CN118614926A - A wearable device for emotion recognition based on voiceprint learning and its preparation method - Google Patents
A wearable device for emotion recognition based on voiceprint learning and its preparation method Download PDFInfo
- Publication number
- CN118614926A CN118614926A CN202410712652.1A CN202410712652A CN118614926A CN 118614926 A CN118614926 A CN 118614926A CN 202410712652 A CN202410712652 A CN 202410712652A CN 118614926 A CN118614926 A CN 118614926A
- Authority
- CN
- China
- Prior art keywords
- emotion recognition
- piezoelectric sensor
- wearable device
- flexible piezoelectric
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008909 emotion recognition Effects 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 239000000017 hydrogel Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 10
- 238000004528 spin coating Methods 0.000 claims abstract description 6
- 238000011176 pooling Methods 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 32
- 230000008451 emotion Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000004806 packaging method and process Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 238000001523 electrospinning Methods 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 229920002313 fluoropolymer Polymers 0.000 claims description 3
- 239000002082 metal nanoparticle Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 abstract description 2
- 239000005022 packaging material Substances 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- 230000002996 emotional effect Effects 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920006306 polyurethane fiber Polymers 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000001260 vocal cord Anatomy 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4803—Speech analysis specially adapted for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Psychiatry (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明提供一种基于声纹学习的情绪识别穿戴式设备及其制备方法,该制备方法包括以下步骤:在由压电薄膜组装成的柔性压电传感器表面放置各功能单元,并用电极导线将各部分连接;将封装材料旋涂在柔性压电传感器表面,并在烘箱固化。其中柔性压电传感器包含水凝胶层,能够与皮肤粘附以实现设备的可穿戴功能。该设备通过采集喉部产生的语音信号,经过放大、去噪、滤波以及模数转换,由蓝牙模块传输至手机端。手机端将语音信号数据通过带通滤波器进行预处理,然后对声帧进行快速傅里叶变换,将时域波形转换为梅尔频谱图,并送入卷积神经网络分类器,然后在隐藏状态下通过最大池化层;最后通过线性层和全连接层,实现情绪识别。
The present invention provides an emotion recognition wearable device based on voiceprint learning and a preparation method thereof, the preparation method comprising the following steps: placing various functional units on the surface of a flexible piezoelectric sensor assembled from a piezoelectric film, and connecting the various parts with electrode wires; spin coating the packaging material on the surface of the flexible piezoelectric sensor, and curing it in an oven. The flexible piezoelectric sensor comprises a hydrogel layer that can adhere to the skin to achieve the wearable function of the device. The device collects the voice signal generated by the throat, amplifies, denoises, filters, and converts analog to digital, and transmits it to the mobile phone end through a Bluetooth module. The mobile phone end pre-processes the voice signal data through a bandpass filter, then performs a fast Fourier transform on the sound frame, converts the time domain waveform into a Mel spectrum, and sends it to a convolutional neural network classifier, and then passes through a maximum pooling layer in a hidden state; finally, through a linear layer and a fully connected layer, emotion recognition is achieved.
Description
技术领域Technical Field
本发明涉及患者情绪监测技术领域,尤其涉及一种基于声纹学习的情绪识别穿戴式设备及其制备方法。The present invention relates to the technical field of patient emotion monitoring, and in particular to an emotion recognition wearable device based on voiceprint learning and a preparation method thereof.
背景技术Background Art
情绪作为心理健康状况的重要指标之一,在日常工作和生活中发挥着关键作用。对于焦虑症、抑郁症、情感障碍等精神类疾病患者,记录情绪状态有助于监测和治疗精神疾病,为患者的康复效果提供重要的依据。As one of the important indicators of mental health, emotions play a key role in daily work and life. For patients with mental illnesses such as anxiety, depression, and affective disorders, recording emotional states helps monitor and treat mental illnesses and provides an important basis for the patient's rehabilitation effect.
随着人工智能的发展,通过分析个体的语音信号,提取声音特征——声纹,来分析和推断说话者情绪状态已成为一项重要研究方向。通过声纹学习,建立一个能够准确描述和区分不同个体声音特征的模型,可以识别并推测说话者当前的情绪状态,如喜悦、愤怒、悲伤等。With the development of artificial intelligence, analyzing and inferring the speaker's emotional state by analyzing individual voice signals and extracting sound features - voiceprints has become an important research direction. Through voiceprint learning, a model that can accurately describe and distinguish the voice features of different individuals can be established to identify and infer the speaker's current emotional state, such as joy, anger, sadness, etc.
而声纹学习需要采集个体的语音信号,一些常见用于采集人体语音信号的穿戴式设备,如智能耳机、眼镜等,易受到环境噪音的干扰,从而影响语音信号的质量,降低情绪识别的准确性。Voiceprint learning requires the collection of individual voice signals. Some common wearable devices used to collect human voice signals, such as smart headphones and glasses, are easily interfered by environmental noise, which affects the quality of voice signals and reduces the accuracy of emotion recognition.
发明内容Summary of the invention
本发明的目的在于提供一种基于声纹学习的情绪识别穿戴式设备及其制备方法,能够采集个体自身的语音信号实现简单方便准确的情绪识别,以解决上述背景技术中遇到的问题。The purpose of the present invention is to provide an emotion recognition wearable device based on voiceprint learning and a preparation method thereof, which can collect an individual's own voice signal to achieve simple, convenient and accurate emotion recognition, so as to solve the problems encountered in the above-mentioned background technology.
为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical solution of the present invention is as follows:
一种基于声纹学习的情绪识别穿戴式设备,包括柔性压电传感器和设置在柔性压电传感器外表面的信号处理模块、电源模块、蓝牙模块,电源模块分别与信号处理模块、蓝牙模块连接对其供电,柔性压电传感器与信号处理模块连接。将信号处理模块、电源模块、蓝牙模块置于柔性压电传感器上表面,并用导线使模块之间相互连通。An emotion recognition wearable device based on voiceprint learning includes a flexible piezoelectric sensor and a signal processing module, a power module, and a Bluetooth module arranged on the outer surface of the flexible piezoelectric sensor. The power module is respectively connected to the signal processing module and the Bluetooth module to supply power to them, and the flexible piezoelectric sensor is connected to the signal processing module. The signal processing module, the power module, and the Bluetooth module are placed on the upper surface of the flexible piezoelectric sensor, and the modules are interconnected with wires.
电源模块与蓝牙模块连接,并将数据发送至移动端,通过移动端对用户的情绪进行识别并显示。电源模块使用可充电的纽扣电池或者聚合物锂电池,并配备Type-C充电接口。The power module is connected to the Bluetooth module and sends data to the mobile terminal, which recognizes and displays the user's emotions. The power module uses a rechargeable button battery or polymer lithium battery and is equipped with a Type-C charging interface.
柔性压电传感器采集喉部振动所产生的语音信号并传输给信号处理模块,由信号处理模块对语音信号进行初步处理并通过蓝牙模块将语音数据传输至手机端。The flexible piezoelectric sensor collects the voice signal generated by the throat vibration and transmits it to the signal processing module, which performs preliminary processing on the voice signal and transmits the voice data to the mobile phone through the Bluetooth module.
在制造时,本情绪识别穿戴式设备还包括封装层,通过封装层将信号处理模块、电源模块、蓝牙模块在柔性压电传感器的表面形成一体化结构。During manufacturing, the emotion recognition wearable device also includes a packaging layer, through which the signal processing module, the power module, and the Bluetooth module are integrated on the surface of the flexible piezoelectric sensor.
柔性压电传感器包括上下两层电极层和中间的压电层,具体的,柔性压电传感器包括压电薄膜、单面导电的电极片和机械互锁电极,压电薄膜位于电极片和机械互锁电极之间,且电极片和机械互锁电极导电的一面贴着压电薄膜。The flexible piezoelectric sensor includes two upper and lower electrode layers and a middle piezoelectric layer. Specifically, the flexible piezoelectric sensor includes a piezoelectric film, a single-sided conductive electrode sheet and a mechanical interlocking electrode. The piezoelectric film is located between the electrode sheet and the mechanical interlocking electrode, and the conductive side of the electrode sheet and the mechanical interlocking electrode is attached to the piezoelectric film.
机械互锁电极的制造方法:通过纺丝的方法制备纤维,纤维材料采用聚氨酯、聚酯、聚丙烯、聚酰胺中的至少一种。进一步的,在纤维上表面通过蒸镀、旋涂等方法制备电极层。并在纤维的另一面浇铸水凝胶前驱体,热固化得到具有机械互锁结构的水凝胶电极。水凝胶和纤维形成机械互锁区域,同时水凝胶层具备高度的粘附性,能够附着在皮肤上,从而实现设备的可穿戴性。Manufacturing method of mechanical interlocking electrodes: Fibers are prepared by spinning, and the fiber material is at least one of polyurethane, polyester, polypropylene, and polyamide. Furthermore, an electrode layer is prepared on the upper surface of the fiber by evaporation, spin coating, etc. A hydrogel precursor is cast on the other side of the fiber, and thermally cured to obtain a hydrogel electrode with a mechanical interlocking structure. The hydrogel and the fiber form a mechanical interlocking area, and the hydrogel layer has a high degree of adhesion and can be attached to the skin, thereby achieving the wearability of the device.
所述信号处理模块包含前置放大电路、50Hz陷波电路、带通滤波电路、A/D转换电路;前置放大电路用于放大语音信号;50Hz陷波电路用于滤除工频干扰;带通滤波电路用于限制语音信号的频率范围;A/D转换电路用于对语音信号进行模数转换;所述电源模块用于给信号处理模块中的所有电路供能;所述蓝牙模块用于将采集到的语音数据发送至手机端。The signal processing module includes a preamplifier circuit, a 50Hz notch circuit, a bandpass filter circuit, and an A/D conversion circuit; the preamplifier circuit is used to amplify the voice signal; the 50Hz notch circuit is used to filter out power frequency interference; the bandpass filter circuit is used to limit the frequency range of the voice signal; the A/D conversion circuit is used to perform analog-to-digital conversion on the voice signal; the power module is used to supply energy to all circuits in the signal processing module; and the Bluetooth module is used to send the collected voice data to the mobile phone.
一种基于声纹学习的情绪识别穿戴式设备的制备方法,包括以下步骤:A method for preparing an emotion recognition wearable device based on voiceprint learning comprises the following steps:
通过压电材料制备压电薄膜,并与电极片和机械互锁电极组装成柔性压电传感器,所述柔性压电传感器用于将用户说话时喉部振动转变为电信号;A piezoelectric film is prepared by using a piezoelectric material, and is assembled with an electrode sheet and a mechanically interlocked electrode into a flexible piezoelectric sensor, wherein the flexible piezoelectric sensor is used to convert the throat vibration of the user when speaking into an electrical signal;
在柔性压电传感器表面放置各个功能单元,包括:信号处理模块、电源模块、蓝牙模块;将电极导线按照相应电路布置在柔性压电传感器上以连接各个功能单元;Various functional units are placed on the surface of the flexible piezoelectric sensor, including: a signal processing module, a power module, and a Bluetooth module; electrode wires are arranged on the flexible piezoelectric sensor according to corresponding circuits to connect various functional units;
将具备绝缘性、生物相容性的有机材料旋涂在柔性压电传感器表面以封装各个功能单元及电极导线。Insulating and biocompatible organic materials are spin-coated on the surface of the flexible piezoelectric sensor to encapsulate each functional unit and electrode wire.
进一步的,所述压电材料采用聚偏二氟乙烯、氟化聚合物、聚乳酸、聚丙烯腈、纤维素中的至少一种,加入一定浓度的填料,按照一定比例溶解在溶剂中并通过磁力搅拌得到颗粒均匀分散的悬浊液,通过电纺或者旋涂的方式制得所述压电薄膜。Furthermore, the piezoelectric material is made of at least one of polyvinylidene fluoride, fluorinated polymer, polylactic acid, polyacrylonitrile, and cellulose, a certain concentration of filler is added, dissolved in a solvent in a certain proportion and magnetically stirred to obtain a suspension with uniformly dispersed particles, and the piezoelectric film is obtained by electrospinning or spin coating.
其中,压电薄膜的制造方法:将压电材料配成一定浓度的溶液,通过旋涂、喷涂、拉伸、压延、纺丝和极化等方法制备均匀的压电薄膜,厚度在100微米左右。Among them, the manufacturing method of the piezoelectric film is: the piezoelectric material is prepared into a solution of a certain concentration, and a uniform piezoelectric film with a thickness of about 100 microns is prepared by spin coating, spraying, stretching, calendering, spinning and polarization.
再进一步的,为了提升压电传感器的压电性能,采用一种简单有效的方法即往压电材料中加入一定浓度的添加剂或填料。所述填料用于提升所述柔性压电传感器的压电转换效率,所述填料为金属纳米颗粒、金属氧化物、压电陶瓷、纳米氧化锌颗粒中的一种或者多种。Furthermore, in order to improve the piezoelectric performance of the piezoelectric sensor, a simple and effective method is adopted, that is, adding a certain concentration of additives or fillers to the piezoelectric material. The filler is used to improve the piezoelectric conversion efficiency of the flexible piezoelectric sensor, and the filler is one or more of metal nanoparticles, metal oxides, piezoelectric ceramics, and nano zinc oxide particles.
将制备好的压电薄膜夹在电极片和机械互锁电极的中间组装成压电传感器,电极片材料可以是导电胶带或导电铜片。并且电极片和机械互锁电极单面导电,即与压电薄膜接触的一面导电,另一面不导电。The prepared piezoelectric film is sandwiched between an electrode sheet and a mechanical interlocking electrode to assemble a piezoelectric sensor. The electrode sheet material can be a conductive tape or a conductive copper sheet. The electrode sheet and the mechanical interlocking electrode are conductive on one side, that is, the side in contact with the piezoelectric film is conductive, and the other side is non-conductive.
一种基于声纹学习的情绪识别穿戴式设备,实现情绪识别的算法包括以下几个步骤:An emotion recognition wearable device based on voiceprint learning, the algorithm for realizing emotion recognition includes the following steps:
使用所述柔性压电传感器记录多个语音信号,每个信号都被人工分类并分别标记为4个情绪标签:愤怒、平静、开心和悲伤。在训练时,并将训练集与测试集的比例设为8:2。The flexible piezoelectric sensor is used to record multiple speech signals, each of which is manually classified and labeled with four emotion labels: anger, calm, happiness and sadness. During training, the ratio of the training set to the test set is set to 8:2.
在训练模型之前,首先将4种不同情绪表达的语音信号数据通过带通滤波器进行预处理,去除极低或高频信号。滤波后的信号首先通过汉宁窗口分割成小帧,然后对声帧进行快速傅里叶变换和80波段梅尔滤波,将时域波形转换为梅尔频谱图。Before training the model, the speech signal data of four different emotional expressions were preprocessed through a bandpass filter to remove extremely low or high frequency signals. The filtered signal was first split into small frames through a Hanning window, and then the sound frame was subjected to fast Fourier transform and 80-band Mel filtering to convert the time domain waveform into a Mel spectrogram.
其中,所述汉宁窗口的大小为1024毫秒、跳长为320毫秒。The size of the Hanning window is 1024 milliseconds and the jump length is 320 milliseconds.
将80通道梅尔频谱图送入卷积神经网络(CNN)的分类器,然后在隐藏状态下通过最大池化层,以减少计算成本和方差。其中,分类器由5层卷积神经网络(CNN)组成,每层的卷积核大小为[1,1,3,3,5]。The 80-channel Mel-spectrogram is fed into the convolutional neural network (CNN) classifier and then passed through a max pooling layer in the hidden state to reduce computational cost and variance. The classifier consists of 5 layers of convolutional neural network (CNN), and the convolution kernel size of each layer is [1,1,3,3,5].
最后通过线性层和全连接层,负责情感投射作为最终的分类结果,实现情绪识别。Finally, the linear layer and the fully connected layer are used to project emotions as the final classification result to achieve emotion recognition.
与现有技术相比,本发明的有益效果是:本情绪识别穿戴式设备,通过柔性压电传感器采集喉部语音信号,并经过一系列电路将数据传输至手机端,然后通过训练好的声纹学习方法进行情绪识别。因此,相比于现有技术,本设备能够采集个体自身的语音信号实现简单方便准确的情绪识别。Compared with the prior art, the beneficial effect of the present invention is that the present wearable emotion recognition device collects throat voice signals through a flexible piezoelectric sensor, transmits the data to the mobile phone through a series of circuits, and then performs emotion recognition through a trained voiceprint learning method. Therefore, compared with the prior art, the present device can collect an individual's own voice signals to achieve simple, convenient and accurate emotion recognition.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
参照附图来说明本发明的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本发明的保护范围构成限制。在附图中,相同的附图标记用于指代相同的部件。其中:The disclosure of the present invention is described with reference to the accompanying drawings. It should be understood that the drawings are for illustrative purposes only and are not intended to limit the scope of protection of the present invention. In the accompanying drawings, the same reference numerals are used to refer to the same components. Among them:
图1为基于声纹学习的情绪识别穿戴式设备的系统框图;FIG1 is a system block diagram of an emotion recognition wearable device based on voiceprint learning;
图2为基于声纹学习的情绪识别穿戴式设备的工作示意图;FIG2 is a schematic diagram of the working of an emotion recognition wearable device based on voiceprint learning;
图3为基于声纹学习的情绪识别穿戴式设备的结构示意图;FIG3 is a schematic diagram of the structure of an emotion recognition wearable device based on voiceprint learning;
图4为基于声纹学习的情绪识别穿戴式设备的集成封装示意图;FIG4 is a schematic diagram of the integrated packaging of an emotion recognition wearable device based on voiceprint learning;
图5为本发明实施例介绍的柔性压电传感器的结构示意图;FIG5 is a schematic diagram of the structure of a flexible piezoelectric sensor according to an embodiment of the present invention;
图6为基于声纹学习的情绪识别穿戴式设备的机器学习模型原理图;FIG6 is a schematic diagram of a machine learning model for an emotion recognition wearable device based on voiceprint learning;
图7为本发明实施例介绍的压电薄膜傅里叶红外谱图;FIG7 is a Fourier infrared spectrum of a piezoelectric film according to an embodiment of the present invention;
图8为本发明实施例介绍的柔性压电传感器采集到的其中一例语音信号图;FIG8 is a diagram of an example of a voice signal collected by the flexible piezoelectric sensor introduced in an embodiment of the present invention;
图9为本发明实施例介绍的柔性压电传感器采集到的其中一例梅尔频谱图。FIG. 9 is an example of a Mel spectrum diagram collected by the flexible piezoelectric sensor introduced in an embodiment of the present invention.
图中标注说明:1、一种基于声纹学习的情绪识别穿戴式设备;2、柔性压电传感器;21-压电薄膜;22-电极片;23-机械互锁电极;231-电极层;232-机械互锁区域;233-水凝胶层;3、信号处理模块;4、电源模块;5、蓝牙模块;6、Type-C充电口;7、封装层。Explanations in the figure: 1. A wearable device for emotion recognition based on voiceprint learning; 2. Flexible piezoelectric sensor; 21-piezoelectric film; 22-electrode sheet; 23-mechanical interlocking electrode; 231-electrode layer; 232-mechanical interlocking area; 233-hydrogel layer; 3. Signal processing module; 4. Power module; 5. Bluetooth module; 6. Type-C charging port; 7. Packaging layer.
具体实施方式DETAILED DESCRIPTION
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示本发明有关的构成。In order to make the technical means, creative features, objectives and effects of the present invention easy to understand, the present invention is now further described in detail with reference to the accompanying drawings. These drawings are simplified schematic diagrams, which only illustrate the basic structure of the present invention in a schematic manner, and therefore only show the relevant components of the present invention.
根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。According to the technical solution of the present invention, without changing the essential spirit of the present invention, a person skilled in the art can propose a variety of interchangeable structural modes and implementation modes. Therefore, the following specific implementation modes and the accompanying drawings are only exemplary descriptions of the technical solution of the present invention, and should not be regarded as the whole of the present invention or as a limitation or restriction to the technical solution of the present invention.
下面结合附图和实施例对本发明的技术方案做进一步的详细说明。The technical solution of the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1,请参阅图1和图2,一种基于声纹学习的情绪识别穿戴式设备,包括柔性压电传感器2和设置在柔性压电传感器2外表面的信号处理模块3、电源模块4、蓝牙模块5,电源模块4分别与信号处理模块3、蓝牙模块5连接对其供电,柔性压电传感器2与信号处理模块3连接。将信号处理模块3、电源模块4、蓝牙模块5置于柔性压电传感器2上表面,并用导线使模块之间相互连通。Embodiment 1, please refer to Figures 1 and 2, an emotion recognition wearable device based on voiceprint learning, includes a flexible piezoelectric sensor 2 and a signal processing module 3, a power module 4, and a Bluetooth module 5 arranged on the outer surface of the flexible piezoelectric sensor 2, the power module 4 is respectively connected to the signal processing module 3 and the Bluetooth module 5 to power them, and the flexible piezoelectric sensor 2 is connected to the signal processing module 3. The signal processing module 3, the power module 4, and the Bluetooth module 5 are placed on the upper surface of the flexible piezoelectric sensor 2, and the modules are interconnected with wires.
电源模块4与蓝牙模块5连接,并将数据发送至移动端,通过移动端对用户的情绪进行识别并显示。电源模块使用可充电的纽扣电池或者聚合物锂电池,并配备Type-C充电接口6。The power module 4 is connected to the Bluetooth module 5 and sends data to the mobile terminal, which recognizes and displays the user's emotions. The power module uses a rechargeable button battery or a polymer lithium battery and is equipped with a Type-C charging interface 6.
柔性压电传感器采集喉部振动所产生的语音信号并传输给信号处理模块,由信号处理模块对语音信号进行初步处理并通过蓝牙模块将语音数据传输至手机端。The flexible piezoelectric sensor collects the voice signal generated by the throat vibration and transmits it to the signal processing module, which performs preliminary processing on the voice signal and transmits the voice data to the mobile phone through the Bluetooth module.
实施例2,请参阅图3至图5,本实施例介绍了一种基于声纹学习的情绪识别穿戴式设备的制备方法,主要包含依次设置的柔性压电传感器、功能单元和封装层,因此制备方法的步骤如下:Embodiment 2, please refer to Figures 3 to 5. This embodiment introduces a method for preparing an emotion recognition wearable device based on voiceprint learning, which mainly includes a flexible piezoelectric sensor, a functional unit and a packaging layer arranged in sequence. Therefore, the steps of the preparation method are as follows:
第一步:通过静电纺丝制备压电薄膜21,压电薄膜21可以采用压电纤维薄膜。将一定量的纳米氧化锌颗粒放入在丙酮和二甲基甲酰胺的混合溶剂中,超声两小时使纳米氧化锌颗粒均匀分散在混合溶剂中,再将聚偏二氟乙烯粉末加入其中,50℃磁力搅拌12小时得到纺丝溶液。Step 1: Prepare the piezoelectric film 21 by electrospinning. The piezoelectric film 21 can be a piezoelectric fiber film. A certain amount of nano zinc oxide particles are placed in a mixed solvent of acetone and dimethylformamide, and the nano zinc oxide particles are evenly dispersed in the mixed solvent by ultrasonication for two hours. Then polyvinylidene fluoride powder is added thereto, and magnetic stirring is performed at 50°C for 12 hours to obtain a spinning solution.
将纺丝溶液装入10毫升的注射器里,再用21G针头连接注射器针头。然后将注射器安装在注射泵上,以提供0.5毫升每小时的恒定流速。静电纺丝在15kV的电压下进行,纺丝头和集电极之间的固定距离为15厘米。一个旋转的滚筒以每分钟100转的速度收集所述压电薄膜21。所述压电薄膜21的傅里叶红外谱图如图7所示,包含了聚偏二氟乙烯的结晶相。The spinning solution is loaded into a 10 ml syringe, and then a 21G needle is connected to the syringe needle. The syringe is then mounted on a syringe pump to provide a constant flow rate of 0.5 ml per hour. Electrospinning is performed at a voltage of 15 kV, and the fixed distance between the spinning head and the collector is 15 cm. A rotating drum collects the piezoelectric film 21 at a speed of 100 revolutions per minute. The Fourier infrared spectrum of the piezoelectric film 21 is shown in Figure 7, which contains a crystalline phase of polyvinylidene fluoride.
制备机械互锁电极23,通过纺丝的方法制备纤维,纤维材料采用聚氨酯、聚酯、聚丙烯、聚酰胺中的至少一种。比如在实施时,将一定量的聚氨酯溶于丙酮和二甲基甲酰胺的混合溶剂中,在室温下搅拌24小时。然后在20kV的静电纺丝电压下,将混合溶液纺丝成聚氨酯纤维。The mechanical interlocking electrode 23 is prepared by spinning fibers, and the fiber material is at least one of polyurethane, polyester, polypropylene, and polyamide. For example, in the implementation, a certain amount of polyurethane is dissolved in a mixed solvent of acetone and dimethylformamide, and stirred at room temperature for 24 hours. Then, the mixed solution is spun into polyurethane fibers at an electrospinning voltage of 20 kV.
用蒸镀的方法,在聚氨酯纤维表面制备一层银电极。然后在纤维的另一面浇铸水凝胶前驱液,在50℃下固化2小时,最终得到机械互锁电极。水凝胶前驱液由一定浓度的丙烯酰胺、海藻酸钠、碳酸钙纳米粉末和四甲基乙二胺组成。在纤维上表面通过蒸镀、旋涂等方法制备电极层231。并在纤维的另一面浇铸水凝胶前驱体,热固化得到具有机械互锁结构的水凝胶电极。水凝胶和纤维形成机械互锁区域232,同时水凝胶层233具备高度的粘附性,能够附着在皮肤上,从而实现设备的可穿戴性。A layer of silver electrode is prepared on the surface of the polyurethane fiber by evaporation. Then a hydrogel precursor is cast on the other side of the fiber and cured at 50°C for 2 hours to finally obtain a mechanically interlocked electrode. The hydrogel precursor consists of a certain concentration of acrylamide, sodium alginate, calcium carbonate nanopowder and tetramethylethylenediamine. An electrode layer 231 is prepared on the upper surface of the fiber by evaporation, spin coating and other methods. A hydrogel precursor is cast on the other side of the fiber and thermally cured to obtain a hydrogel electrode with a mechanically interlocking structure. The hydrogel and the fiber form a mechanically interlocking region 232, and the hydrogel layer 233 has a high degree of adhesion and can be attached to the skin, thereby achieving the wearability of the device.
第二步:制备柔性压电传感器,图5所述柔性压电传感器2的结构示意图。将制备好的压电纤维薄膜用单面导电的导电片和机械互锁电极组装成三明治结构,所述导电片22可采用铜片,导电的一面贴着压电纤维薄膜,即压电薄膜21。Step 2: Prepare a flexible piezoelectric sensor, as shown in Figure 5. The prepared piezoelectric fiber film is assembled into a sandwich structure with a single-sided conductive sheet and a mechanical interlocking electrode. The conductive sheet 22 can be a copper sheet, and the conductive side is attached to the piezoelectric fiber film, i.e., the piezoelectric film 21.
第三步:如图4所示,将功能单元粘附在所述柔性压电传感器2表面的预设位置上,并用导电银浆按照相应电路将各个单元连接起来。Step 3: As shown in FIG. 4 , the functional units are adhered to the preset positions on the surface of the flexible piezoelectric sensor 2 , and the various units are connected according to the corresponding circuits using conductive silver paste.
功能单元包括信号处理模块、电源模块、蓝牙模块。所述信号处理模块3包含前置放大电路、50Hz陷波电路、带通滤波电路、A/D转换电路。所述信号处理模块3将柔性压电传感器采集到的语音信号进一步处理,并将这些数据通过所述蓝牙模块5传输至手机端,对语音数据进行声纹学习,最后实现情绪识别。The functional unit includes a signal processing module, a power module, and a Bluetooth module. The signal processing module 3 includes a preamplifier circuit, a 50Hz notch circuit, a bandpass filter circuit, and an A/D conversion circuit. The signal processing module 3 further processes the voice signal collected by the flexible piezoelectric sensor, and transmits the data to the mobile phone through the Bluetooth module 5, performs voiceprint learning on the voice data, and finally realizes emotion recognition.
整个设备由所述电源模块4进行供电,并且配有所述Type-C充电口6充电接口。The entire device is powered by the power module 4 and is equipped with the Type-C charging port 6 charging interface.
需要说明的是,所述柔性压电传感器2的上下电极需要和信号处理模块进行连接,使得传感器采集的语音信号进入信号处理模块。It should be noted that the upper and lower electrodes of the flexible piezoelectric sensor 2 need to be connected to the signal processing module so that the voice signal collected by the sensor enters the signal processing module.
第四步:在上述制得的装置表面涂一层所述封装层7,用以保护各个单元及电路。Step 4: Coat a layer of the encapsulation layer 7 on the surface of the device prepared above to protect each unit and circuit.
具体一种方式为:封装层材料选用聚二甲基硅氧烷,并用交联剂10:1混合,用玻璃棒搅拌5分钟使之混合均匀,然后用离心机除去溶液中的气泡以备后续使用。将配好的聚二甲基硅氧烷旋涂在装置表面,并在60℃烘箱中固化5小时。A specific method is: the encapsulation layer material is polydimethylsiloxane, and it is mixed with a cross-linking agent in a ratio of 10:1, stirred with a glass rod for 5 minutes to make it evenly mixed, and then the bubbles in the solution are removed by a centrifuge for subsequent use. The prepared polydimethylsiloxane is spin-coated on the surface of the device and cured in an oven at 60°C for 5 hours.
本实施例通过制备柔性压电传感器,并在其表面将各个功能单元集成在压电传感器上,进一步封装得到所述穿戴式设备1。如图2所示该设备能将声带振动转变为电压信号,通过信号处理模块对信号进行放大、去噪、滤波以及模数转换,然后由蓝牙模块传输至手机端进行情绪识别。In this embodiment, a flexible piezoelectric sensor is prepared, and various functional units are integrated on the surface of the piezoelectric sensor, and further packaged to obtain the wearable device 1. As shown in FIG2 , the device can convert the vibration of the vocal cord into a voltage signal, amplify, denoise, filter and convert the signal into analog-to-digital through a signal processing module, and then transmit the signal to the mobile phone through a Bluetooth module for emotion recognition.
实施例3,本实施例介绍另一种基于声纹学习的情绪识别穿戴式设备的制备方法,同样包含依次设置的柔性压电传感器、功能单元和封装层,具体步骤如下:Embodiment 3, this embodiment introduces another method for preparing an emotion recognition wearable device based on voiceprint learning, which also includes a flexible piezoelectric sensor, a functional unit and a packaging layer arranged in sequence, and the specific steps are as follows:
第一步:将填料通过超声均匀分散在溶剂中,加入压电材料并搅拌均匀。填料可以是金属纳米颗粒、金属氧化物、压电陶瓷中的一种或者多种。压电材料可以是聚偏二氟乙烯、氟化聚合物、聚乳酸、聚丙烯腈、纤维素中的至少一种。Step 1: uniformly disperse the filler in the solvent by ultrasound, add the piezoelectric material and stir evenly. The filler can be one or more of metal nanoparticles, metal oxides, and piezoelectric ceramics. The piezoelectric material can be at least one of polyvinylidene fluoride, fluorinated polymer, polylactic acid, polyacrylonitrile, and cellulose.
将上述混合溶液旋涂在玻璃基板上,在温度为60℃的干燥箱中热处理2小时,得到压电薄膜。The mixed solution was spin-coated on a glass substrate and heat-treated in a drying oven at 60° C. for 2 hours to obtain a piezoelectric film.
需要说明的是,该压电薄膜需要通过高压极化才具备压电性能。It should be noted that the piezoelectric film needs to be polarized at high voltage to have piezoelectric properties.
第二步:将极化后的压电薄膜进行两面蒸镀电极,电极材料可以金、银、铜等导电金属。也可以是在压电薄膜两面喷涂导电聚合物得到柔性压电传感器。然后在柔性压电传感器一侧浇铸聚丙烯酰胺水凝胶前驱体,在50℃下固化2小时得到聚丙烯酰胺水凝胶,使得整个设备能够粘附在皮肤表面。Step 2: Evaporate electrodes on both sides of the polarized piezoelectric film. The electrode materials can be conductive metals such as gold, silver, and copper. Alternatively, conductive polymers can be sprayed on both sides of the piezoelectric film to obtain a flexible piezoelectric sensor. Then, a polyacrylamide hydrogel precursor is cast on one side of the flexible piezoelectric sensor and cured at 50°C for 2 hours to obtain a polyacrylamide hydrogel, so that the entire device can adhere to the skin surface.
第三步:在所述柔性压电传感器2上加一层10微米厚的柔性基底,用于堆放各个功能单元。基底材料可以是硅胶、聚对苯二甲酸乙二酯、聚氨酯中的一种。预先在柔性基底上用喷墨打印或热蒸镀等方法绘制导电电路,再将各个功能单元按预设位置与电路连接。Step 3: Add a 10 micron thick flexible substrate on the flexible piezoelectric sensor 2 for stacking various functional units. The substrate material can be one of silica gel, polyethylene terephthalate, and polyurethane. Draw a conductive circuit on the flexible substrate in advance by inkjet printing or thermal evaporation, and then connect each functional unit to the circuit according to the preset position.
第四步:对装置表面进行封装,一方面固定各个功能单元使之一体化,提高机械强度,另一方面防止装置与外界直接接触,保护各功能单元。Step 4: Encapsulate the surface of the device. On the one hand, it fixes each functional unit to make it integrated and improve the mechanical strength. On the other hand, it prevents the device from direct contact with the outside world and protects each functional unit.
实施例4,本实施例介绍了一种基于声纹学习的情绪识别穿戴式设备,主要包括柔性压电传感器、功能单元以及情绪识别算法。Embodiment 4: This embodiment introduces an emotion recognition wearable device based on voiceprint learning, which mainly includes a flexible piezoelectric sensor, a functional unit and an emotion recognition algorithm.
柔性压电传感器为实施例1或实施例2所介绍的制备方法获得。柔性压电传感器能够通过将声带经皮肤的机械振动转换为电压信号,当人说话时,该电压信号即为语音信号。The flexible piezoelectric sensor is obtained by the preparation method described in Example 1 or Example 2. The flexible piezoelectric sensor can convert the mechanical vibration of the vocal cord through the skin into a voltage signal. When a person speaks, the voltage signal is a voice signal.
功能单元包括信号处理模块、电源模块、蓝牙模块,通过封装层在柔性压电传感器表面形成一体化结构。各功能单元之间通过电极导线相连。The functional unit includes a signal processing module, a power module, and a Bluetooth module, which are integrated on the surface of the flexible piezoelectric sensor through a packaging layer. Each functional unit is connected through an electrode wire.
所述柔性压电传感器实时采集个体的语音信号,并将信号传输至所述信号处理模块,对信号进行放大、去噪、滤波以及模数转换,然后通过所述蓝牙模块将数据传输至手机端。The flexible piezoelectric sensor collects individual voice signals in real time and transmits the signals to the signal processing module to amplify, denoise, filter and convert the signals into analog-to-digital signals, and then transmits the data to the mobile phone via the Bluetooth module.
情绪识别穿戴式设备的机器学习模型原理图如图6所示,所述情绪识别算法主要包括以下几个步骤:The principle diagram of the machine learning model of the emotion recognition wearable device is shown in FIG6 . The emotion recognition algorithm mainly includes the following steps:
通过上述设备预先采集不同情绪的语音信号,如图8所示语音信号,每个信号都被人工分类并分别标记为4个情绪标签:愤怒,平静,开心和悲伤。并将训练集与测试集的比例设为8:2;将4种不同情绪表达的语音信号数据通过带通滤波器进行预处理,并通过汉宁窗口分割成小帧,然后对声帧进行快速傅里叶变换和80波段梅尔滤波,将时域波形转换为梅尔频谱图,如图9;将80通道梅尔频谱图送入卷积神经网络(CNN)分类器进行情绪识别。分类器由5层CNN组成,每层的卷积核大小为[1,1,3,3,5];然后在隐藏状态下通过最大池化层减少特征数量;最后通过线性层和全连接层,它们负责情绪投射作为最终的分类结果。The above equipment is used to collect speech signals with different emotions in advance. As shown in Figure 8, each signal is manually classified and labeled with four emotion labels: anger, calm, happy and sad. The ratio of the training set to the test set is set to 8:2. The speech signal data of the four different emotional expressions are preprocessed by a bandpass filter and divided into small frames by a Hanning window. Then the sound frame is fast Fourier transformed and 80-band Mel filter is performed to convert the time domain waveform into a Mel spectrogram, as shown in Figure 9. The 80-channel Mel spectrogram is sent to the convolutional neural network (CNN) classifier for emotion recognition. The classifier consists of 5 layers of CNN, and the convolution kernel size of each layer is [1,1,3,3,5]. Then, the maximum pooling layer is used to reduce the number of features in the hidden state. Finally, the linear layer and the fully connected layer are used, which are responsible for the emotion projection as the final classification result.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式,并不用于限定本发明保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应含在本发明的保护范围之内。The specific implementation methods described above further illustrate the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above description is only a specific implementation method of the present invention and is not intended to limit the scope of protection of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410712652.1A CN118614926A (en) | 2024-06-04 | 2024-06-04 | A wearable device for emotion recognition based on voiceprint learning and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410712652.1A CN118614926A (en) | 2024-06-04 | 2024-06-04 | A wearable device for emotion recognition based on voiceprint learning and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118614926A true CN118614926A (en) | 2024-09-10 |
Family
ID=92609057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410712652.1A Pending CN118614926A (en) | 2024-06-04 | 2024-06-04 | A wearable device for emotion recognition based on voiceprint learning and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118614926A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017197228A2 (en) * | 2016-05-13 | 2017-11-16 | Warwick Mills, Inc. | E-fabric and e-garment having intergral interconnected conductors and embedded devices |
WO2019161277A1 (en) * | 2018-02-16 | 2019-08-22 | Northwestern University | Wireless medical sensors and methods |
KR20210053652A (en) * | 2019-11-04 | 2021-05-12 | 경북대학교 산학협력단 | Piezo-resistive Sensors Including Carbon Fiber Electrodes and Nanocomposites |
CN113317909A (en) * | 2021-06-11 | 2021-08-31 | 清华大学 | Multi-dimensional intelligent artificial larynx |
KR20220033396A (en) * | 2020-09-09 | 2022-03-16 | (주)한국바이오셀프 | Piezoelectric device and method for manufacturing the same |
CN115312080A (en) * | 2022-08-09 | 2022-11-08 | 南京工业大学 | A speech emotion recognition model and method based on complementary acoustic representation |
CN115536964A (en) * | 2022-09-16 | 2022-12-30 | 中国人民解放军南部战区空军医院 | Flexible piezoelectric nano generator |
CN116980784A (en) * | 2023-06-20 | 2023-10-31 | 北京航空航天大学 | High-noise-resistant voice interaction device and method based on flexible sensor |
EP4335896A1 (en) * | 2022-09-09 | 2024-03-13 | Meta Platforms Technologies, LLC | Optical quality pvdf having enhanced piezoelectric response |
-
2024
- 2024-06-04 CN CN202410712652.1A patent/CN118614926A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017197228A2 (en) * | 2016-05-13 | 2017-11-16 | Warwick Mills, Inc. | E-fabric and e-garment having intergral interconnected conductors and embedded devices |
WO2019161277A1 (en) * | 2018-02-16 | 2019-08-22 | Northwestern University | Wireless medical sensors and methods |
KR20210053652A (en) * | 2019-11-04 | 2021-05-12 | 경북대학교 산학협력단 | Piezo-resistive Sensors Including Carbon Fiber Electrodes and Nanocomposites |
KR20220033396A (en) * | 2020-09-09 | 2022-03-16 | (주)한국바이오셀프 | Piezoelectric device and method for manufacturing the same |
CN113317909A (en) * | 2021-06-11 | 2021-08-31 | 清华大学 | Multi-dimensional intelligent artificial larynx |
CN115312080A (en) * | 2022-08-09 | 2022-11-08 | 南京工业大学 | A speech emotion recognition model and method based on complementary acoustic representation |
EP4335896A1 (en) * | 2022-09-09 | 2024-03-13 | Meta Platforms Technologies, LLC | Optical quality pvdf having enhanced piezoelectric response |
CN115536964A (en) * | 2022-09-16 | 2022-12-30 | 中国人民解放军南部战区空军医院 | Flexible piezoelectric nano generator |
CN116980784A (en) * | 2023-06-20 | 2023-10-31 | 北京航空航天大学 | High-noise-resistant voice interaction device and method based on flexible sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107502958B (en) | Gas-permeable flexible pressure sensor based on triboelectric nanogenerator and its preparation | |
CN109099832B (en) | Strain sensor and method for manufacturing the same | |
CN111249638B (en) | Efficient protective mask based on all-fiber electret generator and preparation method thereof | |
Zu et al. | Electrospun nanofiber-based humidity sensors: materials, devices, and emerging applications | |
Yang et al. | Toward a new generation of permeable skin electronics | |
Ribeiro et al. | A novel dry active biosignal electrode based on an hybrid organic-inorganic interface material | |
CN112205969B (en) | Zinc oxide composite PDMS material flexible wearable strain sensor and application thereof | |
US20210038106A1 (en) | Mobile, wearable eeg device with high quality sensors | |
Song et al. | Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording | |
Wang et al. | A fabric-based electrode for wearable piezoelectric nanogenerators to distinguish sense human motions | |
CN118614926A (en) | A wearable device for emotion recognition based on voiceprint learning and its preparation method | |
CN115337011A (en) | A metal-coated hydrogel electrode and preparation method thereof | |
Tan et al. | Highly porous, ultralight, biocompatible silk fibroin aerogel-based triboelectric nanogenerator | |
Liu et al. | Non‐Invasive Flexible Electro‐Mechanical Sensors for Human Respiratory Monitoring and Chronic Disease Management | |
CN115956915A (en) | Flexible bioelectric dry electrode and its preparation method and application | |
CN115198512A (en) | A kind of MXene-based propolis and silk fibroin composite membrane and its preparation method and application | |
CN216602889U (en) | Electrophysiological Signal Monitoring Equipment | |
CN115536964B (en) | Flexible piezoelectric nano generator | |
CN107088056A (en) | A kind of vital sign sensors and telecommunication network sign system based on PVDF | |
Shao et al. | Ultralow-cost piezoelectric sensor constructed by thermal compression bonding for long-term biomechanical signal monitoring in chronic mental disorders | |
CN217365885U (en) | Flexible electrode for wearable device and wearable device | |
CN110522103A (en) | A face mask thermoelectric energy harvester based on electrospun PVDF-TrFE fiber film | |
CN116369924A (en) | Non-contact electrocardiosignal acquisition foot ring sensor | |
Cui et al. | A breathable and flexible electronic skin for long-term electroencephalogram monitoring | |
CN114087977A (en) | Flexible conductive fiber membrane strain sensor, preparation method thereof and remote control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |