[go: up one dir, main page]

CN118629216B - Road target recognition method and system based on radar and vision fusion - Google Patents

Road target recognition method and system based on radar and vision fusion Download PDF

Info

Publication number
CN118629216B
CN118629216B CN202411083444.6A CN202411083444A CN118629216B CN 118629216 B CN118629216 B CN 118629216B CN 202411083444 A CN202411083444 A CN 202411083444A CN 118629216 B CN118629216 B CN 118629216B
Authority
CN
China
Prior art keywords
radar
potential risk
road
target
data stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411083444.6A
Other languages
Chinese (zh)
Other versions
CN118629216A (en
Inventor
张星智
张超
文江涛
杨健龙
段琼
任勇
赵文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUAN HUATI LIGHTING TECHNOLOGY CO LTD
Original Assignee
SICHUAN HUATI LIGHTING TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN HUATI LIGHTING TECHNOLOGY CO LTD filed Critical SICHUAN HUATI LIGHTING TECHNOLOGY CO LTD
Priority to CN202411083444.6A priority Critical patent/CN118629216B/en
Publication of CN118629216A publication Critical patent/CN118629216A/en
Application granted granted Critical
Publication of CN118629216B publication Critical patent/CN118629216B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/62Extraction of image or video features relating to a temporal dimension, e.g. time-based feature extraction; Pattern tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/806Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Emergency Management (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)

Abstract

The application provides a road target identification method and a road target identification system based on a thunder fusion, which are characterized in that firstly, road target tracking characteristics of a thunder fusion data stream are extracted, potential risk targets are accurately identified based on the road target tracking characteristics, the monitoring range is effectively narrowed, the potential risk indexes of the targets are further calculated by acquiring tracking state path data of reference potential risk targets and combining the tracking state path data with global road target tracking characteristics, the potential risk indexes not only reflect the instant dangerous degree of the targets, but also disclose the abnormal behavior trend of the targets, and finally, the road target identification data generated based on the potential risk indexes provides visual and quantized risk assessment results for traffic management departments, and is beneficial to quick response and scientific scheduling, so that the safety and the traffic efficiency of road traffic are greatly improved. Therefore, the road target is efficiently and accurately identified and risk assessment is realized through the radar fusion technology and the refined risk assessment model.

Description

基于雷视融合的道路目标识别方法及系统Road target recognition method and system based on radar and vision fusion

技术领域Technical Field

本申请涉及人工智能技术领域,具体而言,涉及一种基于雷视融合的道路目标识别方法及系统。The present application relates to the field of artificial intelligence technology, and more specifically, to a road target recognition method and system based on radar-vision fusion.

背景技术Background Art

随着城市化进程的加快和机动车保有量的持续增长,城市交通管理面临着前所未有的挑战。道路拥堵、交通事故频发等问题日益凸显,对公众出行安全和城市运行效率构成了严重威胁。传统的交通监控手段主要依赖于单一的传感器技术,如地感线圈、视频摄像头等,这些技术在目标检测、跟踪及风险评估等方面存在明显局限性。例如,地感线圈安装复杂且感知范围有限,视频摄像头则易受光照、天气等环境因素影响,导致误报率和漏报率较高。With the acceleration of urbanization and the continuous growth of the number of motor vehicles, urban traffic management faces unprecedented challenges. Problems such as road congestion and frequent traffic accidents have become increasingly prominent, posing a serious threat to public travel safety and urban operation efficiency. Traditional traffic monitoring methods mainly rely on single sensor technology, such as ground sensing coils and video cameras, which have obvious limitations in target detection, tracking and risk assessment. For example, ground sensing coils are complex to install and have a limited sensing range, while video cameras are easily affected by environmental factors such as lighting and weather, resulting in high false alarm and missed alarm rates.

为了应对这些挑战,近年来雷视融合技术逐渐成为智能交通领域的研究热点。雷视融合技术通过结合雷达和视觉传感器的优势,实现了对道路目标的全方位、高精度感知。雷达传感器能够不受光照、雾霾等环境因素影响,准确测量目标的位置、速度等信息;而视觉传感器则能提供丰富的目标图像信息,有助于识别目标的类型和具体行为。将两者数据融合处理,不仅能够弥补单一传感器的不足,还能显著提升道路目标识别的准确性和鲁棒性。In order to meet these challenges, radar-visual fusion technology has gradually become a research hotspot in the field of intelligent transportation in recent years. By combining the advantages of radar and visual sensors, radar-visual fusion technology achieves all-round and high-precision perception of road targets. Radar sensors can accurately measure the position, speed and other information of the target without being affected by environmental factors such as light and haze; while visual sensors can provide rich target image information, which helps to identify the type and specific behavior of the target. Fusion processing of the two data can not only make up for the shortcomings of a single sensor, but also significantly improve the accuracy and robustness of road target recognition.

然而,现有的雷视融合道路目标识别方法多侧重于目标的静态检测与跟踪,缺乏对潜在风险目标的动态评估与预测。在实际交通场景中,潜在风险目标的识别与评估对于预防交通事故、优化交通流具有至关重要的意义。因此,开发一种能够实时、准确地识别潜在风险目标,并评估其潜在风险指数的方法显得尤为重要。However, existing methods for road target recognition based on radar and vision fusion mostly focus on static detection and tracking of targets, but lack dynamic evaluation and prediction of potential risk targets. In actual traffic scenarios, the identification and evaluation of potential risk targets are of vital importance for preventing traffic accidents and optimizing traffic flow. Therefore, it is particularly important to develop a method that can accurately identify potential risk targets in real time and evaluate their potential risk index.

发明内容Summary of the invention

鉴于上述提及的问题,结合本申请的第一方面,本申请实施例提供一种基于雷视融合的道路目标识别方法,所述方法包括:In view of the above-mentioned problems, in combination with the first aspect of the present application, an embodiment of the present application provides a road target recognition method based on radar-visual fusion, the method comprising:

获取雷视融合数据流的道路目标跟踪特征,所述雷视融合数据流的道路目标跟踪特征反映所述雷视融合数据流的内容表征;Acquire a road target tracking feature of a radar-vision fusion data stream, wherein the road target tracking feature of the radar-vision fusion data stream reflects a content representation of the radar-vision fusion data stream;

基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标;Based on the road target tracking characteristics of the radar and visual fusion data stream, determining at least one reference potential risk target in the radar and visual fusion data stream;

获取各个所述参考潜在风险目标的跟踪状态路径数据,基于各个所述参考潜在风险目标的跟踪状态路径数据和所述雷视融合数据流的道路目标跟踪特征,确定各个所述参考潜在风险目标的潜在风险指数,所述潜在风险指数反映所述参考潜在风险目标在所述雷视融合数据流中的异常行为趋势参数;Acquire the tracking state path data of each of the reference potential risk targets, and determine the potential risk index of each of the reference potential risk targets based on the tracking state path data of each of the reference potential risk targets and the road target tracking characteristics of the radar-visual fusion data stream, wherein the potential risk index reflects the abnormal behavior trend parameter of the reference potential risk target in the radar-visual fusion data stream;

基于各个所述参考潜在风险目标的潜在风险指数,确定所述雷视融合数据流的道路目标识别数据。Based on the potential risk index of each of the reference potential risk targets, the road target recognition data of the radar and visual fusion data stream is determined.

再一方面,本申请实施例还提供一种基于雷视融合的道路目标识别系统,包括处理器、机器可读存储介质,所述机器可读存储介质和所述处理器连接,所述机器可读存储介质用于存储程序、指令或代码,所述处理器用于执行所述机器可读存储介质中的程序、指令或代码,以实现上述的方法。On the other hand, an embodiment of the present application also provides a road target recognition system based on radar and vision fusion, including a processor and a machine-readable storage medium, wherein the machine-readable storage medium is connected to the processor, the machine-readable storage medium is used to store programs, instructions or codes, and the processor is used to execute the programs, instructions or codes in the machine-readable storage medium to implement the above method.

基于以上方面,本申请实施例通过融合雷达与视觉传感器的数据,显著提高了道路目标识别的准确性和实时性。首先提取雷视融合数据流的道路目标跟踪特征,全面表征了交通场景的动态变化,为后续的风险评估提供了丰富的基础信息。接着,基于这些道路目标跟踪特征精准识别出潜在风险目标,有效缩小了监控范围,使得交通管理部门能够集中精力关注高风险区域或对象。通过获取参考潜在风险目标的跟踪状态路径数据,并与全局的道路目标跟踪特征相结合,进一步计算了各目标的潜在风险指数,该潜在风险指数不仅反映了目标的即时危险程度,还揭示了其异常行为趋势,为预测和预防交通事故提供了科学依据。最终,基于潜在风险指数生成的道路目标识别数据,为交通管理部门提供了直观、量化的风险评估结果,有助于快速响应、科学调度,从而大幅提升道路交通的安全性和通行效率。由此,通过雷视融合技术和精细化的风险评估模型,实现了道路目标的高效、精准识别与风险评估。Based on the above aspects, the embodiment of the present application significantly improves the accuracy and real-time performance of road target recognition by fusing the data of radar and visual sensors. First, the road target tracking features of the radar-visual fusion data stream are extracted to comprehensively characterize the dynamic changes of the traffic scene, providing rich basic information for subsequent risk assessment. Then, based on these road target tracking features, potential risk targets are accurately identified, effectively narrowing the monitoring scope, so that the traffic management department can focus on high-risk areas or objects. By obtaining the tracking state path data of the reference potential risk target and combining it with the global road target tracking features, the potential risk index of each target is further calculated. The potential risk index not only reflects the immediate danger level of the target, but also reveals its abnormal behavior trend, providing a scientific basis for predicting and preventing traffic accidents. Finally, the road target recognition data generated based on the potential risk index provides the traffic management department with intuitive and quantitative risk assessment results, which is helpful for rapid response and scientific scheduling, thereby greatly improving the safety and traffic efficiency of road traffic. Therefore, through the radar-visual fusion technology and the refined risk assessment model, efficient and accurate identification and risk assessment of road targets are achieved.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本申请实施例提供的基于雷视融合的道路目标识别方法的执行流程示意图。FIG1 is a schematic diagram of the execution flow of a road target recognition method based on radar-visual fusion provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下面结合说明书附图对本申请进行具体说明,图1是本申请一种实施例提供的基于雷视融合的道路目标识别方法的流程示意图,下面对该基于雷视融合的道路目标识别方法进行详细介绍。The present application will be described in detail below in conjunction with the accompanying drawings in the specification. FIG1 is a flow chart of a road target recognition method based on radar-visual fusion provided by an embodiment of the present application. The road target recognition method based on radar-visual fusion will be introduced in detail below.

步骤S110,获取雷视融合数据流的道路目标跟踪特征,所述雷视融合数据流的道路目标跟踪特征反映所述雷视融合数据流的内容表征。Step S110 , obtaining a road target tracking feature of a radar and visual fusion data stream, wherein the road target tracking feature of the radar and visual fusion data stream reflects a content representation of the radar and visual fusion data stream.

本实施例中,在一个繁忙的城市交通网络中,部署了一套先进的交通监控系统,该交通监控系统集成了雷达和视觉传感器,能够实时采集并融合道路目标的跟踪数据,这些数据被组织成雷视融合数据流,并传输到服务器进行处理和分析。服务器的主要任务是从这些雷视融合数据中识别出潜在风险目标,并评估它们的潜在风险指数,以便交通管理部门能够及时采取措施预防交通事故。In this embodiment, an advanced traffic monitoring system is deployed in a busy urban traffic network. The traffic monitoring system integrates radar and visual sensors, and can collect and fuse the tracking data of road targets in real time. These data are organized into radar-visual fusion data streams and transmitted to the server for processing and analysis. The main task of the server is to identify potential risk targets from these radar-visual fusion data and evaluate their potential risk index so that the traffic management department can take timely measures to prevent traffic accidents.

详细地,服务器首先接入雷视融合数据流,该雷视融合数据流包含了来自雷达和视觉传感器的实时数据,这些数据经过预处理和融合,形成了包含丰富道路目标信息的跟踪数据。服务器通过解析这些数据,提取出道路目标跟踪特征,这些道路目标跟踪特征构成了第一特征矢量集合。In detail, the server first accesses the radar-visual fusion data stream, which contains real-time data from radar and visual sensors. These data are preprocessed and fused to form tracking data containing rich road target information. The server extracts road target tracking features by parsing these data, and these road target tracking features constitute a first feature vector set.

在一个示例中,服务器通过网络接口接收来自交通监控系统的雷视融合数据流,这些雷视融合数据流以连续的时间序列形式传输,每秒包含多个数据帧,每个数据帧都包含了道路目标的详细跟踪信息。对于每个数据帧,服务器运行特征提取算法,这些特征提取算法能够自动从雷达数据和视觉数据中提取出道路目标的关键特征,如车辆的速度、加速度、行驶方向、位置坐标、车型大小,以及行人的行走速度、行走方向等,这些特征被编码成矢量形式,并组合成第一特征矢量集合。第一特征矢量集合不仅包含了单个道路目标的特征,还通过综合多个道路目标的特征,反映了整个雷视融合数据流的全局内容表征。例如,服务器可以通过计算平均速度、最大速度差、目标密度等全局统计量,来进一步描述交通流的整体状态。In one example, a server receives radar-visual fusion data streams from a traffic monitoring system through a network interface. These radar-visual fusion data streams are transmitted in the form of continuous time series, containing multiple data frames per second, and each data frame contains detailed tracking information of road targets. For each data frame, the server runs feature extraction algorithms, which can automatically extract key features of road targets from radar data and visual data, such as vehicle speed, acceleration, driving direction, position coordinates, vehicle size, and pedestrian walking speed and walking direction. These features are encoded into vector form and combined into a first feature vector set. The first feature vector set not only contains the features of a single road target, but also reflects the global content representation of the entire radar-visual fusion data stream by integrating the features of multiple road targets. For example, the server can further describe the overall state of the traffic flow by calculating global statistics such as average speed, maximum speed difference, and target density.

步骤S120,基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标。Step S120: determining at least one reference potential risk target in the radar and visual fusion data stream based on the road target tracking characteristics of the radar and visual fusion data stream.

本实施例中,在获取了道路目标跟踪特征后,服务器进一步分析这些道路目标跟踪特征,以确定雷视融合数据流中的潜在风险目标。In this embodiment, after acquiring the road target tracking features, the server further analyzes these road target tracking features to determine potential risk targets in the radar-visual fusion data stream.

详细地,服务器运行模式识别算法(参见后续的道路目标识别网络部分),这些模式识别算法能够识别出符合特定风险模式的参考潜在风险目标。例如,可以根据历史事故数据学习到一些高风险行为模式,如急速变道、逆行、行人横穿马路等。当服务器在实时数据流中检测到类似的行为模式时,就会将这些目标标记为潜在风险目标。此外,还可以识别到偏离正常交通行为模式的道路目标。由此,服务器生成一个参考潜在风险目标列表,该参考潜在风险目标列表包含了所有被标记为潜在风险的道路目标。In detail, the server runs pattern recognition algorithms (see the subsequent road target recognition network section), which can identify reference potential risk targets that meet specific risk patterns. For example, some high-risk behavior patterns can be learned based on historical accident data, such as rapid lane changes, driving in the wrong direction, pedestrians crossing the road, etc. When the server detects similar behavior patterns in the real-time data stream, it will mark these targets as potential risk targets. In addition, road targets that deviate from normal traffic behavior patterns can also be identified. From this, the server generates a reference potential risk target list, which contains all road targets marked as potential risks.

步骤S130,获取各个所述参考潜在风险目标的跟踪状态路径数据,基于各个所述参考潜在风险目标的跟踪状态路径数据和所述雷视融合数据流的道路目标跟踪特征,确定各个所述参考潜在风险目标的潜在风险指数,所述潜在风险指数反映所述参考潜在风险目标在所述雷视融合数据流中的异常行为趋势参数。Step S130, obtaining the tracking status path data of each of the reference potential risk targets, and determining the potential risk index of each of the reference potential risk targets based on the tracking status path data of each of the reference potential risk targets and the road target tracking characteristics of the radar-visual fusion data stream, wherein the potential risk index reflects the abnormal behavior trend parameters of the reference potential risk target in the radar-visual fusion data stream.

本实施例中,对于每个参考潜在风险目标,服务器检索其跟踪状态路径数据,这些跟踪状态路径数据描述了参考潜在风险目标在过去一段时间内的运动轨迹和状态变化,如速度变化、方向变化、加速度等。In this embodiment, for each reference potential risk target, the server retrieves its tracking state path data, which describes the motion trajectory and state changes of the reference potential risk target over the past period of time, such as speed changes, direction changes, acceleration, etc.

服务器可以计算每个潜在风险目标的跟踪状态路径数据与第一特征矢量集合之间的匹配度。匹配度的计算可能涉及多种因素,如目标的速度与全局平均速度的偏差、目标的加速度是否异常、目标是否频繁改变行驶方向等。服务器将这些因素量化为具体的数值指标,并通过加权求和等方式计算出匹配度。基于匹配度计算结果,服务器为每个潜在风险目标分配一个潜在风险指数。该潜在风险指数反映了目标在雷视融合数据流中的异常行为趋势参数,即目标引发交通事故或交通拥堵的可能性大小。潜在风险指数的计算可以采用线性模型、非线性模型或机器学习模型等多种方法。The server can calculate the matching degree between the tracking state path data of each potential risk target and the first feature vector set. The matching degree calculation may involve multiple factors, such as the deviation of the target's speed from the global average speed, whether the target's acceleration is abnormal, whether the target frequently changes the driving direction, etc. The server quantifies these factors into specific numerical indicators and calculates the matching degree by weighted summation and other methods. Based on the matching degree calculation results, the server assigns a potential risk index to each potential risk target. The potential risk index reflects the abnormal behavior trend parameters of the target in the radar-vision fusion data stream, that is, the possibility of the target causing a traffic accident or traffic congestion. The calculation of the potential risk index can adopt a variety of methods such as linear models, nonlinear models or machine learning models.

例如,假设服务器检测到一辆车辆在过去5秒内速度持续加快,且行驶方向频繁改变。服务器首先提取该车辆的跟踪状态路径数据,包括速度序列和方向变化序列。然后,服务器将这些数据与第一特征矢量集合进行匹配度计算。在计算过程中,服务器发现该车辆的速度偏差显著高于全局平均速度偏差,且方向变化频率也远高于正常车辆。因此,服务器为该车辆分配了一个较高的潜在风险指数,表明其具有较高的交通事故风险。For example, suppose the server detects that a vehicle has been accelerating over the past 5 seconds and has frequently changed its direction. The server first extracts the tracking state path data of the vehicle, including the speed sequence and the direction change sequence. The server then calculates the matching degree of these data with the first feature vector set. During the calculation process, the server finds that the speed deviation of the vehicle is significantly higher than the global average speed deviation, and the frequency of direction changes is also much higher than that of normal vehicles. Therefore, the server assigns a higher potential risk index to the vehicle, indicating that it has a higher risk of traffic accidents.

步骤S140,基于各个所述参考潜在风险目标的潜在风险指数,确定所述雷视融合数据流的道路目标识别数据。Step S140, determining the road target recognition data of the radar and visual fusion data stream based on the potential risk index of each reference potential risk target.

最后,服务器根据各个参考潜在风险目标的潜在风险指数,生成道路目标识别数据,这些道路目标识别数据包括了雷视融合数据流中所有道路目标的识别结果,以及潜在风险目标的识别结果和潜在风险指数。Finally, the server generates road target recognition data based on the potential risk index of each reference potential risk target. The road target recognition data includes the recognition results of all road targets in the radar-vision fusion data stream, as well as the recognition results and potential risk index of the potential risk targets.

详细地, 服务器将所有道路目标的识别结果整合在一起,形成一份全面的道路目标识别报告。该道路目标识别报告包含了每个道路目标的类型(如车辆、行人、自行车等)、位置、速度、行驶方向等基本信息。Specifically, the server integrates the recognition results of all road targets to form a comprehensive road target recognition report. The road target recognition report contains basic information such as the type (such as vehicle, pedestrian, bicycle, etc.), location, speed, and driving direction of each road target.

对于那些潜在风险指数较高的目标,服务器在识别报告中进行突出显示,这些目标可能被标记为红色或高亮显示,以便交通管理部门能够迅速注意到它们。服务器将道路目标识别数据实时传输给交通管理部门或相关应用平台,这些道路目标识别数据可以通过网络接口以流式传输的方式发送,确保交通管理部门能够及时获取最新的交通信息。For those targets with higher potential risk index, the server will highlight them in the identification report. These targets may be marked in red or highlighted so that the traffic management department can quickly notice them. The server transmits the road target identification data to the traffic management department or related application platform in real time. These road target identification data can be sent in a streaming manner through the network interface to ensure that the traffic management department can obtain the latest traffic information in a timely manner.

基于以上步骤,本申请实施例通过融合雷达与视觉传感器的数据,显著提高了道路目标识别的准确性和实时性。首先提取雷视融合数据流的道路目标跟踪特征,全面表征了交通场景的动态变化,为后续的风险评估提供了丰富的基础信息。接着,基于这些道路目标跟踪特征精准识别出潜在风险目标,有效缩小了监控范围,使得交通管理部门能够集中精力关注高风险区域或对象。通过获取参考潜在风险目标的跟踪状态路径数据,并与全局的道路目标跟踪特征相结合,进一步计算了各目标的潜在风险指数,该潜在风险指数不仅反映了目标的即时危险程度,还揭示了其异常行为趋势,为预测和预防交通事故提供了科学依据。最终,基于潜在风险指数生成的道路目标识别数据,为交通管理部门提供了直观、量化的风险评估结果,有助于快速响应、科学调度,从而大幅提升道路交通的安全性和通行效率。由此,通过雷视融合技术和精细化的风险评估模型,实现了道路目标的高效、精准识别与风险评估。Based on the above steps, the embodiment of the present application significantly improves the accuracy and real-time performance of road target recognition by fusing the data of radar and visual sensors. First, the road target tracking features of the radar-visual fusion data stream are extracted to comprehensively characterize the dynamic changes of the traffic scene, providing rich basic information for subsequent risk assessment. Then, based on these road target tracking features, potential risk targets are accurately identified, effectively narrowing the monitoring scope, so that the traffic management department can focus on high-risk areas or objects. By obtaining the tracking state path data of the reference potential risk target and combining it with the global road target tracking features, the potential risk index of each target is further calculated. The potential risk index not only reflects the immediate danger level of the target, but also reveals its abnormal behavior trend, providing a scientific basis for predicting and preventing traffic accidents. Finally, the road target recognition data generated based on the potential risk index provides intuitive and quantitative risk assessment results for the traffic management department, which is helpful for rapid response and scientific scheduling, thereby greatly improving the safety and traffic efficiency of road traffic. Therefore, through the radar-visual fusion technology and the refined risk assessment model, efficient and accurate identification and risk assessment of road targets are achieved.

在一种可能的实施方式中,所述雷视融合数据流的道路目标跟踪特征包括第一特征矢量集合,所述第一特征矢量集合反映所述雷视融合数据流的全局内容表征。In a possible implementation manner, the road target tracking feature of the radar and visual fusion data stream includes a first feature vector set, and the first feature vector set reflects the global content representation of the radar and visual fusion data stream.

步骤S130包括:基于各个所述参考潜在风险目标的跟踪状态路径数据与所述第一特征矢量集合之间的匹配度,确定各个所述参考潜在风险目标的潜在风险指数。Step S130 includes: determining a potential risk index of each of the reference potential risk targets based on a matching degree between the tracking state path data of each of the reference potential risk targets and the first feature vector set.

在一个智能交通管理系统中,集成了雷达和视觉传感器,这些传感器部署在城市的主要交通节点上,如十字路口、高速公路入口等。雷达传感器能够精确测量目标(如车辆、行人)的距离、速度和方向,而视觉传感器则提供目标的详细图像信息,包括类型、颜色、尺寸等。In an intelligent traffic management system, radar and vision sensors are integrated and deployed at major traffic nodes in the city, such as intersections, highway entrances, etc. Radar sensors can accurately measure the distance, speed and direction of targets (such as vehicles and pedestrians), while vision sensors provide detailed image information of the target, including type, color, size, etc.

服务器实时接收来自这些传感器的原始数据,并对其进行融合处理。融合过程不仅结合了雷达和视觉传感器的优势,还通过复杂的算法去除了冗余信息和噪声,生成了高质量的雷视融合数据流。The server receives the raw data from these sensors in real time and performs fusion processing on them. The fusion process not only combines the advantages of radar and visual sensors, but also removes redundant information and noise through complex algorithms to generate high-quality radar-visual fusion data streams.

在雷视融合数据流中,道路目标的跟踪特征被抽象和编码成第一特征矢量集合,该集合是一个多维度的数据结构,每个维度代表了一个特定的特征,如目标的速度、加速度、位置坐标、行驶方向、类型(车辆、行人)、尺寸等,这些特征矢量共同构成了对当前交通场景的全局内容表征。In the radar-vision fusion data stream, the tracking features of road targets are abstracted and encoded into a first feature vector set, which is a multi-dimensional data structure. Each dimension represents a specific feature, such as the target's speed, acceleration, position coordinates, driving direction, type (vehicle, pedestrian), size, etc. These feature vectors together constitute a global content representation of the current traffic scene.

例如,在某个繁忙的十字路口,服务器接收到的雷视融合数据流中包含了多辆正在行驶的车辆和一个准备过马路的行人。对于每辆车,服务器根据其雷达和视觉数据生成一个特征矢量,该特征矢量包含了车辆的速度、加速度、当前位置(经纬度)、行驶方向(东、南、西、北或斜向)、车辆类型(轿车、卡车、公交车等)以及可能的尺寸信息。同样地,对于行人,服务器也会生成一个包含行走速度、方向、位置等信息的特征矢量。所有这些特征矢量被组织成第一特征矢量集合,全面反映了该十字路口当前的交通状况。For example, at a busy intersection, the radar-visual fusion data stream received by the server contains multiple vehicles in motion and a pedestrian who is about to cross the road. For each vehicle, the server generates a feature vector based on its radar and visual data. The feature vector contains the vehicle's speed, acceleration, current position (latitude and longitude), direction of travel (east, south, west, north or diagonal), vehicle type (sedan, truck, bus, etc.) and possible size information. Similarly, for pedestrians, the server also generates a feature vector containing information such as walking speed, direction, and position. All these feature vectors are organized into a first feature vector set, which fully reflects the current traffic conditions at the intersection.

在获取了第一特征矢量集合之后,服务器开始分析这些第一特征矢量集合以识别潜在的交通风险。服务器首先根据一定的规则或算法(如基于历史事故数据的模式识别)从雷视融合数据流中筛选出参考潜在风险目标,这些目标可以是行驶轨迹异常、速度过快或过慢、违反交通规则(如逆行、闯红灯)的车辆,或者是处于危险位置(如即将进入车辆盲区的行人)的行人。After obtaining the first feature vector set, the server begins to analyze these first feature vector sets to identify potential traffic risks. The server first selects reference potential risk targets from the radar-visual fusion data stream according to certain rules or algorithms (such as pattern recognition based on historical accident data). These targets can be vehicles with abnormal driving trajectories, vehicles with too fast or too slow speeds, vehicles that violate traffic rules (such as driving against traffic or running red lights), or pedestrians in dangerous positions (such as pedestrians about to enter the blind spot of a vehicle).

对于每个参考潜在风险目标,服务器检索其跟踪状态路径数据,这些数据记录了目标在过去一段时间内的运动轨迹和状态变化,如速度变化、方向变化、位置移动等。服务器将这些跟踪状态路径数据与第一特征矢量集合进行对比和分析,以评估目标的潜在风险。For each reference potential risk target, the server retrieves its tracking state path data, which records the target's movement trajectory and state changes over the past period of time, such as speed changes, direction changes, position movements, etc. The server compares and analyzes these tracking state path data with the first feature vector set to assess the potential risk of the target.

具体来说,服务器计算每个参考潜在风险目标的跟踪状态路径数据与第一特征矢量集合之间的匹配度。匹配度的计算考虑了多个因素,包括但不限于:Specifically, the server calculates the matching degree between the tracking state path data of each reference potential risk target and the first feature vector set. The matching degree calculation takes into account multiple factors, including but not limited to:

速度偏差:目标当前速度与全局平均速度或该类型目标典型速度的偏差程度。Speed Deviation: The degree of deviation between the target's current speed and the global average speed or the typical speed of this type of target.

加速度异常:目标加速度是否突然增加或减少,可能表明紧急制动或加速。Abnormal acceleration: Whether the target acceleration increases or decreases suddenly, which may indicate emergency braking or acceleration.

方向变化:目标行驶方向是否频繁变化或突然转向,可能增加碰撞风险。Direction changes: Whether the target's driving direction changes frequently or turns suddenly, which may increase the risk of collision.

位置与交通流的关系:目标当前位置是否处于交通流密集区域、交叉口、斑马线等高风险区域。The relationship between location and traffic flow: whether the target's current location is in a high-risk area such as a traffic-intensive area, intersection, or zebra crossing.

交通规则遵守情况:目标是否违反交通规则,如逆行、闯红灯等。Traffic rules compliance: whether the target violates traffic rules, such as driving in the wrong direction, running a red light, etc.

服务器将这些因素量化为具体的数值指标,并为每个指标分配一定的权重。然后,通过加权求和的方式计算出匹配度。匹配度越高,说明目标的跟踪状态路径与全局交通流或典型行为模式的偏差越大,其潜在风险也越高。The server quantifies these factors into specific numerical indicators and assigns a certain weight to each indicator. Then, the matching degree is calculated by weighted summation. The higher the matching degree, the greater the deviation between the target's tracking state path and the global traffic flow or typical behavior pattern, and the higher its potential risk.

基于匹配度计算结果,服务器为每个参考潜在风险目标分配一个潜在风险指数,该潜在风险指数是一个量化的风险评估结果,反映了目标在当前交通场景中引发交通事故或交通拥堵的可能性大小。潜在风险指数可以根据需要进行标准化处理,以便在不同时间和不同场景之间进行比较和分析。Based on the matching calculation results, the server assigns a potential risk index to each reference potential risk target. The potential risk index is a quantitative risk assessment result that reflects the probability of the target causing a traffic accident or traffic congestion in the current traffic scenario. The potential risk index can be standardized as needed to facilitate comparison and analysis between different times and scenarios.

例如,在之前的十字路口场景中,服务器识别出一辆快速接近斑马线且未减速的车辆作为参考潜在风险目标。服务器检索该车辆的跟踪状态路径数据,发现其速度远高于全局平均速度且加速度较大,同时其行驶方向直接指向行人正在通过的斑马线。服务器将这些数据与第一特征矢量集合进行对比分析,计算出较高的匹配度。基于匹配度结果,服务器为该车辆分配一个较高的潜在风险指数,并立即将这一信息发送给交通管理部门或相关应急响应机构以便采取及时措施预防交通事故的发生。For example, in the previous intersection scenario, the server identified a vehicle that was approaching the zebra crossing quickly and without slowing down as a reference potential risk target. The server retrieved the tracking status path data of the vehicle and found that its speed was much higher than the global average speed and its acceleration was large, and its driving direction was directly pointing to the zebra crossing where pedestrians were crossing. The server compared and analyzed these data with the first feature vector set and calculated a higher matching degree. Based on the matching result, the server assigned a higher potential risk index to the vehicle and immediately sent this information to the traffic management department or relevant emergency response agency so that timely measures can be taken to prevent traffic accidents.

在一种可能的实施方式中,步骤S140包括:将所述潜在风险指数符合第一设定要求的参考潜在风险目标,输出为所述雷视融合数据流中包含的潜在风险目标。其中,所述第一设定要求包括所述潜在风险指数不小于第一门限值,或者依据所述潜在风险指数的降序次序对各个所述参考潜在风险目标进行排列,位于排列结果的前i次序,i为设定正整数。In a possible implementation, step S140 includes: outputting the reference potential risk target whose potential risk index meets the first setting requirement as the potential risk target included in the radar-visual fusion data stream. The first setting requirement includes that the potential risk index is not less than a first threshold value, or arranging each of the reference potential risk targets in descending order of the potential risk index, and arranging them in the first i order of the arrangement result, where i is a set positive integer.

服务器在获取了所有参考潜在风险目标的潜在风险指数后,接下来需要根据这些潜在风险指数来确定哪些目标是当前雷视融合数据流中真正需要关注的潜在风险目标,这一步骤涉及对潜在风险指数进行筛选和排序,以输出符合特定条件的道路目标识别数据。After obtaining the potential risk indexes of all reference potential risk targets, the server needs to determine which targets are the potential risk targets that really need attention in the current radar-vision fusion data stream based on these potential risk indexes. This step involves screening and sorting the potential risk indexes to output road target recognition data that meets specific conditions.

服务器首先根据实际需求设定第一设定要求,这些第一设定要求可能基于交通规则、历史事故数据、当前交通流量等多种因素综合确定。在本场景中,假设服务器设定的第一设定要求有两个条件:一是潜在风险指数不小于第一门限值(例如,设定第一门限值为0.7,表示只有潜在风险指数高于或等于0.7的目标才会被视为高风险目标);二是依据潜在风险指数的降序次序排列,位于排列结果的前i个次序的目标也被视为高风险目标(例如,设定i为5,表示即使某些目标的潜在风险指数低于第一门限值,但只要它们的风险指数在所有目标中排名前五,也会被关注)。The server first sets the first setting requirements according to actual needs. These first setting requirements may be determined based on a variety of factors such as traffic rules, historical accident data, current traffic flow, etc. In this scenario, it is assumed that the first setting requirements set by the server have two conditions: one is that the potential risk index is not less than the first threshold value (for example, the first threshold value is set to 0.7, indicating that only targets with a potential risk index higher than or equal to 0.7 will be considered high-risk targets); the second is that targets in the first i order of the arrangement result are also considered high-risk targets according to the descending order of the potential risk index (for example, setting i to 5 means that even if the potential risk index of some targets is lower than the first threshold value, as long as their risk index ranks in the top five among all targets, they will also be paid attention to).

服务器遍历所有参考潜在风险目标及其对应的潜在风险指数。对于每个参考潜在风险目标,服务器首先检查其潜在风险指数是否不小于第一门限值(0.7)。如果是,则将该目标标记为高风险目标,并准备将其包含在最终的道路目标识别数据中。如果某个参考潜在风险目标的潜在风险指数小于第一门限值,服务器不会立即排除它,而是会继续考虑其在所有目标中的潜在风险指数排名。The server traverses all reference potential risk targets and their corresponding potential risk indexes. For each reference potential risk target, the server first checks whether its potential risk index is not less than the first threshold value (0.7). If so, the target is marked as a high-risk target and is prepared to be included in the final road target identification data. If the potential risk index of a reference potential risk target is less than the first threshold value, the server will not exclude it immediately, but will continue to consider its potential risk index ranking among all targets.

服务器将所有参考潜在风险目标按照潜在风险指数的降序进行排序,这意味着潜在风险最高的目标将排在列表的最前面。排序完成后,服务器截取排序结果中位于前i个次序的目标(在本例中为前5个),这些目标即使其潜在风险指数可能低于第一门限值,但由于它们的风险指数在所有目标中排名靠前,因此也被视为高风险目标。服务器将筛选和排序后确定的高风险目标(包括那些潜在风险指数不小于第一门限值的目标,以及排名在前i个的目标)整理成道路目标识别数据,这些道路目标识别数据可以包括目标的唯一标识符、类型(如车辆、行人)、位置坐标、速度、行驶方向、潜在风险指数等详细信息。The server sorts all reference potential risk targets in descending order of potential risk index, which means that the targets with the highest potential risk will be at the front of the list. After the sorting is completed, the server intercepts the targets in the top i order in the sorting result (the top 5 in this case). These targets are also considered high-risk targets because their risk index ranks high among all targets, even though their potential risk index may be lower than the first threshold value. The server organizes the high-risk targets determined after screening and sorting (including those targets whose potential risk index is not less than the first threshold value, and the targets ranked in the top i) into road target identification data, which can include detailed information such as the target's unique identifier, type (such as vehicle, pedestrian), location coordinates, speed, driving direction, potential risk index, etc.

服务器将这些道路目标识别数据实时传输给交通管理部门或相关应用平台,以便他们能够及时采取措施预防交通事故的发生。The server transmits these road target recognition data to the traffic management department or related application platforms in real time so that they can take timely measures to prevent traffic accidents.

例如,假设服务器在处理某个雷视融合数据流时识别出了10个参考潜在风险目标,并计算了它们的潜在风险指数。经过筛选和排序后,服务器发现:有3个潜在风险目标的潜在风险指数不小于0.7,分别是目标A(指数0.8)、目标B(指数0.75)和目标C(指数0.7)。在剩余的目标中,按照潜在风险指数的降序排列,前两位分别是目标D(指数0.65,排名第4)和目标E(指数0.6,排名第5)。如果服务器设定的i值为5,则最终输出的道路目标识别数据将包括目标A、B、C、D和E,因为它们要么潜在风险指数不小于0.7,要么在潜在风险指数排名中位于前5位,这些数据将实时传输给交通管理部门,以便他们关注这些高风险目标并采取相应措施。For example, suppose that the server identifies 10 reference potential risk targets when processing a certain radar-visual fusion data stream and calculates their potential risk index. After screening and sorting, the server finds that there are three potential risk targets with potential risk indexes not less than 0.7, namely target A (index 0.8), target B (index 0.75) and target C (index 0.7). Among the remaining targets, the top two are target D (index 0.65, ranked 4th) and target E (index 0.6, ranked 5th) in descending order of potential risk index. If the server sets the i value to 5, the final output road target recognition data will include targets A, B, C, D and E, because they either have a potential risk index not less than 0.7 or are in the top 5 in the potential risk index ranking. These data will be transmitted to the traffic management department in real time so that they can pay attention to these high-risk targets and take corresponding measures.

在一种可能的实施方式中,步骤S140包括:将所述潜在风险指数符合第二设定要求的参考潜在风险目标,输出为所述雷视融合数据流中包含的显著性潜在风险目标。其中,所述第二设定要求包括:所述潜在风险指数不小于第二门限值,或者依据所述潜在风险指数的降序次序对各个所述参考潜在风险目标进行排列,位于排列结果的前j次序,j为设定正整数。In a possible implementation, step S140 includes: outputting the reference potential risk target whose potential risk index meets the second setting requirement as a significant potential risk target included in the radar-visual fusion data stream. The second setting requirement includes: the potential risk index is not less than a second threshold value, or arranging each of the reference potential risk targets in descending order of the potential risk index, and being located in the first j order of the arrangement result, where j is a set positive integer.

本实施例中,服务器在获取了所有参考潜在风险目标的潜在风险指数后,将按照第二设定要求来筛选显著性潜在风险目标,这些目标在当前的交通流中具有极高的风险性,需要被特别关注。In this embodiment, after obtaining the potential risk indexes of all reference potential risk targets, the server will screen significant potential risk targets according to the second setting requirements. These targets have extremely high risks in the current traffic flow and need to be paid special attention.

服务器根据交通管理部门的需求或系统预设的安全标准,设定第二设定要求,这些要求通常比第一设定要求更为严格,以确保筛选出的显著性潜在风险目标真正具有高度的风险性。在本场景中,假设服务器设定的第二设定要求包括两个条件:一是潜在风险指数不小于第二门限值(例如,设定第二门限值为0.9,远高于第一门限值0.7,表示只有潜在风险指数极高的目标才会被视为显著性潜在风险目标);二是依据潜在风险指数的降序次序排列,位于排列结果的前j个次序的目标也被视为显著性潜在风险目标(例如,设定j为3,表示即使某些目标的潜在风险指数略低于第二门限值,但只要它们的风险指数在所有目标中排名前三,也会被特别关注)。The server sets the second set requirements according to the needs of the traffic management department or the safety standards preset by the system. These requirements are usually more stringent than the first set requirements to ensure that the significant potential risk targets screened out are truly highly risky. In this scenario, it is assumed that the second set requirements set by the server include two conditions: one is that the potential risk index is not less than the second threshold value (for example, the second threshold value is set to 0.9, which is much higher than the first threshold value of 0.7, indicating that only targets with extremely high potential risk indexes will be considered as significant potential risk targets); the second is that targets ranked in the first j order of the arrangement result are also considered as significant potential risk targets (for example, setting j to 3 means that even if the potential risk index of some targets is slightly lower than the second threshold value, as long as their risk index ranks in the top three among all targets, they will also receive special attention).

服务器首先遍历所有参考潜在风险目标及其对应的潜在风险指数。对于每个潜在风险目标,服务器检查其潜在风险指数是否不小于第二门限值(0.9)。如果是,则立即将该目标标记为显著性潜在风险目标。如果某个潜在风险目标的潜在风险指数小于第二门限值,服务器不会立即排除它,而是会将其纳入后续的排序和截取过程中。The server first traverses all reference potential risk targets and their corresponding potential risk indexes. For each potential risk target, the server checks whether its potential risk index is not less than the second threshold value (0.9). If so, the target is immediately marked as a significant potential risk target. If the potential risk index of a potential risk target is less than the second threshold value, the server will not exclude it immediately, but will include it in the subsequent sorting and interception process.

服务器将所有参考潜在风险目标按照潜在风险指数的降序进行排序,以确保潜在风险最高的目标排在列表的最前面。排序完成后,服务器截取排序结果中位于前j个次序的目标(在本例中为前3个),这些目标即使其潜在风险指数可能略低于第二门限值,但由于它们的风险指数在所有目标中排名非常靠前,因此也被视为显著性潜在风险目标。The server sorts all reference potential risk targets in descending order of potential risk index to ensure that the targets with the highest potential risk are at the top of the list. After the sorting is completed, the server intercepts the targets in the first j order of the sorting results (the first 3 in this example). Even if the potential risk index of these targets may be slightly lower than the second threshold value, they are also considered as significant potential risk targets because their risk index ranks very high among all targets.

服务器将筛选和排序后确定的显著性潜在风险目标整理成显著性潜在风险目标数据,这些数据通常包含目标的唯一标识符、类型(如车辆、行人)、位置坐标、速度、行驶方向、潜在风险指数等关键信息。服务器将这些显著性潜在风险目标数据实时传输给交通管理部门或相关应急响应机构,这些数据将作为交通管理部门制定应对措施和调度资源的重要依据。The server will sort the significant potential risk targets identified after screening and sorting into significant potential risk target data, which usually contains key information such as the target's unique identifier, type (such as vehicle, pedestrian), location coordinates, speed, driving direction, potential risk index, etc. The server will transmit these significant potential risk target data to the traffic management department or relevant emergency response agencies in real time, and these data will serve as an important basis for the traffic management department to formulate response measures and dispatch resources.

例如,假设服务器在处理某个雷视融合数据流时识别出了多个参考潜在风险目标,并计算了它们的潜在风险指数。经过筛选和排序后,服务器发现:For example, suppose the server identifies multiple reference potential risk targets when processing a certain radar fusion data stream and calculates their potential risk indexes. After screening and sorting, the server finds that:

有2个潜在风险目标的潜在风险指数不小于0.9,分别是目标F(指数0.95)和目标G(指数0.92),这两个潜在风险目标立即被标记为显著性潜在风险目标。There are two potential risk targets whose potential risk index is not less than 0.9, namely target F (index 0.95) and target G (index 0.92). These two potential risk targets are immediately marked as significant potential risk targets.

在剩余的目标中,按照潜在风险指数的降序排列,前一位是目标H(指数0.88,排名第3)。尽管其潜在风险指数低于第二门限值0.9,但由于在所有目标中排名第三,因此也被视为显著性潜在风险目标。Among the remaining targets, in descending order of potential risk index, the first one is target H (index 0.88, ranking 3rd). Although its potential risk index is lower than the second threshold value of 0.9, it is also considered a significant potential risk target because it ranks third among all targets.

最终,服务器输出的显著性潜在风险目标数据将包括目标F、G和H的详细信息,这些数据将实时传输给交通管理部门,以便他们立即关注这些高风险的显著性潜在风险目标,并采取相应的紧急措施来预防可能发生的交通事故。Ultimately, the significant potential risk target data output by the server will include detailed information on targets F, G, and H, which will be transmitted to the traffic management department in real time so that they can immediately pay attention to these high-risk significant potential risk targets and take corresponding emergency measures to prevent possible traffic accidents.

在一种可能的实施方式中,步骤S120包括:In a possible implementation, step S120 includes:

步骤S121,基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流的道路事件标签信息,所述雷视融合数据流的道路事件标签信息反映所述雷视融合数据流的道路事件所对应的标签知识点信息。Step S121, based on the road target tracking characteristics of the radar and vision fusion data stream, determining the road event label information of the radar and vision fusion data stream, wherein the road event label information of the radar and vision fusion data stream reflects the label knowledge point information corresponding to the road event of the radar and vision fusion data stream.

步骤S122,基于所述雷视融合数据流的道路目标跟踪特征和所述雷视融合数据流的道路事件标签信息,确定所述雷视融合数据流中的至少一个参考潜在风险目标。Step S122: determining at least one reference potential risk target in the radar and vision fusion data stream based on the road target tracking characteristics of the radar and vision fusion data stream and the road event label information of the radar and vision fusion data stream.

本实施例中,服务器首先接收并处理雷视融合数据流,提取出道路目标跟踪特征,如车辆的速度、加速度、位置、行驶方向,以及行人的行走速度、方向等,这些道路目标跟踪特征经过融合处理,形成了对当前交通场景的综合描述。In this embodiment, the server first receives and processes the radar-vision fusion data stream, extracts road target tracking features, such as the vehicle's speed, acceleration, position, and driving direction, as well as the pedestrian's walking speed and direction, etc. These road target tracking features are fused to form a comprehensive description of the current traffic scene.

接下来,服务器基于深度学习、机器学习或规则引擎等技术,能够自动识别数据流中隐含的道路事件。具体而言,考虑多个因素,如目标的运动轨迹、速度变化、位置关系等,以及历史事故数据和交通规则知识库。Next, the server can automatically identify road events hidden in the data stream based on technologies such as deep learning, machine learning or rule engines. Specifically, it considers multiple factors such as the target's movement trajectory, speed change, position relationship, etc., as well as historical accident data and traffic rules knowledge base.

当识别出某个道路事件时,服务器会根据事件的类型和特点,为其分配一个或多个道路事件标签,这些道路事件标签是预定义的,代表了不同的道路事件类型,如“车辆急停”、“行人横穿”、“交通事故现场”等。每个标签都关联着一系列的知识点信息,描述了该道路事件可能导致的后果、应对策略等。为了丰富标签的信息含量,服务器可能会查询一个标签知识库,该知识库包含了各种道路事件标签的详细描述、历史案例、应对措施等知识点信息。通过查询知识库,服务器能够为每个识别出的道路事件标签添加更多上下文信息和实用建议。When a road event is identified, the server will assign one or more road event tags to it according to the type and characteristics of the event. These road event tags are predefined and represent different types of road events, such as "vehicle emergency stop", "pedestrian crossing", "traffic accident scene", etc. Each tag is associated with a series of knowledge point information, describing the possible consequences and response strategies of the road event. In order to enrich the information content of the tag, the server may query a tag knowledge base, which contains detailed descriptions of various road event tags, historical cases, response measures and other knowledge point information. By querying the knowledge base, the server can add more contextual information and practical suggestions for each identified road event tag.

接下来,服务器将道路目标跟踪特征与道路事件标签信息进行关联分析,这种分析考虑了目标的位置、速度、行驶方向与事件标签之间的关系。例如,如果一个车辆目标正接近一个被标记为“行人横穿”的区域,并且其速度较快且没有减速迹象,那么该车辆就可能被视为一个潜在风险目标。Next, the server associates the road target tracking features with the road event tag information, which takes into account the relationship between the target's position, speed, driving direction and event tags. For example, if a vehicle target is approaching an area marked as "pedestrian crossing" and its speed is high and there is no sign of slowing down, then the vehicle may be considered a potential risk target.

接下来,结合道路目标跟踪特征和道路事件标签信息,通过复杂的计算逻辑来评估每个潜在风险目标的潜在风险。由此,服务器筛选出潜在风险指数较高的目标作为参考潜在风险目标,这些参考潜在风险目标在当前交通场景中具有较高的风险性,需要被特别关注。Next, the server combines the road target tracking features and road event label information to evaluate the potential risk of each potential risk target through complex calculation logic. As a result, the server selects targets with higher potential risk index as reference potential risk targets. These reference potential risk targets have higher risks in the current traffic scenario and need special attention.

例如,假设在某个十字路口的雷视融合数据流中,服务器检测到了一起“行人横穿”事件,并为其分配了相应的道路事件标签。同时,服务器还跟踪到了多辆正在行驶的车辆。其中一辆车辆(目标X)正快速接近行人横穿的区域,且没有减速迹象。服务器通过关联分析发现目标X与“行人横穿”事件标签之间存在高风险关系,并计算出目标X的潜在风险指数较高。因此,服务器将目标X筛选为参考潜在风险目标,并将其与“行人横穿”事件标签一起记录在潜在风险目标列表中,该潜在风险目标列表随后被实时传输给交通管理部门,以便他们及时采取措施预防潜在交通事故的发生。For example, suppose that in the radar-vision fusion data stream at a certain intersection, the server detects a "pedestrian crossing" event and assigns it a corresponding road event label. At the same time, the server also tracks multiple vehicles in motion. One of the vehicles (target X) is rapidly approaching the pedestrian crossing area and shows no signs of slowing down. The server finds through association analysis that there is a high-risk relationship between target X and the "pedestrian crossing" event label, and calculates that the potential risk index of target X is high. Therefore, the server selects target X as a reference potential risk target and records it together with the "pedestrian crossing" event label in the potential risk target list, which is then transmitted to the traffic management department in real time so that they can take timely measures to prevent potential traffic accidents.

在一种可能的实施方式中,步骤S121包括:In a possible implementation, step S121 includes:

步骤S1211,基于所述雷视融合数据流的道路目标跟踪特征,确定z个道路事件标签分别对应的置信度,所述z个道路事件标签中的第x个道路事件标签对应的置信度,反映所述雷视融合数据流匹配所述第x个道路事件标签的概率x不大于z。Step S1211, based on the road target tracking characteristics of the radar-visual fusion data stream, determine the confidences corresponding to the z road event labels respectively, and the confidence corresponding to the x-th road event label among the z road event labels reflects that the probability x that the radar-visual fusion data stream matches the x-th road event label is not greater than z.

步骤S1212,基于所述z个道路事件标签分别对应的置信度,从所述z个道路事件标签中选择所述置信度最大的y个道路事件标签,生成y个目标道路事件标签。Step S1212: based on the confidences respectively corresponding to the z road event labels, y road event labels with the largest confidences are selected from the z road event labels to generate y target road event labels.

步骤S1213,基于所述y个目标道路事件标签分别对应的置信度,对所述y个目标道路事件标签分别对应的标签知识特征进行融合计算,生成全局标签知识特征,所述雷视融合数据流的道路事件标签信息包括所述全局标签知识特征。Step S1213, based on the confidences corresponding to the y target road event labels, respectively, the label knowledge features corresponding to the y target road event labels are fused and calculated to generate a global label knowledge feature, and the road event label information of the radar-visual fusion data stream includes the global label knowledge feature.

本实施例中,服务器运行预训练的全连接输出单元,该全连接输出单元基于深度学习、机器学习等技术构建,能够识别多种类型的道路事件。全连接输出单元接收道路目标跟踪特征作为输入,输出z个道路事件标签及其对应的置信度,这些置信度反映了雷视融合数据流匹配各个道路事件标签的概率。对于第x个道路事件标签(x不大于z),其置信度是通过全连接输出单元内部复杂的计算逻辑得出的,这些逻辑可以包括特征加权、非线性变换、决策边界判断等步骤,最终输出一个介于0和1之间的数值作为置信度。置信度越接近1,表示数据流匹配该事件标签的概率越高。In this embodiment, the server runs a pre-trained fully connected output unit, which is built based on deep learning, machine learning and other technologies and can identify various types of road events. The fully connected output unit receives road target tracking features as input, and outputs z road event labels and their corresponding confidences, which reflect the probability that the radar-visual fusion data stream matches each road event label. For the xth road event label (x is not greater than z), its confidence is obtained through complex calculation logic inside the fully connected output unit, which may include feature weighting, nonlinear transformation, decision boundary judgment and other steps, and finally outputs a value between 0 and 1 as the confidence. The closer the confidence is to 1, the higher the probability that the data stream matches the event label.

服务器将z个道路事件标签按照其对应的置信度进行降序排序。排序后的列表反映了各个事件标签与当前雷视融合数据流的匹配程度,置信度最高的标签排在列表最前面。根据预设的y值(y为设定正整数,且y小于等于z),服务器从排序后的列表中选择前y个道路事件标签作为目标道路事件标签,这些标签在当前数据流中具有最高的置信度,因此被认为是最可能发生的道路事件。The server sorts the z road event labels in descending order according to their corresponding confidence levels. The sorted list reflects the degree of match between each event label and the current radar-vision fusion data stream, with the label with the highest confidence level at the front of the list. Based on the preset y value (y is a set positive integer, and y is less than or equal to z), the server selects the first y road event labels from the sorted list as target road event labels. These labels have the highest confidence levels in the current data stream and are therefore considered to be the most likely road events.

对于每个选定的目标道路事件标签,服务器查询一个预定义的标签知识库,该知识库包含了各个事件标签的详细描述、历史案例、应对措施、相关知识点等信息。服务器检索与目标标签相关联的知识特征。服务器设计了一套特征融合算法,该算法能够整合多个目标道路事件标签的知识特征。融合计算可能涉及特征加权、特征拼接、特征变换等多种操作,旨在提取出能够全面反映当前交通场景风险状态的全局特征。经过特征融合计算后,服务器生成了一个全局标签知识特征,该全局标签知识特征不仅包含了各个目标道路事件标签的关键信息,还通过融合算法去除了冗余和噪声,形成了对当前雷视融合数据流道路事件的综合描述。For each selected target road event label, the server queries a predefined label knowledge base, which contains detailed descriptions of each event label, historical cases, countermeasures, related knowledge points and other information. The server retrieves the knowledge features associated with the target label. The server has designed a set of feature fusion algorithms that can integrate the knowledge features of multiple target road event labels. The fusion calculation may involve multiple operations such as feature weighting, feature splicing, and feature transformation, aiming to extract global features that can fully reflect the risk status of the current traffic scene. After the feature fusion calculation, the server generates a global label knowledge feature, which not only contains the key information of each target road event label, but also removes redundancy and noise through the fusion algorithm, forming a comprehensive description of the road event in the current radar-vision fusion data stream.

最终,服务器将全局标签知识特征作为雷视融合数据流的道路事件标签信息输出,这些信息将作为后续风险评估、目标识别、应急响应等任务的重要依据。Ultimately, the server outputs the global label knowledge features as road event label information of the radar-vision fusion data stream. This information will serve as an important basis for subsequent risk assessment, target identification, emergency response and other tasks.

例如,假设在某个交叉口的雷视融合数据流中,服务器通过全连接输出单元识别出了5个潜在的道路事件标签(z=5),并计算了它们各自的置信度,这些标签包括“车辆急停”、“行人横穿”、“车辆逆行”、“交通拥堵”和“交通事故现场”。经过置信度排序和选择后,服务器确定了置信度最高的3个标签作为目标道路事件标签(y=3),分别是“行人横穿”(置信度0.9)、“车辆急停”(置信度0.8)和“交通拥堵”(置信度0.7)。For example, suppose that in the radar-visual fusion data stream of a certain intersection, the server identified five potential road event labels (z=5) through the fully connected output unit and calculated their respective confidences. These labels include "vehicle emergency stop", "pedestrian crossing", "vehicle driving in the wrong direction", "traffic congestion" and "traffic accident scene". After confidence sorting and selection, the server determined the three labels with the highest confidence as the target road event labels (y=3), namely "pedestrian crossing" (confidence 0.9), "vehicle emergency stop" (confidence 0.8) and "traffic congestion" (confidence 0.7).

接着,服务器查询标签知识库,获取了与这三个标签相关联的知识特征。然后,通过特征融合计算,服务器生成了一个全局标签知识特征,该特征综合反映了当前交叉口存在行人横穿、车辆急停和交通拥堵的高风险状态。最后,服务器将全局标签知识特征作为道路事件标签信息输出,供交通管理部门或应急响应机构参考。Next, the server queries the label knowledge base and obtains the knowledge features associated with the three labels. Then, through feature fusion calculation, the server generates a global label knowledge feature that comprehensively reflects the high-risk state of pedestrian crossing, vehicle emergency stop and traffic congestion at the current intersection. Finally, the server outputs the global label knowledge feature as road event label information for reference by traffic management departments or emergency response agencies.

在一种可能的实施方式中,所述雷视融合数据流的道路目标跟踪特征包括所述雷视融合数据流中的多个雷视融合数据段分别对应的特征矢量集合。In a possible implementation manner, the road target tracking feature of the radar and vision fusion data stream includes a set of feature vectors corresponding to a plurality of radar and vision fusion data segments in the radar and vision fusion data stream.

步骤S122包括:Step S122 includes:

步骤S1221,将所述雷视融合数据流中的各个所述雷视融合数据段对应的特征矢量集合,分别与所述雷视融合数据流的道路事件标签信息进行聚合,生成各个所述雷视融合数据段对应的聚合特征矢量集合。Step S1221, respectively aggregating the feature vector sets corresponding to each of the thunder and vision fusion data segments in the thunder and vision fusion data stream with the road event label information of the thunder and vision fusion data stream to generate aggregated feature vector sets corresponding to each of the thunder and vision fusion data segments.

步骤S1222,基于所述聚合特征矢量集合,确定所述雷视融合数据流中的至少一个参考潜在风险目标。Step S1222: determining at least one reference potential risk target in the radar-visual fusion data stream based on the aggregated feature vector set.

本实施例中,服务器接收到的雷视融合数据流被自动划分为多个连续的雷视融合数据段。每个雷视融合数据段的时间长度可以根据实际需求设定,例如每秒钟划分为一个雷视融合数据段。In this embodiment, the radar-visual fusion data stream received by the server is automatically divided into a plurality of continuous radar-visual fusion data segments. The time length of each radar-visual fusion data segment can be set according to actual needs, for example, one radar-visual fusion data segment is divided every second.

对于每个雷视融合数据段,服务器提取出其中所有道路目标的跟踪特征,并将这些特征编码成特征矢量。每个雷视融合数据段对应一个特征矢量集合,集合中包含了该雷视融合数据段内所有目标的特征矢量。For each radar-visual fusion data segment, the server extracts the tracking features of all road targets and encodes these features into feature vectors. Each radar-visual fusion data segment corresponds to a feature vector set, which contains the feature vectors of all targets in the radar-visual fusion data segment.

服务器基于每个雷视融合数据段的特征矢量集合,确定可能的道路事件,并为每个事件分配相应的标签和置信度。从所有可能的道路事件标签中,服务器选择置信度最高的几个标签作为当前数据段的道路事件标签信息。The server determines possible road events based on the feature vector set of each radar-vision fusion data segment and assigns corresponding labels and confidence levels to each event. From all possible road event labels, the server selects several labels with the highest confidence levels as the road event label information for the current data segment.

其中,服务器设计了一套聚合策略,用于将每个雷视融合数据段的特征矢量集合与该雷视融合数据段的道路事件标签信息进行聚合。聚合策略可以包括特征加权、标签嵌入、特征拼接等多种方法。对于每个雷视融合数据段,服务器首先获取其特征矢量集合和道路事件标签信息。然后,根据聚合策略,将标签信息以某种形式(如标签嵌入向量)与特征矢量集合中的每个特征矢量进行聚合。聚合的结果是一个新的特征矢量集合,即聚合特征矢量集合,该集合中的每个特征矢量都融合了原始的道路目标跟踪特征和道路事件标签信息。Among them, the server designs a set of aggregation strategies for aggregating the feature vector set of each radar-vision fusion data segment with the road event label information of the radar-vision fusion data segment. The aggregation strategy can include multiple methods such as feature weighting, label embedding, and feature splicing. For each radar-vision fusion data segment, the server first obtains its feature vector set and road event label information. Then, according to the aggregation strategy, the label information is aggregated with each feature vector in the feature vector set in a certain form (such as a label embedding vector). The result of the aggregation is a new feature vector set, namely the aggregated feature vector set, each feature vector in which the original road target tracking features and road event label information are integrated.

服务器运行一个道路目标识别网络,该道路目标识别网络能够接收聚合特征矢量集合作为输入,并输出每个目标被识别为潜在风险目标的概率。The server runs a road object recognition network that is capable of receiving a set of aggregated feature vectors as input and outputting the probability of each object being identified as a potential risk object.

基于道路目标识别网络的输出结果,服务器设定一个阈值(如0.5),将概率超过该阈值的目标筛选为参考潜在风险目标,这些目标在当前数据段中具有较高的潜在风险性。服务器将筛选出的参考潜在风险目标整理成一个列表,列表中包含每个目标的唯一标识符、类型、位置、速度、行驶方向以及与之关联的道路事件标签信息,该列表将作为道路目标识别数据的一部分,被实时传输给交通管理部门或相关应急响应机构。Based on the output of the road target recognition network, the server sets a threshold (such as 0.5) and selects targets with a probability exceeding the threshold as reference potential risk targets. These targets have a high potential risk in the current data segment. The server organizes the selected reference potential risk targets into a list, which contains each target's unique identifier, type, location, speed, driving direction, and associated road event label information. The list will be transmitted to the traffic management department or relevant emergency response agency in real time as part of the road target recognition data.

例如,假设在某个时间段内,服务器接收到的雷视融合数据流被划分为三个连续的数据段。对于第一个雷视融合数据段,服务器提取了特征矢量集合,并检测到“行人横穿”和“车辆急停”两个高置信度的道路事件标签。服务器将这两个标签信息与特征矢量集合进行聚合,生成了聚合特征矢量集合。For example, suppose that within a certain period of time, the radar-visual fusion data stream received by the server is divided into three consecutive data segments. For the first radar-visual fusion data segment, the server extracts a feature vector set and detects two high-confidence road event labels, "pedestrian crossing" and "vehicle emergency stop". The server aggregates the two label information with the feature vector set to generate an aggregated feature vector set.

接着,服务器应用道路目标识别网络对聚合特征矢量集合进行分析,识别出了两个参考潜在风险目标:一辆正在接近行人横穿区域的车辆和一个正在快速穿越马路的行人,这两个目标的潜在风险概率均超过了设定的阈值。Next, the server applies the road target recognition network to analyze the aggregated feature vector set and identifies two reference potential risk targets: a vehicle approaching the pedestrian crossing area and a pedestrian crossing the road quickly. The potential risk probabilities of these two targets exceed the set threshold.

最后,服务器将这两个目标及其相关信息整理成列表,并实时传输给交通管理部门。交通管理部门根据这些信息,及时采取了相应的交通管制措施,有效预防了潜在交通事故的发生。Finally, the server compiled the two targets and their related information into a list and transmitted it to the traffic management department in real time. Based on this information, the traffic management department took corresponding traffic control measures in a timely manner, effectively preventing potential traffic accidents.

在一种可能的实施方式中,所述雷视融合数据流的道路目标识别数据由道路目标识别网络确定,所述道路目标识别网络包括语义编码表示单元、风险目标估计单元和风险指数评估单元。In a possible implementation, the road target recognition data of the radar-visual fusion data stream is determined by a road target recognition network, and the road target recognition network includes a semantic coding representation unit, a risk target estimation unit, and a risk index evaluation unit.

所述语义编码表示单元用于获取所述雷视融合数据流的道路目标跟踪特征。The semantic coding representation unit is used to obtain the road target tracking features of the radar and vision fusion data stream.

所述风险目标估计单元用于基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标。The risk target estimation unit is used to determine at least one reference potential risk target in the radar and visual fusion data stream based on the road target tracking characteristics of the radar and visual fusion data stream.

所述风险指数评估单元用于确定各个所述参考潜在风险目标的潜在风险指数。The risk index evaluation unit is used to determine the potential risk index of each of the reference potential risk targets.

本实施例中,服务器部署了一套道路目标识别网络。该道路目标识别网络集成了语义编码表示、风险目标估计和风险指数评估三大功能单元,能够实时处理来自雷达和视觉传感器的雷视融合数据流,识别出道路中的潜在风险目标,并评估其潜在风险指数。In this embodiment, the server deploys a road target recognition network. The road target recognition network integrates three functional units: semantic coding representation, risk target estimation, and risk index evaluation. It can process the radar and visual fusion data streams from radar and visual sensors in real time, identify potential risk targets on the road, and evaluate their potential risk index.

其中,语义编码表示单元对接收到的雷视融合数据流进行预处理,包括数据清洗、去噪、时间同步等操作。随后,语义编码表示单元内的特征提取算法自动从每个数据帧中提取出道路目标的跟踪特征,如车辆的速度、加速度、位置坐标、行驶方向,以及行人的行走速度、方向等。提取出的特征被编码成矢量形式,这些矢量不仅包含了数值型信息,还可能通过嵌入技术融入了语义信息,以便更好地反映目标的本质属性和行为模式。编码后的特征矢量构成了对当前交通场景的高级抽象表示。Among them, the semantic coding representation unit preprocesses the received radar-vision fusion data stream, including data cleaning, denoising, time synchronization and other operations. Subsequently, the feature extraction algorithm in the semantic coding representation unit automatically extracts the tracking features of road targets from each data frame, such as the vehicle's speed, acceleration, position coordinates, driving direction, and pedestrians' walking speed and direction. The extracted features are encoded into vector form, which not only contains numerical information, but also may incorporate semantic information through embedding technology to better reflect the essential attributes and behavior patterns of the target. The encoded feature vector constitutes a high-level abstract representation of the current traffic scene.

风险目标估计单元接收来自语义编码表示单元的道路目标跟踪特征(包括编码后的特征矢量集合)。风险目标估计单元内的模式识别算法基于这些特征,运用深度学习、机器学习或规则引擎等技术,自动识别出符合潜在风险模式的道路目标,这些模式可能基于历史事故数据、交通规则、专家经验等多种来源构建。通过模式识别算法,风险目标估计单元筛选出那些具有较高潜在风险的目标,并将它们标记为参考潜在风险目标。筛选过程可能涉及置信度计算、阈值判断、排序截取等多种操作。The risk target estimation unit receives the road target tracking features (including the encoded feature vector set) from the semantic encoding representation unit. Based on these features, the pattern recognition algorithm in the risk target estimation unit uses deep learning, machine learning, or rule engines to automatically identify road targets that meet potential risk patterns. These patterns may be based on historical accident data, traffic rules, expert experience, and other sources. Through the pattern recognition algorithm, the risk target estimation unit screens out those targets with higher potential risks and marks them as reference potential risk targets. The screening process may involve multiple operations such as confidence calculation, threshold judgment, sorting and interception.

对于每个参考潜在风险目标,风险指数评估单元首先检索其在过去一段时间内的跟踪状态路径数据,这些跟踪状态路径数据记录了目标的运动轨迹、速度变化、方向变化等关键信息。风险指数评估单元内的匹配度计算算法将跟踪状态路径数据与当前交通场景的全局特征(可能由语义编码表示单元提供)进行比对分析,计算出目标行为与全局交通流状态的匹配度。匹配度越低,表示目标的潜在风险越高。基于匹配度计算结果,风险指数评估单元为每个参考潜在风险目标分配一个具体的潜在风险指数,该潜在风险指数是一个量化的风险评估结果,反映了目标在当前交通场景中引发交通事故或交通拥堵的可能性大小。For each reference potential risk target, the risk index assessment unit first retrieves its tracking state path data in the past period of time. These tracking state path data record key information such as the target's motion trajectory, speed change, and direction change. The matching degree calculation algorithm in the risk index assessment unit compares and analyzes the tracking state path data with the global features of the current traffic scene (which may be provided by the semantic encoding representation unit) to calculate the matching degree between the target behavior and the global traffic flow state. The lower the matching degree, the higher the potential risk of the target. Based on the matching degree calculation results, the risk index assessment unit assigns a specific potential risk index to each reference potential risk target. The potential risk index is a quantitative risk assessment result that reflects the possibility of the target causing a traffic accident or traffic congestion in the current traffic scene.

服务器将语义编码表示单元、风险目标估计单元和风险指数评估单元的输出结果进行整合,生成完整的道路目标识别数据,这些道路目标识别数据包括了所有道路目标的基本信息(如类型、位置、速度等)、参考潜在风险目标的标识以及它们的潜在风险指数。服务器通过网络接口将道路目标识别数据实时传输给交通管理部门或相关应用平台,这些数据可以作为交通监控、预警、调度等决策支持的重要依据。The server integrates the output results of the semantic coding representation unit, the risk target estimation unit and the risk index assessment unit to generate complete road target recognition data, which includes the basic information of all road targets (such as type, location, speed, etc.), the identification of reference potential risk targets and their potential risk index. The server transmits the road target recognition data to the traffic management department or related application platform in real time through the network interface. These data can serve as an important basis for decision support such as traffic monitoring, early warning, and dispatch.

例如,假设在某个繁忙的十字路口,服务器接收到的雷视融合数据流中包含了多辆正在行驶的车辆和一个准备过马路的行人。语义编码表示单元首先提取出这些目标的跟踪特征,并进行语义编码。随后,风险目标估计单元识别出一辆快速接近斑马线且未减速的车辆作为参考潜在风险目标。风险指数评估单元进一步分析该车辆的跟踪状态路径数据,计算出其潜在风险指数较高。最后,服务器将这些信息整合成道路目标识别数据,并实时传输给交通管理部门,以便他们及时采取措施预防交通事故的发生。For example, suppose that at a busy intersection, the server receives a radar-visual fusion data stream that contains multiple vehicles on the road and a pedestrian about to cross the road. The semantic coding representation unit first extracts the tracking features of these targets and performs semantic coding. Subsequently, the risk target estimation unit identifies a vehicle that is approaching the zebra crossing quickly and without slowing down as a reference potential risk target. The risk index evaluation unit further analyzes the tracking status path data of the vehicle and calculates that its potential risk index is high. Finally, the server integrates this information into road target recognition data and transmits it to the traffic management department in real time so that they can take timely measures to prevent traffic accidents.

在一种可能的实施方式中,所述方法还包括对所述道路目标识别网络进行网络参数学习的步骤,具体包括:In a possible implementation, the method further includes a step of performing network parameter learning on the road object recognition network, specifically including:

步骤S101,利用所述语义编码表示单元获取模板雷视融合数据流的道路目标跟踪特征,所述模板雷视融合数据流的道路目标跟踪特征反映所述模板雷视融合数据流的内容表征。Step S101, using the semantic coding representation unit to obtain a road target tracking feature of a template radar and vision fusion data stream, wherein the road target tracking feature of the template radar and vision fusion data stream reflects the content representation of the template radar and vision fusion data stream.

本实施例中,在智能交通管理系统的研发阶段,服务器负责对道路目标识别网络进行训练和优化。为了提升道路目标识别网络的识别准确性和鲁棒性,服务器使用了一系列预先准备好的模板雷视融合数据流作为训练数据,这些模板雷视融合数据流包含了丰富的道路目标跟踪信息和已知的风险标签,用于指导道路目标识别网络的参数学习过程。In this embodiment, during the research and development phase of the intelligent traffic management system, the server is responsible for training and optimizing the road target recognition network. In order to improve the recognition accuracy and robustness of the road target recognition network, the server uses a series of pre-prepared template radar fusion data streams as training data. These template radar fusion data streams contain rich road target tracking information and known risk labels to guide the parameter learning process of the road target recognition network.

详细地,服务器从训练数据集中加载一个模板雷视融合数据流,该模板雷视融合数据流是经过精心挑选和标注的,反映了特定交通场景下的道路目标运动情况。利用语义编码表示单元,服务器对模板雷视融合数据流进行预处理和特征提取。特征提取过程包括去噪、时间同步、目标检测与跟踪等步骤,最终生成包含道路目标跟踪特征的特征矢量集合,这些特征矢量不仅包含了目标的数值型信息(如位置、速度、加速度),还可能融入了语义信息,以便更好地反映目标的本质属性和行为模式。In detail, the server loads a template radar-visual fusion data stream from the training data set. The template radar-visual fusion data stream is carefully selected and annotated to reflect the movement of road targets in a specific traffic scenario. Using the semantic coding representation unit, the server preprocesses and extracts features from the template radar-visual fusion data stream. The feature extraction process includes steps such as denoising, time synchronization, target detection and tracking, and finally generates a set of feature vectors containing road target tracking features. These feature vectors not only contain the numerical information of the target (such as position, speed, acceleration), but may also incorporate semantic information to better reflect the essential attributes and behavior patterns of the target.

步骤S102,利用所述风险目标估计单元基于所述模板雷视融合数据流的道路目标跟踪特征,确定所述模板雷视融合数据流的估计潜在风险目标数据,所述估计潜在风险目标数据包括所述模板雷视融合数据流中的至少一个参考潜在风险目标。Step S102, using the risk target estimation unit to determine estimated potential risk target data of the template radar and vision fusion data stream based on the road target tracking characteristics of the template radar and vision fusion data stream, wherein the estimated potential risk target data includes at least one reference potential risk target in the template radar and vision fusion data stream.

本实施例中,风险目标估计单元接收来自语义编码表示单元的特征矢量集合作为输入。风险目标估计单元内的模式识别算法基于这些特征,运用深度学习、机器学习等技术,自动识别出符合潜在风险模式的道路目标,这些模式可能基于历史事故数据、交通规则等多种来源构建。In this embodiment, the risk target estimation unit receives the feature vector set from the semantic coding representation unit as input. Based on these features, the pattern recognition algorithm in the risk target estimation unit uses deep learning, machine learning and other technologies to automatically identify road targets that meet potential risk patterns. These patterns may be constructed based on various sources such as historical accident data and traffic rules.

通过模式识别算法,风险目标估计单元筛选出那些具有较高潜在风险的目标,并标记为估计潜在风险目标。筛选过程可能涉及置信度计算、阈值判断、排序截取等多种操作。最终,风险目标估计单元输出包含至少一个参考潜在风险目标的估计潜在风险目标数据。Through the pattern recognition algorithm, the risk target estimation unit screens out those targets with higher potential risks and marks them as estimated potential risk targets. The screening process may involve multiple operations such as confidence calculation, threshold judgment, sorting and interception. Finally, the risk target estimation unit outputs estimated potential risk target data containing at least one reference potential risk target.

步骤S103,利用所述风险指数评估单元确定各个所述参考潜在风险目标的潜在风险指数,所述潜在风险指数反映所述参考潜在风险目标在所述模板雷视融合数据流中的异常行为趋势参数。Step S103: using the risk index evaluation unit to determine the potential risk index of each of the reference potential risk targets, wherein the potential risk index reflects the abnormal behavior trend parameter of the reference potential risk target in the template radar-visual fusion data stream.

对于每个参考潜在风险目标,风险指数评估单元检索其在模板雷视融合数据流中的跟踪状态路径数据。风险指数评估单元内的匹配度计算算法和风险评估模型结合使用,首先计算目标行为与全局交通流状态的匹配度,然后基于匹配度结果评估出每个目标的潜在风险指数,该潜在风险指数反映了目标在模板雷视融合数据流中引发交通事故或交通拥堵的可能性大小。For each reference potential risk target, the risk index evaluation unit retrieves its tracking state path data in the template radar-visual fusion data stream. The matching degree calculation algorithm and risk evaluation model in the risk index evaluation unit are used in combination to first calculate the matching degree between the target behavior and the global traffic flow state, and then evaluate the potential risk index of each target based on the matching degree result. The potential risk index reflects the possibility of the target causing traffic accidents or traffic congestion in the template radar-visual fusion data stream.

步骤S104,基于各个所述参考潜在风险目标的潜在风险指数,确定所述模板雷视融合数据流的预测显著性潜在风险目标数据,所述预测显著性潜在风险目标数据包括:基于所述潜在风险指数从所述至少一个参考潜在风险目标中确定的至少一个显著性潜在风险目标。Step S104, based on the potential risk index of each of the reference potential risk targets, determine the predicted significant potential risk target data of the template radar-visual fusion data stream, and the predicted significant potential risk target data includes: at least one significant potential risk target determined from the at least one reference potential risk target based on the potential risk index.

基于潜在风险指数,服务器进一步筛选出那些风险指数最高、最具显著性的潜在风险目标。筛选过程可能涉及排序和截取操作,例如只保留潜在风险指数排名前几位的目标作为显著性潜在风险目标。Based on the potential risk index, the server further screens out those potential risk targets with the highest risk index and the most significant risk. The screening process may involve sorting and interception operations, such as retaining only the targets with the highest potential risk index as significant potential risk targets.

最终,服务器生成包含至少一个显著性潜在风险目标的预测显著性潜在风险目标数据,这些预测显著性潜在风险目标数据将用于后续的训练误差计算和网络参数优化。Finally, the server generates predicted significant potential risk target data containing at least one significant potential risk target, and the predicted significant potential risk target data will be used for subsequent training error calculation and network parameter optimization.

步骤S105,基于所述估计潜在风险目标数据和所述潜在风险目标先验数据,确定第一学习代价,所述第一学习代价表示所述风险目标估计单元的训练误差。Step S105: determining a first learning cost based on the estimated potential risk target data and the potential risk target prior data, wherein the first learning cost represents a training error of the risk target estimation unit.

步骤S106,基于所述预测显著性潜在风险目标数据和所述显著性潜在风险目标先验数据,确定第二学习代价,所述第二学习代价表示所述风险指数评估单元的训练误差。Step S106: determining a second learning cost based on the predicted significant potential risk target data and the significant potential risk target prior data, wherein the second learning cost represents a training error of the risk index evaluation unit.

步骤S107,基于所述第一学习代价和所述第二学习代价,对所述道路目标识别网络进行网络参数学习。Step S107: performing network parameter learning on the road object recognition network based on the first learning cost and the second learning cost.

本实施例中,服务器加载与模板雷视融合数据流对应的潜在风险目标先验数据和显著性潜在风险目标先验数据,这些数据是预先标注好的,反映了模板雷视融合数据流中真实存在的潜在风险目标和显著性潜在风险目标。In this embodiment, the server loads the potential risk target prior data and the significant potential risk target prior data corresponding to the template radar-visual fusion data stream. These data are pre-labeled and reflect the potential risk targets and significant potential risk targets that actually exist in the template radar-visual fusion data stream.

服务器将估计潜在风险目标数据与潜在风险目标先验数据进行对比,计算出第一学习代价(风险目标估计单元的训练误差)。同样地,服务器将预测显著性潜在风险目标数据与显著性潜在风险目标先验数据进行对比,计算出第二学习代价(风险指数评估单元的训练误差)。The server compares the estimated potential risk target data with the potential risk target prior data and calculates the first learning cost (the training error of the risk target estimation unit). Similarly, the server compares the predicted significant potential risk target data with the significant potential risk target prior data and calculates the second learning cost (the training error of the risk index evaluation unit).

基于第一学习代价和第二学习代价,服务器运用梯度下降等优化算法对道路目标识别网络的参数进行调整,该过程旨在最小化训练误差,使网络的输出更加接近真实情况。Based on the first learning cost and the second learning cost, the server uses optimization algorithms such as gradient descent to adjust the parameters of the road object recognition network. This process aims to minimize the training error and make the network output closer to the actual situation.

服务器重复执行上述步骤(从特征提取到参数学习),使用多个不同的模板雷视融合数据流进行迭代训练。通过多次迭代,网络的识别准确性和鲁棒性逐渐提升。The server repeatedly performs the above steps (from feature extraction to parameter learning) and uses multiple different template radar fusion data streams for iterative training. Through multiple iterations, the recognition accuracy and robustness of the network gradually improve.

在训练过程中,服务器会监控训练误差的变化情况。当训练误差趋于稳定且不再显著下降时,服务器判断网络已经收敛,训练过程结束。此时得到的网络参数将被用于实际部署和在线识别任务中。During the training process, the server monitors the changes in the training error. When the training error stabilizes and no longer decreases significantly, the server determines that the network has converged and the training process ends. The network parameters obtained at this time will be used in actual deployment and online recognition tasks.

在一种可能的实施方式中,所述估计潜在风险目标数据包括所述模板雷视融合数据流中的各个雷视融合数据段分别对应的估计置信度信息,所述估计置信度信息包括所述雷视融合数据段相对于多个潜在风险目标的估计置信度。所述潜在风险目标先验数据包括所述模板雷视融合数据流中的各个雷视融合数据段分别对应的先验置信度信息,所述先验置信度信息包括所述雷视融合数据段相对于多个潜在风险目标的先验置信度。In a possible implementation, the estimated potential risk target data includes estimated confidence information corresponding to each radar vision fusion data segment in the template radar vision fusion data stream, and the estimated confidence information includes the estimated confidence of the radar vision fusion data segment relative to multiple potential risk targets. The potential risk target prior data includes prior confidence information corresponding to each radar vision fusion data segment in the template radar vision fusion data stream, and the prior confidence information includes the prior confidence of the radar vision fusion data segment relative to multiple potential risk targets.

步骤S105包括:基于所述模板雷视融合数据流中的各个雷视融合数据段分别对应的估计置信度信息,以及所述模板雷视融合数据流中的各个雷视融合数据段分别对应的先验置信度信息,确定所述第一学习代价。Step S105 includes: determining the first learning cost based on estimated confidence information corresponding to each radar-vision fusion data segment in the template radar-vision fusion data stream and prior confidence information corresponding to each radar-vision fusion data segment in the template radar-vision fusion data stream.

本实施例中,服务器首先将模板雷视融合数据流划分为多个连续的模板雷视融合数据段。每个模板雷视融合数据段包含了一定时间范围内的道路目标跟踪信息。In this embodiment, the server first divides the template radar-visual fusion data stream into a plurality of continuous template radar-visual fusion data segments. Each template radar-visual fusion data segment contains the road target tracking information within a certain time range.

对于每个模板雷视融合数据段,风险目标估计单元基于该数据段的道路目标跟踪特征,运用模式识别算法识别出潜在的风险目标,并为每个潜在风险目标分配一个估计置信度,该估计置信度反映了网络认为该数据段中存在该潜在风险目标的概率。For each template radar-vision fusion data segment, the risk target estimation unit uses a pattern recognition algorithm to identify potential risk targets based on the road target tracking characteristics of the data segment, and assigns an estimated confidence to each potential risk target, which reflects the probability that the network believes that the potential risk target exists in the data segment.

服务器将所有数据段的估计置信度信息整理成一个矩阵形式。矩阵的行对应不同的数据段,列对应不同的潜在风险目标。矩阵中的每个元素表示对应数据段对于对应潜在风险目标的估计置信度。The server organizes the estimated confidence information of all data segments into a matrix form. The rows of the matrix correspond to different data segments, and the columns correspond to different potential risk targets. Each element in the matrix represents the estimated confidence of the corresponding data segment for the corresponding potential risk target.

在训练开始前,服务器已经准备了与模板雷视融合数据流相对应的潜在风险目标先验数据,这些数据是通过人工标注或其他可靠方式获得的,反映了模板雷视融合数据流中真实存在的潜在风险目标及其置信度。Before training begins, the server has prepared prior data of potential risk targets corresponding to the template radar-vision fusion data stream. These data are obtained through manual annotation or other reliable methods, and reflect the real potential risk targets and their confidence levels in the template radar-vision fusion data stream.

与估计置信度信息类似,服务器将先验置信度信息整理成一个矩阵形式,该矩阵的行和列与估计置信度矩阵相同,但矩阵中的元素表示的是先验知识中对应数据段对于对应潜在风险目标的置信度。Similar to the estimated confidence information, the server organizes the prior confidence information into a matrix form. The rows and columns of the matrix are the same as the estimated confidence matrix, but the elements in the matrix represent the confidence of the corresponding data segment in the prior knowledge for the corresponding potential risk target.

服务器定义了一个代价函数来计算第一学习代价,该代价函数衡量了估计置信度信息与先验置信度信息之间的差异。常见的代价函数包括交叉熵损失、均方误差等。The server defines a cost function to calculate the first learning cost, which measures the difference between the estimated confidence information and the prior confidence information. Common cost functions include cross entropy loss, mean square error, etc.

代价计算:服务器遍历估计置信度矩阵和先验置信度矩阵中的每个元素,将它们代入代价函数中进行计算。对于每个数据段和每个潜在风险目标,服务器都会得到一个代价值,这些代价值反映了网络在该数据段上识别该潜在风险目标的准确性。Cost calculation: The server traverses each element in the estimated confidence matrix and the prior confidence matrix, and substitutes them into the cost function for calculation. For each data segment and each potential risk target, the server will get a cost value, which reflects the accuracy of the network in identifying the potential risk target on the data segment.

服务器将所有数据段和所有潜在风险目标的代价值进行汇总,得到第一学习代价,该代价是一个标量值,它综合反映了风险目标估计单元在整个模板雷视融合数据流上的训练误差。The server aggregates the cost values of all data segments and all potential risk targets to obtain a first learning cost, which is a scalar value that comprehensively reflects the training error of the risk target estimation unit on the entire template radar-vision fusion data stream.

服务器还可以进一步分析第一学习代价的来源和分布。例如,它可以识别出哪些数据段或哪些潜在风险目标的识别误差较大,从而有针对性地调整网络的参数或训练策略。The server can further analyze the source and distribution of the first learning cost. For example, it can identify which data segments or which potential risk targets have large recognition errors, thereby adjusting the network parameters or training strategies in a targeted manner.

例如,假设模板雷视融合数据流被划分为三个数据段,且存在两个潜在的风险目标(如车辆急停和行人横穿)。风险目标估计单元为每个数据段针对每个潜在风险目标都生成了一个估计置信度。同时,服务器也获得了对应的先验置信度信息。For example, assume that the template radar-visual fusion data stream is divided into three data segments, and there are two potential risk targets (such as a vehicle suddenly stopping and a pedestrian crossing). The risk target estimation unit generates an estimated confidence for each data segment for each potential risk target. At the same time, the server also obtains the corresponding prior confidence information.

服务器将这些信息整理成矩阵形式,并应用定义的代价函数(如交叉熵损失)来计算每个数据段和每个潜在风险目标的代价值。最后,服务器将所有代价值相加得到第一学习代价。通过分析这个第一学习代价,服务器可以评估风险目标估计单元的训练效果,并据此调整网络的参数以进一步降低训练误差。The server organizes this information into a matrix form and applies a defined cost function (such as cross entropy loss) to calculate the cost value of each data segment and each potential risk target. Finally, the server adds up all the cost values to get the first learning cost. By analyzing this first learning cost, the server can evaluate the training effect of the risk target estimation unit and adjust the parameters of the network accordingly to further reduce the training error.

在一种可能的实施方式中,所述显著性潜在风险目标先验数据包括所述模板雷视融合数据流中的至少一个先验显著性潜在风险目标。In a possible implementation manner, the prior data of significant potential risk targets includes at least one prior significant potential risk target in the template radar-visual fusion data stream.

步骤S106包括:基于所述模板雷视融合数据流中的各个所述参考潜在风险目标分别对应的潜在风险指数,以及各个所述参考潜在风险目标中的所述先验显著性潜在风险目标,确定所述第二学习代价。Step S106 includes: determining the second learning cost based on the potential risk index corresponding to each of the reference potential risk targets in the template radar-visual fusion data stream, and the priori significant potential risk target in each of the reference potential risk targets.

在训练开始前,服务器已经准备了显著性潜在风险目标先验数据,这些显著性潜在风险目标先验数据是通过人工标注或其他可靠方式获得的,标识了模板雷视融合数据流中至少一个被确认为显著性潜在风险的目标,这些目标通常具有极高的潜在风险指数,对交通安全构成严重威胁。Before training begins, the server has prepared prior data of significant potential risk targets. These prior data of significant potential risk targets are obtained through manual labeling or other reliable methods, and identify at least one target in the template radar-vision fusion data stream that is confirmed as a significant potential risk. These targets usually have extremely high potential risk indexes and pose a serious threat to traffic safety.

显著性潜在风险目标先验数据被存储在服务器的数据库中,以便在训练过程中随时调用,这些数据可能以目标标识符、位置、时间戳、潜在风险指数等形式存在。The prior data of significant potential risk targets are stored in the database of the server so that they can be called at any time during the training process. These data may exist in the form of target identifiers, locations, timestamps, potential risk indexes, etc.

风险指数评估单元接收来自风险目标估计单元的估计潜在风险目标数据,并基于这些数据为每个参考潜在风险目标计算潜在风险指数。潜在风险指数反映了目标在模板雷视融合数据流中引发交通事故或交通拥堵的可能性大小。基于潜在风险指数,服务器进一步筛选出那些风险指数最高、最具显著性的潜在风险目标,这些目标构成了预测显著性潜在风险目标数据。The risk index evaluation unit receives the estimated potential risk target data from the risk target estimation unit, and calculates the potential risk index for each reference potential risk target based on the estimated potential risk target data. The potential risk index reflects the probability of the target causing a traffic accident or traffic congestion in the template radar-visual fusion data stream. Based on the potential risk index, the server further selects the potential risk targets with the highest risk index and the most significance, which constitute the predicted significance potential risk target data.

服务器将预测显著性潜在风险目标数据与显著性潜在风险目标先验数据进行匹配。匹配过程可能涉及比较目标标识符、位置、时间戳等信息,以确定哪些预测目标是先验知识中确认的显著性潜在风险目标。The server matches the predicted significant potential risk target data with the significant potential risk target prior data. The matching process may involve comparing target identifiers, locations, timestamps, and other information to determine which predicted targets are significant potential risk targets confirmed in prior knowledge.

服务器定义了一个代价函数来计算第二学习代价,该代价函数衡量了预测显著性潜在风险目标与先验显著性潜在风险目标之间的差异。代价函数的设计可能考虑了多个因素,如预测目标的数量、预测目标的准确性(即预测目标与先验目标的一致性)、预测目标的潜在风险指数与先验目标的潜在风险指数的偏差等。The server defines a cost function to calculate the second learning cost, which measures the difference between the predicted significant potential risk target and the prior significant potential risk target. The design of the cost function may take into account multiple factors, such as the number of predicted targets, the accuracy of the predicted targets (i.e., the consistency of the predicted targets with the prior targets), the deviation of the potential risk index of the predicted targets from the potential risk index of the prior targets, etc.

服务器根据代价函数计算第二学习代价。计算过程可能涉及对预测目标与先验目标进行逐一比较,并累加每个比较结果的代价值。最终得到的第二学习代价是一个标量值,它综合反映了风险指数评估单元在识别显著性潜在风险目标方面的训练误差。The server calculates the second learning cost according to the cost function. The calculation process may involve comparing the predicted target with the prior target one by one and accumulating the cost value of each comparison result. The final second learning cost is a scalar value, which comprehensively reflects the training error of the risk index assessment unit in identifying significant potential risk targets.

误差分析:服务器还可以进一步分析第二学习代价的来源和分布。例如,它可以识别出哪些预测目标被错误地标记为显著性潜在风险目标,哪些先验显著性潜在风险目标被遗漏等,这些分析结果有助于服务器调整风险指数评估单元的参数或训练策略,以进一步提高其识别准确性。Error analysis: The server can also further analyze the source and distribution of the second learning cost. For example, it can identify which predicted targets are incorrectly marked as significant potential risk targets, which prior significant potential risk targets are omitted, etc. These analysis results help the server adjust the parameters or training strategies of the risk index evaluation unit to further improve its recognition accuracy.

例如,假设模板雷视融合数据流中包含了多个车辆和行人的跟踪信息,并且先验知识确认了其中一辆车(车辆A)在某一时刻具有极高的潜在风险指数,是显著性潜在风险目标。风险指数评估单元基于输入数据为多个参考潜在风险目标计算了潜在风险指数,并筛选出了预测显著性潜在风险目标数据。For example, suppose the template radar-visual fusion data stream contains tracking information of multiple vehicles and pedestrians, and prior knowledge confirms that one of the vehicles (vehicle A) has an extremely high potential risk index at a certain moment and is a significant potential risk target. The risk index evaluation unit calculates the potential risk index for multiple reference potential risk targets based on the input data and selects the predicted significant potential risk target data.

服务器将预测数据与先验数据进行匹配,发现预测数据中包含了车辆A作为显著性潜在风险目标。然而,预测数据还可能包含了其他并非先验知识中确认的显著性潜在风险目标(如假阳性情况)。服务器根据代价函数计算了第二学习代价,该第二学习代价反映了预测数据与先验数据之间的差异程度。通过分析这个第二学习代价,服务器可以评估风险指数评估单元的训练效果,并据此调整网络参数或训练策略以改进性能。The server matches the predicted data with the prior data and finds that the predicted data contains vehicle A as a significant potential risk target. However, the predicted data may also contain other significant potential risk targets that are not confirmed in the prior knowledge (such as false positive cases). The server calculates the second learning cost based on the cost function, which reflects the degree of difference between the predicted data and the prior data. By analyzing this second learning cost, the server can evaluate the training effect of the risk index evaluation unit and adjust the network parameters or training strategy accordingly to improve performance.

在一种可能的实施方式中,所述道路目标识别网络还包括全连接输出单元,所述方法还包括:In a possible implementation, the road object recognition network further includes a fully connected output unit, and the method further includes:

步骤A110,利用所述全连接输出单元基于所述模板雷视融合数据流的道路目标跟踪特征,确定所述模板雷视融合数据流的道路事件标签估计数据,所述模板雷视融合数据流的道路事件标签估计数据包括m个道路事件标签分别对应的估计置信度,所述m个道路事件标签中的第p个道路事件标签对应的估计置信度,反映所述模板雷视融合数据流匹配所述第p个道路事件标签的估计置信度,p不大于m。Step A110, using the fully connected output unit to determine the road event label estimation data of the template radar-vision fusion data stream based on the road target tracking characteristics of the template radar-vision fusion data stream, the road event label estimation data of the template radar-vision fusion data stream includes estimated confidences corresponding to m road event labels respectively, and the estimated confidence corresponding to the p-th road event label among the m road event labels, reflecting the estimated confidence that the template radar-vision fusion data stream matches the p-th road event label, and p is not greater than m.

步骤A120,基于所述模板雷视融合数据流的道路事件标签估计数据,确定所述模板雷视融合数据流的道路事件标签信息,所述模板雷视融合数据流的道路事件标签信息反映所述模板雷视融合数据流的道路事件所对应的标签知识点信息,所述风险目标估计单元用于基于所述模板雷视融合数据流的道路目标跟踪特征和所述模板雷视融合数据流的道路事件标签信息,确定所述模板雷视融合数据流的估计潜在风险目标数据。Step A120, based on the road event label estimation data of the template radar-vision fusion data stream, determine the road event label information of the template radar-vision fusion data stream, the road event label information of the template radar-vision fusion data stream reflects the label knowledge point information corresponding to the road event of the template radar-vision fusion data stream, the risk target estimation unit is used to determine the estimated potential risk target data of the template radar-vision fusion data stream based on the road target tracking characteristics of the template radar-vision fusion data stream and the road event label information of the template radar-vision fusion data stream.

步骤A130,基于所述道路事件标签估计数据和道路事件标签先验数据,确定第三学习代价,所述第三学习代价表示所述全连接输出单元的训练误差。Step A130, determining a third learning cost based on the road event label estimation data and the road event label prior data, wherein the third learning cost represents a training error of the fully connected output unit.

步骤S107包括:基于所述第一学习代价、所述第二学习代价和所述第三学习代价,对所述道路目标识别网络进行网络参数学习。Step S107 includes: performing network parameter learning on the road object recognition network based on the first learning cost, the second learning cost and the third learning cost.

本实施例中,全连接输出单元接收来自语义编码表示单元的道路目标跟踪特征作为输入,这些道路目标跟踪特征已经过预处理和编码,包含了模板雷视融合数据流中所有道路目标的详细信息。全连接输出单元内的全连接层对输入特征进行加权求和和非线性变换,输出m个道路事件标签分别对应的估计置信度,这些置信度反映了模板雷视融合数据流匹配各个道路事件标签的概率。例如,如果m=5,则单元会输出5个置信度值,分别对应于“车辆急停”、“行人横穿”、“交通事故”、“交通拥堵”和“正常行驶”等事件标签。In this embodiment, the fully connected output unit receives the road target tracking features from the semantic encoding representation unit as input. These road target tracking features have been preprocessed and encoded, and contain detailed information of all road targets in the template radar-visual fusion data stream. The fully connected layer in the fully connected output unit performs weighted summation and nonlinear transformation on the input features, and outputs the estimated confidences corresponding to the m road event labels, which reflect the probability that the template radar-visual fusion data stream matches each road event label. For example, if m=5, the unit will output 5 confidence values, corresponding to event labels such as "vehicle emergency stop", "pedestrian crossing", "traffic accident", "traffic congestion" and "normal driving".

服务器将m个道路事件标签及其对应的估计置信度整理成道路事件标签估计数据,这些道路事件标签估计数据将用于后续的道路事件标签信息确定和网络参数学习。The server organizes the m road event labels and their corresponding estimated confidences into road event label estimation data, which will be used for subsequent road event label information determination and network parameter learning.

接下来,服务器拥有一个标签知识库,其中包含了各个道路事件标签的详细描述、历史案例、应对措施等知识点信息。对于道路事件标签估计数据中置信度较高的标签,服务器会查询知识库以获取更丰富的标签知识点信息。服务器将查询到的标签知识点信息与估计置信度相结合,生成模板雷视融合数据流的道路事件标签信息,这些信息不仅反映了数据流中可能发生的道路事件类型,还提供了关于这些事件的详细背景和应对措施。Next, the server has a label knowledge base, which contains detailed descriptions of each road event label, historical cases, countermeasures and other knowledge point information. For labels with higher confidence in the road event label estimation data, the server will query the knowledge base to obtain richer label knowledge point information. The server combines the queried label knowledge point information with the estimated confidence to generate road event label information for the template radar-visual fusion data stream, which not only reflects the types of road events that may occur in the data stream, but also provides detailed background and countermeasures for these events.

风险目标估计单元现在不仅接收道路目标跟踪特征作为输入,还接收道路事件标签信息,这些信息共同构成了估计潜在风险目标所需的综合特征集。基于综合特征集,风险目标估计单元运用模式识别算法识别出模板雷视融合数据流中的潜在风险目标,这些目标的识别过程可能受到道路事件标签信息的显著影响,因为某些事件(如交通事故现场)本身就会增加周围目标的潜在风险。The risk target estimation unit now receives not only the road target tracking features as input, but also the road event label information, which together constitute the comprehensive feature set required to estimate potential risk targets. Based on the comprehensive feature set, the risk target estimation unit uses a pattern recognition algorithm to identify potential risk targets in the template radar-visual fusion data stream. The identification process of these targets may be significantly affected by the road event label information, because some events (such as traffic accident scenes) themselves will increase the potential risk of surrounding targets.

服务器加载与模板雷视融合数据流对应的道路事件标签先验数据,这些道路事件标签先验数据是预先标注好的,反映了模板雷视融合数据流中真实发生的道路事件及其置信度。服务器将道路事件标签估计数据与先验数据进行对比,计算第三学习代价,该第三学习代价反映了全连接输出单元在识别道路事件标签方面的训练误差。代价函数可能考虑了多个因素,如标签的正确率、置信度的偏差等。The server loads the road event label prior data corresponding to the template radar-visual fusion data stream. These road event label prior data are pre-labeled and reflect the road events that actually occurred in the template radar-visual fusion data stream and their confidence. The server compares the road event label estimation data with the prior data and calculates the third learning cost, which reflects the training error of the fully connected output unit in identifying the road event label. The cost function may take into account multiple factors, such as the accuracy of the label, the deviation of the confidence, etc.

服务器将第一学习代价(风险目标估计单元的训练误差)、第二学习代价(风险指数评估单元的训练误差)和第三学习代价(全连接输出单元的训练误差)进行汇总,这些代价共同反映了道路目标识别网络在当前训练阶段的整体性能。The server summarizes the first learning cost (training error of the risk target estimation unit), the second learning cost (training error of the risk index evaluation unit), and the third learning cost (training error of the fully connected output unit), which together reflect the overall performance of the road target recognition network in the current training stage.

参基于汇总后的学习代价,服务器运用梯度下降或其他优化算法对网络的参数进行调整。调整过程旨在最小化学习代价,使网络的输出更加接近真实情况。服务器重复执行上述步骤(从特征提取到参数学习),使用多个不同的模板雷视融合数据流进行迭代训练。通过多次迭代,网络的识别准确性和鲁棒性逐渐提升。在训练过程中,服务器会监控学习代价的变化情况。当学习代价趋于稳定且不再显著下降时,服务器判断网络已经收敛,训练过程结束。此时得到的网络参数将被用于实际部署和在线识别任务中。Based on the aggregated learning cost, the server uses gradient descent or other optimization algorithms to adjust the parameters of the network. The adjustment process aims to minimize the learning cost and make the network output closer to the actual situation. The server repeats the above steps (from feature extraction to parameter learning) and uses multiple different template radar fusion data streams for iterative training. Through multiple iterations, the recognition accuracy and robustness of the network gradually improve. During the training process, the server monitors the changes in the learning cost. When the learning cost tends to stabilize and no longer decreases significantly, the server determines that the network has converged and the training process ends. The network parameters obtained at this time will be used in actual deployment and online recognition tasks.

在一种可能的实施方式中,所述道路事件标签先验数据包括所述m个道路事件标签分别对应的先验置信度,所述第p个道路事件标签对应的先验置信度,反映所述模板雷视融合数据流匹配所述第p个道路事件标签的先验置信度。In a possible implementation, the road event label prior data includes the prior confidences corresponding to the m road event labels respectively, and the prior confidence corresponding to the p-th road event label reflects the prior confidence that the template radar-visual fusion data stream matches the p-th road event label.

步骤A130包括:基于所述m个道路事件标签分别对应的估计置信度,以及所述m个道路事件标签分别对应的先验置信度,确定所述第三学习代价。Step A130 includes: determining the third learning cost based on the estimated confidences respectively corresponding to the m road event labels and the prior confidences respectively corresponding to the m road event labels.

本实施例中,在训练开始前,服务器通过人工标注或其他可靠方式生成了道路事件标签先验数据,这些道路事件标签先验数据包含了模板雷视融合数据流中每个可能的道路事件标签(共m个)及其对应的先验置信度。先验置信度反映了在没有任何额外信息的情况下,数据流匹配每个事件标签的自然概率或预期概率。服务器将这些先验数据存储在数据库中,以便在训练过程中随时调用。先验数据可能以标签标识符、事件描述、先验置信度等形式存在,形成一个结构化的数据集。In this embodiment, before the training begins, the server generates road event label prior data through manual annotation or other reliable methods. These road event label prior data contain each possible road event label (a total of m) in the template radar-visual fusion data stream and its corresponding prior confidence. The prior confidence reflects the natural probability or expected probability that the data stream matches each event label in the absence of any additional information. The server stores these prior data in the database so that they can be called at any time during the training process. The prior data may exist in the form of label identifiers, event descriptions, prior confidence, etc., forming a structured data set.

全连接输出单元接收来自语义编码表示单元的道路目标跟踪特征作为输入,并基于这些特征预测模板数据流可能匹配的道路事件标签及其估计置信度。单元输出一个包含m个事件标签及其对应估计置信度的列表。The fully connected output unit receives the road object tracking features from the semantic encoding representation unit as input, and predicts the road event labels and their estimated confidences that the template data stream may match based on these features. The unit outputs a list of m event labels and their corresponding estimated confidences.

服务器将道路事件标签估计数据与道路事件标签先验数据进行匹配。匹配过程涉及将估计数据中的每个事件标签与其在先验数据中的对应标签进行对齐,以便后续比较它们的置信度。为了量化估计置信度与先验置信度之间的差异,服务器定义了一个代价函数,该函数可能考虑了多个因素,如置信度的绝对差值、相对误差、标签是否正确识别等。常见的代价函数包括交叉熵损失、均方误差等,具体选择取决于训练目标和优化策略。The server matches the estimated road event label data with the road event label prior data. The matching process involves aligning each event label in the estimated data with its corresponding label in the prior data so that their confidences can be compared later. In order to quantify the difference between the estimated confidence and the prior confidence, the server defines a cost function that may take into account multiple factors, such as the absolute difference in confidence, relative error, whether the label is correctly identified, etc. Common cost functions include cross entropy loss, mean square error, etc. The specific choice depends on the training objective and optimization strategy.

服务器遍历匹配后的数据对(即每个事件标签及其对应的估计置信度和先验置信度),将它们代入代价函数中进行计算。对于每个事件标签,服务器都会得到一个代价值,这些代价值反映了全连接输出单元在该标签上的预测准确性。最后,服务器将所有事件标签的代价值进行汇总,得到第三学习代价,该代价是一个标量值,它综合反映了全连接输出单元在整个模板数据流上识别道路事件标签的平均误差或总体性能。The server traverses the matched data pairs (i.e., each event label and its corresponding estimated confidence and prior confidence) and substitutes them into the cost function for calculation. For each event label, the server obtains a cost value that reflects the prediction accuracy of the fully connected output unit on that label. Finally, the server sums up the cost values of all event labels to obtain the third learning cost, which is a scalar value that comprehensively reflects the average error or overall performance of the fully connected output unit in identifying road event labels on the entire template data stream.

例如,假设模板雷视融合数据流中可能匹配的道路事件标签有“车辆急停”、“行人横穿”和“正常行驶”三个(即m=3)。服务器已经准备好了这三个标签分别对应的先验置信度,并存储在数据库中。For example, suppose there are three possible matching road event labels in the template radar-vision fusion data stream: "vehicle emergency stop", "pedestrian crossing" and "normal driving" (i.e. m=3). The server has prepared the prior confidences corresponding to these three labels and stored them in the database.

全连接输出单元基于输入的道路目标跟踪特征预测了这三个标签的估计置信度。例如,对于“车辆急停”标签,先验置信度可以是0.05(表示该事件在一般情况下不太常见),而估计置信度可以是0.8(表示单元认为当前数据流很可能匹配该标签)。The fully connected output unit predicts the estimated confidence of these three labels based on the input road target tracking features. For example, for the "vehicle emergency stop" label, the prior confidence can be 0.05 (indicating that this event is not very common in general), while the estimated confidence can be 0.8 (indicating that the unit believes that the current data stream is likely to match this label).

服务器将估计置信度与先验置信度进行匹配,并应用定义的代价函数(如交叉熵损失)计算代价值。对于“车辆急停”标签,由于估计置信度远高于先验置信度,代价值可能会相对较大,反映了单元在该标签上的预测与先验知识之间的差异。The server matches the estimated confidence with the prior confidence and applies a defined cost function (e.g., cross entropy loss) to calculate the cost. For the "vehicle emergency stop" label, since the estimated confidence is much higher than the prior confidence, the cost may be relatively large, reflecting the difference between the unit's prediction on this label and the prior knowledge.

类似地,服务器会计算其他两个标签的代价值,并将它们汇总得到第三学习代价。通过分析这个代价值,服务器可以评估全连接输出单元在识别道路事件标签方面的性能,并据此调整网络的参数或训练策略以改进性能。Similarly, the server calculates the cost values for the other two labels and sums them up to get the third learning cost. By analyzing this cost value, the server can evaluate the performance of the fully connected output unit in identifying road event labels and adjust the network parameters or training strategy accordingly to improve performance.

本申请实施例提供的用于实现上述的基于雷视融合的道路目标识别方法的基于雷视融合的道路目标识别系统,包括处理器、机器可读存储介质、总线以及通信单元。The embodiment of the present application provides a road target recognition system based on radar and vision fusion for implementing the above-mentioned road target recognition method based on radar and vision fusion, including a processor, a machine-readable storage medium, a bus, and a communication unit.

一种可能的设计中,基于雷视融合的道路目标识别系统可以是单个服务器,也可以是服务器组。所述服务器组可以是集中式的,也可以是分布式的(例如,基于雷视融合的道路目标识别系统可以是分布式的系统)。在一些实施例中,基于雷视融合的道路目标识别系统可以是本地的,也可以是远程的。例如,基于雷视融合的道路目标识别系统可以经由网络访问存储于机器可读存储介质中的信息和/或数据。又例如,基于雷视融合的道路目标识别系统可以直接连接到机器可读存储介质以访问存储的信息和/或数据。在一些实施例中,基于雷视融合的道路目标识别系统可以在基于雷视融合的道路目标识别系统上实施。仅作为示例,该基于雷视融合的道路目标识别系统可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。In a possible design, the road target recognition system based on thunder and vision fusion can be a single server or a server group. The server group can be centralized or distributed (for example, the road target recognition system based on thunder and vision fusion can be a distributed system). In some embodiments, the road target recognition system based on thunder and vision fusion can be local or remote. For example, the road target recognition system based on thunder and vision fusion can access information and/or data stored in a machine-readable storage medium via a network. For another example, the road target recognition system based on thunder and vision fusion can be directly connected to a machine-readable storage medium to access stored information and/or data. In some embodiments, the road target recognition system based on thunder and vision fusion can be implemented on a road target recognition system based on thunder and vision fusion. As an example only, the road target recognition system based on thunder and vision fusion can include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an internal cloud, a multi-layer cloud, etc. or any combination thereof.

机器可读存储介质可以存储数据和/或指令。在一些实施例中,机器可读存储介质可以存储从外部终端获取的数据。在一些实施例中,机器可读存储介质可以存储基于雷视融合的道路目标识别系统用来执行或使用来完成本申请中描述的示例性方法的数据及/或指令。The machine-readable storage medium may store data and/or instructions. In some embodiments, the machine-readable storage medium may store data acquired from an external terminal. In some embodiments, the machine-readable storage medium may store data and/or instructions used by a road target recognition system based on radar-visual fusion to execute or use to complete the exemplary method described in this application.

在具体实现过程中,一个或多个处理器执行机器可读存储介质存储的计算机可执行指令,使得处理器可以执行如上方法实施例的基于雷视融合的道路目标识别方法,处理器、机器可读存储介质以及通信单元通过总线连接,处理器可以用于控制通信单元的收发动作。In the specific implementation process, one or more processors execute computer executable instructions stored in a machine-readable storage medium, so that the processor can execute the road target recognition method based on radar-visual fusion in the above method embodiment. The processor, the machine-readable storage medium and the communication unit are connected through a bus, and the processor can be used to control the sending and receiving actions of the communication unit.

处理器的具体实现过程可参见上述基于雷视融合的道路目标识别系统执行的各个方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。The specific implementation process of the processor can refer to the various method embodiments executed by the above-mentioned road target recognition system based on radar and vision fusion. The implementation principles and technical effects are similar and will not be repeated in this embodiment.

此外,本申请实施例还提供一种可读存储介质,所述可读存储介质中预设有计算机可执行指令,当处理器执行所述计算机可执行指令时,实现如上基于雷视融合的道路目标识别方法。In addition, an embodiment of the present application further provides a readable storage medium, in which computer executable instructions are preset. When a processor executes the computer executable instructions, the above-mentioned road target recognition method based on radar-visual fusion is implemented.

应当注意的是,为了简化本申请披露的表述,从而帮助对一个或以上发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或以上发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。It should be noted that in order to simplify the description disclosed in this application and thus help understand one or more embodiments of the invention, in the foregoing description of the embodiments of the present application, multiple features are sometimes combined into one embodiment, drawings, or descriptions thereof. Similarly, it should be noted that in order to simplify the description disclosed in this application and thus help understand one or more embodiments of the invention, in the foregoing description of the embodiments of the present application, multiple features are sometimes combined into one embodiment, drawings, or descriptions thereof.

Claims (5)

1.一种基于雷视融合的道路目标识别方法,其特征在于,所述方法包括:1. A road target recognition method based on radar and visual fusion, characterized in that the method comprises: 获取雷视融合数据流的道路目标跟踪特征,所述雷视融合数据流的道路目标跟踪特征反映所述雷视融合数据流的内容表征;Acquire a road target tracking feature of a radar-vision fusion data stream, wherein the road target tracking feature of the radar-vision fusion data stream reflects a content representation of the radar-vision fusion data stream; 基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标;Based on the road target tracking characteristics of the radar and visual fusion data stream, determining at least one reference potential risk target in the radar and visual fusion data stream; 获取各个所述参考潜在风险目标的跟踪状态路径数据,基于各个所述参考潜在风险目标的跟踪状态路径数据和所述雷视融合数据流的道路目标跟踪特征,确定各个所述参考潜在风险目标的潜在风险指数,所述潜在风险指数反映所述参考潜在风险目标在所述雷视融合数据流中的异常行为趋势参数;Acquire the tracking state path data of each of the reference potential risk targets, and determine the potential risk index of each of the reference potential risk targets based on the tracking state path data of each of the reference potential risk targets and the road target tracking characteristics of the radar-visual fusion data stream, wherein the potential risk index reflects the abnormal behavior trend parameter of the reference potential risk target in the radar-visual fusion data stream; 基于各个所述参考潜在风险目标的潜在风险指数,确定所述雷视融合数据流的道路目标识别数据;Determining the road target identification data of the radar-visual fusion data stream based on the potential risk index of each of the reference potential risk targets; 所述基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标,包括:The determining of at least one reference potential risk target in the radar and visual fusion data stream based on the road target tracking feature of the radar and visual fusion data stream comprises: 基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流的道路事件标签信息,所述雷视融合数据流的道路事件标签信息反映所述雷视融合数据流的道路事件所对应的标签知识点信息;Based on the road target tracking characteristics of the thunder and vision fusion data stream, determining the road event label information of the thunder and vision fusion data stream, wherein the road event label information of the thunder and vision fusion data stream reflects the label knowledge point information corresponding to the road event of the thunder and vision fusion data stream; 基于所述雷视融合数据流的道路目标跟踪特征和所述雷视融合数据流的道路事件标签信息,确定所述雷视融合数据流中的至少一个参考潜在风险目标;Determine at least one reference potential risk target in the radar and vision fusion data stream based on the road target tracking characteristics of the radar and vision fusion data stream and the road event label information of the radar and vision fusion data stream; 其中,所述基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流的道路事件标签信息,包括:Wherein, determining the road event label information of the radar and visual fusion data stream based on the road target tracking feature of the radar and visual fusion data stream includes: 基于所述雷视融合数据流的道路目标跟踪特征,确定z个道路事件标签分别对应的置信度,所述z个道路事件标签中的第x个道路事件标签对应的置信度,反映所述雷视融合数据流匹配所述第x个道路事件标签的概率x不大于z;Based on the road target tracking characteristics of the radar-visual fusion data stream, the confidences corresponding to the z road event labels are determined, wherein the confidence corresponding to the x-th road event label among the z road event labels reflects that the probability x that the radar-visual fusion data stream matches the x-th road event label is not greater than z; 基于所述z个道路事件标签分别对应的置信度,从所述z个道路事件标签中选择所述置信度最大的y个道路事件标签,生成y个目标道路事件标签;Based on the confidences respectively corresponding to the z road event labels, y road event labels with the largest confidences are selected from the z road event labels to generate y target road event labels; 基于所述y个目标道路事件标签分别对应的置信度,对所述y个目标道路事件标签分别对应的标签知识特征进行融合计算,生成全局标签知识特征,所述雷视融合数据流的道路事件标签信息包括所述全局标签知识特征;Based on the confidences respectively corresponding to the y target road event labels, the label knowledge features respectively corresponding to the y target road event labels are fused and calculated to generate a global label knowledge feature, and the road event label information of the radar-visual fusion data stream includes the global label knowledge feature; 其中,所述雷视融合数据流的道路目标跟踪特征包括所述雷视融合数据流中的多个雷视融合数据段分别对应的特征矢量集合;The road target tracking feature of the radar-visual fusion data stream includes a set of feature vectors corresponding to a plurality of radar-visual fusion data segments in the radar-visual fusion data stream; 所述基于所述雷视融合数据流的道路目标跟踪特征和所述雷视融合数据流的道路事件标签信息,确定所述雷视融合数据流中的至少一个参考潜在风险目标,包括:The determining at least one reference potential risk target in the radar and vision fusion data stream based on the road target tracking feature of the radar and vision fusion data stream and the road event label information of the radar and vision fusion data stream comprises: 将所述雷视融合数据流中的各个所述雷视融合数据段对应的特征矢量集合,分别与所述雷视融合数据流的道路事件标签信息进行聚合,生成各个所述雷视融合数据段对应的聚合特征矢量集合;Aggregating the feature vector sets corresponding to each of the thunder and vision fusion data segments in the thunder and vision fusion data stream with the road event label information of the thunder and vision fusion data stream, to generate aggregated feature vector sets corresponding to each of the thunder and vision fusion data segments; 基于所述聚合特征矢量集合,确定所述雷视融合数据流中的至少一个参考潜在风险目标;Based on the aggregated feature vector set, determining at least one reference potential risk target in the radar-visual fusion data stream; 所述雷视融合数据流的道路目标识别数据由道路目标识别网络确定,所述道路目标识别网络包括语义编码表示单元、风险目标估计单元和风险指数评估单元;The road target recognition data of the radar-visual fusion data stream is determined by a road target recognition network, which includes a semantic coding representation unit, a risk target estimation unit and a risk index evaluation unit; 所述语义编码表示单元用于获取所述雷视融合数据流的道路目标跟踪特征;The semantic coding representation unit is used to obtain the road target tracking features of the radar and vision fusion data stream; 所述风险目标估计单元用于基于所述雷视融合数据流的道路目标跟踪特征,确定所述雷视融合数据流中的至少一个参考潜在风险目标;The risk target estimation unit is used to determine at least one reference potential risk target in the radar and visual fusion data stream based on the road target tracking characteristics of the radar and visual fusion data stream; 所述风险指数评估单元用于确定各个所述参考潜在风险目标的潜在风险指数;The risk index evaluation unit is used to determine the potential risk index of each of the reference potential risk targets; 所述方法还包括对所述道路目标识别网络进行网络参数学习的步骤,具体包括:The method further comprises the step of performing network parameter learning on the road object recognition network, specifically comprising: 利用所述语义编码表示单元获取模板雷视融合数据流的道路目标跟踪特征,所述模板雷视融合数据流的道路目标跟踪特征反映所述模板雷视融合数据流的内容表征;The semantic coding representation unit is used to obtain a road target tracking feature of a template radar and vision fusion data stream, wherein the road target tracking feature of the template radar and vision fusion data stream reflects a content representation of the template radar and vision fusion data stream; 利用所述风险目标估计单元基于所述模板雷视融合数据流的道路目标跟踪特征,确定所述模板雷视融合数据流的估计潜在风险目标数据,所述估计潜在风险目标数据包括所述模板雷视融合数据流中的至少一个参考潜在风险目标;Determine estimated potential risk target data of the template radar-visual fusion data stream by using the risk target estimation unit based on the road target tracking characteristics of the template radar-visual fusion data stream, wherein the estimated potential risk target data includes at least one reference potential risk target in the template radar-visual fusion data stream; 利用所述风险指数评估单元确定各个所述参考潜在风险目标的潜在风险指数,所述潜在风险指数反映所述参考潜在风险目标在所述模板雷视融合数据流中的异常行为趋势参数;Determine the potential risk index of each of the reference potential risk targets by using the risk index evaluation unit, wherein the potential risk index reflects the abnormal behavior trend parameter of the reference potential risk target in the template radar-visual fusion data stream; 基于各个所述参考潜在风险目标的潜在风险指数,确定所述模板雷视融合数据流的预测显著性潜在风险目标数据,所述预测显著性潜在风险目标数据包括:基于所述潜在风险指数从所述至少一个参考潜在风险目标中确定的至少一个显著性潜在风险目标;Based on the potential risk index of each of the reference potential risk targets, predicting significant potential risk target data of the template radar-visual fusion data stream, the predicted significant potential risk target data comprising: at least one significant potential risk target determined from the at least one reference potential risk target based on the potential risk index; 基于所述估计潜在风险目标数据和所述潜在风险目标先验数据,确定第一学习代价,所述第一学习代价表示所述风险目标估计单元的训练误差;Determining a first learning cost based on the estimated potential risk target data and the potential risk target prior data, wherein the first learning cost represents a training error of the risk target estimation unit; 基于所述预测显著性潜在风险目标数据和所述显著性潜在风险目标先验数据,确定第二学习代价,所述第二学习代价表示所述风险指数评估单元的训练误差;Determining a second learning cost based on the predicted significant potential risk target data and the significant potential risk target prior data, wherein the second learning cost represents a training error of the risk index evaluation unit; 基于所述第一学习代价和所述第二学习代价,对所述道路目标识别网络进行网络参数学习;Based on the first learning cost and the second learning cost, performing network parameter learning on the road object recognition network; 所述估计潜在风险目标数据包括所述模板雷视融合数据流中的各个雷视融合数据段分别对应的估计置信度信息,所述估计置信度信息包括所述雷视融合数据段相对于多个潜在风险目标的估计置信度;所述潜在风险目标先验数据包括所述模板雷视融合数据流中的各个雷视融合数据段分别对应的先验置信度信息,所述先验置信度信息包括所述雷视融合数据段相对于多个潜在风险目标的先验置信度;The estimated potential risk target data includes estimated confidence information corresponding to each radar vision fusion data segment in the template radar vision fusion data stream, and the estimated confidence information includes estimated confidence of the radar vision fusion data segment relative to multiple potential risk targets; the potential risk target prior data includes prior confidence information corresponding to each radar vision fusion data segment in the template radar vision fusion data stream, and the prior confidence information includes prior confidence of the radar vision fusion data segment relative to multiple potential risk targets; 所述基于所述估计潜在风险目标数据和所述潜在风险目标先验数据,确定第一学习代价,包括:The determining of a first learning cost based on the estimated potential risk target data and the potential risk target prior data includes: 基于所述模板雷视融合数据流中的各个雷视融合数据段分别对应的估计置信度信息,以及所述模板雷视融合数据流中的各个雷视融合数据段分别对应的先验置信度信息,确定所述第一学习代价;Determining the first learning cost based on the estimated confidence information corresponding to each radar-vision fusion data segment in the template radar-vision fusion data stream and the priori confidence information corresponding to each radar-vision fusion data segment in the template radar-vision fusion data stream; 其中,所述显著性潜在风险目标先验数据包括所述模板雷视融合数据流中的至少一个先验显著性潜在风险目标;Wherein, the prior data of significant potential risk targets includes at least one prior significant potential risk target in the template radar-visual fusion data stream; 所述基于所述预测显著性潜在风险目标数据和所述显著性潜在风险目标先验数据,确定第二学习代价,包括:The determining of the second learning cost based on the predicted significant potential risk target data and the significant potential risk target prior data includes: 基于所述模板雷视融合数据流中的各个所述参考潜在风险目标分别对应的潜在风险指数,以及各个所述参考潜在风险目标中的所述先验显著性潜在风险目标,确定所述第二学习代价;Determining the second learning cost based on the potential risk indexes respectively corresponding to the reference potential risk targets in the template radar-visual fusion data stream and the priori significant potential risk targets in the reference potential risk targets; 其中,所述道路目标识别网络还包括全连接输出单元,所述方法还包括:Wherein, the road object recognition network further includes a fully connected output unit, and the method further includes: 利用所述全连接输出单元基于所述模板雷视融合数据流的道路目标跟踪特征,确定所述模板雷视融合数据流的道路事件标签估计数据,所述模板雷视融合数据流的道路事件标签估计数据包括m个道路事件标签分别对应的估计置信度,所述m个道路事件标签中的第p个道路事件标签对应的估计置信度,反映所述模板雷视融合数据流匹配所述第p个道路事件标签的估计置信度,p不大于m;Determine the road event label estimation data of the template radar-vision fusion data stream based on the road target tracking feature of the template radar-vision fusion data stream by using the fully connected output unit, wherein the road event label estimation data of the template radar-vision fusion data stream includes estimated confidences corresponding to m road event labels respectively, and the estimated confidence corresponding to the p-th road event label among the m road event labels, reflecting the estimated confidence that the template radar-vision fusion data stream matches the p-th road event label, and p is not greater than m; 基于所述模板雷视融合数据流的道路事件标签估计数据,确定所述模板雷视融合数据流的道路事件标签信息,所述模板雷视融合数据流的道路事件标签信息反映所述模板雷视融合数据流的道路事件所对应的标签知识点信息,所述风险目标估计单元用于基于所述模板雷视融合数据流的道路目标跟踪特征和所述模板雷视融合数据流的道路事件标签信息,确定所述模板雷视融合数据流的估计潜在风险目标数据;Based on the road event label estimation data of the template radar-vision fusion data stream, the road event label information of the template radar-vision fusion data stream is determined, the road event label information of the template radar-vision fusion data stream reflects the label knowledge point information corresponding to the road event of the template radar-vision fusion data stream, and the risk target estimation unit is used to determine the estimated potential risk target data of the template radar-vision fusion data stream based on the road target tracking characteristics of the template radar-vision fusion data stream and the road event label information of the template radar-vision fusion data stream; 基于所述道路事件标签估计数据和道路事件标签先验数据,确定第三学习代价,所述第三学习代价表示所述全连接输出单元的训练误差;Determining a third learning cost based on the road event label estimation data and the road event label prior data, wherein the third learning cost represents a training error of the fully connected output unit; 所述基于所述第一学习代价和所述第二学习代价,对所述道路目标识别网络进行网络参数学习,包括:The performing network parameter learning on the road object recognition network based on the first learning cost and the second learning cost includes: 基于所述第一学习代价、所述第二学习代价和所述第三学习代价,对所述道路目标识别网络进行网络参数学习;Based on the first learning cost, the second learning cost and the third learning cost, performing network parameter learning on the road object recognition network; 所述道路事件标签先验数据包括所述m个道路事件标签分别对应的先验置信度,所述第p个道路事件标签对应的先验置信度,反映所述模板雷视融合数据流匹配所述第p个道路事件标签的先验置信度;The road event label prior data includes the prior confidences corresponding to the m road event labels respectively, the prior confidence corresponding to the p-th road event label, and reflects the prior confidence that the template radar-visual fusion data stream matches the p-th road event label; 所述基于所述道路事件标签估计数据和道路事件标签先验数据,确定第三学习代价,包括:The determining of the third learning cost based on the road event label estimation data and the road event label prior data includes: 基于所述m个道路事件标签分别对应的估计置信度,以及所述m个道路事件标签分别对应的先验置信度,确定所述第三学习代价。The third learning cost is determined based on the estimated confidences respectively corresponding to the m road event labels and the priori confidences respectively corresponding to the m road event labels. 2.根据权利要求1所述的基于雷视融合的道路目标识别方法,其特征在于,所述雷视融合数据流的道路目标跟踪特征包括第一特征矢量集合,所述第一特征矢量集合反映所述雷视融合数据流的全局内容表征;2. The road target recognition method based on radar and visual fusion according to claim 1, characterized in that the road target tracking features of the radar and visual fusion data stream include a first feature vector set, and the first feature vector set reflects the global content representation of the radar and visual fusion data stream; 所述基于各个所述参考潜在风险目标的跟踪状态路径数据和所述雷视融合数据流的道路目标跟踪特征,确定各个所述参考潜在风险目标的潜在风险指数,包括:The step of determining the potential risk index of each reference potential risk target based on the tracking state path data of each reference potential risk target and the road target tracking characteristics of the radar-visual fusion data stream comprises: 基于各个所述参考潜在风险目标的跟踪状态路径数据与所述第一特征矢量集合之间的匹配度,确定各个所述参考潜在风险目标的潜在风险指数。Based on the matching degree between the tracking state path data of each reference potential risk target and the first feature vector set, a potential risk index of each reference potential risk target is determined. 3.根据权利要求1所述的基于雷视融合的道路目标识别方法,其特征在于,所述基于各个所述参考潜在风险目标的潜在风险指数,确定所述雷视融合数据流的道路目标识别数据,包括:3. The method for road target identification based on radar and visual fusion according to claim 1, characterized in that the road target identification data of the radar and visual fusion data stream is determined based on the potential risk index of each reference potential risk target, comprising: 将所述潜在风险指数符合第一设定要求的参考潜在风险目标,输出为所述雷视融合数据流中包含的潜在风险目标;Outputting the reference potential risk target whose potential risk index meets the first setting requirement as the potential risk target included in the radar-visual fusion data stream; 其中,所述第一设定要求包括所述潜在风险指数不小于第一门限值,或者依据所述潜在风险指数的降序次序对各个所述参考潜在风险目标进行排列,位于排列结果的前i次序,i为设定正整数。Among them, the first setting requirement includes that the potential risk index is not less than a first threshold value, or that each of the reference potential risk targets is arranged in descending order of the potential risk index and is located in the first i order of the arrangement result, where i is a set positive integer. 4.根据权利要求1所述的基于雷视融合的道路目标识别方法,其特征在于,所述基于各个所述参考潜在风险目标的潜在风险指数,确定所述雷视融合数据流的道路目标识别数据,包括:4. The method for road target identification based on radar and visual fusion according to claim 1, characterized in that the road target identification data of the radar and visual fusion data stream is determined based on the potential risk index of each reference potential risk target, comprising: 将所述潜在风险指数符合第二设定要求的参考潜在风险目标,输出为所述雷视融合数据流中包含的显著性潜在风险目标;Outputting the reference potential risk target whose potential risk index meets the second setting requirement as a significant potential risk target included in the radar-visual fusion data stream; 其中,所述第二设定要求包括:所述潜在风险指数不小于第二门限值,或者依据所述潜在风险指数的降序次序对各个所述参考潜在风险目标进行排列,位于排列结果的前j次序,j为设定正整数。Among them, the second setting requirement includes: the potential risk index is not less than a second threshold value, or each of the reference potential risk targets is arranged in descending order according to the potential risk index and is located in the first j order of the arrangement result, where j is a set positive integer. 5.一种基于雷视融合的道路目标识别系统,其特征在于,所述基于雷视融合的道路目标识别系统包括处理器和存储器,所述存储器和所述处理器连接,所述存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,以实现上述权利要求1-4任意一项所述的基于雷视融合的道路目标识别方法。5. A road target recognition system based on radar and vision fusion, characterized in that the road target recognition system based on radar and vision fusion includes a processor and a memory, the memory is connected to the processor, the memory is used to store programs, instructions or codes, and the processor is used to execute the programs, instructions or codes in the memory to implement the road target recognition method based on radar and vision fusion described in any one of claims 1 to 4.
CN202411083444.6A 2024-08-08 2024-08-08 Road target recognition method and system based on radar and vision fusion Active CN118629216B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411083444.6A CN118629216B (en) 2024-08-08 2024-08-08 Road target recognition method and system based on radar and vision fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411083444.6A CN118629216B (en) 2024-08-08 2024-08-08 Road target recognition method and system based on radar and vision fusion

Publications (2)

Publication Number Publication Date
CN118629216A CN118629216A (en) 2024-09-10
CN118629216B true CN118629216B (en) 2024-10-18

Family

ID=92610669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411083444.6A Active CN118629216B (en) 2024-08-08 2024-08-08 Road target recognition method and system based on radar and vision fusion

Country Status (1)

Country Link
CN (1) CN118629216B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114266891A (en) * 2021-11-17 2022-04-01 京沪高速铁路股份有限公司 Anomaly identification method of railway operating environment based on image and laser data fusion
CN117541910A (en) * 2023-10-27 2024-02-09 北京市城市规划设计研究院 Fusion method and device of multiple lightning vision data on urban roads

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355539B2 (en) * 2007-09-07 2013-01-15 Sri International Radar guided vision system for vehicle validation and vehicle motion characterization
CN202163431U (en) * 2011-06-30 2012-03-14 中国汽车技术研究中心 Collision and traffic lane deviation pre-alarming device based on integrated information of sensors
CN112566079B (en) * 2020-10-26 2023-06-02 四川华体照明科技股份有限公司 Parking guidance system in automatic parking system
CN117831267A (en) * 2022-12-31 2024-04-05 江苏长天智远数字智能科技有限公司 Road monitoring system based on multisource data fusion
CN118411508A (en) * 2024-04-18 2024-07-30 西安电子科技大学青岛计算技术研究院 Multi-scale target detection method and system based on roadside camera and millimeter wave radar
CN118396187B (en) * 2024-06-24 2024-09-03 昆明理工大学 Airport security monitoring data analysis method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114266891A (en) * 2021-11-17 2022-04-01 京沪高速铁路股份有限公司 Anomaly identification method of railway operating environment based on image and laser data fusion
CN117541910A (en) * 2023-10-27 2024-02-09 北京市城市规划设计研究院 Fusion method and device of multiple lightning vision data on urban roads

Also Published As

Publication number Publication date
CN118629216A (en) 2024-09-10

Similar Documents

Publication Publication Date Title
CN102097005B (en) Intelligent and integrated traffic signal controller
CN116824859B (en) Intelligent traffic big data analysis system based on Internet of things
CN118587072B (en) Road emergency event handling method and system
CN102880692A (en) Retrieval-oriented monitoring video semantic description and inspection modeling method
CN104952248A (en) Automobile convergence predicting method based on Euclidean space
CN118644990B (en) Data control system for smart city based on big data
CN114267173B (en) Multisource data fusion method, device and equipment for space-time characteristics of expressway
CN118298628A (en) Multi-mode integrated traffic abnormal event detection method
CN118172941B (en) Traffic light control method and device based on wireless communication
CN110827540A (en) Motor vehicle movement mode recognition method and system based on multi-mode data fusion
CN113868492A (en) Visual OD (origin-destination) analysis method based on electric police and checkpoint data and application
CN117975736A (en) Unmanned vehicle road cooperative application scene test method and system
CN118982927A (en) A community traffic flow prediction and optimization system based on artificial intelligence
Minnikhanov et al. Detection of traffic anomalies for a safety system of smart city
CN118038674A (en) Monitoring system real-time dynamic analysis warning system based on big data
CN117649767A (en) Traffic road condition analysis system based on digital twin technology
CN118629216B (en) Road target recognition method and system based on radar and vision fusion
CN117456482B (en) Abnormal event identification method and system for traffic monitoring scene
CN116978231A (en) Road section emergency traffic situation influence evaluation analysis model and method
Grigoropoulos et al. Detection and classification of bicyclist group behavior for automated vehicle applications
CN118861696B (en) Road traffic accident detection method and system based on holographic perception
Liu Refined judgment of urban traffic state based on machine learning and edge computing
CN118736839B (en) Real-time monitoring and protection system for expected functional safety based on vehicle-road-cloud collaboration
CN118840872B (en) Road flow analysis method and system based on edge calculation
CN118942257B (en) A three-color early warning method for high-speed sections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant