some examples, video decoder 30 may perform a decoding pass that is generally reciprocal to the encoding pass described with reference to video encoder 20 of FIG. 2 .
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它预测参数中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它预测参数转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的预测参数。The entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3 ), such as any one or all of (decoded) inter-frame prediction, intra-frame prediction parameters, loop filter parameters, and/or other prediction parameters. The entropy decoding unit 304 is further used to forward the inter-frame prediction parameters, intra-frame prediction parameters, and/or other prediction parameters to the prediction processing unit 360. The video decoder 30 may receive prediction parameters at the video slice level and/or the video block level.
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。The inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110, the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212, the reconstruction unit 314 may be functionally the same as the reconstruction unit 214, the buffer 316 may be functionally the same as the buffer 216, the loop filter 320 may be functionally the same as the loop filter 220, and the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。The prediction processing unit 360 may include an inter-frame prediction unit 344 and an intra-frame prediction unit 354, wherein the inter-frame prediction unit 344 may be functionally similar to the inter-frame prediction unit 244, and the intra-frame prediction unit 354 may be functionally similar to the intra-frame prediction unit 254. The prediction processing unit 360 is generally used to perform block prediction and/or obtain a prediction block 365 from the encoded data 21, and receive or obtain prediction related parameters and/or information about the selected prediction mode from, for example, the entropy decoding unit 304 (explicitly or implicitly).
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它预测参数生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。When the video slice is encoded as an intra-coded (I) slice, the intra-prediction unit 354 of the prediction processing unit 360 is used to generate a prediction block 365 for a picture block of the current video slice based on the signaled intra-prediction mode and data from a previously decoded block of the current frame or picture. When the video frame is encoded as an inter-coded (i.e., B or P) slice, the inter-prediction unit 344 (e.g., motion compensation unit) of the prediction processing unit 360 is used to generate a prediction block 365 for the video block of the current video slice based on the motion vector and other prediction parameters received from the entropy decoding unit 304. For inter-prediction, the prediction block may be generated from one of the reference pictures in one of the reference picture lists. The video decoder 30 may construct the reference frame lists: List 0 and List 1 using a default construction technique based on the reference pictures stored in the DPB 330.
预测处理单元360用于通过解析运动向量和其它预测参数,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些预测参数确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的预测参数包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequenceparameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的预测参数。The prediction processing unit 360 is configured to determine prediction information for a video block of a current video slice by parsing the motion vector and other prediction parameters, and use the prediction information to generate a prediction block for the current video block being decoded. In one example of the present application, the prediction processing unit 360 uses some of the received prediction parameters to determine a prediction mode (e.g., intra-frame or inter-frame prediction) for encoding the video block of the video slice, an inter-frame prediction slice type (e.g., B slice, P slice, or GPB slice), construction information of one or more of the reference picture lists for the slice, a motion vector for each inter-frame coded video block of the slice, an inter-frame prediction state of each inter-frame coded video block of the slice, and other information to decode the video block of the current video slice. In another example of the present disclosure, the prediction parameters received by the video decoder 30 from the bitstream include receiving prediction parameters in one or more of an adaptive parameter set (APS), a sequence parameter set (SPS), a picture parameter set (PPS), or a slice header.
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。Inverse quantization unit 310 may be used to inverse quantize (i.e., dequantize) quantized transform coefficients provided in the bitstream and decoded by entropy decoding unit 304. The inverse quantization process may include using quantization parameters calculated by video encoder 20 for each video block in a video slice to determine a degree of quantization that should be applied and likewise a degree of inverse quantization that should be applied.
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。The inverse transform processing unit 312 is used to apply an inverse transform (eg, an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process) to the transform coefficients to generate a residual block in the pixel domain.
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。The reconstruction unit 314 (e.g., the summer 314) is used to add the inverse transform block 313 (i.e., the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example, by adding the sample values of the reconstructed residual block 313 to the sample values of the prediction block 365.
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。The loop filter unit 320 (during or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321, so as to smoothly perform pixel conversion or improve video quality. In one example, the loop filter unit 320 can be used to perform any combination of filtering techniques described below. The loop filter unit 320 is intended to represent one or more loop filters, such as a deblocking filter, a sample adaptive offset (sample-adaptive offset, SAO) filter or other filters, such as a bilateral filter, an adaptive loop filter (adaptive loop filter, ALF), or a sharpening or smoothing filter, or a collaborative filter. Although the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 can be implemented as a post-loop filter.
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。The decoded video blocks 321 in a given frame or picture are then stored in a decoded picture buffer 330 which stores reference pictures for subsequent motion compensation.
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。Decoder 30 is operable to output decoded picture 31 , eg, via output 332 , for presentation to or viewing by a user.
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。Other variations of the video decoder 30 may be used to decode the compressed bitstream. For example, the decoder 30 may generate an output video stream without the loop filter unit 320. For example, a non-transform based decoder 30 may directly inverse quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames. In another embodiment, the video decoder 30 may have the inverse quantization unit 310 and the inverse transform processing unit 312 combined into a single unit.
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的用于融合运动矢量差技术的优化处理方法。Specifically, in the embodiment of the present application, the decoder 30 is used to implement the optimization processing method for fusing motion vector difference technology described in the embodiments below.
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。It should be understood that other structural changes of the video decoder 30 can be used to decode the encoded video bitstream. For example, the video decoder 30 can generate an output video stream without being processed by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not need to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312. The loop filter 320 is optional; and for lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional. It should be understood that, according to different application scenarios, the inter-frame prediction unit and the intra-frame prediction unit can be selectively enabled.
应当理解的是,本申请实施例的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。It should be understood that in the encoder 20 and decoder 30 of the embodiment of the present application, the processing result of a certain link can be output to the next link after further processing. For example, after the interpolation filtering, motion vector derivation or loop filtering links, the processing results of the corresponding links can be further subjected to operations such as Clip or shift.
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请实施例对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2bitDepth-1~2bitDepth-1-1。如bitDepth为16,则取值范围为-32768~32767。如bitDepth为18,则取值范围为-131072~131071。又例如,对运动矢量(例如一个8x8图像块内的四个4×4子块的运动矢量MV)的取值进行约束,使得所述四个4×4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。For example, the motion vector of the control point of the current image block derived from the motion vector of the adjacent affine coding block, or the motion vector of the sub-block of the current image block derived, can be further processed, and the embodiments of the present application do not limit this. For example, the value range of the motion vector is constrained so that it is within a certain bit width. Assuming that the bit width of the allowed motion vector is bitDepth, the range of the motion vector is -2 bitDepth-1 to 2 bitDepth-1 -1. If bitDepth is 16, the value range is -32768 to 32767. If bitDepth is 18, the value range is -131072 to 131071. For another example, the value of the motion vector (for example, the motion vector MV of four 4×4 sub-blocks in an 8x8 image block) is constrained so that the maximum difference between the integer parts of the four 4×4 sub-block MVs does not exceed N pixels, for example, not more than one pixel.
可以通过以下两种方式进行约束,使其在一定的位宽内:There are two ways to constrain it to a certain bit width:
方式1,将运动矢量溢出的高位去除:Method 1: remove the high bits of motion vector overflow:
ux=(vx+2bitDepth)%2bitDepth ux=(vx+2 bitDepth )%2 bitDepth
vx=(ux≥2bitDepth-1)?(ux-2bitDepth):uxvx=(ux≥2 bitDepth-1 )? (ux-2 bitDepth ):ux
uy=(vy+2bitDepth)%2bitDepth uy=(vy+2 bitDepth )%2 bitDepth
vy=(uy≥2bitDepth-1)?(uy-2bitDepth):uyvy=(uy≥2 bitDepth-1 )? (uy-2 bitDepth ):uy
其中,vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量,ux和uy为中间值;bitDepth表示位宽。Among them, vx is the horizontal component of the motion vector of the image block or the sub-block of the image block, vy is the vertical component of the motion vector of the image block or the sub-block of the image block, ux and uy are intermediate values; bitDepth represents the bit width.
例如vx的值为-32769,通过以上公式得到的为32767。因为在计算机中,数值是以二进制的补码形式存储的,-32769的二进制补码为1,0111,1111,1111,1111(17位),计算机对于溢出的处理为丢弃高位,则vx的值为0111,1111,1111,1111,则为32767,与通过公式处理得到的结果一致。For example, if the value of vx is -32769, the value obtained by the above formula is 32767. Because in computers, values are stored in binary complement form, the binary complement of -32769 is 1,0111,1111,1111,1111 (17 bits), and the computer handles overflow by discarding the high bits, so the value of vx is 0111,1111,1111,1111, which is 32767, which is consistent with the result obtained by the formula.
方法2,将运动矢量进行Clipping,如以下公式所示:Method 2: Clipping the motion vector, as shown in the following formula:
vx=Clip3(-2bitDepth-1,2bitDepth-1-1,vx)vx=Clip3(-2 bitDepth-1,2 bitDepth-1 -1,vx)
vy=Clip3(-2bitDepth-1,2bitDepth-1-1,vy)vy=Clip3(-2 bitDepth-1,2 bitDepth-1 -1,vy)
其中vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量;其中,x、y和z分别对应MV钳位过程Clip3的三个输入值,所述Clip3的定义为,表示将z的值钳位到区间[x,y]之间:Wherein vx is the horizontal component of the motion vector of the image block or a sub-block of the image block, and vy is the vertical component of the motion vector of the image block or a sub-block of the image block; wherein x, y and z correspond to three input values of the MV clamping process Clip3, respectively, and the definition of Clip3 is to clamp the value of z to the interval [x, y]:
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。Referring to FIG. 4 , FIG. 4 is a schematic diagram of the structure of a video decoding device 400 (e.g., a video encoding device 400 or a video decoding device 400) provided in an embodiment of the present application. The video decoding device 400 is suitable for implementing the embodiments described herein. In one embodiment, the video decoding device 400 may be a video decoder (e.g., the decoder 30 of FIG. 1A ) or a video encoder (e.g., the encoder 20 of FIG. 1A ). In another embodiment, the video decoding device 400 may be one or more components of the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A .
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。The video decoding device 400 includes: an inlet port 410 and a receiving unit (Rx) 420 for receiving data, a processor, a logic unit or a central processing unit (CPU) 430 for processing data, a transmitter unit (Tx) 440 and an outlet port 450 for transmitting data, and a memory 460 for storing data. The video decoding device 400 may also include an optical-to-electrical conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440 and the outlet port 450 for the outlet or inlet of an optical signal or an electrical signal.
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。The processor 430 is implemented by hardware and software. The processor 430 can be implemented as one or more CPU chips, cores (e.g., multi-core processors), FPGAs, ASICs, and DSPs. The processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460. The processor 430 includes a decoding module 470 (e.g., an encoding module 470 or a decoding module 470). The encoding/decoding module 470 implements the embodiments disclosed herein to implement the chrominance block prediction method provided in the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations. Therefore, the encoding/decoding module 470 provides substantial improvements to the functions of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states. Alternatively, the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。The memory 460 includes one or more disks, tape drives, and solid-state hard disks, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and for storing instructions and data read during program execution. The memory 460 can be volatile and/or non-volatile, and can be a read-only memory (ROM), a random access memory (RAM), a random access memory (ternary content-addressable memory, TCAM), and/or a static random access memory (SRAM).
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请实施例的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请实施例描述的各种视频编码或解码方法。为避免重复,这里不再详细描述。Referring to FIG. 5 , FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment. The apparatus 500 can implement the technology of the embodiment of the present application. In other words, FIG. 5 is a schematic block diagram of an implementation method of an encoding device or a decoding device (referred to as a decoding device 500) of an embodiment of the present application. Among them, the decoding device 500 may include a processor 510, a memory 530, and a bus system 550. Among them, the processor and the memory are connected via a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory. The memory of the decoding device stores program code, and the processor can call the program code stored in the memory to execute various video encoding or decoding methods described in the embodiment of the present application. To avoid repetition, it is not described in detail here.
在本申请实施例中,该处理器510可以是中央处理单元(central processingunit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。In the embodiment of the present application, the processor 510 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor or any conventional processor, etc.
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请实施例描述的视频编码或解码方法(尤其是本申请实施例描述的用于融合运动矢量差技术的优化处理方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请实施例描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。The memory 530 may include a read-only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530. The memory 530 may include code and data 531 accessed by the processor 510 using the bus 550. The memory 530 may further include an operating system 533 and an application 535, which includes at least one program that allows the processor 510 to execute the video encoding or decoding method described in the embodiment of the present application (especially the optimization processing method for fusion motion vector difference technology described in the embodiment of the present application). For example, the application 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video decoding application) that executes the video encoding or decoding method described in the embodiment of the present application.
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。The bus system 550 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are labeled as the bus system 550 in the figure.
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。Optionally, the decoding device 500 may further include one or more output devices, such as a display 570. In one example, the display 570 may be a touch-sensitive display that combines a display with a touch-sensitive unit operable to sense touch input. The display 570 may be connected to the processor 510 via the bus 550.
下面详细阐述本申请实施例的方案:The scheme of the embodiment of the present application is described in detail below:
在视频编解码技术中,如果当前图像块使用融合(merge)模式进行帧间预测,则会使用以下预测模式中的一种来获取帧间预测参数:传统的融合模式(regular mergemode)、MMVD模式、SBMM、CIIP模式、TPM。In video coding technology, if the current image block uses a merge mode for inter-frame prediction, one of the following prediction modes will be used to obtain inter-frame prediction parameters: conventional merge mode, MMVD mode, SBMM, CIIP mode, TPM.
(一)、传统的融合模式1. Traditional fusion model
merge模式是能够有效提高帧间编码效率的技术之一。针对于merge模式来说,编码端先通过当前图像块空域或者时域相邻的已编码图像块的运动信息,构建候选运动矢量列表,将候选运动矢量列表中率失真代价(RD Cost)最小的候选运动信息作为当前图像块的运动矢量预测值(motion vector predictor,MVP),再将最优的候选运动信息在候选运动矢量列表中位置的索引值(记为merge index)传递到解码端。The merge mode is one of the technologies that can effectively improve the efficiency of inter-frame coding. For the merge mode, the encoder first constructs a candidate motion vector list through the motion information of the coded image blocks adjacent to the current image block in the spatial or temporal domain, and uses the candidate motion information with the lowest rate-distortion cost (RD Cost) in the candidate motion vector list as the motion vector predictor (MVP) of the current image block, and then passes the index value of the position of the optimal candidate motion information in the candidate motion vector list (referred to as merge index) to the decoder.
其中,相邻图像块的位置及其遍历顺序都是预先定义好的。RD Cost可以由下述公式(1)计算获得,其中,J表示RD Cost,SAD为使用候选运动矢量预测值进行运动估计后得到的预测像素值与原始像素值之间的绝对误差和(sum of absolute differences,SAD),R表示码率,λ表示拉格朗日乘子。The positions of adjacent image blocks and their traversal order are predefined. RD Cost can be calculated by the following formula (1), where J represents RD Cost, SAD is the sum of absolute differences (SAD) between the predicted pixel value obtained after motion estimation using the candidate motion vector prediction value and the original pixel value, R represents the bit rate, and λ represents the Lagrange multiplier.
J=SAD+λR (1)J=SAD+λR (1)
进一步地,编码端可以在以MVP为中心的邻域内进行运动搜索,获得当前图像块实际的运动矢量,编码端再将MVP与实际运动矢量之间的差值(即残差)传递到解码端。Furthermore, the encoder can perform motion search in a neighborhood centered on the MVP to obtain the actual motion vector of the current image block, and then transmit the difference (ie, residual) between the MVP and the actual motion vector to the decoder.
举例来说,图6为本申请实施例中的当前图像块空域和时域的示意图,参见图6所示,空域候选运动信息来自于空间相邻的5个块(A0、A1、B0、B1和B2),若相邻图像块不可得(即相邻图像块不存在、相邻图像块未编码或者相邻图像块采用的预测模式不为帧间预测模式),则该相邻图像块的运动信息不加入当前图像块的候选运动矢量列表。当前图像块的时域候选运动信息是根据参考帧和当前帧的图序计数(picture order count,POC)对参考帧中对应位置的图像块的运动矢量(motion vector,MV)进行缩放后获得的,首先判断参考帧中T位置的图像块是否可得,若不可得,则选择参考帧中C位置的图像块。For example, FIG6 is a schematic diagram of the spatial and temporal domains of the current image block in an embodiment of the present application. Referring to FIG6 , the spatial candidate motion information comes from five spatially adjacent blocks (A0, A1, B0, B1 and B2). If the adjacent image block is not available (i.e., the adjacent image block does not exist, the adjacent image block is not encoded, or the prediction mode adopted by the adjacent image block is not an inter-frame prediction mode), the motion information of the adjacent image block is not added to the candidate motion vector list of the current image block. The temporal candidate motion information of the current image block is obtained by scaling the motion vector (motion vector, MV) of the image block at the corresponding position in the reference frame according to the picture order count (POC) of the reference frame and the current frame. First, it is determined whether the image block at position T in the reference frame is available. If not available, the image block at position C in the reference frame is selected.
merge模式的邻块的位置及其遍历顺序也是预先定义好的,且邻块的位置及其遍历顺序在不同merge模式下可能是不同的。The positions of neighbor blocks in merge mode and their traversal order are also predefined, and the positions of neighbor blocks and their traversal order may be different in different merge modes.
(二)、MMVD模式(II) MMVD mode
MMVD模式利用了merge候选运动矢量列表,在merge候选运动矢量列表中选取其中一个或多个候选运动矢量,然后,基于候选运动矢量进行运动矢量(MV)拓展表达。MV拓展表达包括MV起始点,运动步长以及运动方向。The MMVD mode uses the merge candidate motion vector list, selects one or more candidate motion vectors from the merge candidate motion vector list, and then performs motion vector (MV) expansion expression based on the candidate motion vector. The MV expansion expression includes the MV starting point, motion step size and motion direction.
其中,利用已有的merge候选运动矢量列表,所选用的候选运动矢量是默认合并类型(比如MRG_TYPE_DEFAULT_N)。所选的候选运动矢量即为MV的起始点,换言之,即所选的候选运动矢量用于确定MV的初始位置。The existing merge candidate motion vector list is used, and the selected candidate motion vector is the default merge type (such as MRG_TYPE_DEFAULT_N). The selected candidate motion vector is the starting point of the MV. In other words, the selected candidate motion vector is used to determine the initial position of the MV.
参见表1所示,基本候选索引(base candidate IDX)表明选用候选运动矢量列表中哪个候选运动矢量作为最优的候选运动矢量。As shown in Table 1, the base candidate index (base candidate IDX) indicates which candidate motion vector in the candidate motion vector list is selected as the optimal candidate motion vector.
表1Table 1
在一些可能的实施方式中,如果merge候选运动矢量列表中可供选取的候选运动矢量的个数为1,则可以不确定base candidate IDX。In some possible implementations, if the number of candidate motion vectors available for selection in the merge candidate motion vector list is 1, the base candidate IDX may not be determined.
步长标识(distance IDX)代表运动矢量的偏移距离信息。步长标识的数值代表偏移初始位置的距离(例如预设距离),预设距离定义参见表2所示。The step length identifier (distance IDX) represents the offset distance information of the motion vector. The value of the step length identifier represents the distance of the offset initial position (eg, a preset distance). The definition of the preset distance is shown in Table 2.
表2Table 2
方向标识(direction IDX)表示基于初始位置运动矢量差(MVD)的方向。方向标识总共可以包括四种情况,具体定义参见表3所示:The direction identifier (direction IDX) indicates the direction based on the initial position motion vector difference (MVD). The direction identifier may include four cases in total, and the specific definitions are shown in Table 3:
表3Table 3
其中,00代表右侧,01代表左侧,10代表上方,11代表下方。Among them, 00 represents the right side, 01 represents the left side, 10 represents the top, and 11 represents the bottom.
图7A为本申请实施例中的MMVD搜索点的示意图,图7B为本申请实施例中的MMVD搜索过程示意图。根据MMVD方式确定当前图像块的预测像素值的过程包括:首先根据basecandidate IDX确定MV起始点,比如参见图7A中的位于L0参考帧和L1参考帧的中心的空心圆点,也就是图7B中的实线箭头在L0参考帧和L1参考帧上所指向的位置。然后,基于direction IDX确定在MV的起始点的基础上向哪个方向偏移,再基于distance IDX确定在direction IDX指示的方向上偏移几个像素点。比如,direction IDX=00,distance IDX=2,则表示在x正方向上偏移一个像素点的运动矢量作为当前图像块的运动矢量,以预测或获取当前图像块的预测像素值。FIG7A is a schematic diagram of the MMVD search point in an embodiment of the present application, and FIG7B is a schematic diagram of the MMVD search process in an embodiment of the present application. The process of determining the predicted pixel value of the current image block according to the MMVD method includes: first, determining the MV starting point according to the basecandidate IDX, such as the hollow dot located at the center of the L0 reference frame and the L1 reference frame in FIG7A, that is, the position pointed to by the solid arrow in FIG7B on the L0 reference frame and the L1 reference frame. Then, based on the direction IDX, determine in which direction to offset based on the starting point of the MV, and then determine how many pixels to offset in the direction indicated by the direction IDX based on the distance IDX. For example, direction IDX = 00, distance IDX = 2, which means that the motion vector offset by one pixel in the positive x direction is used as the motion vector of the current image block to predict or obtain the predicted pixel value of the current image block.
(三)、SBMM(III) SBMM
在HEVC的帧间预测中,基于当前图像块内的所有像素的运动信息都相同的假设进行运动补偿,以得到当前图像块的像素的预测值。然而,在当前图像块内,并非所有的像素一定具有相同的运动特性,因此,采用相同的运动信息对当前图像块内所有的像素进行预测,可能会降低运动补偿的准确性,进而增加了残差信息。In the inter-frame prediction of HEVC, motion compensation is performed based on the assumption that the motion information of all pixels in the current image block is the same to obtain the predicted value of the pixels in the current image block. However, not all pixels in the current image block necessarily have the same motion characteristics. Therefore, using the same motion information to predict all pixels in the current image block may reduce the accuracy of motion compensation, thereby increasing the residual information.
为了进一步提高编码效率,在一些可能的实施方式中,将当前图像块划分为至少两个子块,然后推导得到每个子块的运动信息,根据子块的运动信息进行运动补偿,从而提高了预测的准确性,例如,子块运动矢量预测(sub-CU based motion vector prediction,SMVP)技术。SMVP将当前图像块划分为大小为m×n的子块,并推导出每个子块的运动信息,然后利用各个块的运动信息进行运动补偿,得到当前图像块的预测值。In order to further improve the coding efficiency, in some possible implementations, the current image block is divided into at least two sub-blocks, and then the motion information of each sub-block is derived, and motion compensation is performed based on the motion information of the sub-block, thereby improving the prediction accuracy, for example, sub-CU based motion vector prediction (SMVP) technology. SMVP divides the current image block into sub-blocks of size m×n, and derives the motion information of each sub-block, and then uses the motion information of each block to perform motion compensation to obtain the predicted value of the current image block.
在SBMM中,基于SMVP技术,可以使用相应的子块融合模式来构建子块融合候选列表(sub-block based merging candidate list),相应的,SBMM可以包括:高级时域运动矢量预测(advanced temporal motion vector prediction,ATMVP)、空域时域运动矢量预测(spatial-temporal motion vector prediction,STMVP)、基于仿射模型的预测模式(包括利用继承的控制点运动矢量预测方法和/或利用构造的控制点运动矢量预测方法)、基于帧间平面预测模式(PLANAR)中的一种或多种。其中,ATMVP也称为基于子块的时域运动矢量预测(subblock-based temporal motion vector prediction,SbTMVP)。In SBMM, based on the SMVP technology, the corresponding sub-block fusion mode can be used to construct a sub-block based merging candidate list. Accordingly, SBMM may include: advanced temporal motion vector prediction (ATMVP), spatial-temporal motion vector prediction (STMVP), prediction mode based on affine model (including using inherited control point motion vector prediction method and/or using constructed control point motion vector prediction method), and one or more of the inter-frame plane prediction mode (PLANAR). Among them, ATMVP is also called sub-block-based temporal motion vector prediction (SbTMVP).
(四)、CIIP模式(IV) CIIP Model
在使用merge模式编码的当前图像块中,传输一个标识(如,ciip_flag)用于指示当前块是否使用CIIP模式。当使用CIIP模式时,根据相关语法元素从帧内候选模式列表(intra candidate list)中选取的帧内预测模式生成帧内预测块,使用传统的帧间预测方法生成帧间预测块,最后使用自适应加权方式联合帧内预测编码和帧间预测编码预测块生成最终预测块。In the current image block encoded using the merge mode, a flag (e.g., ciip_flag) is transmitted to indicate whether the current block uses the CIIP mode. When the CIIP mode is used, the intra prediction block is generated by selecting the intra prediction mode from the intra candidate list according to the relevant syntax elements, the inter prediction block is generated using the traditional inter prediction method, and finally the final prediction block is generated by combining the intra prediction coding and inter prediction coding prediction blocks using an adaptive weighting method.
对于亮度块,帧内候选模式列表从DC、PLANAR、水平(horizontal)和竖直(vertical)这四种模式中选取。帧内候选模式列表的大小根据当前编码块的形状选取,可能为3个或4个。当当前图像块的宽度大于两倍的高度,则帧内候选模式列表中不包含水平模式。当当前图像块的高度大于两倍的宽度,则帧内候选模式列表中不包含竖直模式。For luma blocks, the intra candidate mode list is selected from four modes: DC, PLANAR, horizontal, and vertical. The size of the intra candidate mode list is selected according to the shape of the current coding block, which may be 3 or 4. When the width of the current image block is greater than twice the height, the intra candidate mode list does not contain horizontal modes. When the height of the current image block is greater than twice the width, the intra candidate mode list does not contain vertical modes.
联合帧内预测编码和帧间预测编码的加权方法中,对于不同帧内预测模式使用不同的加权系数。具体地,当帧内预测编码使用DC或者PLANAR模式时,或者当前图像块长度或宽度小于等于4时帧内预测和帧间预测得到的预测值使用相同的权重值/加权系数。否则,可以根据当前图像块使用的帧内预测模式和/或当前图像块中预测样本的位置来确定权重值/加权系数,例如,当帧内预测编码采用水平和竖直模式时采取可变的加权系数。In the weighted method of combining intra-frame prediction coding and inter-frame prediction coding, different weighting coefficients are used for different intra-frame prediction modes. Specifically, when the intra-frame prediction coding uses the DC or PLANAR mode, or when the length or width of the current image block is less than or equal to 4, the prediction values obtained by the intra-frame prediction and the inter-frame prediction use the same weight value/weighting coefficient. Otherwise, the weight value/weighting coefficient can be determined according to the intra-frame prediction mode used by the current image block and/or the position of the prediction sample in the current image block, for example, a variable weighting coefficient is adopted when the intra-frame prediction coding adopts the horizontal and vertical modes.
(五)、TPM(V) TPM
三角预测单元模式(简称triangle PU)也可以称为三角划分模式(trianglepartition mode,TPM)或者融合三角模式,为了描述方便,将三角预测单元模式或三角划分模式简称为TPM,后续同样适用。The triangle prediction unit mode (abbreviated as triangle PU) may also be called triangle partition mode (triangle partition mode, TPM) or fused triangle mode. For the convenience of description, the triangle prediction unit mode or triangle partition mode is referred to as TPM, which is also applicable in the following description.
图8为本申请实施例中的当前图像块的划分示意图,参见图8所示,当前块被划分为两个三角预测单元,每个三角预测单元各自从单向预测候选列表中选取运动矢量和参考帧索引。然后针对两个三角预测单元各自得到一个预测值。然后对斜边区域包括的像素通过自适应加权得到预测值。然后再对整个当前块进行变换和量化过程。另外,需要说明的是,三角预测单元方法一般只应用于skip模式或merge模式。图8的(1)为左上右下的划分方式(即从左上向右下划分),图8的(2)为右上左下的划分方式(即从右上向左下划分)。FIG8 is a schematic diagram of the division of the current image block in an embodiment of the present application. Referring to FIG8 , the current block is divided into two triangular prediction units, and each triangular prediction unit selects a motion vector and a reference frame index from a unidirectional prediction candidate list. Then a prediction value is obtained for each of the two triangular prediction units. Then the pixels included in the hypotenuse area are adaptively weighted to obtain a prediction value. Then the entire current block is transformed and quantized. In addition, it should be noted that the triangular prediction unit method is generally only applied to skip mode or merge mode. FIG8 (1) is a division method of upper left and lower right (i.e., division from upper left to lower right), and FIG8 (2) is a division method of upper right and lower left (i.e., division from upper right to lower left).
在实际应用中,当前图像块在使用merge模式进行帧间预测的过程中,除了上述几种融合模式来获取帧间预测参数之外,还可以使用其他融合模式,本申请实施例不做具体限定。In practical applications, when the current image block uses the merge mode for inter-frame prediction, in addition to the above-mentioned fusion modes to obtain inter-frame prediction parameters, other fusion modes can also be used, which are not specifically limited in the embodiments of the present application.
本申请实施例提供一种帧间预测方法,该方法可以由上述实施例中的视频解码器执行。An embodiment of the present application provides an inter-frame prediction method, which can be executed by the video decoder in the above embodiment.
图9为本申请实施例中的帧间预测方法的流程示意图一,参见图9所示,该方法可以包括:FIG. 9 is a flowchart diagram 1 of an inter-frame prediction method in an embodiment of the present application. Referring to FIG. 9 , the method may include:
S901:确定对当前图像块使用融合模式进行帧间预测;S901: Determine to use a fusion mode to perform inter-frame prediction on the current image block;
这里,解码器从码流中可以解析获得语法元素,该语法元素可以用于指示当前图像块的帧间预测参数是否由相邻的帧间预测块获取得到,也就是指示对当前图像块是否使用融合模式进行帧间预测的预测参数。具体的,该语法元素可以为general_merge_flag、merge_flag等;那么,当general_merge_flag为第一值(如general_merge_flag为1),则表明解码器对当前图像块使用融合模式进行帧间预测;当general_merge_flag为第二值(如general_merge_flag为0),则表明解码器对当前图像块不使用融合模式进行帧间预测。Here, the decoder can parse and obtain syntax elements from the bitstream, and the syntax elements can be used to indicate whether the inter-frame prediction parameters of the current image block are obtained from the adjacent inter-frame prediction blocks, that is, to indicate whether the prediction parameters of the inter-frame prediction using the fusion mode are used for the current image block. Specifically, the syntax elements can be general_merge_flag, merge_flag, etc.; then, when general_merge_flag is the first value (such as general_merge_flag is 1), it indicates that the decoder uses the fusion mode for inter-frame prediction of the current image block; when general_merge_flag is the second value (such as general_merge_flag is 0), it indicates that the decoder does not use the fusion mode for inter-frame prediction of the current image block.
若general_merge_flag这一语法元素的值不存在或者不出现在码流中时,则解码器还可以使用以下方法进行推导:如果cu_skip_flag(用于指示当前图像块是否具有残差,也就是指示当前图像块是否使用skip模式)为第一值(如cu_skip_flag为1),则general_merge_flag为第一值,反之,cu_skip_flag为第二值(如cu_skip_flag为0),general_merge_flag为第二值。其中,cu_skip_flag为第一值,则表明当前图像块使用skip模式,反之,cu_skip_flag为第二值,则表明当前图像块不使用skip模式。If the value of the syntax element general_merge_flag does not exist or does not appear in the bitstream, the decoder can also use the following method to derive: if cu_skip_flag (used to indicate whether the current image block has a residual, that is, whether the current image block uses the skip mode) is a first value (such as cu_skip_flag is 1), then general_merge_flag is the first value, otherwise, cu_skip_flag is a second value (such as cu_skip_flag is 0), and general_merge_flag is the second value. Among them, cu_skip_flag is the first value, indicating that the current image block uses the skip mode, otherwise, cu_skip_flag is the second value, indicating that the current image block does not use the skip mode.
那么,解码器可以根据从码流中解析得到的语法元素(如general_merge_flag)的值,或者根据推导得到的语法元素(如general_merge_flag)的值,确定对当前图像块是否使用融合模式进行帧间预测。解码器在确定对当前图像块使用融合模式进行帧间预测之后,执行S902。Then, the decoder can determine whether to use the fusion mode for inter-frame prediction for the current image block according to the value of the syntax element (such as general_merge_flag) parsed from the bitstream, or according to the value of the syntax element (such as general_merge_flag) derived. After determining to use the fusion mode for inter-frame prediction for the current image block, the decoder performs S902.
在本申请实施例中,当前图像块为CU级的图像块,即一个图像块为一个CU。In the embodiment of the present application, the current image block is a CU-level image block, that is, one image block is one CU.
S902:确定当前图像块是否允许使用K个备选融合模式中的各个融合模式;S902: Determine whether the current image block is allowed to use each fusion mode among K candidate fusion modes;
其中,解码端和编码端可以预先协商或者协议规定有融合模式集合(或称为融合模式列表),融合模式集合中可以包括多个备选融合模式。上述K个备选融合模式可以为融合模式集合中的所有融合模式,也可以为融合模式集合中未确定当前图像块是否允许使用的融合模式。The decoding end and the encoding end may pre-negotiate or stipulate by agreement a fusion mode set (or fusion mode list), and the fusion mode set may include multiple candidate fusion modes. The K candidate fusion modes may be all fusion modes in the fusion mode set, or may be fusion modes in the fusion mode set for which it is not determined whether the current image block is allowed to use.
无论K个融合模式为融合模式集合的部分还是全部,这K个备选融合模式可以包括上述融合模式中的一种或者多种,例如,K个备选融合模式可以包括:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM;或者,K个备选融合模式还可以包括:MMVD模式、SBMM、CIIP模式、TPM。当然,K个备选融合模式还可以包括其他融合模式,本申请实施例不做具体限定。Regardless of whether the K fusion modes are part or all of the fusion mode set, the K candidate fusion modes may include one or more of the above fusion modes. For example, the K candidate fusion modes may include: traditional fusion mode, MMVD mode, SBMM, CIIP mode, TPM; or, the K candidate fusion modes may also include: MMVD mode, SBMM, CIIP mode, TPM. Of course, the K candidate fusion modes may also include other fusion modes, which are not specifically limited in the embodiments of the present application.
这里,解码器在通过S901确定对当前图像块使用融合模式进行帧间预测之后,可以确定当前图像块是否允许使用K个备选融合模式中的各个融合模式。在实际应用中,解码器可以按照各个融合模式的排列顺序,依次对各个融合模式进行判断,也可以并行对各个融合模式进行判断,由此确定出当前图像块允许使用的融合模式。Here, after the decoder determines to use the fusion mode for inter-frame prediction for the current image block through S901, it can determine whether the current image block is allowed to use each fusion mode among the K candidate fusion modes. In actual applications, the decoder can judge each fusion mode in sequence according to the arrangement order of each fusion mode, or can judge each fusion mode in parallel, thereby determining the fusion mode allowed to be used by the current image block.
在具体实施过程中,S902可以包括:获取当前图像块对应的预测参数;根据预测参数,确定当前图像块是否允许使用各个融合模式;In a specific implementation process, S902 may include: obtaining prediction parameters corresponding to the current image block; determining whether the current image block is allowed to use various fusion modes according to the prediction parameters;
首先,解码器可以通过从码流中解析或者从语法元素(即merge data syntax)中获取得到当前图像块对应的预测参数。在本申请实施例中,上述预测参数可以包括且不限于以下一个或者多个:上级视频处理单元的语法元素的指示、当前图像块的尺寸(即cbWidth、cbHeight)、用于指示当前图像块是否具有残差的指示信息(即cu_skip_flag)、上级视频处理单元的类型。First, the decoder can obtain the prediction parameters corresponding to the current image block by parsing from the bitstream or from the syntax elements (i.e., merge data syntax). In the embodiment of the present application, the above prediction parameters may include but are not limited to one or more of the following: an indication of the syntax elements of the upper-level video processing unit, the size of the current image block (i.e., cbWidth, cbHeight), an indication information for indicating whether the current image block has a residual (i.e., cu_skip_flag), and the type of the upper-level video processing unit.
在现有的VVC草案的高层语法中,目前除了CU级别外,主要包括序列级、图像级和片组(tile group)级和/或片(slice)级的语法结构,各个级别对应的视频处理单元的大小不同,例如,序列级的视频处理单元包括多帧图像,图像级的视频处理单元可以划分成多个tile group或者slice,tile group级或者slice级的视频处理单元可以被划分成多个CTU。在本申请实施例中,上级视频处理单元可以包括一个slice、tile group、一帧图像或者一个视频序列。那么,上级视频处理单元的类型可以为当前图像块所在图像的图像类型、片类型(slice_type)或片组类型(tile group type)。In the high-level syntax of the existing VVC draft, in addition to the CU level, it mainly includes the syntax structures of the sequence level, image level, tile group level and/or slice level. The sizes of the video processing units corresponding to each level are different. For example, the video processing unit at the sequence level includes multiple frames of images, the video processing unit at the image level can be divided into multiple tile groups or slices, and the video processing unit at the tile group level or slice level can be divided into multiple CTUs. In an embodiment of the present application, the upper-level video processing unit may include a slice, a tile group, a frame of image, or a video sequence. Then, the type of the upper-level video processing unit can be the image type, slice type (slice_type) or tile group type (tile group type) of the image where the current image block is located.
在实际应用中,上述预测参数可以包括且不限于:sps_mmvd_enabled_flag、sps_ciip_enabled_flag、sps_triangle_enabled_flag、MaxNumSubblockMergeCand、MaxNumTriangleMergeCand、cbWidth、cbHeight、cu_skip_flag、slice_type等。In practical applications, the above prediction parameters may include but are not limited to: sps_mmvd_enabled_flag, sps_ciip_enabled_flag, sps_triangle_enabled_flag, MaxNumSubblockMergeCand, MaxNumTriangleMergeCand, cbWidth, cbHeight, cu_skip_flag, slice_type, etc.
其中,sps_mmvd_enabled_flag用于指示当前序列是否允许使用MMVD模式,这里,可以理解为sps_mmvd_enabled_flag用于指示当前图像块是否允许使用MMVD模式,当sps_mmvd_enabled_flag为第一值(如sps_mmvd_enabled_flag为1)时,可以确定当前图像块允许使用MMVD模式,反之,当sps_mmvd_enabled_flag为第二值(如sps_mmvd_enabled_flag为0)时,可以确定当前图像块不允许使用MMVD模式;Wherein, sps_mmvd_enabled_flag is used to indicate whether the current sequence allows the use of the MMVD mode. Here, it can be understood that sps_mmvd_enabled_flag is used to indicate whether the current image block allows the use of the MMVD mode. When sps_mmvd_enabled_flag is a first value (such as sps_mmvd_enabled_flag is 1), it can be determined that the current image block allows the use of the MMVD mode. Conversely, when sps_mmvd_enabled_flag is a second value (such as sps_mmvd_enabled_flag is 0), it can be determined that the current image block does not allow the use of the MMVD mode.
同样地,sps_ciip_enabled_flag用于指示当前序列是否允许使用CIIP模式,这里,可以理解为sps_ciip_enabled_flag用于指示当前图像块是否允许使用CIIP模式;当sps_ciip_enabled_flag为第一值(如sps_ciip_enabled_flag为1)时,可以确定当前图像块允许使用CIIP模式,反之,当sps_ciip_enabled_flag为第二值(如sps_ciip_enabled_flag为0)时,可以确定当前图像块不允许使用CIIP模式;Similarly, sps_ciip_enabled_flag is used to indicate whether the current sequence allows the use of the CIIP mode. Here, it can be understood that sps_ciip_enabled_flag is used to indicate whether the current image block allows the use of the CIIP mode. When sps_ciip_enabled_flag is a first value (such as sps_ciip_enabled_flag is 1), it can be determined that the current image block allows the use of the CIIP mode. Conversely, when sps_ciip_enabled_flag is a second value (such as sps_ciip_enabled_flag is 0), it can be determined that the current image block does not allow the use of the CIIP mode.
sps_triangle_enabled_flag用于指示当前序列是否允许使用TPM模式,这里可以理解为sps_triangle_enabled_flag用于指示当前图像块是否允许使用TPM模式,当sps_triangle_enabled_flag为第一值(如sps_triangle_enabled_flag为1)时,可以确定当前图像块允许使用TPM模式,反之,当sps_triangle_enabled_flag为第二值(如sps_triangle_enabled_flag为0)时,可以确定当前图像块不允许使用TPM模式;MaxNumSubblockMergeCand用于表示子块融合候选列表的最大长度,MaxNumMergeCand表示融合候选运动矢量列表的最大长度、cbWidth为当前图像块的宽度、cbHeight为当前图像块的高度、slice_type用于指示当前图像块的图像类型或者片(slice)类型。sps_triangle_enabled_flag is used to indicate whether the current sequence allows the use of TPM mode. Here it can be understood that sps_triangle_enabled_flag is used to indicate whether the current image block allows the use of TPM mode. When sps_triangle_enabled_flag is the first value (such as sps_triangle_enabled_flag is 1), it can be determined that the current image block allows the use of TPM mode. Conversely, when sps_triangle_enabled_flag is the second value (such as sps_triangle_enabled_flag is 0), it can be determined that the current image block does not allow the use of TPM mode; MaxNumSubblockMergeCand is used to indicate the maximum length of the sub-block fusion candidate list, MaxNumMergeCand indicates the maximum length of the fusion candidate motion vector list, cbWidth is the width of the current image block, cbHeight is the height of the current image block, and slice_type is used to indicate the image type or slice type of the current image block.
然后,解码器在获得预测参数之后,可以根据上述预测参数确定当前图像块是否使用各个融合模式。Then, after obtaining the prediction parameters, the decoder can determine whether the current image block uses each fusion mode according to the prediction parameters.
具体来说,解码器可以根据预测参数,获得各个融合模式对应的第二标识的值,以第二标识来指示当前图像块是否使用相应的融合模式。在本申请实施例中,第二标识可以包括且不限于:allowMMVD、allowSBMM、allowCIIP、allowTPM中的一个或者多个。allowMMVD为MMVD模式的第二标识,allowSBMM为SBMM的第二标识,allowCIIP为CIIP模式的第二标识,allowTPM为TPM的第二标识。当第二标识为第一值(如第一标识为1)时,解码器确定当前图像块允许使用第二标识对应的融合模式;反之,当第二标识为第二值(如第一标识为0)时,解码器确定当前图像块允许使用第二标识对应的融合模式。例如,当allowMMVD为1时,解码器确定当前图像块允许使用MMVD模式,当allowMMVD为0时,解码器确定当前图像块不允许使用MMVD模式,上述其他融合模式可以以此类推,在此不再赘述。Specifically, the decoder can obtain the value of the second identifier corresponding to each fusion mode according to the prediction parameter, and use the second identifier to indicate whether the current image block uses the corresponding fusion mode. In an embodiment of the present application, the second identifier may include but is not limited to: one or more of allowMMVD, allowSBMM, allowCIIP, and allowTPM. allowMMVD is the second identifier of the MMVD mode, allowSBMM is the second identifier of the SBMM, allowCIIP is the second identifier of the CIIP mode, and allowTPM is the second identifier of the TPM. When the second identifier is the first value (such as the first identifier is 1), the decoder determines that the current image block allows the use of the fusion mode corresponding to the second identifier; conversely, when the second identifier is the second value (such as the first identifier is 0), the decoder determines that the current image block allows the use of the fusion mode corresponding to the second identifier. For example, when allowMMVD is 1, the decoder determines that the current image block allows the use of the MMVD mode, and when allowMMVD is 0, the decoder determines that the current image block does not allow the use of the MMVD mode. The above-mentioned other fusion modes can be deduced by analogy, and will not be repeated here.
在一些可能的实现方式中,解码器可以通过以下公式(1)至(4)获得各个融合模式的第二标识的值。In some possible implementations, the decoder may obtain the value of the second identifier of each fusion mode through the following formulas (1) to (4).
allowMMVD = sps_mmvd_enabled_flag (1)allowMMVD = sps_mmvd_enabled_flag (1)
allowSBMM=MaxNumSubblockMergeCand>0&&cbWidth>=8allowSBMM=MaxNumSubblockMergeCand>0&&cbWidth>=8
&& cbHeight >= 8 (2)&& cbHeight >= 8 (2)
allowCIIP=sps_ciip_enabled_flag&&!cu_skip_flag&&(cbWidth*cbHeight)>=64allowCIIP=sps_ciip_enabled_flag&&! cu_skip_flag&&(cbWidth*cbHeight)>=64
&& cbWidth < 128 && cbHeight < 128 (3)&& cbWidth < 128 && cbHeight < 128 (3)
allowTPM=sps_triangle_enabled_flag&&slice_type==BallowTPM=sps_triangle_enabled_flag&&slice_type==B
&& MaxNumTriangleMergeCand >= 2 && (cbWidth*cbHeight) >= 64 (4)&& MaxNumTriangleMergeCand >= 2 && (cbWidth*cbHeight) >= 64 (4)
当然,在一些可能的实施方式中,解码器还可以采用其他方式根据预测参数来获得各个融合模式的第二标识的值,本申请实施例不做具体限定。Of course, in some possible implementations, the decoder may also use other methods to obtain the value of the second identifier of each fusion mode according to the prediction parameters, which is not specifically limited in the embodiments of the present application.
S903:在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值;S903: When the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among the K candidate fusion modes, parse the bitstream to obtain a value of a first identifier of the current fusion mode;
其中,上述第一标识用于指示当前图像块是否使用对应的融合模式。第一标识可以包括且不限于:regular_merge_flag、mmvd_merge_flag、merge_subblock_flag、ciip_flag、merge_triangle_flag等标识中的一种或者多种。其中,regular_merge_flag为传统的融合模式的第一标识,mmvd_merge_flag为MMVD模式的第一标识,merge_subblock_flag为SBMM的第一标识,ciip_flag为CIIP的第一标识,merge_triangle_flag为TPM的第一标识。假设,当regular_merge_flag为1时,解码器可以确定对当前图像块使用传统的融合模式进行帧间预测,当regular_merge_flag为0时,解码器可以确定对当前图像块不使用传统的融合模式进行帧间预测;当mmvd_merge_flag为1时,解码器可以确定对当前图像块使用MMVD模式进行帧间预测,当mmvd_merge_flag为0时,解码器可以确定对当前图像块不使用MMVD模式进行帧间预测;当merge_subblock_flag为1时,解码器可以确定对当前图像块使用SBMM进行帧间预测,当merge_subblock_flag为0时,解码器可以确定对当前图像块不使用SBMM进行帧间预测;当ciip_flag为1时,解码器可以确定对当前图像块使用CIIP模式进行帧间预测,当ciip_flag为0时,解码器可以确定对当前图像块不使用CIIP模式进行帧间预测。其中,merge_triangle_flag也可以是MergeTriangleFlag。The first flag is used to indicate whether the current image block uses the corresponding fusion mode. The first flag may include but is not limited to: one or more of regular_merge_flag, mmvd_merge_flag, merge_subblock_flag, ciip_flag, merge_triangle_flag, etc. Among them, regular_merge_flag is the first flag of the traditional fusion mode, mmvd_merge_flag is the first flag of the MMVD mode, merge_subblock_flag is the first flag of SBMM, ciip_flag is the first flag of CIIP, and merge_triangle_flag is the first flag of TPM. Assume that, when regular_merge_flag is 1, the decoder can determine to use the traditional fusion mode for inter-frame prediction for the current image block, and when regular_merge_flag is 0, the decoder can determine not to use the traditional fusion mode for inter-frame prediction for the current image block; when mmvd_merge_flag is 1, the decoder can determine to use the MMVD mode for inter-frame prediction for the current image block, and when mmvd_merge_flag is 0, the decoder can determine not to use the MMVD mode for inter-frame prediction for the current image block; when merge_subblock_flag is 1, the decoder can determine to use SBMM for inter-frame prediction for the current image block, and when merge_subblock_flag is 0, the decoder can determine not to use SBMM for inter-frame prediction for the current image block; when ciip_flag is 1, the decoder can determine to use the CIIP mode for inter-frame prediction for the current image block, and when ciip_flag is 0, the decoder can determine not to use the CIIP mode for inter-frame prediction for the current image block. Among them, merge_triangle_flag can also be MergeTriangleFlag.
这里,解码器在确定当前图像块允许使用的融合模式之后,在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值。Here, after determining the fusion mode allowed for the current image block, the decoder parses the value of the first identifier of the current fusion mode from the bitstream if the current image block allows the current fusion mode and the current image block allows a fusion mode other than the current fusion mode among K alternative fusion modes.
具体来说,S903可以包括:Specifically, S903 may include:
第一种情况,在当前图像块允许使用MMVD模式、SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得传统的融合模式的regular_merge_flag的值,此时,general_merge_flag默认为第一值,如general_merge_flag默认为1;或者,In the first case, when the current image block allows the use of at least one of the MMVD mode, SBMM, CIIP mode, and TPM, the value of regular_merge_flag of the traditional fusion mode is obtained by parsing the bitstream. At this time, general_merge_flag defaults to the first value, such as general_merge_flag defaults to 1; or,
第二种情况,在当前图像块允许使用MMVD模式,且当前图像块允许使用SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得MMVD模式的mmvd_merge_flag的值;或者,In the second case, when the current image block allows the use of the MMVD mode and the current image block allows the use of at least one of the SBMM mode, the CIIP mode, and the TPM mode, the value of the mmvd_merge_flag of the MMVD mode is obtained by parsing the bitstream; or,
第三种情况,在当前图像块允许使用SBMM模式,且当前图像块允许使用CIIP模式和/或TPM的情况下,从码流中解析获得SBMM的merge_subblock_flag的值;或者,In the third case, when the current image block allows the use of the SBMM mode, and the current image block allows the use of the CIIP mode and/or TPM, the value of the merge_subblock_flag of the SBMM is obtained by parsing from the bitstream; or,
第四种情况,在当前图像块允许使用CIIP模式和TPM的情况下,从码流中解析获得CIIP模式的ciip_flag的值。In the fourth case, when the current image block allows the use of the CIIP mode and TPM, the value of the ciip_flag of the CIIP mode is obtained by parsing the code stream.
需要注意的是,解码模块可以按照K个备选融合模式的顺序,依次判断是否从码流中解析当前融合模式的第一标识的值。当上一个融合模式的第一标识的值为第二值,也就是说当前图像块不使用上一个融合模式的情况下,解码器进而判断是否从码流中解析当前融合模式的第一标识的值。It should be noted that the decoding module can determine whether to parse the value of the first identifier of the current fusion mode from the bitstream in the order of the K candidate fusion modes. When the value of the first identifier of the previous fusion mode is the second value, that is, when the current image block does not use the previous fusion mode, the decoder further determines whether to parse the value of the first identifier of the current fusion mode from the bitstream.
那么,上述S903还可以包括:Then, the above S903 may also include:
与上述第一种情况对应,在general_merge_flag为第一值,当前图像块允许使用MMVD模式、SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得传统的融合模式的regular_merge_flag的值;或者,Corresponding to the first case, when general_merge_flag is the first value and the current image block allows the use of at least one of the MMVD mode, SBMM, CIIP mode, and TPM, the value of regular_merge_flag of the traditional fusion mode is obtained by parsing the bitstream; or,
与上述第二种情况对应,在regular_merge_flag为第二值,当前图像块允许使用MMVD模式,且当前图像块允许使用SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得MMVD模式的mmvd_merge_flag的值;或者,Corresponding to the second case, when regular_merge_flag is the second value, the current image block allows the use of the MMVD mode, and the current image block allows the use of at least one of the SBMM, CIIP mode, and TPM, the value of mmvd_merge_flag in the MMVD mode is obtained by parsing the bitstream; or,
与上述第三种情况对应,在regular_merge_flag为第二值,mmvd_merge_flag为第二值,当前图像块允许使用SBMM模式,且当前图像块允许使用CIIP模式和/或TPM的情况下,从码流中解析获得SBMM的merge_subblock_flag的值;或者,Corresponding to the third case, when regular_merge_flag is the second value, mmvd_merge_flag is the second value, the current image block allows the use of the SBMM mode, and the current image block allows the use of the CIIP mode and/or TPM, the value of merge_subblock_flag of SBMM is obtained by parsing from the bitstream; or,
与上述第四种情况对应,在regular_merge_flag为第二值,mmvd_merge_flag为第二值,merge_subblock_flag为第二值,当前图像块允许使用CIIP模式和TPM的情况下,从码流中解析获得CIIP模式的ciip_flag的值。Corresponding to the fourth case, when regular_merge_flag is the second value, mmvd_merge_flag is the second value, merge_subblock_flag is the second value, and the current image block allows the use of CIIP mode and TPM, the value of ciip_flag in CIIP mode is parsed from the code stream.
在一些可能的实施方式中,在解码器以第二标识来指示当前图像块是否使用相应的融合模式的情况下,上述S903之前,该方法还可以包括:解码器判断当前融合模式的第二标识的值是否满足预设解析条件。那么,当第二标识的值满足预设解析条件时,则从码流中解析获得当前融合模式的第一标识的值,反之,当当前融合模式的第二标识的值不满足预设解析条件时,解码器按照预设推导条件,确定出当前融合模式的第一标识的值。In some possible implementations, when the decoder indicates whether the current image block uses the corresponding fusion mode with the second identifier, before the above S903, the method may further include: the decoder determines whether the value of the second identifier of the current fusion mode meets the preset parsing condition. Then, when the value of the second identifier meets the preset parsing condition, the value of the first identifier of the current fusion mode is parsed from the bitstream; otherwise, when the value of the second identifier of the current fusion mode does not meet the preset parsing condition, the decoder determines the value of the first identifier of the current fusion mode according to the preset derivation condition.
举例来说,假设融合模式集合中各个融合模式的顺序可以为:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM;那么,For example, assuming that the order of the fusion modes in the fusion mode set can be: traditional fusion mode, MMVD mode, SBMM, CIIP mode, TPM; then,
当前融合模式为传统的融合模式,与上述第一种情况对应的预设解析条件可以包括且不限于:The current fusion mode is a traditional fusion mode. The preset parsing conditions corresponding to the first case above may include but are not limited to:
1)、allowMMVD、allowSBMM、allowCIIP、allowTPM中存在至少一个大于0;1) At least one of allowMMVD, allowSBMM, allowCIIP, and allowTPM is greater than 0;
在一些可能的实施方式中,预设解析条件1)还可以描述为:allowMMVD+allowSBMM+allowCIIP+allowTPM>0;或者,allowMMVD||allowSBMM||allowCIIP||allowTPM。In some possible implementations, the preset parsing condition 1) may also be described as: allowMMVD+allowSBMM+allowCIIP+allowTPM>0; or, allowMMVD||allowSBMM||allowCIIP||allowTPM.
当前融合模式为MMVD模式,与上述第二种情况对应的预设解析条件可以包括且不限于:The current fusion mode is the MMVD mode, and the preset parsing conditions corresponding to the second case may include but are not limited to:
2)、regular_merge_flag为0,allowMMVD大于0,allowSBMM、allowCIIP、allowTPM中存在至少一个大于0;2) regular_merge_flag is 0, allowMMVD is greater than 0, and at least one of allowSBMM, allowCIIP, and allowTPM is greater than 0;
在一些可能的实施方式中,预设解析条件2)还可以描述为:allowMMVD&&allowSBMM+In some possible implementations, the preset parsing condition 2) can also be described as: allowMMVD&&allowSBMM+
allowCIIP+allowTPM>0;或者,allowMMVD&&(allowSBMM+allowCIIP+allowTPM);或者,allowMMVD&&(allowSBMM||allowCIIP||allowTPM)。allowCIIP+allowTPM>0; or, allowMMVD&&(allowSBMM+allowCIIP+allowTPM); or, allowMMVD&&(allowSBMM||allowCIIP||allowTPM).
需要说明的是,在当前融合模式为MMVD模式的情况下,传统的融合模式已经确认不使用,即regular_merge_flag为0,此时,可以不用重复判断regular_merge_flag的值。It should be noted that, when the current fusion mode is the MMVD mode, the traditional fusion mode has been confirmed not to be used, that is, regular_merge_flag is 0. In this case, there is no need to repeatedly determine the value of regular_merge_flag.
当前融合模式为SBMM,与上述第三种情况对应的预设解析条件可以包括且不限于:The current fusion mode is SBMM, and the preset parsing conditions corresponding to the third case may include but are not limited to:
3)、regular_merge_flag为0,mmvd_merge_flag为0,allowSBMM大于0,allowCIIP和/或allowTPM大于0;3) regular_merge_flag is 0, mmvd_merge_flag is 0, allowSBMM is greater than 0, allowCIIP and/or allowTPM is greater than 0;
在一些可能的实施方式中,预设解析条件3)还可以描述为:allowSBMM&&allowCIIP+allowTPM>0;或者,allowSBMM&&(allowCIIP+allowTPM)>0;或者,allowSBMM&&(allowCIIP||allowTPM)。In some possible implementations, the preset parsing condition 3) may also be described as: allowSBMM&&allowCIIP+allowTPM>0; or, allowSBMM&&(allowCIIP+allowTPM)>0; or, allowSBMM&&(allowCIIP||allowTPM).
需要说明的是,在当前融合模式为SBMM模式的情况下,传统的融合模式和MMVD模式已经确认不使用,即regular_merge_flag为0,mmvd_merge_flag为0,此时,可以不用重复判断regular_merge_flag和mmvd_merge_flag的值。It should be noted that when the current fusion mode is the SBMM mode, the traditional fusion mode and the MMVD mode have been confirmed not to be used, that is, regular_merge_flag is 0 and mmvd_merge_flag is 0. At this time, there is no need to repeatedly determine the values of regular_merge_flag and mmvd_merge_flag.
当前融合模式为CIIP模式,与上述第四种情况对应的预设解析条件可以包括且不限于:The current fusion mode is the CIIP mode, and the preset parsing conditions corresponding to the fourth case may include but are not limited to:
4)、regular_merge_flag为0,regular_merge_flag为0,merge_subblock_flag为0,allowCIIP大于0,allowTPM大于0;4) regular_merge_flag is 0, regular_merge_flag is 0, merge_subblock_flag is 0, allowCIIP is greater than 0, allowTPM is greater than 0;
在一些可能的实施方式中,预设解析条件4)还可以描述为:allowCIIP&&allowTPM。In some possible implementations, the preset parsing condition 4) may also be described as: allowCIIP&&allowTPM.
需要说明的是,在当前融合模式为CIIP模式的情况下,传统的融合模式、MMVD模式和SBMM已经确认不使用,即regular_merge_flag为0,mmvd_merge_flag为0,merge_subblock_flag为0,此时,可以不用重复判断regular_merge_flag、mmvd_merge_flag和merge_subblock_flag的值。It should be noted that when the current fusion mode is CIIP mode, the traditional fusion mode, MMVD mode and SBMM have been confirmed not to be used, that is, regular_merge_flag is 0, mmvd_merge_flag is 0, and merge_subblock_flag is 0. At this time, there is no need to repeatedly judge the values of regular_merge_flag, mmvd_merge_flag and merge_subblock_flag.
上述判断的过程具体可以参见如下表4所述的语法表。即当general_merge_flag为第一值时,可以按照merge_data()的语法结构解析码流,从而获取表4中语法元素的值。其中(x0,y0)表示当前图像块左上顶点的亮度像素值相对于当前图像块左上顶点的亮度像素的坐标位置,下面语法表中(x0,y0)含义相同,不做赘述。The above judgment process can be specifically referred to the syntax table described in Table 4 below. That is, when general_merge_flag is the first value, the code stream can be parsed according to the syntax structure of merge_data() to obtain the values of the syntax elements in Table 4. Wherein (x0, y0) represents the coordinate position of the brightness pixel value of the upper left vertex of the current image block relative to the brightness pixel of the upper left vertex of the current image block. The meanings of (x0, y0) in the following syntax table are the same and will not be repeated.
表4Table 4
需要说明的是,上述预设解析条件1)、2)、3)以及4)还可以存在其他方式的描述,本申请实施例不做具体限定。It should be noted that the above-mentioned preset analysis conditions 1), 2), 3) and 4) may also be described in other ways, and the embodiments of the present application do not specifically limit them.
如果解码器通过上述过程确定第二标识的值满足预设解析条件,则解码器就可以从码流中解析获得对应的融合模式的第一标识的值。例如,如果allowMMVD、allowSBMM、allowCIIP和allowTPM的值满足预设解析条件1),则解码器就可以从码流中解析获得传统的融合模式的第一标识的值,即:regular_merge_flag的值;再如,如果allowMMVD、allowSBMM、allowCIIP和allowTPM的值满足预设解析条件2),则解码器就可以从码流中解析获得MMVD模式的第一标识的值,即:mmvd_merge_flag的值;还可以为:如果allowSBMM、allowCIIP和allowTPM的值满足预设解析条件3),则解码器就可以从码流中解析获得SBMM的第一标识的值,即:merge_subblock_flag的值;或者,如果allowCIIP和allowTPM的值满足预设解析条件4),则解码器就可以从码流中解析获得CIIP模式的第一标识的值,即:ciip_flag的值。If the decoder determines through the above process that the value of the second identifier satisfies the preset parsing condition, the decoder can parse the value of the first identifier of the corresponding fusion mode from the bitstream. For example, if the values of allowMMVD, allowSBMM, allowCIIP and allowTPM meet the preset parsing condition 1), the decoder can parse the value of the first identifier of the traditional fusion mode from the bitstream, that is, the value of regular_merge_flag; for another example, if the values of allowMMVD, allowSBMM, allowCIIP and allowTPM meet the preset parsing condition 2), the decoder can parse the value of the first identifier of the MMVD mode from the bitstream, that is, the value of mmvd_merge_flag; it can also be: if the values of allowSBMM, allowCIIP and allowTPM meet the preset parsing condition 3), the decoder can parse the value of the first identifier of SBMM from the bitstream, that is, the value of merge_subblock_flag; or if the values of allowCIIP and allowTPM meet the preset parsing condition 4), the decoder can parse the value of the first identifier of the CIIP mode from the bitstream, that is, the value of ciip_flag.
如果解码器通过上述过程确定第二标识的值不满足预设解析条件,解码器则可以按照预设推导条件,确定出各个融合模式的第一标识的值。If the decoder determines through the above process that the value of the second identifier does not meet the preset parsing condition, the decoder can determine the value of the first identifier of each fusion mode according to the preset derivation condition.
这里,预设推导条件在下面进行说明。Here, the preset derivation conditions are explained below.
在一些可能的实施方式中,当各个融合模式的第二标识的值满足上述预设解析条件时,各个融合模式的第一标识的值可能不存在或者不出现在码流中,如此,解码器是无法从码流中解析获得各个融合模式的第一标识的值的,那么,在这种情况下,解码器也可以根据预设推导条件进行推导,以获得各个融合模式的第一标识的值。例如,如果满足预设推导条件,则融合模式的第一标识的值设置为第一值,否则,融合模式的第一标识的值设置为第二值。In some possible implementations, when the value of the second identifier of each fusion mode meets the above-mentioned preset parsing condition, the value of the first identifier of each fusion mode may not exist or appear in the bitstream, so the decoder cannot parse the bitstream to obtain the value of the first identifier of each fusion mode. In this case, the decoder can also derive according to the preset derivation condition to obtain the value of the first identifier of each fusion mode. For example, if the preset derivation condition is met, the value of the first identifier of the fusion mode is set to the first value, otherwise, the value of the first identifier of the fusion mode is set to the second value.
举例来说,若allowMMVD、allowSBMM、allowCIIP以及allowTPM不满足上述预设解析条件1)或者码流中不存在regular_merge_flag的值,那么,解码器general_merge_flag的值设置为regular_merge_flag的值,由于此时general_merge_flag为第一值(如general_merge_flag为1),那么,regular_merge_flag的值也为第一值;或者,解码器将regular_merge_flag的值设置第一值,即设置regular_merge_flag为1,此时,表示当前图像块使用传统的融合模式进行帧间预测。For example, if allowMMVD, allowSBMM, allowCIIP and allowTPM do not satisfy the above-mentioned preset parsing condition 1) or the value of regular_merge_flag does not exist in the bitstream, then the value of general_merge_flag of the decoder is set to the value of regular_merge_flag. Since general_merge_flag is the first value at this time (such as general_merge_flag is 1), the value of regular_merge_flag is also the first value; or, the decoder sets the value of regular_merge_flag to the first value, that is, sets regular_merge_flag to 1. At this time, it indicates that the current image block uses the traditional fusion mode for inter-frame prediction.
或者,若allowMMVD、allowSBMM、allowCIIP以及allowTPM不满足上述预设解析条件1)或者码流中不存在regular_merge_flag的值,并且当CuPredMode为MODE_INTER时(当前图像块使用帧间预测),regular_merge_flag的值被设置为general_merge_flag的值。即当满足CuPredMode为MODE_INTER,且general_merge_flag值为1时,regular_merge_flag的值被设置为1,否则regular_merge_flag的值被设置为0。Alternatively, if allowMMVD, allowSBMM, allowCIIP, and allowTPM do not satisfy the above-mentioned preset parsing condition 1) or the value of regular_merge_flag does not exist in the bitstream, and when CuPredMode is MODE_INTER (the current image block uses inter-frame prediction), the value of regular_merge_flag is set to the value of general_merge_flag. That is, when CuPredMode is MODE_INTER and the value of general_merge_flag is 1, the value of regular_merge_flag is set to 1, otherwise the value of regular_merge_flag is set to 0.
其中,CuPredMode为当前图像块的预测模式标识,在一些实施方式中还可以表示为CuPredMode[x0][y0],CuPredMode[x0][y0]为MODE_INTER表示当前图像块使用帧间预测。坐标(x0,y0)表示当前图像块的左上顶点的亮度像素相对于当前图像块所在的图像的左上顶点亮度像素的位置。以下CuPredMode[x0][y0]标识含义与此处描述相同,不再赘述。Among them, CuPredMode is the prediction mode identifier of the current image block, which can also be expressed as CuPredMode[x0][y0] in some embodiments. CuPredMode[x0][y0] is MODE_INTER, indicating that the current image block uses inter-frame prediction. The coordinate (x0, y0) represents the position of the brightness pixel of the upper left vertex of the current image block relative to the brightness pixel of the upper left vertex of the image where the current image block is located. The following CuPredMode[x0][y0] identifier has the same meaning as described here and will not be repeated.
若allowMMVD、allowSBMM、allowCIIP以及allowTPM不满足上述预设解析条件2)或者码流中不存在mmvd_merge_flag的值,那么,在满足第一推导条件的情况下,解码器将mmvd_merge_flag的值设置为第一值;这里,第一推到条件可以为当前图像块允许使用MMVD模式(即allowMMVD值为第一值)、general_merge_flag的值为第一值以及regular_merge_flag的值为第二值;例如,allowMMVD值为1、general_merge_flag值为1、以及regular_merge_flag为0,则设置mmvd_merge_flag为1,此时,表示当前图像块使用MMVD模式进行帧间预测。或者,第一推到条件也可以为当前图像块允许使用MMVD模式(即allowMMVD值为第一值)、general_merge_flag的值为第一值、regular_merge_flag的值为第二值、以及当前图像块使用帧间预测;例如,allowMMVD值为1、general_merge_flag值为1、regular_merge_flag为0、以及CuPredMode为MODE_INTER,则设置mmvd_merge_flag为1。If allowMMVD, allowSBMM, allowCIIP and allowTPM do not satisfy the above-mentioned preset parsing condition 2) or the value of mmvd_merge_flag does not exist in the code stream, then, when the first derivation condition is met, the decoder sets the value of mmvd_merge_flag to the first value; here, the first derivation condition may be that the current image block allows the use of the MMVD mode (that is, the allowMMVD value is the first value), the general_merge_flag value is the first value, and the regular_merge_flag value is the second value; for example, if the allowMMVD value is 1, the general_merge_flag value is 1, and the regular_merge_flag is 0, then the mmvd_merge_flag is set to 1, which indicates that the current image block uses the MMVD mode for inter-frame prediction. Alternatively, the first deduction condition may also be that the current image block allows the use of the MMVD mode (i.e., the allowMMVD value is the first value), the general_merge_flag value is the first value, the regular_merge_flag value is the second value, and the current image block uses inter-frame prediction; for example, the allowMMVD value is 1, the general_merge_flag value is 1, the regular_merge_flag is 0, and CuPredMode is MODE_INTER, then mmvd_merge_flag is set to 1.
若allowSBMM、allowCIIP和allowTPM不满足上述预设解析条件3)或者码流中不存在merge_subblock_flag的值,那么,在满足第二推导条件的情况下,解码器将merge_subblock_flag的值设置为第一值;这里,第二推导条件可以为当前图像块允许使用SBMM(即allowSBMM的值为第一值)、general_merge_flag的值为第一值、regular_merge_flag的值为第二值以及merge_mmvd_flag的值为第二值;例如allowSBMM值为1、general_merge_flag值为1、regular_merge_flag为1以及merge_mmvd_flag为0,则设置merge_subblock_flag为1,此时,表示当前图像块使用SBMM进行帧间预测。If allowSBMM, allowCIIP and allowTPM do not satisfy the above-mentioned preset parsing condition 3) or the value of merge_subblock_flag does not exist in the code stream, then, when the second derivation condition is met, the decoder sets the value of merge_subblock_flag to the first value; here, the second derivation condition may be that the current image block allows the use of SBMM (that is, the value of allowSBMM is the first value), the value of general_merge_flag is the first value, the value of regular_merge_flag is the second value, and the value of merge_mmvd_flag is the second value; for example, if the value of allowSBMM is 1, the value of general_merge_flag is 1, the value of regular_merge_flag is 1, and merge_mmvd_flag is 0, then merge_subblock_flag is set to 1, which indicates that the current image block uses SBMM for inter-frame prediction.
或者,第二推导条件可以为当前图像块允许使用SBMM(即allowSBMM的值为第一值)、general_merge_flag的值为第一值、regular_merge_flag的值为第二值、merge_mmvd_flag的值为第二值以及当前图像块使用帧间预测;例如allowSBMM值为1、general_merge_flag值为1、regular_merge_flag为1、merge_mmvd_flag为0,以及CuPredMode为MODE_INTER,,则设置merge_subblock_flag为1。Alternatively, the second derivation condition may be that the current image block allows the use of SBMM (i.e., the value of allowSBMM is the first value), the value of general_merge_flag is the first value, the value of regular_merge_flag is the second value, the value of merge_mmvd_flag is the second value, and the current image block uses inter-frame prediction; for example, if the value of allowSBMM is 1, the value of general_merge_flag is 1, the value of regular_merge_flag is 1, the value of merge_mmvd_flag is 0, and CuPredMode is MODE_INTER, then merge_subblock_flag is set to 1.
若allowCIIP和allowTPM不满足上述预设解析条件4)或者码流中不存在ciip_flag的值,那么,在满足第三推导条件的情况下,解码器将ciip_flag的值设置为第一值;这里,第三推导条件可以为当前图像块允许使用CIIP模式(即allowCIIP为第一值)、general_merge_flag为第一值、regular_merge_flag为第二值、mmvd_merge_flag为第二值以及merge_subblock_flag为第二值;例如allowCIIP值为1、general_merge_flag值为1、regular_merge_flag为0、merge_mmvd_flag为0以及merge_subblock_flag为0,则设置ciip_flag为1,此时,表示当前图像块使用CIIP模式进行帧间预测。If allowCIIP and allowTPM do not satisfy the above-mentioned preset parsing condition 4) or the value of ciip_flag does not exist in the code stream, then, when the third derivation condition is met, the decoder sets the value of ciip_flag to the first value; here, the third derivation condition may be that the current image block allows the use of CIIP mode (that is, allowCIIP is the first value), general_merge_flag is the first value, regular_merge_flag is the second value, mmvd_merge_flag is the second value, and merge_subblock_flag is the second value; for example, if the allowCIIP value is 1, the general_merge_flag value is 1, the regular_merge_flag is 0, the merge_mmvd_flag is 0, and the merge_subblock_flag is 0, then ciip_flag is set to 1, which indicates that the current image block uses the CIIP mode for inter-frame prediction.
或者,第三推导条件也可以为当前图像块允许使用CIIP模式(即allowCIIP为第一值)、general_merge_flag为第一值、regular_merge_flag为第二值、mmvd_merge_flag为第二值、merge_subblock_flag为第二值以及当前图像块使用帧间预测;例如allowCIIP值为1、general_merge_flag值为1、regular_merge_flag为0、merge_mmvd_flag为0、merge_subblock_flag为0以及CuPredMode为MODE_INTER,则设置ciip_flag为1。Alternatively, the third derivation condition may also be that the current image block allows the use of CIIP mode (i.e., allowCIIP is the first value), general_merge_flag is the first value, regular_merge_flag is the second value, mmvd_merge_flag is the second value, merge_subblock_flag is the second value, and the current image block uses inter-frame prediction; for example, if the allowCIIP value is 1, the general_merge_flag value is 1, the regular_merge_flag is 0, the merge_mmvd_flag is 0, the merge_subblock_flag is 0, and CuPredMode is MODE_INTER, then ciip_flag is set to 1.
merge_triangle_flag的值可以推导得到,例如,在满足第四推导条件的情况下,解码器将merge_triangle_flag的值设置为第一值;这里,第四推导条件可以为当前图像块允许使用TPM模式(即allowTPM为第一值)、general_merge_flag为第一值、regular_merge_flag为第二值、mmvd_merge_flag为第二值、merge_subblock_flag为第二值以及ciip_flag为第二值;例如allowTPM值为1、general_merge_flag值为1、regular_merge_flag为0、merge_mmvd_flag为0、merge_subblock_flag为0以及ciip_flag为0,则设置merge_triangle_flag为1,此时,表示当当前图像块的图像类型或者片类型为B时,当前图像块使用TPM模式进行帧间预测。The value of merge_triangle_flag can be derived. For example, when the fourth derivation condition is met, the decoder sets the value of merge_triangle_flag to the first value; here, the fourth derivation condition may be that the current image block allows the use of TPM mode (that is, allowTPM is the first value), general_merge_flag is the first value, regular_merge_flag is the second value, mmvd_merge_flag is the second value, merge_subblock_flag is the second value, and ciip_flag is the second value; for example, if the allowTPM value is 1, the general_merge_flag value is 1, the regular_merge_flag is 0, the merge_mmvd_flag is 0, the merge_subblock_flag is 0, and the ciip_flag is 0, then merge_triangle_flag is set to 1. At this time, it means that when the image type or slice type of the current image block is B, the current image block uses the TPM mode for inter-frame prediction.
或者,第四推导条件也可以为当前图像块允许使用TPM模式(即allowTPM为第一值)、general_merge_flag为第一值、regular_merge_flag为第二值、mmvd_merge_flag为第二值、merge_subblock_flag为第二值、ciip_flag为第二值以及当前图像块使用帧间预测;例如allowTPM值为1、general_merge_flag值为1、regular_merge_flag为0、merge_mmvd_flag为0、merge_subblock_flag为0、ciip_flag为0以及CuPredMode为MODE_INTER,则设置MergeTriangleFlag为1。Alternatively, the fourth derivation condition may also be that the current image block allows the use of TPM mode (that is, allowTPM is the first value), general_merge_flag is the first value, regular_merge_flag is the second value, mmvd_merge_flag is the second value, merge_subblock_flag is the second value, ciip_flag is the second value, and the current image block uses inter-frame prediction; for example, if the allowTPM value is 1, the general_merge_flag value is 1, the regular_merge_flag is 0, the merge_mmvd_flag is 0, the merge_subblock_flag is 0, the ciip_flag is 0, and CuPredMode is MODE_INTER, then MergeTriangleFlag is set to 1.
在实际应用中,解码器还可以通过其他预设推导条件确定各个融合模式的第一标识的值,本申请实施例不做具体限定。In practical applications, the decoder may also determine the value of the first identifier of each fusion mode through other preset derivation conditions, which is not specifically limited in the embodiments of the present application.
综上所述,解码器可以且不限于参照表5所示分别获得第一融合模式的第二标识、第一标识、对应的预设解析条件和预设推导条件。表5具体如下所示:In summary, the decoder can, but is not limited to, obtain the second identifier, the first identifier, the corresponding preset parsing condition and the preset derivation condition of the first fusion mode respectively by referring to Table 5. Table 5 is specifically as follows:
表5Table 5
综上所述,解码器也可以且不限于参照表6所示分别获得第一融合模式的第二标识、第一标识、对应的预设解析条件或预设推导条件。表6具体如下所示:In summary, the decoder may also, but is not limited to, obtain the second identifier, the first identifier, and the corresponding preset parsing condition or preset derivation condition of the first fusion mode respectively by referring to Table 6. Table 6 is specifically as follows:
表6Table 6
在本申请实施例中,在S902之后,解码器确定出当前图像块是否允许使用各个融合模式,那么,在当前图像块不允许使用K个备选融合模式除当前融合模式外的融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。In an embodiment of the present application, after S902, the decoder determines whether the current image block is allowed to use various fusion modes. Then, if the current image block is not allowed to use K alternative fusion modes except the current fusion mode, the current fusion mode is used to perform inter-frame prediction on the current image block to obtain a prediction block of the current image block.
这里,解码器在确定出当前图像块不允许使用K个备选融合模式除当前融合模式外的融合模式之后,解码器无需进一步解析当前图像块的第一标识的值,而是使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块,由此去除了融合语法元素的解析冗余,在一定程度上降低解码的复杂度,提升解码效率。Here, after the decoder determines that the current image block is not allowed to use K alternative fusion modes except the current fusion mode, the decoder does not need to further parse the value of the first identifier of the current image block, but uses the current fusion mode to perform inter-frame prediction on the current image block to obtain the prediction block of the current image block, thereby removing the parsing redundancy of the fusion syntax elements, reducing the decoding complexity to a certain extent, and improving the decoding efficiency.
S904:在第一标识的值指示当前图像块进行帧间预测的融合模式为当前融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。S904: When the value of the first identifier indicates that the fusion mode for performing inter-frame prediction on the current image block is the current fusion mode, perform inter-frame prediction on the current image block using the current fusion mode to obtain a prediction block of the current image block.
这里,解码器在通过通过S903从码流中解析或者推导获得当前融合模式的第一标识的值后,可以根据第一标识的值,确定当前图像块是否使用当前融合模式。在第一标识的值指示当前图像块进行帧间预测的融合模式为当前融合模式的情况下,解码器无需从码流中解析K个备选融合模式中其他融合模式的第一标识的值,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块,由此去除了融合语法元素的解析冗余,在一定程度上降低解码的复杂度,提升解码效率。Here, after the decoder obtains the value of the first identifier of the current fusion mode by parsing or deriving from the bitstream through S903, it can determine whether the current image block uses the current fusion mode according to the value of the first identifier. When the value of the first identifier indicates that the fusion mode for inter-frame prediction of the current image block is the current fusion mode, the decoder does not need to parse the values of the first identifiers of other fusion modes in the K candidate fusion modes from the bitstream, and uses the current fusion mode to perform inter-frame prediction on the current image block to obtain a prediction block of the current image block, thereby removing the parsing redundancy of the fusion syntax elements, reducing the complexity of decoding to a certain extent, and improving decoding efficiency.
至此,解码器完成了对当前图像块的帧间预测过程。At this point, the decoder has completed the inter-frame prediction process for the current image block.
下面以具体实例来对上述方法进行说明。The above method is described below with reference to a specific example.
假设,假设融合模式集合中各个融合模式的顺序可以为:传统的融合模式→MMVD模式→SBMM→CIIP模式→TPM。Assume that the order of the fusion modes in the fusion mode set may be: traditional fusion mode→MMVD mode→SBMM→CIIP mode→TPM.
步骤1:解码器确定对当前图像块是否使用融合模式。Step 1: The decoder determines whether to use the fusion mode for the current image block.
具体的,当前图像块是否使用融合模式可以根据CU级的语法元素general_merge_flag来确定,即general_merge_flag的值为1,则当前图像块使用融合模式进行帧间预测,然后,执行步骤2;Specifically, whether the current image block uses the fusion mode can be determined according to the CU-level syntax element general_merge_flag, that is, if the value of general_merge_flag is 1, the current image block uses the fusion mode for inter-frame prediction, and then, step 2 is executed;
步骤2:解码器确定当前图像块是否使用传统的融合模式;Step 2: The decoder determines whether the current image block uses the traditional fusion mode;
具体的,当前图像块是否使用传统的融合模式,可以根据语法元素regular_merge_flag的值来确定。regular_merge_flag的值为1,则表示当前图像块使用传统的融合模式进行帧间预测,regular_merge_flag的值为0,则表示当前图像块不使用传统的融合模式进行帧间预测。Specifically, whether the current image block uses the traditional fusion mode can be determined according to the value of the syntax element regular_merge_flag. If the value of regular_merge_flag is 1, it means that the current image block uses the traditional fusion mode for inter-frame prediction, and if the value of regular_merge_flag is 0, it means that the current image block does not use the traditional fusion mode for inter-frame prediction.
进一步地,regular_merge_flag的值,可以按照上述实施例所述的通过解析语法元素来确定,也可以通过推导得到。如果满足上述预设解析条件1),则解码器从码流中解析语法元素regular_merge_flag的值,否则,当码流中不存在该语法元素的值时,regular_merge_flag的值默认与general_merge_flag的值相同,当general_merge_flag的值为1是,regular_merge_flag的值设置为1。Further, the value of regular_merge_flag can be determined by parsing the syntax element as described in the above embodiment, or can be obtained by deduction. If the above preset parsing condition 1) is met, the decoder parses the value of the syntax element regular_merge_flag from the bitstream, otherwise, when the value of the syntax element does not exist in the bitstream, the value of regular_merge_flag defaults to the same as the value of general_merge_flag, and when the value of general_merge_flag is 1, the value of regular_merge_flag is set to 1.
如果regular_merge_flag的值为1,则当前图像块使用传统的融合模式进行帧间预测,否则,执行步骤3。If the value of regular_merge_flag is 1, the current image block uses the traditional fusion mode for inter-frame prediction, otherwise, execute step 3.
步骤3:解码器确定当前图像块是否使用MMVD模式;Step 3: The decoder determines whether the current image block uses the MMVD mode;
具体的,当前图像块是否使用MMVD,可以根据语法元素mmvd_merge_flag的值来确定。Specifically, whether the current image block uses MMVD can be determined according to the value of the syntax element mmvd_merge_flag.
mmvd_merge_flag的值为1,表示当前图像块使用MMVD模式来进行帧间预测,否则,mmvd_merge_flag的值为0时,表示当前图像块不使用MMVD模式来进行帧间预测。The value of mmvd_merge_flag is 1, indicating that the current image block uses the MMVD mode for inter-frame prediction. Otherwise, when the value of mmvd_merge_flag is 0, it indicates that the current image block does not use the MMVD mode for inter-frame prediction.
同样的,mmvd_merge_flag的值,可以按照上述实施例所述的通过解析语法元素来确定,也可以通过推导得到。如果满足上述预设解析条件2),则解码器可以从码流中解析获得mmvd_merge_flag的值,否则,当码流中不存在该语法元素的值时,可以使用以下预设推导条件进行推导得到:Similarly, the value of mmvd_merge_flag can be determined by parsing the syntax element as described in the above embodiment, or can be obtained by derivation. If the above preset parsing condition 2) is met, the decoder can parse the bitstream to obtain the value of mmvd_merge_flag. Otherwise, when the value of the syntax element does not exist in the bitstream, it can be derived using the following preset derivation conditions:
如果以下预设推导条件a)到c)均成立,则mmvd_merge_flag的值设置为1,否则,设置为0。If the following preset derivation conditions a) to c) are all met, the value of mmvd_merge_flag is set to 1, otherwise, it is set to 0.
a)allowMMVD值为1;a)allowMMVD value is 1;
b)general_merge_flag值为1;b) general_merge_flag value is 1;
c)regular_merge_flag值为0。c)regular_merge_flag value is 0.
或者,当码流中不存在该语法元素的值时或不满足上述预设解析条件2)时,也可以使用以下预设推导条件进行推导得到:Alternatively, when the value of the syntax element does not exist in the bitstream or the above preset parsing condition 2) is not satisfied, the following preset derivation conditions may be used for derivation:
如果以下预设推导条件a)到c)及c2)均成立,则mmvd_merge_flag的值设置为1,否则,设置为0。If the following preset derivation conditions a) to c) and c2) are all met, the value of mmvd_merge_flag is set to 1, otherwise, it is set to 0.
a)allowMMVD值为1;a)allowMMVD value is 1;
b)general_merge_flag值为1;b) general_merge_flag value is 1;
c)regular_merge_flag值为0;c) regular_merge_flag value is 0;
c2)CuPredMode[x0][y0]为MODE_INTER。c2)CuPredMode[x0][y0] is MODE_INTER.
其中,CuPredMode[x0][y0]为当前图像块的预测模式标识。CuPredMode[x0][y0]为MODE_INTER表示当前图像块使用帧间预测。坐标(x0,y0)表示当前图像块的左上顶点的亮度像素相对于当前图像块所在的图像的左上顶点亮度像素的位置。Wherein, CuPredMode[x0][y0] is the prediction mode identifier of the current image block. CuPredMode[x0][y0] is MODE_INTER, indicating that the current image block uses inter-frame prediction. The coordinate (x0, y0) represents the position of the brightness pixel of the upper left vertex of the current image block relative to the brightness pixel of the upper left vertex of the image where the current image block is located.
CuPredMode[x0][y0]为MODE_INTRA表示当前图像块使用帧内预测,CuPredMode[x0][y0]为MODE_IBC表示当前图像块使用IBC模式(intra block copy)。CuPredMode[x0][y0] is MODE_INTRA, which means that the current image block uses intra prediction. CuPredMode[x0][y0] is MODE_IBC, which means that the current image block uses IBC mode (intra block copy).
如果mmvd_merge_flag的值为1,则当前图像块使用MMVD模式进行帧间预测,否则,执行步骤4。If the value of mmvd_merge_flag is 1, the current image block uses the MMVD mode for inter-frame prediction, otherwise, execute step 4.
步骤4:解码器确定当前图像块是否使用SBMM;Step 4: The decoder determines whether the current image block uses SBMM;
具体的,当前图像块是否使用SBMM,可以根据语法元素merge_subblock_flag的值来确定。merge_subblock_flag的值为1,表示当前图像块使用SBMM进行帧间预测,否则,merge_subblock_flag的值为0,表示当前图像块不使用SBMM进行帧间预测。Specifically, whether the current image block uses SBMM can be determined according to the value of the syntax element merge_subblock_flag. The value of merge_subblock_flag is 1, indicating that the current image block uses SBMM for inter-frame prediction, otherwise, the value of merge_subblock_flag is 0, indicating that the current image block does not use SBMM for inter-frame prediction.
同样的,merge_subblock_flag的值,可以按照上述实施例所述的通过解析语法元素来确定,也可以通过推导得到。如果满足上述预设解析条件3),则解码器从码流中解析获得merge_subblock_flag的值,否则,当码流中不存在该语法元素的值时,可以使用以下预设推导条件进行推导得到:Similarly, the value of merge_subblock_flag can be determined by parsing the syntax element as described in the above embodiment, or can be obtained by derivation. If the above preset parsing condition 3) is met, the decoder parses the value of merge_subblock_flag from the bitstream, otherwise, when the value of the syntax element does not exist in the bitstream, it can be derived using the following preset derivation conditions:
如果以下预设推导条件d)至g)均成立,则merge_subblock_flag的值设置为1,否则,设置为0。If the following preset derivation conditions d) to g) are all met, the value of merge_subblock_flag is set to 1, otherwise, it is set to 0.
d)allowSBMM值为1d) allowSBMM value is 1
e)general_merge_flag值为1e) general_merge_flag value is 1
f)regular_merge_flag值为0f)regular_merge_flag value is 0
g)merge_mmvd_flag值为0.g)merge_mmvd_flag value is 0.
或者,当码流中不存在该语法元素的值时或不满足上述预设解析条件3)时,也可以使用以下预设推导条件进行推导得到:Alternatively, when the value of the syntax element does not exist in the bitstream or the above preset parsing condition 3) is not satisfied, the following preset derivation conditions may be used for derivation:
如果以下预设推导条件d)至g)及g2)均成立,则merge_subblock_flag的值设置为1,否则,设置为0。If the following preset derivation conditions d) to g) and g2) are all met, the value of merge_subblock_flag is set to 1, otherwise, it is set to 0.
d)allowSBMM值为1d) allowSBMM value is 1
e)general_merge_flag值为1e) general_merge_flag value is 1
f)regular_merge_flag值为0f)regular_merge_flag value is 0
g)merge_mmvd_flag值为0g)merge_mmvd_flag value is 0
g2)CuPredMode[x0][y0]为MODE_INTER。g2)CuPredMode[x0][y0] is MODE_INTER.
如果merge_subblock_flag的值为1,则当前图像块使用SBMM进行帧间预测,否则,执行步骤5。If the value of merge_subblock_flag is 1, the current image block uses SBMM for inter-frame prediction, otherwise, execute step 5.
步骤5:解码器确定当前图像块是否使用CIIP;Step 5: The decoder determines whether the current image block uses CIIP;
具体的,当前图像块是否使用CIIP,根据语法元素ciip_flag的值来确定。ciip_flag的值为1,表示当前图像块使用CIIP模式进行帧间预测,否则,ciip_flag的值为0,表示当前图像块不使用CIIP模式进行帧间预测。Specifically, whether the current image block uses CIIP is determined according to the value of the syntax element ciip_flag. If the value of ciip_flag is 1, it indicates that the current image block uses the CIIP mode for inter-frame prediction, otherwise, the value of ciip_flag is 0, indicating that the current image block does not use the CIIP mode for inter-frame prediction.
同样的,ciip_flag的值,可以按照上述实施例所述的通过解析语法元素来确定,也可以通过推导得到。如果满足上述预设解析条件4),则解码器从码流中解析获得ciip_flag的值,否则,当码流中不存在该语法元素的值时,ciip_flag的值根据以下预设推导条件推导得到:Similarly, the value of ciip_flag can be determined by parsing the syntax element as described in the above embodiment, or can be obtained by derivation. If the above preset parsing condition 4) is met, the decoder parses the bitstream to obtain the value of ciip_flag, otherwise, when the value of the syntax element does not exist in the bitstream, the value of ciip_flag is derived according to the following preset derivation conditions:
如果以下预设推导条件h)至l)均成立,则ciip_flag的值设置为1,否则,ciip_flag的值设置为0。If the following preset derivation conditions h) to l) are all met, the value of ciip_flag is set to 1, otherwise, the value of ciip_flag is set to 0.
h)allowCIIP为1h)allowCIIP is 1
i)general_merge_flag为1i) general_merge_flag is 1
j)regular_merge_flag为0j) regular_merge_flag is 0
k)merge_mmvd_flag为0k)merge_mmvd_flag is 0
l)merge_subblock_flag为0。l)merge_subblock_flag is 0.
或者,当码流中不存在该语法元素的值时或不满足上述预设解析条件4)时,也可以使用以下预设推导条件进行推导得到:Alternatively, when the value of the syntax element does not exist in the bitstream or the above preset parsing condition 4) is not satisfied, the following preset derivation conditions may be used for derivation:
如果以下预设推导条件h)至l)及l2)均成立,则ciip_flag的值设置为1,否则,ciip_flag的值设置为0。If the following preset derivation conditions h) to l) and l2) are all met, the value of ciip_flag is set to 1, otherwise, the value of ciip_flag is set to 0.
h)allowCIIP为1h)allowCIIP is 1
i)general_merge_flag为1i) general_merge_flag is 1
j)regular_merge_flag为0j) regular_merge_flag is 0
k)merge_mmvd_flag为0k)merge_mmvd_flag is 0
l)merge_subblock_flag为0l)merge_subblock_flag is 0
l2)CuPredMode[x0][y0]为MODE_INTER。l2)CuPredMode[x0][y0] is MODE_INTER.
如果ciip_flag的值为0,则当前图像块使用TPM进行帧间预测。If the value of ciip_flag is 0, the current image block uses TPM for inter-frame prediction.
或者,如果ciip_flag为0,可选的,MergeTriangleFlag值设置为1,当前图像块使用TPM进行帧间预测。Alternatively, if ciip_flag is 0, optionally, the MergeTriangleFlag value is set to 1 and the current image block uses TPM for inter-frame prediction.
或者,如果以下预设推导条件m)至r)均成立,则MergeTriangleFlag值为1,否则为0。Alternatively, if the following preset derivation conditions m) to r) are all met, the MergeTriangleFlag value is 1, otherwise it is 0.
m)allowTPM为1m)allowTPM is 1
n)general_merge_flag[x0][y0]为1n)general_merge_flag[x0][y0] is 1
o)regular_merge_flag[x0][y0]为0o)regular_merge_flag[x0][y0] is 0
p)mmvd_merge_flag[x0][y0]为0p)mmvd_merge_flag[x0][y0] is 0
q)merge_subblock_flag[x0][y0]为0q)merge_subblock_flag[x0][y0] is 0
r)ciip_flag[x0][y0]为0r)ciip_flag[x0][y0] is 0
或者,如果以下预设推导条件m)至r)及s)均成立,则MergeTriangleFlag值为1,否则为0。Alternatively, if the following preset derivation conditions m) to r) and s) are all met, the MergeTriangleFlag value is 1, otherwise it is 0.
m)allowTPM为1m)allowTPM is 1
n)general_merge_flag[x0][y0]为1n)general_merge_flag[x0][y0] is 1
o)regular_merge_flag[x0][y0]为0o)regular_merge_flag[x0][y0] is 0
p)mmvd_merge_flag[x0][y0]为0p)mmvd_merge_flag[x0][y0] is 0
q)merge_subblock_flag[x0][y0]为0q)merge_subblock_flag[x0][y0] is 0
r)ciip_flag[x0][y0]为0r)ciip_flag[x0][y0] is 0
s)CuPredMode[x0][y0]为MODE_INTERs)CuPredMode[x0][y0] is MODE_INTER
进一步的,如果merge_triangle_flag值为1,解码器可以解析TPM相关的语法元素,如merge_triangle_split_dir,merge_triangle_idx0、merge_triangle_idx1等。Furthermore, if the merge_triangle_flag value is 1, the decoder can parse TPM-related syntax elements, such as merge_triangle_split_dir, merge_triangle_idx0, merge_triangle_idx1, etc.
在本申请实施例中,在解码器确定当前图像块使用融合模式进行帧间预测的前提下,如果当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式,则解码器根据码流中解析获得的当前图像块的第一标识的值的指示,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块,而无需再解析K个备选融合模式中除当前融合模式外的各个融合模式的第一标识的值,由此去除了融合语法元素的解析冗余,在一定程度上降低解码的复杂度,提升解码效率。In an embodiment of the present application, on the premise that the decoder determines that the current image block uses a fusion mode for inter-frame prediction, if the current image block allows the use of the current fusion mode, and the current image block allows the use of a fusion mode other than the current fusion mode among K alternative fusion modes, the decoder uses the current fusion mode to perform inter-frame prediction on the current image block according to the indication of the value of the first identifier of the current image block obtained by parsing in the bitstream to obtain a prediction block of the current image block, without further parsing the values of the first identifiers of each fusion mode other than the current fusion mode among the K alternative fusion modes, thereby removing the parsing redundancy of the fusion syntax elements, reducing the complexity of decoding to a certain extent, and improving decoding efficiency.
基于前述实施例,本申请实施例提供一种帧间预测方法,该方法可以由上述实施例中的视频编码器执行。Based on the foregoing embodiments, an embodiment of the present application provides an inter-frame prediction method, which can be executed by the video encoder in the foregoing embodiments.
图10为本申请实施例中的帧间预测方法的流程示意图二,参见图10所示,该方法可以包括:FIG. 10 is a second flow chart of the inter-frame prediction method in the embodiment of the present application. Referring to FIG. 10 , the method may include:
S1001:确定对当前图像块使用融合模式进行帧间预测;S1001: Determine to use a fusion mode to perform inter-frame prediction on a current image block;
这里,编码器可以根据RD Cost确定当前图像块的帧间预测参数是否由相邻的帧间预测块获取得到,也就是确定对当前图像块是否使用融合模式进行帧间预测的预测参数。如果编码器确定当前图像块使用融合模式进行帧间预测,则将语法元素general_merge_flag设置为第一值(如general_merge_flag设置为1),反之,如果编码器确定当前图像块不使用融合模式进行帧间预测,则将语法元素general_merge_flag设置为第二值(如general_merge_flag设置为0),最后,编码器将general_merge_flag的值携带在码流中传递给解码器。Here, the encoder can determine whether the inter-frame prediction parameters of the current image block are obtained from the adjacent inter-frame prediction blocks according to the RD Cost, that is, determine whether the prediction parameters of the inter-frame prediction are performed using the fusion mode for the current image block. If the encoder determines that the current image block uses the fusion mode for inter-frame prediction, the syntax element general_merge_flag is set to a first value (such as general_merge_flag is set to 1), conversely, if the encoder determines that the current image block does not use the fusion mode for inter-frame prediction, the syntax element general_merge_flag is set to a second value (such as general_merge_flag is set to 0), and finally, the encoder carries the value of general_merge_flag in the bitstream and passes it to the decoder.
在一些可能的实施方式中,编码器无需将general_merge_flag写入码流中,此时,解码器可以使用以下方法进行推导:如果cu_skip_flag(用于指示当前图像块是否使用skip模式的语法元素)为第一值,则general_merge_flag为第一值,反之,cu_skip_flag为第二值,general_merge_flag为第二值。In some possible implementations, the encoder does not need to write general_merge_flag into the bitstream. In this case, the decoder can use the following method for derivation: if cu_skip_flag (a syntax element used to indicate whether the current image block uses skip mode) is a first value, then general_merge_flag is a first value; otherwise, cu_skip_flag is a second value and general_merge_flag is a second value.
那么,编码器可以在确定对当前图像块使用融合模式进行帧间预测之后,执行S1002。Then, the encoder may perform S1002 after determining to use the fusion mode to perform inter-frame prediction on the current image block.
S1002:从K个备选融合模式中确定对当前图像块允许使用的至少一个融合模式;S1002: Determine at least one fusion mode allowed to be used for the current image block from K candidate fusion modes;
其中,解码端和编码端可以预先协商或者协议规定有融合模式集合(或称为融合模式列表),融合模式集合中可以包括多个备选融合模式。上述K个备选融合模式可以为融合模式集合中的所有融合模式,也可以为融合模式集合中未确定当前图像块是否允许使用的融合模式。The decoding end and the encoding end may pre-negotiate or stipulate by agreement a fusion mode set (or fusion mode list), and the fusion mode set may include multiple candidate fusion modes. The K candidate fusion modes may be all fusion modes in the fusion mode set, or may be fusion modes in the fusion mode set for which it is not determined whether the current image block is allowed to use.
无论K个融合模式为融合模式集合的部分还是全部,这K个备选融合模式可以包括上述融合模式中的一种或者多种,例如,K个备选融合模式可以包括:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM;或者,K个备选融合模式还可以包括:MMVD模式、SBMM、CIIP模式、TPM。当然,K个备选融合模式还可以包括其他融合模式,本申请实施例不做具体限定。Regardless of whether the K fusion modes are part or all of the fusion mode set, the K candidate fusion modes may include one or more of the above fusion modes. For example, the K candidate fusion modes may include: traditional fusion mode, MMVD mode, SBMM, CIIP mode, TPM; or, the K candidate fusion modes may also include: MMVD mode, SBMM, CIIP mode, TPM. Of course, the K candidate fusion modes may also include other fusion modes, which are not specifically limited in the embodiments of the present application.
这里,编码器通过S1001确定对当前图像块使用融合模式之后,可以通过预先存储的语法元素或者推导得到的语法元素获得上述实施例中所述的预测参数,然后,编码器根据预测参数,确定当前图像块是否允许使用K个备选融合模式中的各个融合模式,即获得各个融合模式的第二标识的值,并进而根据第二标识的值确定当前图像块是否允许使用各个融合模式。具体的,编码器可以通过上述实施例中公式(1)至(4)获得融合模式的第二标识的值,在此不再赘述。在实际应用中,编码器可以无需将各个融合模式的第二标识的值传递给解码器,解码器可以通过上述公式(1)至(4)计算获得。Here, after the encoder determines to use a fusion mode for the current image block through S1001, the prediction parameters described in the above embodiment can be obtained through pre-stored syntax elements or derived syntax elements. Then, the encoder determines whether the current image block is allowed to use each of the K candidate fusion modes based on the prediction parameters, that is, obtains the value of the second identifier of each fusion mode, and then determines whether the current image block is allowed to use each fusion mode based on the value of the second identifier. Specifically, the encoder can obtain the value of the second identifier of the fusion mode through formulas (1) to (4) in the above embodiment, which will not be repeated here. In actual applications, the encoder does not need to pass the value of the second identifier of each fusion mode to the decoder, and the decoder can obtain it through the above formulas (1) to (4).
S1003:从至少一个融合模式中确定出目标融合模式;S1003: Determine a target fusion mode from at least one fusion mode;
这里,编码器通过S1002确定出对当前图像块允许使用的融合模式之后,分别计算各个融合模式对应的RD Cost,从中选择一个RD Cost最小的融合模式作为目标融合模式,其中,目标融合模式就是对当前图像块最终使用的融合模式。进一步地,编码器可以设置目标融合模式的第一标识的值,并将目标融合模式的第一标识的值携带在码流中传递给解码器。具体的,编码器可以首先判断各个融合模式的第二标识的值是否满足预设解析条件,若满足预设条件,则将相应的融合模式的第一标识的值按照上表4所示的语法表所示携带在码流中传递给解码器。Here, after the encoder determines the fusion mode allowed for the current image block through S1002, it calculates the RD Cost corresponding to each fusion mode, and selects a fusion mode with the smallest RD Cost as the target fusion mode, where the target fusion mode is the fusion mode finally used for the current image block. Further, the encoder can set the value of the first identifier of the target fusion mode, and carry the value of the first identifier of the target fusion mode in the bitstream to the decoder. Specifically, the encoder can first determine whether the value of the second identifier of each fusion mode meets the preset parsing condition. If the preset condition is met, the value of the first identifier of the corresponding fusion mode is carried in the bitstream and passed to the decoder as shown in the syntax table shown in Table 4 above.
在一些可能的实施方式中,编码器在通过S1002获得各个融合模式的第二标识的值之后,就可以确定出对当前图像块允许使用哪些融合模式进行帧间预测,进而设置允许使用的融合模式的第一标识的值。例如,当allowMMVD为第一值时,编码器确定对当前图像块不允许使用MMVD模式进行帧间预测,进而编码器可以将MMVD模式的第一标识,即mmvd_merge_flag设置为第一值,反之,当allowMMVD为第二值时,编码器确定对当前图像块允许使用MMVD模式进行帧间预测,进而编码器可以将MMVD模式的第一标识,即mmvd_merge_flag设置为第二值。对于其他融合模式可以以此类推,如此,编码器就可以获得对当前图像块允许使用的融合模式的第一标识的值,进而编码器可以第二标识的值满足预设条件的融合模式的第一标识的值按照上表4所示的语法表所示携带在码流中传递给解码器。In some possible implementations, after the encoder obtains the value of the second identifier of each fusion mode through S1002, it can determine which fusion modes are allowed to be used for the current image block for inter-frame prediction, and then set the value of the first identifier of the fusion mode allowed to be used. For example, when allowMMVD is the first value, the encoder determines that the MMVD mode is not allowed to be used for inter-frame prediction for the current image block, and then the encoder can set the first identifier of the MMVD mode, that is, mmvd_merge_flag, to the first value. On the contrary, when allowMMVD is the second value, the encoder determines that the MMVD mode is allowed to be used for inter-frame prediction for the current image block, and then the encoder can set the first identifier of the MMVD mode, that is, mmvd_merge_flag, to the second value. For other fusion modes, the same can be applied. In this way, the encoder can obtain the value of the first identifier of the fusion mode allowed to be used for the current image block, and then the encoder can carry the value of the first identifier of the fusion mode whose second identifier value satisfies the preset condition in the code stream according to the syntax table shown in Table 4 above and pass it to the decoder.
在具体实施过程中,编码器还可以按照K个备选融合模式的顺序,依次设置允许使用的融合模式的第一标识的值。例如,允许使用的融合模式的顺序可以为:MMVD模式→SBMM→CIIP模式,那么,编码器可以将MMVD模式的第一标识,即mmvd_merge_flag设置为第二值,然后将SBMM和CIIP模式的第一标识,即merge_subblock_flag和ciip_flag设置为第一值,而无需再逐一进行判断。进而编码器就可以获得对当前图像块允许使用的融合模式的第一标识的值,进而编码器可以第二标识的值满足预设条件的融合模式的第一标识的值按照上表4所示的语法表所示携带在码流中传递给解码器。In the specific implementation process, the encoder can also set the value of the first identifier of the fusion mode allowed to be used in sequence according to the order of K alternative fusion modes. For example, the order of the fusion modes allowed to be used can be: MMVD mode → SBMM → CIIP mode, then the encoder can set the first identifier of the MMVD mode, that is, mmvd_merge_flag, to the second value, and then set the first identifiers of the SBMM and CIIP modes, that is, merge_subblock_flag and ciip_flag, to the first value, without having to judge one by one. Then the encoder can obtain the value of the first identifier of the fusion mode allowed to be used for the current image block, and then the encoder can carry the value of the first identifier of the fusion mode whose value of the second identifier meets the preset conditions in the code stream and pass it to the decoder according to the syntax table shown in Table 4 above.
在上述过程中,编码器判断第二标识的值是否满足预设解析条件的过程与上述实施例中解码器判断第二标识的值是否满足预设解析条件的过程类似,具体参见上述实施例,在此不不再赘述。那么,当第二标识的值满足预设解析条件时,编码器将对应的融合模式的第一标识的值携带在码流中传递给解码器,使得解码器可以从码流中解析获得第一标识的值,否则,编码器无需将第一标识的值携带在码流中传递给解码器。In the above process, the process of the encoder determining whether the value of the second identifier satisfies the preset parsing condition is similar to the process of the decoder determining whether the value of the second identifier satisfies the preset parsing condition in the above embodiment. For details, please refer to the above embodiment, which will not be repeated here. Then, when the value of the second identifier satisfies the preset parsing condition, the encoder carries the value of the first identifier of the corresponding fusion mode in the bitstream and passes it to the decoder, so that the decoder can parse the bitstream to obtain the value of the first identifier. Otherwise, the encoder does not need to carry the value of the first identifier in the bitstream and pass it to the decoder.
S1004:对当前图像块使用目标融合模式进行帧间预测,以得到当前图像块的预测块。S1004: Perform inter-frame prediction on the current image block using the target fusion mode to obtain a prediction block of the current image block.
至此,编码器完成了对当前图像块的帧间预测过程。At this point, the encoder has completed the inter-frame prediction process for the current image block.
基于相同的发明构思,本申请实施例提供一种帧间预测装置,可以应用于上述实施例所述的视频解码器中。Based on the same inventive concept, an embodiment of the present application provides an inter-frame prediction device, which can be applied to the video decoder described in the above embodiment.
图11为本申请实施例中的帧间预测装置的结构示意图,参见图11所示,该帧间预测装置1100可以包括:确定模块1101,用于在确定对当前图像块使用融合模式进行帧间预测后,确定当前图像块是否允许使用K个备选融合模式中的各个融合模式,K为大于或者等于2的正整数;解析模块1102,用于在当前图像块允许使用当前融合模式,且当前图像块允许使用K个备选融合模式中除当前融合模式外的融合模式的情况下,从码流中解析获得当前融合模式的第一标识的值;预测模块1103,用于在第一标识的值指示当前图像块进行帧间预测的融合模式为当前融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。Figure 11 is a structural schematic diagram of an inter-frame prediction device in an embodiment of the present application. Referring to Figure 11, the inter-frame prediction device 1100 may include: a determination module 1101, which is used to determine whether the current image block is allowed to use each fusion mode of K candidate fusion modes after determining to use the fusion mode for inter-frame prediction of the current image block, where K is a positive integer greater than or equal to 2; a parsing module 1102, which is used to parse and obtain the value of a first identifier of the current fusion mode from the bitstream when the current image block is allowed to use the current fusion mode and the current image block is allowed to use a fusion mode other than the current fusion mode among the K candidate fusion modes; a prediction module 1103, which is used to perform inter-frame prediction on the current image block using the current fusion mode when the value of the first identifier indicates that the fusion mode for inter-frame prediction of the current image block is the current fusion mode, so as to obtain a prediction block of the current image block.
在一些可能的实施方式中,预测模块,还用于在当前图像块不允许使用K个备选融合模式除当前融合模式外的融合模式的情况下,使用当前融合模式对当前图像块进行帧间预测,以得到当前图像块的预测块。In some possible implementations, the prediction module is further used to perform inter-frame prediction on the current image block using the current fusion mode to obtain a prediction block of the current image block when the current image block does not allow the use of K alternative fusion modes other than the current fusion mode.
在一些可能的实施方式中,确定模块,用于获取当前图像块对应的预测参数;根据预测参数,确定当前图像块是否允许使用各个融合模式;其中,预测参数包括以下一个或者多个:与当前图像块相关的上级视频处理单元的语法元素的指示、当前图像块的尺寸、用于指示当前图像块是否具有残差的指示信息、上级视频处理单元的类型。In some possible implementations, a determination module is used to obtain prediction parameters corresponding to the current image block; based on the prediction parameters, it is determined whether the current image block is allowed to use various fusion modes; wherein the prediction parameters include one or more of the following: an indication of a syntax element of a parent video processing unit related to the current image block, the size of the current image block, indication information for indicating whether the current image block has a residual, and the type of the parent video processing unit.
在一些可能的实施方式中,上级视频处理单元包括当前图像块所在片、当前图像块所在片组、当前图像块所在图像或者当前图像块所在视频序列。In some possible implementations, the upper-level video processing unit includes a slice where the current image block is located, a slice group where the current image block is located, an image where the current image block is located, or a video sequence where the current image block is located.
在一些可能的实施方式中,解析模块,用于在当前图像块允许使用MMVD模式、SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得传统的融合模式的regular_merge_flag的值;其中,regular_merge_flag为传统的融合模式的第一标识。In some possible implementations, the parsing module is used to parse and obtain the value of regular_merge_flag of the traditional fusion mode from the bitstream when the current image block allows the use of at least one of the MMVD mode, SBMM, CIIP mode, and TPM; wherein regular_merge_flag is the first identifier of the traditional fusion mode.
在一些可能的实施方式中,解析模块,用于在当前图像块允许使用MMVD模式,且当前图像块允许使用SBMM、CIIP模式、TPM中的至少一种的情况下,从码流中解析获得MMVD模式的mmvd_merge_flag的值;其中,mmvd_merge_flag为MMVD模式的第一标识。In some possible implementations, the parsing module is used to parse and obtain the value of mmvd_merge_flag of the MMVD mode from the bitstream when the current image block allows the use of the MMVD mode and the current image block allows the use of at least one of the SBMM, CIIP mode, and TPM; wherein mmvd_merge_flag is the first identifier of the MMVD mode.
在一些可能的实施方式中,解析模块,用于在当前图像块允许使用SBMM模式,且当前图像块允许使用CIIP模式和/或TPM的情况下,从码流中解析获得SBMM的merge_subblock_flag的值;其中,merge_subblock_flag为SBMM的第一标识。In some possible implementations, the parsing module is used to parse and obtain the value of merge_subblock_flag of SBMM from the bitstream when the current image block allows the use of SBMM mode and the current image block allows the use of CIIP mode and/or TPM; wherein merge_subblock_flag is the first identifier of SBMM.
在一些可能的实施方式中,解析模块,用于在当前图像块允许使用CIIP模式和TPM的情况下,从码流中解析获得CIIP模式的ciip_flag的值;其中,ciip_flag为CIIP模式的第一标识。In some possible implementations, the parsing module is used to parse and obtain the value of ciip_flag of the CIIP mode from the bitstream when the current image block allows the use of the CIIP mode and TPM; wherein ciip_flag is the first identifier of the CIIP mode.
在一些可能的实施方式中,装置还包括:推导模块,用于当当前图像块不允许使用当前融合模式,或者当前图像块不允许使用K个备选融合模式中除当前融合模式外的融合模式时,通过推导获得当前融合模式的第一标识的值。In some possible implementations, the device also includes: a derivation module, which is used to obtain the value of the first identifier of the current fusion mode by derivation when the current image block does not allow the use of the current fusion mode, or the current image block does not allow the use of a fusion mode other than the current fusion mode among K alternative fusion modes.
在一些可能的实施方式中,装置还包括:推导模块,用于当无法从码流中解析获得当前融合模式的第一标识的值时,通过推导获得当前融合模式的第一标识的值。In some possible implementations, the device further includes: a derivation module, configured to obtain the value of the first identifier of the current fusion mode by derivation when the value of the first identifier of the current fusion mode cannot be obtained by parsing the bitstream.
在一些可能的实施方式中,当前融合模式为传统的融合模式,推导模块,用于将general_merge_flag设置为regular_merge_flag的值;或者,将regular_merge_flag的值设置为第一值;其中,general_merge_flag用于指示当前图像块的帧间预测参数是否由相邻的帧间预测块获取得到,regular_merge_flag为传统的融合模式的第一标识。In some possible implementations, the current fusion mode is a traditional fusion mode, and the derivation module is used to set general_merge_flag to the value of regular_merge_flag; or, to set the value of regular_merge_flag to a first value; wherein general_merge_flag is used to indicate whether the inter-frame prediction parameters of the current image block are obtained from adjacent inter-frame prediction blocks, and regular_merge_flag is the first identifier of the traditional fusion mode.
在一些可能的实施方式中,当前融合模式为MMVD模式,推导模块,用于在满足第一推导条件的情况下,将MMVD模式的第一标识mmvd_merge_flag的值设置为第一值;其中,第一推导条件包括:当前图像块允许使用MMVD模式。In some possible implementations, the current fusion mode is the MMVD mode, and the derivation module is used to set the value of the first identifier mmvd_merge_flag of the MMVD mode to a first value when a first derivation condition is met; wherein the first derivation condition includes: the current image block allows the use of the MMVD mode.
在一些可能的实施方式中,当前融合模式为SBMM,推导模块,用于在满足第二推导条件的情况下,将SBMM的第一标识merge_subblock_flag的值设置为第一值;其中,第二推导条件包括:当前图像块允许使用SBMM。In some possible implementations, the current fusion mode is SBMM, and the derivation module is used to set the value of the first identifier merge_subblock_flag of SBMM to a first value when a second derivation condition is met; wherein the second derivation condition includes: the current image block allows the use of SBMM.
在一些可能的实施方式中,当前融合模式为CIIP模式,推导模块,用于在满足第三推导条件的情况下,将CIIP模式的第一标识ciip_flag的值设置为第一值;其中,第三推导条件包括:当前图像块允许使用CIIP模式。In some possible implementations, the current fusion mode is the CIIP mode, and the derivation module is used to set the value of the first identifier ciip_flag of the CIIP mode to a first value when a third derivation condition is met; wherein the third derivation condition includes: the current image block allows the use of the CIIP mode.
在一些可能的实施方式中,当前融合模式为TPM,推导模块,用于在满足第四推导条件的情况下,将TPM的第一标识merge_triangle_flag的值设置为第一值;其中,第四推导条件包括:当前图像块允许使用TPM。In some possible implementations, the current fusion mode is TPM, and the derivation module is used to set the value of the first identifier merge_triangle_flag of TPM to the first value when a fourth derivation condition is met; wherein the fourth derivation condition includes: the current image block allows the use of TPM.
在一些可能的实施方式中,K个备选融合模式包括以下多个:传统的融合模式、MMVD模式、SBMM、CIIP模式、TPM。In some possible implementations, the K candidate fusion modes include the following: traditional fusion mode, MMVD mode, SBMM, CIIP mode, and TPM.
基于相同的发明构思,本申请实施例提供一种视频解码器,视频解码器用于从码流中解码出图像块,包括:熵解码模块,用于从码流中解码出索引标识,索引标识用于指示当前解码图像块的目标候选运动信息;如上述第二方面中任一项的帧间预测装置,帧间预测装置用于基于索引标识指示的目标候选运动信息预测当前解码图像块的运动信息,基于当前解码图像块的运动信息确定当前解码图像块的预测像素值;重建模块,用于基于预测像素值重建当前解码图像块。Based on the same inventive concept, an embodiment of the present application provides a video decoder, which is used to decode an image block from a bit stream, including: an entropy decoding module, which is used to decode an index identifier from the bit stream, and the index identifier is used to indicate the target candidate motion information of the current decoded image block; an inter-frame prediction device as any one of the second aspects above, the inter-frame prediction device is used to predict the motion information of the current decoded image block based on the target candidate motion information indicated by the index identifier, and determine the predicted pixel value of the current decoded image block based on the motion information of the current decoded image block; a reconstruction module, which is used to reconstruct the current decoded image block based on the predicted pixel value.
基于相同的发明构思,本申请实施例提供一种用于解码视频数据的设备,设备包括:存储器,用于存储码流形式的视频数据;视频解码器,用于从码流中解码出所述视频数据。Based on the same inventive concept, an embodiment of the present application provides a device for decoding video data, the device comprising: a memory for storing video data in the form of a code stream; and a video decoder for decoding the video data from the code stream.
基于相同的发明构思,本申请实施例提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面的任意一种方法的部分或全部步骤。Based on the same inventive concept, an embodiment of the present application provides a decoding device, comprising: a non-volatile memory and a processor coupled to each other, wherein the processor calls a program code stored in the memory to execute part or all of the steps of any one method of the first aspect.
基于相同的发明构思,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面的任意一种方法的部分或全部步骤的指令。Based on the same inventive concept, an embodiment of the present application provides a computer-readable storage medium, which stores program code, wherein the program code includes instructions for executing part or all of the steps of any one method of the first aspect.
基于相同的发明构思,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面的任意一种方法的部分或全部步骤。Based on the same inventive concept, an embodiment of the present application provides a computer program product. When the computer program product runs on a computer, the computer executes part or all of the steps of any one of the methods of the first aspect.
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。Those skilled in the art will appreciate that the functions described in conjunction with the various illustrative logic blocks, modules, and algorithm steps disclosed herein can be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions described in the various illustrative logic blocks, modules, and steps can be stored or transmitted as one or more instructions or codes on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or includes any communication media that facilitates the transfer of computer programs from one place to another (e.g., according to a communication protocol). In this way, computer-readable media can generally correspond to (1) non-temporary tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves. Data storage media can be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, codes, and/or data structures for implementing the technology described in this application. A computer program product may include a computer-readable medium.
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。As an example and not limitation, such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or any other media that can be used to store the desired program code in the form of instructions or data structures and can be accessed by a computer. Also, any connection is properly referred to as a computer-readable medium. For example, if a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwaves are used to transmit instructions from a website, server, or other remote source, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwaves are included in the definition of media. However, it should be understood that the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-temporary tangible storage media. As used herein, disks and optical disks include compact disks (CDs), laser optical disks, optical optical disks, digital versatile disks (DVDs), and Blu-ray disks, where disks typically reproduce data magnetically, while optical disks reproduce data optically using lasers. Combinations of the above should also be included within the scope of computer-readable media.
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuits. Thus, the term "processor" as used herein may refer to any of the aforementioned structures or any other structures suitable for implementing the techniques described herein. Additionally, in some aspects, the functions described by the various illustrative logic blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. Moreover, the techniques may be fully implemented in one or more circuits or logic elements.
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。The techniques of the present application may be implemented in a variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC), or a set of ICs (e.g., a chipset). Various components, modules, or units are described in this application to emphasize functional aspects of devices for performing the disclosed techniques, but do not necessarily need to be implemented by different hardware units. In fact, as described above, the various units may be combined in a codec hardware unit in conjunction with appropriate software and/or firmware, or provided by interoperating hardware units (including one or more processors as described above).
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has different emphases. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。The above is only an exemplary embodiment of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (26)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910554685 | 2019-06-25 | ||
CN2019105546857 | 2019-06-25 | ||
CN201910600591.9A CN112135129B (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910600591.9A Division CN112135129B (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118631997A true CN118631997A (en) | 2024-09-10 |
Family
ID=73849568
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410634304.7A Pending CN118631997A (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
CN201910600591.9A Active CN112135129B (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
CN202410646140.XA Pending CN118631998A (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910600591.9A Active CN112135129B (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
CN202410646140.XA Pending CN118631998A (en) | 2019-06-25 | 2019-07-04 | Inter-frame prediction method and device |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN118631997A (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1770863A (en) * | 2004-11-02 | 2006-05-10 | 华为技术有限公司 | Method for confirming zero block pre-determination condition and zero block pre-determination method |
CN103079072A (en) * | 2013-01-15 | 2013-05-01 | 清华大学 | Inter-frame prediction method, encoding equipment and decoding equipment |
CN105493505B (en) * | 2014-06-19 | 2019-08-06 | 微软技术许可有限责任公司 | Unified intra block duplication and inter-frame forecast mode |
US9918105B2 (en) * | 2014-10-07 | 2018-03-13 | Qualcomm Incorporated | Intra BC and inter unification |
US10057574B2 (en) * | 2015-02-11 | 2018-08-21 | Qualcomm Incorporated | Coding tree unit (CTU) level adaptive loop filter (ALF) |
EP3376764A4 (en) * | 2015-11-12 | 2019-12-04 | LG Electronics Inc. | Method and apparatus for coefficient induced intra prediction in image coding system |
EP3360329A4 (en) * | 2015-11-18 | 2019-04-10 | MediaTek Inc. | Method and apparatus for intra prediction mode using intra prediction filter in video and image compression |
CN109587479B (en) * | 2017-09-29 | 2023-11-10 | 华为技术有限公司 | Inter-frame prediction method and device for video image and coder-decoder |
CN109756737B (en) * | 2017-11-07 | 2020-11-17 | 华为技术有限公司 | Image prediction method and device |
GB2582929A (en) * | 2019-04-08 | 2020-10-14 | Canon Kk | Residual signalling |
-
2019
- 2019-07-04 CN CN202410634304.7A patent/CN118631997A/en active Pending
- 2019-07-04 CN CN201910600591.9A patent/CN112135129B/en active Active
- 2019-07-04 CN CN202410646140.XA patent/CN118631998A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN112135129A (en) | 2020-12-25 |
CN118631998A (en) | 2024-09-10 |
CN112135129B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113545040B (en) | Weighted prediction method and device for multi-hypothesis coding | |
CN111277828B (en) | Video encoding and decoding method, video encoder and video decoder | |
CN111953997B (en) | Method, device and codec for obtaining candidate motion vector list | |
CN113491132B (en) | Video image decoding method, video image encoding method, video image decoding device, video image encoding device, and readable storage medium | |
TWI806212B (en) | Video encoder, video decoder, and related methods | |
CN111416981B (en) | Video image decoding, encoding method and device | |
CN111355951A (en) | Video decoding method, device and decoding equipment | |
CN111788833B (en) | Inter-frame prediction method and device and corresponding encoder and decoder | |
CN112055200A (en) | MPM list construction method, and chroma block intra-frame prediction mode acquisition method and device | |
CN111385572B (en) | Prediction mode determining method and device, encoding device and decoding device | |
CN111355959A (en) | Image block division method and device | |
CN113366850B (en) | Video encoder, video decoder and corresponding methods | |
CN111294603B (en) | Video encoding and decoding method and device | |
WO2020114509A1 (en) | Video image encoding and decoding method and apparatus | |
WO2020155791A1 (en) | Inter-frame prediction method and device | |
CN111726617B (en) | Optimization method, device and coder-decoder for fusing motion vector difference technology | |
CN116684591A (en) | Video encoder, video decoder, and corresponding methods | |
CN112135129B (en) | Inter-frame prediction method and device | |
CN111726630B (en) | Processing method and device based on triangular prediction unit mode | |
WO2020186882A1 (en) | Triangle prediction unit mode-based processing method and device | |
WO2020187062A1 (en) | Method and apparatus for optimization for use in merge with motion vector difference technology, and encoder-decoder | |
WO2020135368A1 (en) | Inter-frame prediction method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |