CN118613654A - Actuator assembly - Google Patents
Actuator assembly Download PDFInfo
- Publication number
- CN118613654A CN118613654A CN202280078336.2A CN202280078336A CN118613654A CN 118613654 A CN118613654 A CN 118613654A CN 202280078336 A CN202280078336 A CN 202280078336A CN 118613654 A CN118613654 A CN 118613654A
- Authority
- CN
- China
- Prior art keywords
- actuator assembly
- support structure
- movement
- movable
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/061—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
- F03G7/0614—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
- F03G7/06143—Wires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/066—Actuator control or monitoring
- F03G7/0665—Actuator control or monitoring controlled displacement, e.g. by using a lens positioning actuator
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manipulator (AREA)
- Prostheses (AREA)
Abstract
一种致动器组件,包括:支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时使可移动部件相对于支撑结构移动到移动范围内的任何位置处;偏置装置,该偏置装置被布置成以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当一根或更多根SMA线没有收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。
An actuator assembly includes: a support structure including a first friction surface; a movable component including a second friction surface engaging the first friction surface; one or more SMA wires arranged to move the movable component relative to the support structure to any position within a range of motion when contracted; a biasing device arranged to bias the first friction surface and the second friction surface against each other with a normal force, thereby generating a static friction force that constrains movement of the movable component relative to the support structure at any position within the range of motion when the one or more SMA wires are not contracted, wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
Description
领域field
本申请总体上涉及致动器组件,并且特别地涉及形状记忆合金(SMA)致动器组件。The present application relates generally to actuator assemblies, and in particular to shape memory alloy (SMA) actuator assemblies.
背景background
形状记忆合金(SMA)致动器用于相机组件中,用于实现透镜托架(lens carriage)或图像传感器的一系列运动。例如,WO 2013/175197 A1描述了具有SMA致动器组件的相机,该SMA致动器组件具有SMA线,该SMA线被构造成在收缩时在垂直于光轴的方向上移动可移动部件,以提供光学图像稳定(OIS)。该致动器组件包括挠性臂,该挠性臂提供将透镜组件向中心位置偏置的横向偏置力。然而,在希望将透镜组件保持在给定位置的一些情况下,这种已知的致动器组件将依赖于在长时间内对SMA线连续通电。这种布置不仅在保持期间消耗能量,而且透镜托架的稳定性也容易受到突然移动和其他外部因素的影响。Shape memory alloy (SMA) actuators are used in camera assemblies to achieve a series of movements of a lens carriage or an image sensor. For example, WO 2013/175197 A1 describes a camera having an SMA actuator assembly having an SMA wire that is configured to move a movable component in a direction perpendicular to the optical axis when contracted to provide optical image stabilization (OIS). The actuator assembly includes a flexible arm that provides a lateral biasing force that biases the lens assembly toward a center position. However, in some cases where it is desired to maintain the lens assembly in a given position, such known actuator assemblies will rely on continuous energization of the SMA wire over a long period of time. This arrangement not only consumes energy during the holding period, but the stability of the lens carriage is also susceptible to sudden movement and other external factors.
WO2020/120997A1公开了用于通过摩擦将透镜托架保持在给定位置的各种装置。特别地,当SMA线不通电时,通过偏置元件将透镜托架偏置在支撑结构的表面上,以将透镜托架保持在任何给定位置。在致动时,SMA线作用于偏置元件以减少摩擦力,从而使得透镜托架能够被驱动到新的位置。WO2020/120997A1 discloses various devices for holding a lens holder in a given position by friction. In particular, when the SMA wire is not energized, the lens holder is biased against the surface of the support structure by a biasing element to hold the lens holder in any given position. When actuated, the SMA wire acts on the biasing element to reduce friction, thereby enabling the lens holder to be driven to a new position.
概述Overview
本发明提供了当SMA致动器组件中的SMA线未通电时,用于将可移动部件保持在期望位置的各种装置,从而消除了已知技术所要求的对SMA致动器连续通电的需要。The present invention provides various means for maintaining a movable component in a desired position when the SMA wires in the SMA actuator assembly are not energized, thereby eliminating the need for the SMA actuator to be continuously energized as required by the known art.
根据本发明,提供了一种致动器组件,该致动器组件包括:支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时使可移动部件相对于支撑结构移动到移动范围内的任何位置;偏置装置,该偏置装置被布置成以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当一根或更多根SMA线未收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中可移动部件或支撑结构包括偏置装置,以便偏置装置与可移动部件一起移动或相对于支撑结构保持静态,并且该偏置装置被布置成在移动范围内的任何位置处仅在垂直于移动范围的方向上施加法向力;其中一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。According to the present invention, an actuator assembly is provided, the actuator assembly comprising: a support structure, the support structure comprising a first friction surface; a movable part, the movable part comprising a second friction surface engaging the first friction surface; one or more SMA wires, the one or more SMA wires being arranged to move the movable part relative to the support structure to any position within a range of motion when contracted; a biasing device, the biasing device being arranged to bias the first friction surface and the second friction surface against each other with a normal force, thereby generating a static friction force, which constrains the movement of the movable part relative to the support structure at any position within the range of motion when the one or more SMA wires are not contracted, wherein the movable part or the support structure comprises a biasing device so that the biasing device moves with the movable part or remains static relative to the support structure, and the biasing device is arranged to apply a normal force only in a direction perpendicular to the range of motion at any position within the range of motion; wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
当SMA线不通电时,摩擦力约束可移动部件相对于支撑结构的移动。可移动部件可以在没有功耗的情况下保持在适当位置,因此降低了致动器组件的总功耗。在SMA线收缩时,第一摩擦表面和第二摩擦表面之间的法向力减少,并因此摩擦力也减少。摩擦力的减少有助于克服摩擦力,使得可移动部件可以被SMA线移动。可移动部件或支撑结构包括偏置装置,使得法向力仅在移动范围内的任何位置处在垂直于移动范围的方向上施加。这确保了偏置装置不会对抗用于移动可移动部件的SMA线中的应力。When the SMA wire is not energized, the friction force constrains the movement of the movable component relative to the support structure. The movable component can be maintained in place without power consumption, thereby reducing the overall power consumption of the actuator assembly. When the SMA wire contracts, the normal force between the first friction surface and the second friction surface is reduced, and therefore the friction force is also reduced. The reduction in friction helps to overcome the friction force so that the movable component can be moved by the SMA wire. The movable component or the support structure includes a biasing device so that the normal force is only applied in a direction perpendicular to the range of motion at any position within the range of motion. This ensures that the biasing device does not oppose the stress in the SMA wire used to move the movable component.
根据本发明,还提供了一种致动器组件,该致动器组件包括:支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;支承装置,该支承装置用于支承可移动部件相对于支撑结构在移动范围内的移动;一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时使可移动部件相对于支撑结构移动到移动范围内的任何位置处;偏置装置,该偏置装置被布置成以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当一根或更多根SMA线未收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中一根或更多根SMA线被布置成在收缩时将使可移动部分从第一摩擦表面提离,使得可移动部件支承在支承装置上。According to the present invention, an actuator assembly is also provided, which includes: a support structure, which includes a first friction surface; a movable part, which includes a second friction surface engaged with the first friction surface; a support device, which is used to support the movement of the movable part relative to the support structure within a range of movement; one or more SMA wires, which are arranged to move the movable part relative to the support structure to any position within the range of movement when contracted; a biasing device, which is arranged to bias the first friction surface and the second friction surface against each other with a normal force, thereby generating a static friction force, which constrains the movement of the movable part relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted, wherein the one or more SMA wires are arranged to lift the movable part away from the first friction surface when contracted, so that the movable part is supported on the support device.
当SMA线不通电时,摩擦力约束可移动部件相对于支撑结构的移动。可移动部件可以在没有功耗的情况下保持在适当位置,因此降低了致动器组件的总功耗。当SMA线收缩时,可移动部件从第一摩擦表面上提离,从而消除了当SMA线不被通电时将可移动部件保持在适当位置的摩擦力。因此,可移动部件可以更容易地由SMA线在移动范围内移动。在从第一摩擦面上提离后,可移动部件仅支承在支承装置上,从而确保可移动部件的移动由支承装置引导。这使得通过SMA线对可移动部件的控制移动比在提离后仅通过SMA线悬挂可移动部件的情况更精确和可靠。When the SMA wire is not energized, the friction force constrains the movement of the movable component relative to the support structure. The movable component can be maintained in the proper position without power consumption, thereby reducing the overall power consumption of the actuator assembly. When the SMA wire contracts, the movable component is lifted off the first friction surface, thereby eliminating the friction force that holds the movable component in the proper position when the SMA wire is not energized. Therefore, the movable component can be more easily moved within the range of motion by the SMA wire. After lifting off from the first friction surface, the movable component is only supported on the support device, thereby ensuring that the movement of the movable component is guided by the support device. This makes the controlled movement of the movable component by the SMA wire more precise and reliable than the case where the movable component is suspended only by the SMA wire after lifting off.
根据本发明,还提供了一种致动器组件,该致动器组件包括:支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时使可移动部件相对于支撑结构移动到移动范围内的任何位置处;偏置装置,该偏置装置被布置成以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当一根或更多根SMA线没有收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。According to the present invention, an actuator assembly is also provided, which includes: a support structure, the support structure including a first friction surface; a movable part, the movable part including a second friction surface engaging the first friction surface; one or more SMA wires, the one or more SMA wires being arranged to move the movable part relative to the support structure to any position within a range of movement when contracted; a biasing device, the biasing device being arranged to bias the first friction surface and the second friction surface against each other with a normal force, thereby generating a static friction force, which constrains the movement of the movable part relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted, wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
根据本发明,还提供了一种致动器组件,该致动器组件包括:支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;螺旋支承装置,该螺旋支承装置将可移动元件支撑在支撑结构上并被布置成引导可移动元件围绕螺旋轴线相对于支撑结构的螺旋移动,其中螺旋支承装置由第一摩擦表面和第二摩擦表面形成;以及一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时驱动可移动元件围绕螺旋轴旋转,螺旋支承装置将该旋转转换成所述螺旋移动;以及偏置装置,偏置装置被构造成加载螺旋支承装置,从而以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,并产生静摩擦力,当一根或更多根SMA线未收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。According to the present invention, there is also provided an actuator assembly, which comprises: a support structure, which comprises a first friction surface; a movable part, which comprises a second friction surface engaging the first friction surface; a spiral support device, which supports the movable element on the support structure and is arranged to guide the spiral movement of the movable element relative to the support structure around the spiral axis, wherein the spiral support device is formed by the first friction surface and the second friction surface; and one or more SMA wires, which are arranged to drive the movable element to rotate around the spiral axis when contracted, and the spiral support device converts the rotation into the spiral movement; and a biasing device, which is configured to load the spiral support device so as to bias the first friction surface and the second friction surface against each other with a normal force and generate a static friction force, which constrains the movement of the movable part relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted, wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
本发明的其他方面在下面的从属权利要求和条款以及详细描述中阐述。Further aspects of the invention are set out in the following dependent claims and clauses and in the detailed description.
附图简述BRIEF DESCRIPTION OF THE DRAWINGS
现在将参照附图以示例的方式描述本发明的某些实施例,其中:Certain embodiments of the present invention will now be described by way of example with reference to the accompanying drawings, in which:
图1是现有技术致动器组件的示意性侧视图;FIG1 is a schematic side view of a prior art actuator assembly;
图2A-图2D是根据本发明实施例的致动器组件的示意性侧视图,其中可移动部件包括偏置装置;2A-2D are schematic side views of an actuator assembly according to an embodiment of the present invention, wherein the movable member includes a biasing device;
图3A-图3C是根据本发明实施例的致动器组件的示意性侧视图,其中支撑结构包括偏置装置;3A-3C are schematic side views of an actuator assembly according to an embodiment of the present invention, wherein the support structure includes a biasing device;
图4A-图4D是根据本发明实施例的致动器组件的示意性侧视图,其中提供了端部止动件;4A-4D are schematic side views of an actuator assembly according to an embodiment of the present invention, wherein an end stop is provided;
图5A-图5D是致动器组件的其他实施例的示意性侧视图;5A-5D are schematic side views of other embodiments of actuator assemblies;
图6A-图6C是本发明实施例的示意图,其中致动器组件可以用作相机装置中的自动对焦(AF)致动器组件;6A-6C are schematic diagrams of an embodiment of the present invention, wherein the actuator assembly may be used as an auto focus (AF) actuator assembly in a camera device;
图7A和图7B是本发明的另一个实施例的示意图,其中致动器组件可以用作相机装置中的自动对焦(AF)致动器组件;7A and 7B are schematic diagrams of another embodiment of the present invention, wherein the actuator assembly can be used as an auto focus (AF) actuator assembly in a camera device;
图8A和图8B是本发明其他实施例的部分示意图;8A and 8B are partial schematic diagrams of other embodiments of the present invention;
图9A-图9D是可用作相机装置中的自动对焦(AF)致动器组件的致动器组件的示意图;和9A-9D are schematic diagrams of an actuator assembly that may be used as an auto focus (AF) actuator assembly in a camera device; and
图10A-图10D是可用作相机装置中的光学图像稳定(OIS)致动器组件的致动器组件的示意图;10A-10D are schematic diagrams of an actuator assembly that may be used as an optical image stabilization (OIS) actuator assembly in a camera device;
图11A-图11B是可用作相机装置中的光学图像稳定(OIS)致动器组件的另一个致动器组件的示意图;以及11A-11B are schematic diagrams of another actuator assembly that may be used as an optical image stabilization (OIS) actuator assembly in a camera device; and
图12A-图12B是可用作相机装置中的光学图像稳定(OIS)致动器组件的另一个致动器组件的示意图。12A-12B are schematic diagrams of another actuator assembly that may be used as an optical image stabilization (OIS) actuator assembly in a camera device.
详细描述Detailed Description
本发明提供了用于在SMA线未通电时将致动器组件的可移动部件保持在期望位置的各种装置,从而消除了已知技术所要求的对SMA线连续通电的需要。The present invention provides various means for maintaining a movable component of an actuator assembly in a desired position when the SMA wire is not energized, thereby eliminating the need to continuously energize the SMA wire as required by the known art.
图1示意性地描绘了如WO 2020/120997 A1中所公开的致动器组件100的示意图。致动器组件100包括静态部件101和可移动部件104。可移动部件104相对于静态部件100是可移动的。静态部件101包括主体102和表面106,表面106例如通过连接部分(未示出)相对于主体106保持在固定位置。在主体101和表面106之间设置有间隙。FIG1 schematically depicts a schematic diagram of an actuator assembly 100 as disclosed in WO 2020/120997 A1. The actuator assembly 100 comprises a static component 101 and a movable component 104. The movable component 104 is movable relative to the static component 100. The static component 101 comprises a body 102 and a surface 106, which is held in a fixed position relative to the body 106, for example by a connecting portion (not shown). A gap is provided between the body 101 and the surface 106.
可移动部件104位于主体102和表面106之间的间隙中。可移动部件104能够相对于静态部件101在表面106上移动。在该示例中,可移动部件104能够在两个维度中的任何方向上在表面106上移动。The movable component 104 is located in the gap between the body 102 and the surface 106. The movable component 104 is movable on the surface 106 relative to the static component 101. In this example, the movable component 104 is movable on the surface 106 in any direction in two dimensions.
致动器组件100还包括弹簧110,该弹簧110通过在一端连接到主体101而在另一端连接到可移动部件104而连接在静态部件101和可移动部件104之间。在这个示例中,弹簧110正交于表面104延伸,然而这不是必需的。弹簧110保持压缩,并因此是弹性偏置元件,其作为偏置装置来将可移动部件104偏置成与表面106接触。这在可移动部件104和表面106之间产生反作用力,并且在可移动部件104和表面106之间产生摩擦力。The actuator assembly 100 also includes a spring 110 connected between the static component 101 and the movable component 104 by being connected to the body 101 at one end and to the movable component 104 at the other end. In this example, the spring 110 extends orthogonally to the surface 104, however this is not required. The spring 110 is held in compression and is therefore an elastic biasing element that acts as a biasing means to bias the movable component 104 into contact with the surface 106. This generates a reaction force between the movable component 104 and the surface 106, and a friction force between the movable component 104 and the surface 106.
第一致动器组件100还包括两根SMA线108,这两根SMA线108在一端连接到主体101,并且在另一端连接到可移动部件104。每根SMA致动器线108相对于表面106以大于0°的锐角a倾斜,以便在SMA致动器线108收缩时施加力,该力具有法向于表面106的分量,该分量将可移动部件104远离表面106偏置,并且该力具有平行于表面106的分量。使用中的控制电路200向SMA线108施加驱动信号The first actuator assembly 100 also includes two SMA wires 108 connected at one end to the body 101 and at the other end to the movable member 104. Each SMA actuator wire 108 is inclined at an acute angle a greater than 0° relative to the surface 106 so that when the SMA actuator wire 108 contracts, it applies a force having a component normal to the surface 106 that biases the movable member 104 away from the surface 106 and having a component parallel to the surface 106. The control circuit 200 in use applies a drive signal to the SMA wire 108.
在图1的致动器组件100中,弹簧110连接在静态部件101和可移动部件102之间。因此,当可移动部件102远离初始中心位置移动时,弹簧110可产生横向力,即平行于移动方向的力。这种横向力可以使得对可移动部件102的移动的精确和可靠的控制更加复杂。横向力也可以对抗可移动部件102和静态部件101之间的摩擦力。In the actuator assembly 100 of FIG1 , the spring 110 is connected between the static component 101 and the movable component 102. Therefore, when the movable component 102 moves away from the initial center position, the spring 110 can generate a lateral force, i.e., a force parallel to the direction of movement. This lateral force can make it more complicated to accurately and reliably control the movement of the movable component 102. The lateral force can also counteract the friction between the movable component 102 and the static component 101.
在可移动部件102被SMA线108抬出与表面106接触的情况下,可移动部件102仅由SMA线108和弹簧110保持。难以实现可移动部件102的稳定定位。控制SMA线108以便在不与表面106接触的情况下可靠且精确地移动可移动部件102是复杂的。In the case where the movable part 102 is lifted out of contact with the surface 106 by the SMA wire 108, the movable part 102 is held only by the SMA wire 108 and the spring 110. It is difficult to achieve stable positioning of the movable part 102. Controlling the SMA wire 108 to reliably and accurately move the movable part 102 without contacting the surface 106 is complicated.
本发明的实施例提供了对图1的现有技术致动器组件100的改进。Embodiments of the present invention provide improvements over the prior art actuator assembly 100 of FIG. 1 .
致动器组件综述Actuator Assembly Overview
下面参照图2至图5的示意图描述本发明的实施例。The following describes an embodiment of the present invention with reference to the schematic diagrams of FIG. 2 to FIG. 5 .
致动器组件包括支撑结构10和可移动部件20。可移动部件20可相对于支撑结构10移动。通常,支撑结构10和可移动部件20可以分别被称为第一部件和第二部件,并且术语“支撑结构10和可移动部件20”在本文被用于纯粹的说明目的。支撑结构10也可以被称为静态部件。在这点上,支撑结构10在本文被用作参考结构。除非另有说明,否则致动器组件1的任何部件的移动被描述为相对于支撑结构10。然而,通常,支撑结构10本身可以是可移动的,例如在包含致动器组件1的较大设备内。在一些实施例中,支撑结构10可以由相对于彼此可移动的部件组成。The actuator assembly includes a support structure 10 and a movable part 20. The movable part 20 is movable relative to the support structure 10. Generally, the support structure 10 and the movable part 20 may be referred to as a first part and a second part, respectively, and the terms "support structure 10 and movable part 20" are used herein for purely illustrative purposes. The support structure 10 may also be referred to as a static part. In this regard, the support structure 10 is used herein as a reference structure. Unless otherwise stated, the movement of any part of the actuator assembly 1 is described as relative to the support structure 10. However, generally, the support structure 10 itself may be movable, for example within a larger device containing the actuator assembly 1. In some embodiments, the support structure 10 may be composed of parts that are movable relative to each other.
可移动部件20可相对于支撑结构10在移动范围内移动。移动范围可以限定任意数量的自由度(DOF)的移动。优选地,移动范围限定了最多三个自由度的移动,例如一个或三个自由度。例如,可移动部件20可以相对于支撑结构10在移动平面中在移动范围内移动,和/或在移动范围内沿着移动轴线移动。The movable part 20 can move within a range of motion relative to the support structure 10. The range of motion can define movement of any number of degrees of freedom (DOF). Preferably, the range of motion defines movement of up to three degrees of freedom, such as one or three degrees of freedom. For example, the movable part 20 can move within the range of motion in a plane of motion relative to the support structure 10, and/or move along a motion axis within the range of motion.
致动器组件1包括一根或更多根SMA线40。优选地,致动器组件2包括至少两根SMA线40。SMA线40被布置成在收缩时使可移动部件20相对于支撑结构10移动。SMA线40将可移动部件20移动到移动范围内的任何位置。例如,SMA线40可以在一个DOF、两个DOF或三个DOF中移动可移动部件20。优选地,致动器组件1包括至少两根相对的SMA线40,其中两根SMA线40中的一根被布置成在移动范围内在一个方向上移动可移动部件20,并且两根SMA线40中的另一根被布置成在移动范围内在相反的另一个方向上移动可移动部件20。The actuator assembly 1 includes one or more SMA wires 40. Preferably, the actuator assembly 2 includes at least two SMA wires 40. The SMA wires 40 are arranged to move the movable part 20 relative to the support structure 10 when contracted. The SMA wires 40 move the movable part 20 to any position within the range of motion. For example, the SMA wires 40 can move the movable part 20 in one DOF, two DOF, or three DOF. Preferably, the actuator assembly 1 includes at least two opposing SMA wires 40, wherein one of the two SMA wires 40 is arranged to move the movable part 20 in one direction within the range of motion, and the other of the two SMA wires 40 is arranged to move the movable part 20 in another opposite direction within the range of motion.
每根SMA线40可以在一端通过相应的联接元件(未示出)连接到支撑结构10,并且在另一端通过相应的联接元件(未示出)连接到可移动部件20。例如,联接元件可以是压接件。联接元件可以提供到SMA线40的机械连接和电连接。通常,可以使用用于将SMA线40中的应力传递到可移动部件20以驱动可移动部件20移动的任何其他机构或装置。Each SMA wire 40 can be connected to the support structure 10 at one end by a corresponding coupling element (not shown), and connected to the movable part 20 at the other end by a corresponding coupling element (not shown). For example, the coupling element can be a crimp. The coupling element can provide a mechanical connection and an electrical connection to the SMA wire 40. In general, any other mechanism or device for transferring stress in the SMA wire 40 to the movable part 20 to drive the movable part 20 to move can be used.
SMA导线40可以各自电连接(经由联接元件)到控制电路(未示出),例如该控制电路可以在集成电路(IC)芯片中实现。控制电路在使用中向SMA致动器线40施加驱动信号,该驱动信号电阻性地加热SMA线40,使SMA线收缩。多根SMA线40可以被独立地或以其他方式驱动。控制电路还可以测量SMA线40的电阻,并使用测量的电阻来计算/确定可移动部件20的位置。然而,通常,SMA线40可以通过任何其他合适的方式被加热以收缩,例如经由外部热源、辐射加热或感应加热。The SMA wires 40 can each be electrically connected (via coupling elements) to a control circuit (not shown), which can be implemented in an integrated circuit (IC) chip, for example. The control circuit applies a drive signal to the SMA actuator wire 40 in use, which resistively heats the SMA wire 40, causing the SMA wire to contract. Multiple SMA wires 40 can be driven independently or in other ways. The control circuit can also measure the resistance of the SMA wire 40 and use the measured resistance to calculate/determine the position of the movable part 20. However, in general, the SMA wire 40 can be heated to contract by any other suitable means, such as via an external heat source, radiant heating, or inductive heating.
在这点上,移动范围包括可移动部件20相对于支撑结构10的可以通过SMA线40的布置的选择性收缩来实现的任何移动。移动范围可以被限定为通过SMA线40的选择性收缩可实现的移动。可选地,移动范围可以由支撑结构10和可移动部件20之间的端部止动件来限制,特别是当SMA线40的收缩导致支撑结构10和可移动部件之间的端部止动件接合时。移动范围也可以至少部分地受到支承装置的影响,该支承装置限定可移动部件20可以移动的自由度。In this regard, the range of motion includes any movement of the movable component 20 relative to the support structure 10 that can be achieved by selective contraction of the arrangement of SMA wires 40. The range of motion can be defined as the movement that can be achieved by selective contraction of the SMA wires 40. Optionally, the range of motion can be limited by end stops between the support structure 10 and the movable component 20, particularly when contraction of the SMA wires 40 causes the end stops between the support structure 10 and the movable component to engage. The range of motion can also be at least partially affected by a support device that defines the degrees of freedom in which the movable component 20 can move.
因此,移动范围可以被限定为可移动部件20可以通过SMA线40相对于支撑结构10移动到的位置和定向的集合。移动范围可以受到以下一个或更多个因素的影响:i)SMA线40的布置以及用于驱动SMA线40的控制,ii)在可移动部件20和支撑结构10之间提供限制移动范围的端部止动件,iii)提供限定可移动部件20相对于支撑结构10的移动自由度的支承装置。在一些实施例中,移动范围可以限定可移动部件20相对于支撑结构10在移动平面中(在2个或3个自由度上)或沿着移动路径(在1个自由度上)的移动。Thus, the range of motion may be defined as the set of positions and orientations to which the movable component 20 may be moved relative to the support structure 10 by the SMA wires 40. The range of motion may be affected by one or more of the following factors: i) the arrangement of the SMA wires 40 and the controls used to drive the SMA wires 40, ii) providing end stops between the movable component 20 and the support structure 10 that limit the range of motion, iii) providing a support device that defines the degrees of freedom of movement of the movable component 20 relative to the support structure 10. In some embodiments, the range of motion may define the movement of the movable component 20 relative to the support structure 10 in a plane of motion (in 2 or 3 degrees of freedom) or along a path of motion (in 1 degree of freedom).
零保持功率的摩擦表面Friction surface with zero holding power
支撑结构10包括第一摩擦表面10f。可移动部件20包括第二摩擦表面20f。可移动部件20的第二摩擦表面20f与支撑结构10的第一摩擦表面10f接合。第一摩擦表面10f和第二摩擦表面20f可以在整个移动范围内相互接合。因此,在正常使用中(即,在用于移动可移动部件20的SMA线40的收缩下),第一摩擦表面10f和第二摩擦表面20f可以保持彼此接合。The support structure 10 includes a first friction surface 10f. The movable component 20 includes a second friction surface 20f. The second friction surface 20f of the movable component 20 engages with the first friction surface 10f of the support structure 10. The first friction surface 10f and the second friction surface 20f can engage with each other throughout the entire range of movement. Therefore, in normal use (i.e., under the contraction of the SMA wire 40 used to move the movable component 20), the first friction surface 10f and the second friction surface 20f can remain engaged with each other.
致动器组件1还包括偏置装置30。偏置装置30布置成使第一摩擦表面10f和第二摩擦表面20f抵靠彼此偏置。偏置装置30在支撑结构10和可移动部件20之间施加偏置力。偏置力包括垂直于第一摩擦表面和第二摩擦表面的分量,因此偏置装置30在支撑结构10和可移动部件20之间施加法向力N。法向力N垂直于移动范围并且垂直于摩擦表面10f、20f。优选地,偏置装置30在垂直于移动范围和垂直于摩擦表面10f、20f的方向上施加偏置力。偏置装置的偏置力可以等于法向力N。因此,偏置力可以不具有平行于移动范围的分量,并因此不影响可移动部件20相对于支撑结构10的移动。The actuator assembly 1 further comprises a biasing device 30. The biasing device 30 is arranged to bias the first friction surface 10f and the second friction surface 20f against each other. The biasing device 30 applies a biasing force between the support structure 10 and the movable part 20. The biasing force comprises a component perpendicular to the first friction surface and the second friction surface, so the biasing device 30 applies a normal force N between the support structure 10 and the movable part 20. The normal force N is perpendicular to the range of movement and perpendicular to the friction surfaces 10f, 20f. Preferably, the biasing device 30 applies a biasing force in a direction perpendicular to the range of movement and perpendicular to the friction surfaces 10f, 20f. The biasing force of the biasing device may be equal to the normal force N. Therefore, the biasing force may not have a component parallel to the range of movement, and therefore does not affect the movement of the movable part 20 relative to the support structure 10.
该法向力N在第一摩擦表面10f和第二摩擦表面20f之间产生或生成静摩擦力F。静摩擦力F约束可移动部件20相对于支撑结构10的移动,特别是当SMA线40没有收缩时。这种移动被约束在可移动部件20相对于支撑结构10的移动范围内的任何位置和/或定向。The normal force N generates or produces a static friction force F between the first friction surface 10f and the second friction surface 20f. The static friction force F constrains the movement of the movable part 20 relative to the support structure 10, especially when the SMA wire 40 is not contracted. Such movement is constrained at any position and/or orientation within the range of movement of the movable part 20 relative to the support structure 10.
SMA线40可用于将可移动部件20移动到可移动部件20相对于支撑结构10的移动范围内的任何位置。在通电时(即,当通过控制电路向SMA线施加驱动信号时),SMA线40收缩并施加致动力,用于在相应方向上移动可移动部件20。致动力足以克服摩擦表面10f、20f处的摩擦力(特别是在由于SMA线收缩而减少或消除摩擦力之后),以便驱动可移动部件20和支撑结构10之间的相对移动。当停止对SMA线40供电时,并因此当停止SMA线40的收缩时,可移动部件20由于第一摩擦表面10f和第二摩擦表面20f之间的摩擦力而保持在其移动范围内的位置。在这种状态下,致动器组件1以零功耗将可移动元件20保持在适当位置,因此致动器组件1可被称为零保持功率致动器组件,本文公开的其它致动器组件也可如此。因此,可移动部件20保持在适当位置,而不需要向SMA线40供电,与需要给SMA线40供电以将可移动部件20保持在适当位置的情况相比,降低了致动器组件的功率消耗。The SMA wire 40 can be used to move the movable member 20 to any position within the range of motion of the movable member 20 relative to the support structure 10. When powered (i.e., when a drive signal is applied to the SMA wire by the control circuit), the SMA wire 40 contracts and applies an actuation force for moving the movable member 20 in the corresponding direction. The actuation force is sufficient to overcome the friction force at the friction surfaces 10f, 20f (especially after the friction force is reduced or eliminated due to the contraction of the SMA wire) so as to drive the relative movement between the movable member 20 and the support structure 10. When the power supply to the SMA wire 40 is stopped, and therefore when the contraction of the SMA wire 40 is stopped, the movable member 20 is maintained at a position within its range of motion due to the friction force between the first friction surface 10f and the second friction surface 20f. In this state, the actuator assembly 1 holds the movable element 20 in place with zero power consumption, and thus the actuator assembly 1 can be referred to as a zero holding power actuator assembly, as can other actuator assemblies disclosed herein. Thus, the movable member 20 is held in position without the need to power the SMA wires 40 , reducing power consumption of the actuator assembly compared to a situation where the SMA wires 40 need to be powered to hold the movable member 20 in position.
SMA线40被布置成在收缩时减少第一摩擦表面10f和第二摩擦表面20f之间的法向力N。换句话说,由于SMA线40中的应力而作用在可移动部件20上的复合力具有平行于法向力N但与法向力N方向相反的分量。SMA线40中的应力影响(特别是减少)法向力N。在一些实施例中,SMA线40中的相等应力(或张力或应变)可以在不移动可移动部件20的情况下减少法向力N。SMA线40中的不相等应变可导致可移动部件20的移动。The SMA wire 40 is arranged to reduce the normal force N between the first friction surface 10f and the second friction surface 20f when contracted. In other words, the composite force acting on the movable part 20 due to the stress in the SMA wire 40 has a component parallel to the normal force N but in the opposite direction to the normal force N. The stress in the SMA wire 40 affects (particularly reduces) the normal force N. In some embodiments, equal stress (or tension or strain) in the SMA wire 40 can reduce the normal force N without moving the movable part 20. Unequal strain in the SMA wire 40 can cause movement of the movable part 20.
通过SMA线40减少法向力N的这种布置允许通过SMA线40的适当收缩选择性地减少摩擦力。摩擦力的这种减少有助于克服摩擦力,从而允许可移动部件20在移动范围内移动。因此,与摩擦力没有减少的情况相比,移动可移动部件20所需的SMA线40中的应力可以降低。此外,在SMA线40没有收缩的情况下,摩擦力可以被设计成与摩擦力不能减少的情况相比更高,从而降低了在没有SMA线收缩的情况下可移动部件20的意外移动的风险。This arrangement of reducing the normal force N by the SMA wire 40 allows the friction force to be selectively reduced by appropriate contraction of the SMA wire 40. This reduction in friction force helps to overcome the friction force, thereby allowing the movable component 20 to move within the range of motion. Therefore, the stress in the SMA wire 40 required to move the movable component 20 can be reduced compared to the case where the friction force is not reduced. In addition, in the case where the SMA wire 40 is not contracted, the friction force can be designed to be higher than the case where the friction force cannot be reduced, thereby reducing the risk of accidental movement of the movable component 20 without contraction of the SMA wire.
摩擦力特性Friction characteristics
如上所述,法向力N在第一摩擦表面10f和第二摩擦表面20f之间产生或生成静摩擦力F。静摩擦力F约束可移动部件20相对于支撑结构20的移动。因此,静摩擦力F的大小大到足以约束这种移动。静摩擦力F的大小与法向力N和静摩擦系数μ成正比,因此F=μ*N。静摩擦力F可以通过增加法向力N(这通过适当设计偏置装置30来实现)和/或增加静摩擦系数(这通过适当设计摩擦表面10f、20f来实现)来增加。As described above, the normal force N generates or produces a static friction force F between the first friction surface 10f and the second friction surface 20f. The static friction force F constrains the movement of the movable component 20 relative to the support structure 20. Therefore, the magnitude of the static friction force F is large enough to constrain such movement. The magnitude of the static friction force F is proportional to the normal force N and the static friction coefficient μ, so F=μ*N. The static friction force F can be increased by increasing the normal force N (which is achieved by appropriately designing the biasing device 30) and/or increasing the static friction coefficient (which is achieved by appropriately designing the friction surfaces 10f, 20f).
静摩擦力的大小大到足以约束可移动部件的移动,特别是在由于SMA线40的收缩而使静摩擦力减少之前。可移动部件的静摩擦力与重量的比率可以大于1。因此,静摩擦力的大小大于可移动部件的重量。这确保了例如,即使当致动器组件1在被转向一侧时,可移动部件的移动也受到摩擦力的约束。可移动部件的重量被认为等于可移动部件的质量乘以地球的平均重力加速度(9.81m/s2)。优选地,静摩擦力与可移动部件的重量的比率大于3,进一步优选大于5,进一步优选大于10。这确保了即使当致动器组件1加速时,可移动部件20的移动也受到约束。静摩擦力与可移动部件的重量的较大的比率降低了可移动部件由于致动器组件1的加速度(例如,冲击事件)而移动的风险。在一些情况下,较高的摩擦力也可以补偿偏置装置30的任何横向偏置力,例如当偏置装置连接在支撑结构10和可移动部件20之间时(如图4D所示)。The magnitude of the static friction force is large enough to constrain the movement of the movable part, especially before the static friction force is reduced due to the contraction of the SMA wire 40. The ratio of the static friction force to the weight of the movable part can be greater than 1. Therefore, the magnitude of the static friction force is greater than the weight of the movable part. This ensures that, for example, the movement of the movable part is constrained by the friction force even when the actuator assembly 1 is turned to one side. The weight of the movable part is considered to be equal to the mass of the movable part multiplied by the average gravitational acceleration of the earth (9.81m/ s2 ). Preferably, the ratio of the static friction force to the weight of the movable part is greater than 3, further preferably greater than 5, and further preferably greater than 10. This ensures that the movement of the movable part 20 is constrained even when the actuator assembly 1 is accelerated. The larger ratio of the static friction force to the weight of the movable part reduces the risk of the movable part moving due to acceleration of the actuator assembly 1 (e.g., impact event). In some cases, the higher friction force may also compensate for any lateral biasing force of the biasing device 30, such as when the biasing device is connected between the support structure 10 and the movable member 20 (as shown in Figure 4D).
SMA线可以被布置成在收缩时减少法向力。在一些实施例中,第一摩擦表面和第二摩擦表面之间的法向力减少至少10%,优选至少20%,最优选至少50%。法向力N可减少至少90%。在一些实施例中,法向力N减少100%,即可移动部件20从第一摩擦表面10f提离。The SMA wire can be arranged to reduce the normal force when it is contracted. In some embodiments, the normal force between the first friction surface and the second friction surface is reduced by at least 10%, preferably at least 20%, and most preferably at least 50%. The normal force N can be reduced by at least 90%. In some embodiments, the normal force N is reduced by 100%, i.e., the movable part 20 is lifted off the first friction surface 10f.
类似地,第一摩擦表面和第二摩擦表面之间的静摩擦力F可以减少至少10%,优选至少20%,最优选至少50%。静摩擦力F可减少至少90%。在一些实施例中,静摩擦力F减少100%,即可移动部件20从第一摩擦表面10f提离。因此,可移动部件20和支撑结构10之间的总摩擦力可以减少,例如减少至少10%、至少20%、至少50%或至少90%。一些剩余摩擦力可以保留在任何支承装置(如果提供的话)中,甚至在可移动部件从第一摩擦表面10f提离时也是如此。Similarly, the static friction F between the first friction surface and the second friction surface can be reduced by at least 10%, preferably at least 20%, and most preferably at least 50%. The static friction F can be reduced by at least 90%. In some embodiments, the static friction F is reduced by 100%, that is, the movable part 20 is lifted off from the first friction surface 10f. Therefore, the total friction between the movable part 20 and the support structure 10 can be reduced, for example, by at least 10%, at least 20%, at least 50% or at least 90%. Some residual friction can remain in any support device (if provided), even when the movable part is lifted off from the first friction surface 10f.
静摩擦力的大小足够低,以允许SMA线40克服静摩擦力,从而使可移动部件20相对于支撑结构10移动,特别是在由于SMA线40的收缩而使静摩擦力减少之后。因此,减少的静摩擦力的大小小于由SMA线40在移动方向上施加到可移动部件20的力。静摩擦力可以是SMA线40中的200MPa应力所产生的用于使可移动部件20相对于支撑结构10移动的力不到50%,优选小于20%,进一步优选小于10%。The magnitude of the static friction force is low enough to allow the SMA wire 40 to overcome the static friction force, thereby moving the movable part 20 relative to the support structure 10, especially after the static friction force is reduced due to the contraction of the SMA wire 40. Therefore, the magnitude of the reduced static friction force is less than the force applied to the movable part 20 in the moving direction by the SMA wire 40. The static friction force can be less than 50%, preferably less than 20%, and more preferably less than 10% of the force generated by the 200 MPa stress in the SMA wire 40 for moving the movable part 20 relative to the support structure 10.
第一摩擦表面10f和第二摩擦表面20f之间的静摩擦系数直接影响静摩擦力F的大小。可以通过适当加工或选择第一摩擦表面10f和第二摩擦表面20f的材料来改变静摩擦系数。静摩擦系数可以在0.05和0.6之间的范围内。优选地,静摩擦系数在0.1和0.4之间的范围内。通常,较低的静摩擦系数可以由偏置装置30施加的较高法向力N来补偿。The static friction coefficient between the first friction surface 10f and the second friction surface 20f directly affects the magnitude of the static friction force F. The static friction coefficient can be changed by appropriate processing or selection of the materials of the first friction surface 10f and the second friction surface 20f. The static friction coefficient can be in the range between 0.05 and 0.6. Preferably, the static friction coefficient is in the range between 0.1 and 0.4. Generally, a lower static friction coefficient can be compensated by a higher normal force N applied by the biasing device 30.
对第一摩擦表面10f和第二摩擦表面20f之间的静摩擦力F的要求已经在上面描述过。这些要求可以确保一旦可移动部件20在适当位置,可移动部件20相对于支撑结构10保持在适当位置。优选地,相同的要求适用于第一摩擦表面10f和第二摩擦表面20f之间的动摩擦力或动态摩擦力,从而确保可移动部件20在被SMA线40移动之后快速静止。为此,动摩擦力与可移动部件重量的比率、动摩擦力与由于SMA线40的力之间的关系以及第一摩擦表面10f和第二摩擦表面20f之间的动摩擦系数可以相对于静摩擦力F来描述。优选地,第一摩擦表面10f和第二摩擦表面20f之间的静摩擦系数基本上等于(例如,变化小于5%,优选小于1%)第一摩擦表面10f和第二摩擦表面20f之间的动摩擦系数。这使得作用在可移动部件上的力更可预测,降低了移动控制的复杂性。The requirements for the static friction force F between the first friction surface 10f and the second friction surface 20f have been described above. These requirements can ensure that once the movable part 20 is in place, the movable part 20 remains in place relative to the support structure 10. Preferably, the same requirements apply to the dynamic friction force or kinetic friction force between the first friction surface 10f and the second friction surface 20f, thereby ensuring that the movable part 20 is quickly stationary after being moved by the SMA wire 40. To this end, the ratio of the kinetic friction force to the weight of the movable part, the relationship between the kinetic friction force and the force due to the SMA wire 40, and the kinetic friction coefficient between the first friction surface 10f and the second friction surface 20f can be described relative to the static friction force F. Preferably, the static friction coefficient between the first friction surface 10f and the second friction surface 20f is substantially equal (e.g., varies by less than 5%, preferably less than 1%) to the kinetic friction coefficient between the first friction surface 10f and the second friction surface 20f. This makes the forces acting on the movable part more predictable and reduces the complexity of movement control.
偏置装置Bias device
图2A-图2D和图3A-图3C示意性地描绘了致动器组件1的实施例。与图1的现有技术致动器组件100(其中弹簧110连接在静态部件101和可移动部件102之间)相比,图2A-图2D中的可移动部件20或图3A-图3C中的支撑结构10包括所描绘的致动器组件1的偏置装置30。因此,偏置装置30在图2A-图2D中随着可移动部件20移动,或者在图3A-图3C中相对于支撑结构10保持静态。2A-2D and 3A-3C schematically depict embodiments of an actuator assembly 1. Compared to the prior art actuator assembly 100 of FIG. 1 , in which a spring 110 is connected between a static component 101 and a movable component 102, the movable component 20 in FIG. 2A-2D or the support structure 10 in FIG. 3A-3C comprises a biasing device 30 of the depicted actuator assembly 1. Thus, the biasing device 30 moves with the movable component 20 in FIG. 2A-2D or remains static relative to the support structure 10 in FIG. 3A-3C.
因此,偏置装置30被布置成仅在移动范围内的任何位置在垂直于移动范围的方向上施加法向力N。与图1的现有技术致动器组件100的弹簧110相比,当远离初始中心位置移动时,图2和图3的实施例的偏置装置30不会产生平行于移动范围作用的横向力。因此,不存在对抗可移动部件20和支撑结构10之间的摩擦力的横向力,降低了在SMA线40没有收缩的情况下可移动部件20意外移动的风险。由于没有作用在可移动部件20上的变化的横向力,可移动部件20相对于支撑结构10的受控和精确移动可以变得更简单。Therefore, the biasing device 30 is arranged to apply a normal force N in a direction perpendicular to the range of motion only at any position within the range of motion. Compared to the spring 110 of the prior art actuator assembly 100 of FIG. 1 , the biasing device 30 of the embodiment of FIGS. 2 and 3 does not generate a lateral force acting parallel to the range of motion when moving away from the initial center position. Therefore, there is no lateral force opposing the friction between the movable part 20 and the support structure 10, reducing the risk of accidental movement of the movable part 20 without contraction of the SMA wire 40. Due to the absence of varying lateral forces acting on the movable part 20, controlled and precise movement of the movable part 20 relative to the support structure 10 can be made simpler.
图2A-图2D描绘了本发明的实施例,其中偏置装置30形成可移动部件20的一部分。可移动部件20包括偏置装置30。偏置装置30与可移动部件20一起相对于支撑结构移动(以其整体)。在这种布置中,更容易确保偏置布置30的偏置力在垂直于移动范围的方向上作用。尽管为了便于说明,支撑结构10在图中被描绘为两个部分10,但是实际上支撑结构10可以是一个部分,即图2A-图2C中描绘的两个部分10是连接的。2A-2D depict an embodiment of the invention in which a biasing device 30 forms part of a movable part 20. The movable part 20 comprises a biasing device 30. The biasing device 30 moves together with the movable part 20 (in its entirety) relative to the support structure. In this arrangement, it is easier to ensure that the biasing force of the biasing arrangement 30 acts in a direction perpendicular to the range of movement. Although the support structure 10 is depicted as two parts 10 in the figures for ease of illustration, in reality the support structure 10 may be one part, i.e. the two parts 10 depicted in FIGS. 2A-2C are connected.
如图所示,可移动部件20包括两个部分20a、20b。偏置装置30在两部分20a、20b之间施加偏置力。两个部分20a、20b可以经由偏置装置30联接。偏置装置30的一端可以连接到两个部分20a、20b中的一个,并且偏置装置30的另一端可以连接到两个部分20a、20b中的另一个。As shown, the movable member 20 includes two parts 20a, 20b. The biasing device 30 applies a biasing force between the two parts 20a, 20b. The two parts 20a, 20b can be coupled via the biasing device 30. One end of the biasing device 30 can be connected to one of the two parts 20a, 20b, and the other end of the biasing device 30 can be connected to the other of the two parts 20a, 20b.
例如,在图2A的实施例中,支承装置50设置在部分中的一个部分20b和支撑结构10之间。SMA线40连接在部分中的另一个部分20a和支撑结构10之间。第二摩擦表面20f设置在部分中的另一个部分20a上。SMA线40远离摩擦表面10f、20f成角度,并且布置成在相反的方向上移动可移动部件。因此,在SMA线40的等收缩(或等张力)时,第一摩擦表面10f和第二摩擦表面20f之间的法向力N减少。SMA线40之间的收缩差使可移动部件20相对于支撑结构10在支承装置50上移动。For example, in the embodiment of FIG. 2A , the support device 50 is disposed between one of the sections 20 b and the support structure 10. The SMA wire 40 is connected between the other of the sections 20 a and the support structure 10. The second friction surface 20 f is disposed on the other of the sections 20 a. The SMA wire 40 is angled away from the friction surfaces 10 f, 20 f and is arranged to move the movable member in opposite directions. Therefore, upon equal contraction (or equal tension) of the SMA wire 40, the normal force N between the first friction surface 10 f and the second friction surface 20 f is reduced. The difference in contraction between the SMA wires 40 causes the movable member 20 to move on the support device 50 relative to the support structure 10.
图2B示出了本发明的另一个实施例,其中偏置装置30是可移动部件20的一部分。这里,偏置装置30是弹性元件,特别是包括挠性件。在所示实施例中,可移动部件20的一部分20b是与挠性件连接的主体,并且可移动部件20的另一部分与挠性件一体形成。通常,可移动部件20的一个或两个部分可以与偏置装置30一体形成,无论偏置装置是弹性元件(例如一个或更多个挠性件)的形式还是任何其他形式。如关于图2A所述,支承装置50设置在可移动部件20的一部分20b和支撑结构10之间。SMA线40连接在可移动部件20的另一部分20a和支撑结构10之间。第二摩擦表面20f形成在另一部分20a上。因此,第二摩擦表面20f与偏置装置30(以挠性件的形式)一体形成。FIG. 2B shows another embodiment of the present invention, in which the biasing device 30 is part of the movable part 20. Here, the biasing device 30 is an elastic element, in particular comprising a flexure. In the illustrated embodiment, a portion 20b of the movable part 20 is a body connected to the flexure, and another portion of the movable part 20 is formed integrally with the flexure. Generally, one or both portions of the movable part 20 may be formed integrally with the biasing device 30, whether the biasing device is in the form of an elastic element (e.g. one or more flexures) or in any other form. As described with respect to FIG. 2A, the support device 50 is arranged between a portion 20b of the movable part 20 and the support structure 10. The SMA wire 40 is connected between the other portion 20a of the movable part 20 and the support structure 10. The second friction surface 20f is formed on the other portion 20a. Therefore, the second friction surface 20f is formed integrally with the biasing device 30 (in the form of a flexure).
图2C示出了本发明的另一个实施例,其中偏置装置30是可移动部件20的一部分。可移动部件20包括两个部分20a、20b。SMA线40中的一根连接到一个部分20a,并且SMA线40中的另一根连接到另一个部分20b。第二摩擦表面20f形成在支撑结构10和可移动部件20的两个部分之间。在SMA线40等收缩(或等张力)时,作用在第一摩擦表面10f和第二摩擦表面20f之间的法向力N减少。SMA线40之间的收缩差使可移动部件20相对于支撑结构移动。在图2C的实施例中,摩擦表面10f、20f用作支承装置50,特别是平面支承件(plain bearing),用于引导可移动部件20相对于支撑结构10的移动。FIG. 2C shows another embodiment of the present invention, in which the biasing device 30 is part of the movable part 20. The movable part 20 includes two parts 20a, 20b. One of the SMA wires 40 is connected to one part 20a, and the other of the SMA wires 40 is connected to the other part 20b. The second friction surface 20f is formed between the support structure 10 and the two parts of the movable part 20. When the SMA wires 40 are isocontracted (or isotensoidal), the normal force N acting between the first friction surface 10f and the second friction surface 20f is reduced. The contraction difference between the SMA wires 40 causes the movable part 20 to move relative to the support structure. In the embodiment of FIG. 2C, the friction surfaces 10f, 20f are used as a bearing device 50, in particular a plain bearing, for guiding the movement of the movable part 20 relative to the support structure 10.
图2D示出了本发明的另一个实施例,其中偏置装置30是可移动部件20的一部分。与图2A-图2C所示的实施例相比,偏置装置30是磁偏置装置30。磁偏置装置30提供用于将第一摩擦表面10f抵靠第二摩擦表面20f偏置的磁偏置力。磁偏置装置包括位于可移动部件20的一部分20a上的磁体(优选永磁体)和位于可移动部件20的另一部分20b上的磁体(优选永磁体)或铁磁材料。偏置装置30的偏置力对应于磁性部件之间的磁力。支承装置50设置在一个部分20b和支撑结构10之间。SMA线40连接在另一部分20a和支撑结构10之间,并且第二摩擦面20f设置在另一部分20a上。FIG. 2D shows another embodiment of the present invention, in which the biasing device 30 is part of the movable part 20. Compared with the embodiment shown in FIG. 2A-FIG. 2C, the biasing device 30 is a magnetic biasing device 30. The magnetic biasing device 30 provides a magnetic biasing force for biasing the first friction surface 10f against the second friction surface 20f. The magnetic biasing device includes a magnet (preferably a permanent magnet) located on a part 20a of the movable part 20 and a magnet (preferably a permanent magnet) or a ferromagnetic material located on another part 20b of the movable part 20. The biasing force of the biasing device 30 corresponds to the magnetic force between the magnetic parts. The support device 50 is arranged between one part 20b and the support structure 10. The SMA wire 40 is connected between the other part 20a and the support structure 10, and the second friction surface 20f is arranged on the other part 20a.
图2D还示意性地描绘了两个部分20a、20b之间的支承装置22。在图2D中,支承装置22是平面支承件,尽管通常支承装置22可以包括任何其他形式的支承件,例如滚动支承件或挠性支承件。支承装置22可以允许两个部分20a、20b在移动范围内相对于支撑结构10在垂直于可移动部件20的任何移动方向的方向上移动。因此,支承装置22可以约束两个部分20a、20b在移动范围内相对于支撑结构10在平行于可移动部件20的任何移动方向的方向上的移动。由于磁偏置装置30的相对低的横向刚度,支承装置22的设置在具有磁偏置装置的实施例中可能特别有益。然而,通常,支承装置22可以设置在可移动部件20的任意两个部分20a、20b之间或者支撑结构10的任意两个部分10a、10b之间。FIG. 2D also schematically depicts a support device 22 between the two parts 20a, 20b. In FIG. 2D, the support device 22 is a planar support, although in general the support device 22 may include any other form of support, such as a rolling support or a flexible support. The support device 22 may allow the two parts 20a, 20b to move relative to the support structure 10 in a direction perpendicular to any direction of movement of the movable part 20 within the range of movement. Therefore, the support device 22 may constrain the movement of the two parts 20a, 20b relative to the support structure 10 in a direction parallel to any direction of movement of the movable part 20 within the range of movement. Due to the relatively low lateral stiffness of the magnetic biasing device 30, the arrangement of the support device 22 may be particularly beneficial in an embodiment having a magnetic biasing device. However, in general, the support device 22 may be arranged between any two parts 20a, 20b of the movable part 20 or between any two parts 10a, 10b of the support structure 10.
图3A-图3C描绘了本发明的实施例,其中偏置装置30形成支撑结构10的一部分。支撑结构10包括偏置装置30。偏置装置30(以其整体)相对于支撑结构10保持静态,并且可移动部件20相对于偏置装置30移动。在这种布置中,更容易确保偏置布置30的偏置力在垂直于移动范围的方向上作用。3A-3C depict an embodiment of the invention in which the biasing arrangement 30 forms part of the support structure 10. The support structure 10 comprises the biasing arrangement 30. The biasing arrangement 30 (in its entirety) remains static relative to the support structure 10, and the movable part 20 moves relative to the biasing arrangement 30. In this arrangement, it is easier to ensure that the biasing force of the biasing arrangement 30 acts in a direction perpendicular to the range of movement.
如图所示,支撑结构10包括两个部分10a、10b。偏置装置30在两部分10a、10b之间施加偏置力。两个部分10a、10b可以经由偏置装置30联接。偏置装置30的一端可以连接到两个部分10a、10b中的一个,并且偏置装置30的另一端可以连接到两个部分10a、10b中的另一个。As shown, the support structure 10 includes two parts 10a, 10b. The biasing device 30 applies a biasing force between the two parts 10a, 10b. The two parts 10a, 10b can be connected via the biasing device 30. One end of the biasing device 30 can be connected to one of the two parts 10a, 10b, and the other end of the biasing device 30 can be connected to the other of the two parts 10a, 10b.
例如,在图3A的实施例中,支承装置50设置在部分中的一个部分10b和可移动部件20之间。SMA线40连接在部分中的另一个部分10a和可移动部件20之间。第一摩擦表面10f设置在部分中的另一个部分10a上。SMA线40远离摩擦表面10f、20f成角度,并且布置成在相反的方向上移动可移动部件。因此,在SMA线40的等收缩(或等张力)时,第一摩擦表面10f和第二摩擦表面20f之间的法向力N减少。SMA线40之间的收缩差使可移动部件20相对于支撑结构在支承装置50上移动。For example, in the embodiment of FIG. 3A , the support device 50 is disposed between one of the sections 10 b and the movable member 20. The SMA wire 40 is connected between the other of the sections 10 a and the movable member 20. The first friction surface 10 f is disposed on the other of the sections 10 a. The SMA wire 40 is angled away from the friction surfaces 10 f, 20 f and is arranged to move the movable member in opposite directions. Therefore, upon isocontraction (or isotension) of the SMA wire 40, the normal force N between the first friction surface 10 f and the second friction surface 20 f is reduced. The difference in contraction between the SMA wires 40 causes the movable member 20 to move on the support device 50 relative to the support structure.
图3B描绘了另一个实施例,其中偏置装置30设置在支撑结构10的两个部分10a、10b之间。支承装置50设置在部分中的一个部分10a和可移动部件20之间。SMA线40连接在部分中的另一个部分10b和可移动部件20之间。第一摩擦表面10f设置在部分中的另一个部分10b上。SMA线40远离摩擦表面10f、20f成角度,并且布置成在相反的方向上移动可移动部件。因此,在SMA线40的等收缩(或等张力)时,第一摩擦表面10f和第二摩擦表面20f之间的法向力N减少。SMA线40之间的收缩差使可移动部件20相对于支撑结构在支承装置50上移动。FIG. 3B depicts another embodiment in which the biasing device 30 is disposed between two portions 10a, 10b of the support structure 10. A support device 50 is disposed between one of the portions 10a and the movable component 20. An SMA wire 40 is connected between the other of the portions 10b and the movable component 20. A first friction surface 10f is disposed on the other of the portions 10b. The SMA wire 40 is angled away from the friction surfaces 10f, 20f and is arranged to move the movable component in opposite directions. Therefore, upon equal contraction (or equal tension) of the SMA wire 40, the normal force N between the first friction surface 10f and the second friction surface 20f is reduced. The difference in contraction between the SMA wires 40 causes the movable component 20 to move on the support device 50 relative to the support structure.
图3C描绘了另一个实施例,其中偏置装置30设置在支撑结构10的两个部分10a、10b之间。除了SMA线40的布置之外,图3C的实施例类似于图3B的实施例。特别地,在图3C中,SMA线40相对于摩擦表面10f、20f不成角度。SMA线40连接在支撑结构10的部分中的一个部分10a和可移动部件20之间。SMA线40进一步围绕支撑结构10的另一部分10b的一部分弯曲。因此,SMA线40包括在支撑结构10的部分之间延伸的第一长度的SMA线,以及在支撑结构10的另一部分10b和可移动部件20之间延伸的第二长度的SMA线。在SMA线40的等收缩(或等张力)时,第一摩擦表面10f和第二摩擦表面20f之间的法向力N减少。SMA线40之间的收缩差使可移动部件20相对于支撑结构在支承装置50上移动。FIG. 3C depicts another embodiment in which the biasing device 30 is disposed between two portions 10a, 10b of the support structure 10. The embodiment of FIG. 3C is similar to the embodiment of FIG. 3B except for the arrangement of the SMA wire 40. In particular, in FIG. 3C, the SMA wire 40 is not angled relative to the friction surfaces 10f, 20f. The SMA wire 40 is connected between one portion 10a of the portions of the support structure 10 and the movable component 20. The SMA wire 40 is further bent around a portion of the other portion 10b of the support structure 10. Thus, the SMA wire 40 includes a first length of SMA wire extending between the portions of the support structure 10, and a second length of SMA wire extending between the other portion 10b of the support structure 10 and the movable component 20. Upon isocontraction (or isotension) of the SMA wire 40, the normal force N between the first friction surface 10f and the second friction surface 20f is reduced. The difference in contraction between the SMA wires 40 causes the movable component 20 to move relative to the support structure on the support device 50.
如图2B-图2D的实施例所示,支撑结构10可以包括多个分离的第一摩擦表面10f和/或可移动部件20可以包括多个分离的第二摩擦表面20f。作用在这些摩擦表面中的每一个之间的法向力N可以在SMA线40收缩时减少,或者可以减少总法向力N以减少总摩擦力。通常,在本发明的任何实施例中,例如也在图2A或图3A-图3C的实施例中,可以提供多个分离的第一摩擦表面10f和/或第二摩擦表面20f。例如,多个分离的摩擦表面可以设置在不同的平面中(如图2C),或者可以设置在同一平面中(如图2B和图2D)。支撑结构和/或可移动部件可以可选地包括一个或更多个突起,第一摩擦表面10f和/或第二摩擦表面20f形成在该一个或更多个突起上,这允许限定第一摩擦表面10f和第二摩擦表面20f之间的接触区域。As shown in the embodiment of Figures 2B-2D, the support structure 10 may include a plurality of separated first friction surfaces 10f and/or the movable component 20 may include a plurality of separated second friction surfaces 20f. The normal force N acting between each of these friction surfaces may be reduced when the SMA wire 40 contracts, or the total normal force N may be reduced to reduce the total friction force. Generally, in any embodiment of the present invention, for example also in the embodiment of Figures 2A or 3A-3C, a plurality of separated first friction surfaces 10f and/or second friction surfaces 20f may be provided. For example, a plurality of separated friction surfaces may be arranged in different planes (as shown in Figure 2C), or may be arranged in the same plane (as shown in Figures 2B and 2D). The support structure and/or the movable component may optionally include one or more protrusions, on which the first friction surface 10f and/or the second friction surface 20f are formed, which allows the contact area between the first friction surface 10f and the second friction surface 20f to be defined.
通常,即使偏置装置30在图2A-图2C和图3A-图3C中示意性地描绘为弹簧元件,偏置装置30也可以包括能够在可移动部件20和支撑结构10之间施加偏置力的任何部件。偏置装置30可以例如包括弹性元件,例如挠性件、螺旋弹簧、板簧、弹性体或任何其他合适的偏置元件,例如一对磁体和铁磁元件(如图2D所示)。In general, even though the biasing device 30 is schematically depicted as a spring element in FIGS. 2A-2C and 3A-3C , the biasing device 30 may include any component capable of applying a biasing force between the movable component 20 and the support structure 10. The biasing device 30 may, for example, include an elastic element, such as a flexure, a coil spring, a leaf spring, an elastomer, or any other suitable biasing element, such as a pair of magnets and a ferromagnetic element (as shown in FIG. 2D ).
在偏置装置30包括弹性元件的装置中,弹性元件(例如挠性件)优选至少在正交于摩擦表面10f、20f的方向上可变形(或仅可变形)。通常,弹性元件(例如,挠性件)也可以在除了垂直于表面的方向之外的其他方向上可变形,特别是在偏置装置连接在可移动部件20和支撑结构10之间的实施例中。在可移动部件20或支撑结构10包括多个部分10a、10b、20a、20b的实施例中,可以约束部分10a、10b、20a、20b在平行于移动范围的方向上相对于彼此的移动。例如,参考图2A-图2C,偏置装置30可以在平行于移动范围的方向上相对刚性。可以可选地提供如图2D所描述的附加支承装置22,以约束两个部分10a、10b、20a、20b的相对移动。端部止动件70(如关于图4A-图4D所描述的)也可以约束这种相对移动。通常,可移动部件20或支撑结构10的两个部分在移动范围内在沿着移动方向的方向上或在移动平面中的相对移动可以受到约束。In the device where the biasing device 30 includes a resilient element, the resilient element (e.g., a flexure) is preferably deformable (or only deformable) at least in a direction orthogonal to the friction surface 10f, 20f. Generally, the resilient element (e.g., a flexure) may also be deformable in directions other than perpendicular to the surface, particularly in embodiments where the biasing device is connected between the movable part 20 and the support structure 10. In embodiments where the movable part 20 or the support structure 10 includes a plurality of parts 10a, 10b, 20a, 20b, the parts 10a, 10b, 20a, 20b may be constrained from moving relative to each other in directions parallel to the range of movement. For example, with reference to FIGS. 2A-2C , the biasing device 30 may be relatively rigid in directions parallel to the range of movement. An additional support device 22 as described in FIG. 2D may optionally be provided to constrain the relative movement of the two parts 10a, 10b, 20a, 20b. An end stop 70 (as described with respect to FIGS. 4A-4D ) may also constrain such relative movement. Generally, the relative movement of the movable component 20 or two parts of the support structure 10 within the range of movement in a direction along the direction of movement or in a plane of movement may be constrained.
尽管偏置装置30被示意性地描绘为在沿着法向力N的方向上布置在支撑结构10和可移动部件20之间,但是实际上偏置装置30可以在横向方向上布置,即在从可移动部件20的一侧到支撑结构10的一侧的方向上布置。例如,弯曲弹簧或板簧可以大致在平行于摩擦力F的方向上延伸,同时向可移动部件20施加法向力N。这可以提供更紧凑的致动器组件。Although the biasing device 30 is schematically depicted as being arranged between the support structure 10 and the movable part 20 in the direction along the normal force N, in practice the biasing device 30 may be arranged in a lateral direction, i.e., in a direction from one side of the movable part 20 to one side of the support structure 10. For example, a bending spring or a leaf spring may extend generally in a direction parallel to the friction force F while applying the normal force N to the movable part 20. This may provide a more compact actuator assembly.
在一些实施例中,偏置装置30可以被布置成也向支承装置50提供偏置力。因此,偏置装置30可以被布置成加载支承装置50。偏置装置30可使支承装置50保持接合。当支承装置50包括滚动支承件或平面支承件时,这是特别有利的。In some embodiments, the biasing device 30 may be arranged to also provide a biasing force to the support device 50. Thus, the biasing device 30 may be arranged to load the support device 50. The biasing device 30 may keep the support device 50 engaged. This is particularly advantageous when the support device 50 comprises a rolling bearing or a planar bearing.
此外,即使在图2A-图2C和图3A-图3C中,偏置装置30被描绘成将可移动部件20或支撑结构10的部分推开(例如,由于弹性元件中的压缩),偏置装置30可以替代地被布置成将这些部分拉在一起(例如,由于弹性元件中的张力)。类似地,即使磁偏置装置30在图2D中被描绘成将可移动部件20或支撑结构10的部分拉在一起(例如,由于吸引的磁力),磁偏置装置30可以替代被布置成将这些部分拉在一起。Furthermore, even though in FIGS. 2A-2C and 3A-3C the biasing device 30 is depicted as pushing portions of the movable component 20 or support structure 10 apart (e.g., due to compression in the elastic element), the biasing device 30 may alternatively be arranged to pull these portions together (e.g., due to tension in the elastic element). Similarly, even though the magnetic biasing device 30 is depicted in FIG. 2D as pulling portions of the movable component 20 or support structure 10 together (e.g., due to attractive magnetic forces), the magnetic biasing device 30 may alternatively be arranged to pull these portions together.
偏置装置30可以包括协同工作以提供偏置力的多个偏置元件。因此,偏置装置30可以包括上述偏置装置的任意组合。The biasing device 30 may include a plurality of biasing elements that cooperate to provide a biasing force. Thus, the biasing device 30 may include any combination of the above-mentioned biasing devices.
支承装置Support device
在图2A、图2B、图2D和图3A-图3C中,专用支承装置50设置在支撑结构10和可移动部件20之间,特别是在支撑结构10和可移动部件20的一部分之间。In FIGS. 2A , 2B, 2D and 3A- 3C , a dedicated support device 50 is disposed between the support structure 10 and the movable component 20 , in particular, between the support structure 10 and a portion of the movable component 20 .
支承装置50可以独立于摩擦表面10f、20f设置。这可以使通过SMA线40的可移动部件20相对于支撑结构10的受控移动更简单。The bearing device 50 may be provided independently of the friction surfaces 10f, 20f. This may make the controlled movement of the movable part 20 relative to the support structure 10 by the SMA wire 40 simpler.
除非上下文另有要求,否则支承装置50在本文如下使用。本文使用的支承装置50包括术语“滑动支承件”或“平面支承件”、“滚动支承件”(包括“滚珠支承件”或“滚柱支承件”)和“挠性支承件”。本文中使用的术语“支承件”通常表示用于将移动约束为仅所期望的运动的任何元件或元件组合。术语“滑动支承件”用于意味着支承元件在支承表面上滑动的支承件,并且包括“平面支承件”。术语“滚动支承件”用于意味着滚动支承元件(例如滚珠或滚柱)在支承表面滚动的支承件。在实施例中,支承件可设置在非线性支承表面上或可包括非线性支承表面。在一些实施例中,可以组合使用多于一种类型的支承装置来提供支承功能。因此,本文使用的术语“支承件”包括例如平面支承件、滚动支承件和挠性支承件的任意组合。Unless the context requires otherwise, the support device 50 is used herein as follows. The support device 50 used herein includes the terms "sliding support" or "planar support", "rolling support" (including "ball support" or "roller support") and "flexible support". The term "support" used herein generally refers to any element or combination of elements used to constrain movement to only the desired movement. The term "sliding support" is used to mean a support in which a support element slides on a support surface, and includes a "planar support". The term "rolling support" is used to mean a support in which a rolling support element (such as a ball or roller) rolls on a support surface. In an embodiment, the support may be arranged on a nonlinear support surface or may include a nonlinear support surface. In some embodiments, more than one type of support device may be used in combination to provide a support function. Therefore, the term "support" used herein includes, for example, any combination of a planar support, a rolling support and a flexible support.
在所描绘的实施例中,例如,支承装置50包括滚动支承件。例如,滚动支承件是滚柱支承件或滚珠支承件。该滚动支承件包括支撑结构10上的支撑支承表面、可移动部件20上的可移动支承表面和布置在支撑支承表面和可移动支承表面之间的滚动支承元件(例如滚子或滚珠)。在一些实施例中,例如在移动平面中限定移动范围的实施例中,支撑支承表面和可移动支承表面平行于第一摩擦表面10f和第二摩擦表面20f。In the depicted embodiment, for example, the support device 50 includes a rolling bearing. For example, the rolling bearing is a roller bearing or a ball bearing. The rolling bearing includes a supporting bearing surface on the support structure 10, a movable bearing surface on the movable part 20, and a rolling bearing element (e.g., a roller or a ball) arranged between the supporting bearing surface and the movable bearing surface. In some embodiments, such as embodiments in which the range of movement is defined in a moving plane, the supporting bearing surface and the movable bearing surface are parallel to the first friction surface 10f and the second friction surface 20f.
在替代实施例中,支承装置50包括平面支承件或滑动支承件。因此,本文描述的任何实施例中的支承装置50可以是平面支承件。平面支承件形成在支撑结构上的接合表面与可移动部件20上的相应接合表面之间,该支撑结构上的接合表面与可移动部件20上的相应接合表面接合。例如,在平面支承件中的摩擦系数比第一摩擦表面10f和第二摩擦表面20f之间的摩擦系数低,例如显著低(例如小于50%或小于90%)的情况下,平面支承件可以被认为与摩擦表面10f、20f分离。为此,平面支承件可以包括支撑结构10和/或可移动部件20上的减摩涂层或材料,或者接合表面之间的减摩润滑剂。这种平面支承件可以例如包括聚合物或聚合物涂层。平面支承件的接合表面之间的静摩擦系数可以小于第一摩擦表面10f和第二摩擦表面20f之间的静摩擦系数的5倍,优选小于10倍。In an alternative embodiment, the support device 50 includes a planar support or a sliding support. Therefore, the support device 50 in any embodiment described herein can be a planar support. The planar support is formed between the engagement surface on the support structure and the corresponding engagement surface on the movable part 20, and the engagement surface on the support structure engages with the corresponding engagement surface on the movable part 20. For example, in the case where the friction coefficient in the planar support is lower than the friction coefficient between the first friction surface 10f and the second friction surface 20f, for example, significantly lower (for example, less than 50% or less than 90%), the planar support can be considered to be separated from the friction surfaces 10f and 20f. To this end, the planar support can include a friction-reducing coating or material on the support structure 10 and/or the movable part 20, or a friction-reducing lubricant between the engagement surfaces. Such a planar support can, for example, include a polymer or a polymer coating. The static friction coefficient between the engagement surfaces of the planar support can be less than 5 times, preferably less than 10 times, of the static friction coefficient between the first friction surface 10f and the second friction surface 20f.
可替代地,任何一个实施例中的支承装置50可以包括挠性支承件(未示出)。挠性支承件包括一个或更多个挠性件,这些挠性件抵抗沿其纵向长度的变形,并且相对于其纵向长度是可横向变形的。支承装置50的挠性件可以保持在张力中,至少部分是由于偏置装置30的偏置力。挠性件允许可移动部件20在移动范围内移动,但是约束移动范围之外的移动。Alternatively, the support device 50 in any of the embodiments may include a flexible support (not shown). The flexible support includes one or more flexible members that resist deformation along their longitudinal length and are laterally deformable relative to their longitudinal length. The flexible members of the support device 50 can be maintained in tension, at least in part due to the biasing force of the biasing device 30. The flexible members allow the movable member 20 to move within the range of motion, but restrict movement outside the range of motion.
通常,致动器组件1包括支承装置50,用于支承可移动部件20相对于支撑结构10的移动。支承装置50可以与第一摩擦表面10f和第二摩擦表面20f分离(如图2A、图2B、图2D、图3A-图3C所示)。可替代地,支承装置50可以至少部分地由第一摩擦表面10f和第二摩擦表面20f形成(如图2C所示)。Typically, the actuator assembly 1 includes a support device 50 for supporting the movement of the movable component 20 relative to the support structure 10. The support device 50 can be separated from the first friction surface 10f and the second friction surface 20f (as shown in Figures 2A, 2B, 2D, 3A-3C). Alternatively, the support device 50 can be at least partially formed by the first friction surface 10f and the second friction surface 20f (as shown in Figure 2C).
支承装置50将可移动部件20的移动约束在移动范围内。支承装置50可以将可移动部件20相对于支撑结构10的移动约束在三个自由度内。例如,支承装置50可以将可移动部件相对于支撑结构的移动约束为在移动平面内的移动。移动可以包括三个DOF,例如i)在移动平面中在第一方向上的平移,ii)在移动平面中在垂直于第一方向的第二方向上的平移,以及iii)在移动平面中的旋转。可替代地,移动可以包括两个自由度,例如i)在移动平面中在第一方向上的平移,ii)在移动平面中在垂直于第一方向的第二方向上的平移。这可以允许致动器组件用于需要这种3个DOF或2个DOF移动的应用中,例如实现传感器移位OIS或透镜移位OIS的光学图像稳定(OIS)致动器组件。The support device 50 constrains the movement of the movable part 20 within a range of movement. The support device 50 can constrain the movement of the movable part 20 relative to the support structure 10 within three degrees of freedom. For example, the support device 50 can constrain the movement of the movable part relative to the support structure to movement within a moving plane. The movement may include three DOFs, such as i) translation in a first direction in the moving plane, ii) translation in a second direction perpendicular to the first direction in the moving plane, and iii) rotation in the moving plane. Alternatively, the movement may include two degrees of freedom, such as i) translation in a first direction in the moving plane, ii) translation in a second direction perpendicular to the first direction in the moving plane. This can allow the actuator assembly to be used in applications that require such 3 DOF or 2 DOF movement, such as an optical image stabilization (OIS) actuator assembly that implements sensor-shift OIS or lens-shift OIS.
在其他实施例中,支承装置50可以将可移动部件20相对于支撑结构10的移动约束为在一个自由度上的移动。这可以允许致动器组件用于需要这种1个DOF移动的应用中,例如自动聚焦(AF)致动器组件。与具有更多自由度的致动器组件相比,具有1个DOF移动的致动器组件可以更容易制造和控制。例如,支承装置50可以将可移动部件相对于支撑结构的移动约束为围绕螺旋轴线的螺旋移动。可替代地,支承装置可以将可移动部件20相对于支撑结构10的移动约束为沿着移动轴线的平移移动。进一步替代地,支承装置50可以将可移动部件20相对于支撑结构10的移动约束为围绕旋转轴线的旋转移动。In other embodiments, the support device 50 can constrain the movement of the movable part 20 relative to the support structure 10 to movement in one degree of freedom. This can allow the actuator assembly to be used in applications that require such 1 DOF movement, such as an autofocus (AF) actuator assembly. An actuator assembly with 1 DOF movement can be easier to manufacture and control than an actuator assembly with more degrees of freedom. For example, the support device 50 can constrain the movement of the movable part relative to the support structure to a helical movement around a helical axis. Alternatively, the support device can constrain the movement of the movable part 20 relative to the support structure 10 to a translational movement along the axis of movement. Further alternatively, the support device 50 can constrain the movement of the movable part 20 relative to the support structure 10 to a rotational movement around a rotational axis.
因此,可以提供包括支撑结构的致动器组件,该致动器组件包括支撑结构,该支撑结构包括第一摩擦表面;可移动部件,该可移动部件包括接合第一摩擦表面的第二摩擦表面;螺旋支承装置,该螺旋支承装置将可移动元件支撑在支撑结构上并被布置成引导可移动元件围绕螺旋轴线相对于支撑结构的螺旋移动,其中螺旋支承装置由第一摩擦表面和第二摩擦表面形成;以及一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时驱动可移动元件围绕螺旋轴旋转,螺旋支承装置将该旋转转换成所述螺旋移动;以及偏置装置,偏置装置被构造成加载螺旋支承装置,从而以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,并产生静摩擦力,当一根或更多根SMA线未收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动,其中一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。Thus, there may be provided an actuator assembly comprising a support structure, the actuator assembly comprising the support structure comprising a first friction surface; a movable component comprising a second friction surface engaging the first friction surface; a helical bearing arrangement supporting the movable component on the support structure and arranged to guide helical movement of the movable component relative to the support structure about a helical axis, wherein the helical bearing arrangement is formed by the first friction surface and the second friction surface; and one or more SMA wires arranged to drive the movable component to rotate about the helical axis when contracted, the helical bearing arrangement converting the rotation into said helical movement; and a biasing arrangement configured to load the helical bearing arrangement so as to bias the first friction surface and the second friction surface against each other with a normal force and generate a static friction force that constrains movement of the movable component relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted, wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
第一摩擦表面10f和第二摩擦表面20f可以布置成允许可移动部件20相对于支撑结构10在支承装置50允许的自由度上移动。例如,第一摩擦表面10f和第二摩擦表面20f中的一个或两个是平面的。这可以允许至多3个自由度的移动。在允许在一个DOF上移动的实施例中,第一摩擦表面10f和第二摩擦表面20f中的一个可以设置在突起上,而第一摩擦表面10f和第二摩擦表面20f中的另一个可以设置在与突起互补形状的引导通道上。因此,可移动部件20相对于支撑结构10的移动范围可以包括沿着平行于引导通道的线的移动。The first friction surface 10f and the second friction surface 20f can be arranged to allow the movable part 20 to move relative to the support structure 10 in the degrees of freedom allowed by the support device 50. For example, one or both of the first friction surface 10f and the second friction surface 20f are planar. This can allow movement in up to 3 degrees of freedom. In an embodiment that allows movement in one DOF, one of the first friction surface 10f and the second friction surface 20f can be set on a protrusion, and the other of the first friction surface 10f and the second friction surface 20f can be set on a guide channel of a shape complementary to the protrusion. Therefore, the range of movement of the movable part 20 relative to the support structure 10 can include movement along a line parallel to the guide channel.
端部止动件End stops
如上所述,SMA线40可以减少第一摩擦表面10f和第二摩擦表面20f之间的法向力N。第一摩擦表面10f和第二摩擦表面20f可以在SMA线40收缩时保持接触。可替代地,在本文描述的任何实施例中,一根或更多根SMA线40可以在收缩时将第一摩擦表面10f和第二摩擦表面20f脱离接合。因此,第一摩擦表面10f和第二摩擦表面20f可以在SMA线40收缩时分离。在SMA线40收缩之后,可移动部件20不与第一摩擦表面10f直接接触。As described above, the SMA wire 40 can reduce the normal force N between the first friction surface 10f and the second friction surface 20f. The first friction surface 10f and the second friction surface 20f can remain in contact when the SMA wire 40 is retracted. Alternatively, in any embodiment described herein, one or more SMA wires 40 can disengage the first friction surface 10f and the second friction surface 20f when retracted. Therefore, the first friction surface 10f and the second friction surface 20f can be separated when the SMA wire 40 is retracted. After the SMA wire 40 is retracted, the movable part 20 is not in direct contact with the first friction surface 10f.
优选地,在分离第一摩擦表面10f和第二摩擦表面20f之后,可移动部件20支承在支承装置50上,优选地仅支承在支承装置50上。因此,支承装置50继续引导可移动部件20相对于支撑结构10的移动。这使得可移动部件20在被解除与第一摩擦表面10f接触之后的受控移动比没有设置专用支承装置50的情况更简单。其中SMA线40将第一摩擦表面和第二摩擦表面解除接合的致动器组件1也可以被称为离散的摩擦致动器组件1,因为可移动部件20和支撑结构10之间的摩擦力在使用中可以在两个离散值之间变化:在SMA线40收缩之前使可移动部件20保持在相对于支撑结构10的适当位置的相对较高的摩擦力,以及在SMA线40收缩之后由于支承装置50而产生的相对较低的(例如剩余的)摩擦力。Preferably, after separation of the first friction surface 10f and the second friction surface 20f, the movable part 20 is supported on the support device 50, preferably only on the support device 50. Therefore, the support device 50 continues to guide the movement of the movable part 20 relative to the support structure 10. This makes the controlled movement of the movable part 20 after being released from contact with the first friction surface 10f simpler than if no dedicated support device 50 is provided. The actuator assembly 1 in which the SMA wire 40 disengages the first friction surface and the second friction surface can also be referred to as a discrete friction actuator assembly 1, because the friction force between the movable part 20 and the support structure 10 can vary between two discrete values in use: a relatively high friction force that keeps the movable part 20 in place relative to the support structure 10 before the SMA wire 40 is retracted, and a relatively low (e.g., residual) friction force generated by the support device 50 after the SMA wire 40 is retracted.
优选地,在第一摩擦表面10f和第二摩擦表面20f解除接合的实施例中,设置有端部止动件70。在SMA线40收缩时,端部止动件70接合。端部止动件70在接合时约束可移动部件20在垂直于移动范围的方向上的移动。因此,SMA线40可以更可靠和有效地驱动可移动部件20的移动。一旦端部止动件70接合,SMA线40中的任何应变都可以有助于可移动部件20的移动。Preferably, in embodiments where the first friction surface 10f and the second friction surface 20f are disengaged, an end stop 70 is provided. The end stop 70 engages when the SMA wire 40 contracts. The end stop 70 constrains the movement of the movable component 20 in a direction perpendicular to the range of movement when engaged. Therefore, the SMA wire 40 can more reliably and effectively drive the movement of the movable component 20. Once the end stop 70 engages, any strain in the SMA wire 40 can contribute to the movement of the movable component 20.
端部止动件70可以在本文描述的任何实施例中实现。端部止动件可以形成在例如可移动部件20的两个部分20a、20b或支撑结构10的两个部分10a、10b之间。端部止动件在接合时可以约束两个部分10a、10b的相对移动。端部止动件在接合时可以约束两个部分10a、10b在垂直于可移动部件20相对于支撑结构10的任何移动方向的方向上的相对移动。The end stop 70 may be implemented in any of the embodiments described herein. The end stop may be formed, for example, between two portions 20a, 20b of the movable component 20 or two portions 10a, 10b of the support structure 10. The end stop may constrain relative movement of the two portions 10a, 10b when engaged. The end stop may constrain relative movement of the two portions 10a, 10b in a direction perpendicular to any direction of movement of the movable component 20 relative to the support structure 10 when engaged.
在一些实施例中,端部止动件在接合时可以进一步约束两个部分10a、10b在平行于可移动部件20相对于支撑结构10的任何移动方向的方向上的相对移动。例如,由于端部止动件表面之间的摩擦力,这种移动可能受到约束。使用端部止动件来约束这种移动可以避免需要提供任何其他布置(例如在移动方向上具有相对高刚度的弹性元件,或者如图2D所示在部分之间的附加支承装置22)来约束这种相对移动。端部止动件表面可以可选地设置有互补齿(未示出),以约束端部止动件表面之间在平行于可移动部件20相对于支撑结构10的任何移动方向的方向上滑动。In some embodiments, the end stops, when engaged, may further constrain relative movement of the two parts 10a, 10b in a direction parallel to any direction of movement of the movable part 20 relative to the support structure 10. Such movement may be constrained, for example, due to friction between the surfaces of the end stops. The use of end stops to constrain such movement may avoid the need to provide any other arrangement (e.g., a resilient element having a relatively high stiffness in the direction of movement, or an additional support device 22 between the parts as shown in FIG. 2D ) to constrain such relative movement. The end stop surfaces may optionally be provided with complementary teeth (not shown) to constrain sliding between the end stop surfaces in a direction parallel to any direction of movement of the movable part 20 relative to the support structure 10.
图4A-图4D示意性地描绘了其中提供端部止动件70的各种实施例。4A-4D schematically depict various embodiments in which end stops 70 are provided.
图4A实质上描述了已经参照图2A描述的致动器组件1,并增加了端部止动件70。端部止动件70由位于可移动部件20的一个部分20a上的端部止动件表面和位于可移动部件20的另一个部分20b上的端部止动件表面形成。在SMA线40收缩时,可移动部件的一部分20a可移出与第一摩擦表面10f的接合,并与端部止动件70接合,如图4A中的箭头所示。在图4A中,端部止动件70被描绘为由另一部分20b上的突起提供。附加地或替代地,突起可以设置在一个部分20a上。通常,不需要设置突起,并且端部止动件70可以形成在可移动部件20的第一部分20a和第二部分20b上的任何相应表面之间。FIG. 4A essentially depicts the actuator assembly 1 already described with reference to FIG. 2A , with the addition of an end stop 70. The end stop 70 is formed by an end stop surface located on one portion 20 a of the movable member 20 and an end stop surface located on another portion 20 b of the movable member 20. Upon contraction of the SMA wire 40, one portion 20 a of the movable member may move out of engagement with the first friction surface 10 f and engage with the end stop 70, as indicated by the arrow in FIG. 4A . In FIG. 4A , the end stop 70 is depicted as being provided by a protrusion on the other portion 20 b. Additionally or alternatively, the protrusion may be provided on one portion 20 a. Typically, no protrusion is required, and the end stop 70 may be formed between any corresponding surfaces on the first portion 20 a and the second portion 20 b of the movable member 20.
图4B实质上描述了已经参照图3B描述的致动器组件1,并增加了端部止动件70。端部止动件70由支撑结构10的一部分10a上的端部止动件表面和支撑结构10的另一部分10b上的端部止动件表面形成。当SMA线40收缩时,支撑结构10的另一部分20b可以移出与可移动部件20的接合,并且支撑结构10的另一部分10b可以移动到与端部止动件70接合,如图4B中的箭头所示。在图4B中,端部止动件70被描绘为由一个部分10a上的突起提供。附加地或替代地,突起可以设置在另一部分10b上。通常,不需要设置突起,并且端部止动件70可以形成在部分10a、10b上的任何相应表面之间。FIG. 4B essentially describes the actuator assembly 1 already described with reference to FIG. 3B , with the addition of an end stop 70. The end stop 70 is formed by an end stop surface on one portion 10a of the support structure 10 and an end stop surface on another portion 10b of the support structure 10. When the SMA wire 40 contracts, the other portion 20b of the support structure 10 can move out of engagement with the movable member 20, and the other portion 10b of the support structure 10 can move into engagement with the end stop 70, as indicated by the arrow in FIG. 4B . In FIG. 4B , the end stop 70 is depicted as being provided by a protrusion on one portion 10a. Additionally or alternatively, the protrusion can be provided on the other portion 10b. Typically, no protrusion needs to be provided, and the end stop 70 can be formed between any corresponding surfaces on the portions 10a, 10b.
图4C实质上描述了已经参照图3A描述的致动器组件1,并增加了端部止动件70。端部止动件70由支撑结构10的一部分10a上的端部止动件表面和支撑结构10的另一部分10b上的端部止动件表面形成。在SMA线40收缩时,可移动部件20可以移出与支撑结构10的一部分10a的接合,并且支撑结构10的另一部分10b可以移动到与端部止动件70的接合,如图4C中的箭头所示。在图4C中,端部止动件70被描绘为由一个部分10a上的突起提供。附加地或替代地,突起可以设置在另一部分10b上。通常,不需要设置突起,并且端部止动件70可以形成在部分10a、10b上的任何相应表面之间。FIG. 4C essentially depicts the actuator assembly 1 already described with reference to FIG. 3A , with the addition of an end stop 70. The end stop 70 is formed by an end stop surface on one portion 10a of the support structure 10 and an end stop surface on another portion 10b of the support structure 10. Upon contraction of the SMA wire 40, the movable member 20 may be moved out of engagement with one portion 10a of the support structure 10, and the other portion 10b of the support structure 10 may be moved into engagement with the end stop 70, as indicated by the arrows in FIG. 4C . In FIG. 4C , the end stop 70 is depicted as being provided by a protrusion on one portion 10a. Additionally or alternatively, the protrusion may be provided on the other portion 10b. Typically, no protrusion need be provided, and the end stop 70 may be formed between any corresponding surfaces on the portions 10a, 10b.
图4D描绘了本发明的另一个实施例。这里,偏置装置30布置成(例如连接)在可移动部件20和支撑结构10之间。因此,偏置装置30的一端连接到可移动部件20,并且偏置装置30的另一端连接到支撑结构10。当使用磁偏置装置30时,磁偏置装置30的一个部件设置在支撑结构10上,而另一个部件设置在可移动部件20上。FIG4D depicts another embodiment of the present invention. Here, the biasing device 30 is arranged (e.g., connected) between the movable part 20 and the support structure 10. Thus, one end of the biasing device 30 is connected to the movable part 20, and the other end of the biasing device 30 is connected to the support structure 10. When a magnetic biasing device 30 is used, one part of the magnetic biasing device 30 is disposed on the support structure 10, and the other part is disposed on the movable part 20.
在图4D的实施例中,端部止动件70形成在可移动部件和支承装置50之间。特别地,在SMA线40收缩时,可移动部件20可以移出与第一摩擦表面10f的接合,从而移出与支撑结构10的接合。如图4D中的箭头所示,可移动部件20可以移动到与端部止动件70接合,特别是通过移动到与支承装置50接合。因此,可移动部件20从第一摩擦表面10f提离并移到支承装置50的支承元件上。通常,SMA线40可以被布置成在收缩时将可移动部件20解除与第一摩擦表面10f的接合,并使可移动部件20与支承装置50(例如,支承装置50可以包括滚动支承件、平面支承件或挠性支承件)接合。在停止对SMA线40的供电时,偏置装置30可以将可移动部件20偏置成脱离与支承装置50的接合,并与第一摩擦表面10f接合。In the embodiment of FIG. 4D , an end stop 70 is formed between the movable part and the support device 50. In particular, when the SMA wire 40 is retracted, the movable part 20 can be moved out of engagement with the first friction surface 10 f and thus out of engagement with the support structure 10. As shown by the arrow in FIG. 4D , the movable part 20 can be moved into engagement with the end stop 70, in particular by moving into engagement with the support device 50. As a result, the movable part 20 is lifted off the first friction surface 10 f and moved onto the support element of the support device 50. In general, the SMA wire 40 can be arranged to release the movable part 20 from engagement with the first friction surface 10 f when retracted and to engage the movable part 20 with the support device 50 (for example, the support device 50 can include a rolling support, a planar support or a flexible support). When the power supply to the SMA wire 40 is stopped, the biasing device 30 can bias the movable part 20 out of engagement with the support device 50 and into engagement with the first friction surface 10 f.
SMA线布置SMA wire layout
在图2A-图2C、图3A-图3C和图4A-图4D中,SMA线40被布置成远离摩擦表面10f、20f的角度。这是确保SMA线40中的应变和/或应力可以减少法向力N,同时在移动范围内驱动可移动部件20的移动的一种方式。SMA线40的这种布置提供了减少法向力N的相对简单的方式。In FIGS. 2A-2C , 3A-3C and 4A-4D , the SMA wire 40 is arranged at an angle away from the friction surface 10 f, 20 f. This is one way to ensure that the strain and/or stress in the SMA wire 40 can reduce the normal force N while driving the movement of the movable component 20 within the range of motion. This arrangement of the SMA wire 40 provides a relatively simple way to reduce the normal force N.
通常,一根或更多根SMA线40可以被布置成在收缩时相对于支撑结构10向可移动部件20施加致动力,该致动力相对于第一摩擦表面10f和第二摩擦表面20f成角度(例如远离)。致动力不一定平行于SMA线40。在一些实施例中(例如图3C的实施例),对可移动部件20的致动力甚至可以平行于摩擦表面10f、20f。Typically, the one or more SMA wires 40 may be arranged to apply an actuation force to the movable component 20 relative to the support structure 10 when retracted, the actuation force being angled relative to (e.g., away from) the first friction surface 10f and the second friction surface 20f. The actuation force is not necessarily parallel to the SMA wires 40. In some embodiments (e.g., the embodiment of FIG. 3C ), the actuation force on the movable component 20 may even be parallel to the friction surfaces 10f, 20f.
例如,每根SMA线40可以是V形线。V形线可以在两端连接到支撑结构10或可移动部件20,并且可以围绕与可移动部件20或支撑结构10的接触部分弯曲。因此,SMA线40不需要直接连接在可移动部件20和支撑结构10之间。For example, each SMA wire 40 may be a V-shaped wire. The V-shaped wire may be connected to the support structure 10 or the movable part 20 at both ends, and may be bent around the contact portion with the movable part 20 or the support structure 10. Therefore, the SMA wire 40 does not need to be directly connected between the movable part 20 and the support structure 10.
可选地,力修正机构(未示出)可以布置在SMA线40和可移动部件20之间或者在SMA线40和支撑结构10之间。力修正机构可以改变SMA线40中的应力的方向,以在沿着致动力的方向上作用在可移动部件上。因此,即使SMA线40平行于摩擦表面10f、20f布置,SMA线40中的应力和/或应变也可以减少法向力N。这种力修正机构也可以实现冲程或力放大。Optionally, a force modification mechanism (not shown) may be arranged between the SMA wire 40 and the movable component 20 or between the SMA wire 40 and the support structure 10. The force modification mechanism may change the direction of the stress in the SMA wire 40 to act on the movable component in the direction along the actuation force. Thus, even if the SMA wire 40 is arranged parallel to the friction surfaces 10f, 20f, the stress and/or strain in the SMA wire 40 may reduce the normal force N. Such a force modification mechanism may also achieve stroke or force amplification.
图3C描绘了SMA线40的特定布置,其中SMA线40在一端连接到支撑结构10的一部分10a,并且在另一端连接到可移动部件20。SMA线40围绕支撑结构的另一部分10b弯曲。因此,SMA线40可以向可移动部件20施加基本上平行于摩擦表面10f、20f的致动力。3C depicts a specific arrangement of the SMA wire 40, wherein the SMA wire 40 is connected at one end to a portion 10a of the support structure 10 and at the other end to the movable component 20. The SMA wire 40 is bent around another portion 10b of the support structure. Thus, the SMA wire 40 can apply an actuation force substantially parallel to the friction surfaces 10f, 20f to the movable component 20.
通常,SMA线40被布置在收缩时减少第一摩擦表面10f和第二摩擦表面20f之间的法向力。由于SMA线40中的应力和/或应变相等,SMA线40可以减少法向力。SMA线40还被布置成使可移动部件20相对于支撑结构10移动。由于SMA线40中的不相等的应力和/或应变,SMA线40可以移动可移动部件20。Generally, the SMA wire 40 is arranged to reduce the normal force between the first friction surface 10f and the second friction surface 20f when contracted. The SMA wire 40 can reduce the normal force due to equal stress and/or strain in the SMA wire 40. The SMA wire 40 is also arranged to move the movable part 20 relative to the support structure 10. Due to unequal stress and/or strain in the SMA wire 40, the SMA wire 40 can move the movable part 20.
此外,SMA线40可以被布置成在收缩时向支承装置50提供偏置力。因此,SMA线40可有助于保持支承装置50接合。Furthermore, the SMA wire 40 can be arranged to provide a biasing force to the support device 50 when retracted. Thus, the SMA wire 40 can help keep the support device 50 engaged.
致动器组件的其他实施例Other Embodiments of the Actuator Assembly
图5A-图5D描绘了致动器组件1的另外实施例,其中偏置装置30由可移动部件20包括。图5A-图5D的致动器组件1在功能上类似于参照图2A和图2B描述的致动器组件1。Figures 5A-5D depict further embodiments of the actuator assembly 1, wherein the biasing means 30 is comprised by the movable part 20. The actuator assembly 1 of Figures 5A-5D is functionally similar to the actuator assembly 1 described with reference to Figures 2A and 2B.
图5A是致动器组件1的一个侧视图,并且图5B是致动器组件1的另一个侧视图。可移动部件20在图5A中在左右方向上(移动方向M)移动,并在图5B中进出页面。Fig. 5A is one side view of the actuator assembly 1, and Fig. 5B is another side view of the actuator assembly 1. The movable member 20 moves in the left-right direction (movement direction M) in Fig. 5A, and enters and exits the page in Fig. 5B.
如图5A所示,致动器组件1包括挠性件30,挠性件30具有固定附接到可移动部件20的第一端,以及形成接触部分32从而与支撑结构10接合并在其上产生摩擦力的自由端。接触部分32可以被认为是可移动部件20的第二部分,其中挠性件30作为可移动部件20的两个部分之间的偏置装置30。图5B示出了接触部分32a中的一个与支撑结构10的第一摩擦表面10f完全接合,而另一个挠性件的另一个接触部分与该表面脱离。As shown in Fig. 5A, the actuator assembly 1 includes a flexure 30 having a first end fixedly attached to the movable member 20 and a free end forming a contact portion 32 to engage with and generate friction on the support structure 10. The contact portion 32 can be considered as a second portion of the movable member 20, wherein the flexure 30 acts as a biasing device 30 between the two portions of the movable member 20. Fig. 5B shows that one of the contact portions 32a is fully engaged with the first friction surface 10f of the support structure 10, while the other contact portion of the other flexure is disengaged from the surface.
致动器组件还包括SMA线40,该SMA线40与移动方向M以及法向于支撑结构10的表面的方向以及沿着来自挠性件的偏置力成角度。SMA线40附接到支撑结构和具有接触部分的挠性件30的端部。在收缩时,SMA线40在挠性件30上施加致动力,其中法向于支撑结构1a的表面的第二力分量使接触部分从表面缩回,减少其所在处的摩擦力。SMA线40还沿移动方向施加第一力分量,以驱动可移动部件20的移动。SMA线40中的进一步收缩不仅驱动可移动部件20的连续移动,而且使接触部分32从第一摩擦表面10f脱离,消除了由挠性件30引起的摩擦力。例如,由于相应的SMA线40b的收缩,接触部分32b被示出为完全脱离支撑结构10的表面。The actuator assembly also includes an SMA wire 40 that is angled with respect to the direction of movement M and a direction normal to the surface of the support structure 10 and along the biasing force from the flexure. The SMA wire 40 is attached to the support structure and the end of the flexure 30 having the contact portion. When contracted, the SMA wire 40 applies an actuation force on the flexure 30, wherein a second force component normal to the surface of the support structure 10a causes the contact portion to retract from the surface, reducing the friction where it is located. The SMA wire 40 also applies a first force component in the direction of movement to drive movement of the movable member 20. Further contraction in the SMA wire 40 not only drives continued movement of the movable member 20, but also causes the contact portion 32 to disengage from the first friction surface 10f, eliminating the friction caused by the flexure 30. For example, the contact portion 32b is shown as being completely disengaged from the surface of the support structure 10 due to contraction of the corresponding SMA wire 40b.
在停止对SMA线40的能量供应时,例如在致动力撤回时,挠性件30与支撑结构10的表面重新接合,并在其上施加偏置力,以约束可移动部件20的自由移动。When the supply of energy to the SMA wire 40 ceases, such as when the actuation force is withdrawn, the flexure 30 reengages the surface of the support structure 10 and applies a biasing force thereon to constrain free movement of the movable component 20 .
可移动部件20还包括端部止动件70。端部止动件限定了接触部分32在垂直于摩擦表面10f、20f的方向上的移动极限。如图5B所示,当SMA线40a未通电时,挠性件30的接触部分32a与支撑结构10的表面接合,并且挠性件30的自由端与端部止动件70间隔开。当SMA线40b通电时,其致动力导致接触部分32b后退,直到挠性件30的自由端邻接端部止动件。SMA线40b的进一步收缩不会导致接触部分32b的进一步缩回。相反,致动力仅用于驱动可移动部件20的移动,从而允许对可移动部件20进行更精确的位置控制。The movable component 20 also includes an end stop 70. The end stop defines the limit of movement of the contact portion 32 in a direction perpendicular to the friction surfaces 10f, 20f. As shown in FIG. 5B , when the SMA wire 40a is not energized, the contact portion 32a of the flexure 30 engages with the surface of the support structure 10, and the free end of the flexure 30 is spaced apart from the end stop 70. When the SMA wire 40b is energized, its actuation force causes the contact portion 32b to retreat until the free end of the flexure 30 abuts the end stop. Further contraction of the SMA wire 40b does not result in further retraction of the contact portion 32b. Instead, the actuation force is used only to drive the movement of the movable component 20, thereby allowing more precise position control of the movable component 20.
在挠性件30与端部止动件70接合时,来自SMA线40b的第二致动力在可移动部件20上施加扭矩。这种合成扭矩被另一挠性件30抵消,以防止可移动部件20倾斜。更具体地,支撑结构10的表面通过接触部分32a对扭矩做出反应。When the flexure 30 engages the end stop 70, the second actuation force from the SMA wire 40b applies a torque on the movable member 20. This resultant torque is counteracted by the other flexure 30 to prevent the movable member 20 from tilting. More specifically, the surface of the support structure 10 reacts to the torque through the contact portion 32a.
优选地,端部止动件70被布置成从可移动部件的表面突出一定高度,在与挠性件30的自由端接触时,该高度在接触部分32和支撑结构10的表面之间留下最小的间隙。Preferably, the end stop 70 is arranged to protrude from the surface of the movable part to a height that leaves a minimum gap between the contact portion 32 and the surface of the support structure 10 when in contact with the free end of the flexure 30 .
图5C是致动器组件1的另一实施例的侧视截面图。致动器组件1具有以类似于图5A和图5B的实施例的方式布置的挠性件30和SMA线40。仅图示了单根SMA 40,尽管可以存在多根SMA线。不再描述相似的特征。FIG5C is a side cross-sectional view of another embodiment of the actuator assembly 1. The actuator assembly 1 has a flexure 30 and SMA wire 40 arranged in a manner similar to the embodiment of FIGS. 5A and 5B. Only a single SMA 40 is illustrated, although multiple SMA wires may be present. Similar features are not described again.
在该实施例中,挠性件30包括朝向其自由端向上延伸的唇缘,该唇缘形成用于接合支撑结构10的表面的接触部分32。类似于图5B的实施例,可移动部件20包括端部止动件70,用于在SMA线收缩期间限制接触部分32的位移。有利地,向上延伸的唇缘的使用减少了在线收缩期间挠性件30的弯曲程度,从而允许接触部分32以更有效和精确的方式缩回。In this embodiment, the flexure 30 includes a lip extending upwardly toward its free end, which forms a contact portion 32 for engaging a surface of the support structure 10. Similar to the embodiment of Figure 5B, the movable member 20 includes an end stop 70 for limiting the displacement of the contact portion 32 during retraction of the SMA wire. Advantageously, the use of the upwardly extending lip reduces the degree of bending of the flexure 30 during wire retraction, thereby allowing the contact portion 32 to retract in a more efficient and precise manner.
在没有第二挠性件的情况下,致动器组件6还包括第二支承件50b,用于抵消由第二致动力分量引起的扭矩,例如,在法向于支撑结构10的表面的方向上作用的力分量。第二支承件50b示出为滚珠支承件,但也可以是其它合适的支承件,例如平面支承件。第二支承件50b防止可移动部件20的倾斜,但是允许支撑结构10和可移动部件20之间的相对移动。In the absence of the second flexible member, the actuator assembly 6 further comprises a second support 50b for counteracting the torque caused by the second actuation force component, for example, a force component acting in a direction normal to the surface of the support structure 10. The second support 50b is shown as a ball support, but may be other suitable supports, such as a planar support. The second support 50b prevents tilting of the movable part 20, but allows relative movement between the support structure 10 and the movable part 20.
图5D是致动器组件1的另一个实施例的侧视图。已经参照图5A和图5B描述的特征不再描述。Fig. 5D is a side view of another embodiment of the actuator assembly 1. Features already described with reference to Figs. 5A and 5B are not described again.
如图5D所示,致动器组件1包括挠性件30,该挠性件30通过挠性臂38在锚固点34处固定地附接到可移动部件20。挠性臂38从沿着挠性件30的长度的一个位置延伸,该位置与挠性件30的自由端间隔开。这样,挠性件30以及挠性件30的两个自由端部可绕锚固点枢转。As shown in Fig. 5D, the actuator assembly 1 includes a flexure 30 fixedly attached to the movable member 20 at an anchor point 34 by a flexure arm 38. The flexure arm 38 extends from a position along the length of the flexure 30 that is spaced apart from the free end of the flexure 30. In this way, the flexure 30 and the two free ends of the flexure 30 can pivot about the anchor point.
自由端中的一个形成接触部分32,用于与支撑结构10接合并在其所在处产生摩擦力。也就是说,如图5D所示,接触部分32被示出为与支撑结构10的表面完全接合。One of the free ends forms a contact portion 32 for engaging with the support structure 10 and generating friction thereat. That is, as shown in FIG5D , the contact portion 32 is shown to be fully engaged with the surface of the support structure 10.
致动器组件1还包括SMA线40,该SMA线40与移动方向(例如,进入图5D中的页面的方向)以及法向于支撑结构10的表面的方向(例如,来自挠性件的偏置力)成角度。SMA线40附接在支撑结构和挠性件30的另一个自由端之间。因此,挠性件用作1级杠杆。The actuator assembly 1 also includes an SMA wire 40 that is angled with respect to the direction of movement (e.g., into the page in FIG. 5D ) and a direction normal to the surface of the support structure 10 (e.g., the bias force from the flexure). The SMA wire 40 is attached between the support structure and the other free end of the flexure 30. Thus, the flexure acts as a Class 1 lever.
在收缩时,SMA线40在挠性件30上施加致动力,其中第二力分量在挠性件30附接到SMA线40的端部上向下拉,导致挠性臂38围绕锚固点34旋转。因此,通过杠杆,挠性件的自由端向上移动,并从而将接触部分32从表面缩回,从而减少其所在处的摩擦力。SMA线40还沿移动方向施加第一力分量,以驱动可移动部件20的移动。SMA线40的进一步收缩不仅驱动可移动部件20的连续移动,而且使接触部分32从支撑结构10的表面脱离,消除了由挠性件30引起的摩擦力。例如,由于SMA线40的收缩,接触部分32被示出(沿着虚线)完全脱离支撑结构10的表面。When retracted, the SMA wire 40 exerts an actuation force on the flexure 30, wherein a second force component pulls downward on the end of the flexure 30 attached to the SMA wire 40, causing the flexure arm 38 to rotate about the anchor point 34. Thus, by leveraging, the free end of the flexure moves upward and thereby retracts the contact portion 32 from the surface, thereby reducing the friction where it is located. The SMA wire 40 also exerts a first force component in the direction of movement to drive movement of the movable member 20. Further retraction of the SMA wire 40 not only drives continued movement of the movable member 20, but also disengages the contact portion 32 from the surface of the support structure 10, eliminating the friction caused by the flexure 30. For example, due to the retraction of the SMA wire 40, the contact portion 32 is shown (along the dashed line) completely disengaging from the surface of the support structure 10.
如关于图5A和图5B所示的实施例所述,可移动部件20还包括端部止动件70,该端部止动件70限定了接触部分32的移动极限。一旦SMA线40通电,其致动力导致接触部分32后退,直到挠性件30的自由端邻接端部止动件70。SMA线40的进一步收缩不会导致接触部分32的进一步缩回。相反,致动力仅用于驱动可移动部件20的移动,从而允许对可移动部件20进行更精确的位置控制。5A and 5B , the movable member 20 also includes end stops 70 that define the limits of movement of the contact portion 32. Once the SMA wire 40 is energized, its actuation force causes the contact portion 32 to retract until the free end of the flexure 30 abuts the end stop 70. Further contraction of the SMA wire 40 does not cause further retraction of the contact portion 32. Instead, the actuation force is used only to drive movement of the movable member 20, thereby allowing for more precise positional control of the movable member 20.
在图5D所示的实施例中,在比载荷更靠近支点(例如锚固点34)的距离处施加力,接触点32被布置成位移大于SMA线40中给定收缩的量。有利地,这种布置允许接触点32迅速缩回。可替代地,可以在与载荷相同的距离处施加力,或者在比载荷离支点更远的距离处施加力,以便通过更硬的偏置元件来克服偏置力。更具体地,挠性件30是力修正机构,其中输入力与输出力的比率可以适合于不同的应用。In the embodiment shown in FIG. 5D , a force is applied at a distance closer to the fulcrum (e.g., anchor point 34) than the load, and the contact point 32 is arranged to displace by an amount greater than a given contraction in the SMA wire 40. Advantageously, this arrangement allows the contact point 32 to retract quickly. Alternatively, the force may be applied at the same distance as the load, or at a distance farther from the fulcrum than the load, so that the biasing force is overcome by a stiffer biasing element. More specifically, the flexure 30 is a force modification mechanism in which the ratio of input force to output force can be adapted for different applications.
致动器组件的应用Applications of actuator components
致动器组件1通常可以应用于希望使用SMA线40在移动范围内移动可移动部件20,并且在停止向SMA线20供电时将可移动部件20保持在移动范围内的任何位置的任何应用中。以下描述提供了本发明的具体应用示例,但是应当理解,致动器组件1不需要用于这些特定应用中。The actuator assembly 1 may generally be used in any application where it is desirable to move the movable member 20 within a range of motion using the SMA wire 40, and to maintain the movable member 20 at any position within the range of motion when power is removed from the SMA wire 20. The following description provides specific application examples of the present invention, but it should be understood that the actuator assembly 1 need not be used in these specific applications.
在一些实施例中,致动器组件1可以是用于相机或移动电话的微致动器。例如,致动器组件可以被构造为在相机装置中提供光学图像稳定(OIS)或自动聚焦(AF)。出于这些目的,致动器组件可以实现3个DOF或2个DOF移动(对于OIS)或1个DOF移动(对于AF),如上文关于支承装置50所述。In some embodiments, the actuator assembly 1 can be a microactuator for a camera or mobile phone. For example, the actuator assembly can be configured to provide optical image stabilization (OIS) or autofocus (AF) in a camera device. For these purposes, the actuator assembly can achieve 3 DOF or 2 DOF movement (for OIS) or 1 DOF movement (for AF), as described above with respect to the support device 50.
因此,提供了一种相机装置,包括致动器组件1、图像传感器和包括至少一个元件的镜头组件。图像传感器和至少一个透镜元件中的一个可以相对于可移动部件20固定,和/或图像传感器和至少一个透镜元件中的一个(例如另一个)可以相对于支撑结构10固定。在SMA线40收缩时,相对于支撑结构10移动可移动部件20可以影响透镜元件和图像传感器之间的相对移动。沿着透镜组件的光轴相对于图像传感器移动透镜元件可以影响相机装置中的AF。在垂直于光轴的方向上相对于图像传感器移动透镜元件和/或旋转图像传感器可以影响相机装置中的OIS。Thus, a camera device is provided, comprising an actuator assembly 1, an image sensor, and a lens assembly comprising at least one element. One of the image sensor and the at least one lens element may be fixed relative to the movable component 20, and/or one of the image sensor and the at least one lens element (e.g., the other) may be fixed relative to the support structure 10. When the SMA wire 40 contracts, moving the movable component 20 relative to the support structure 10 may affect relative movement between the lens element and the image sensor. Moving the lens element relative to the image sensor along the optical axis of the lens assembly may affect AF in the camera device. Moving the lens element relative to the image sensor in a direction perpendicular to the optical axis and/or rotating the image sensor may affect OIS in the camera device.
在WO 2013 175197A1或WO 2017 072525A1中描述了可以影响OIS的致动器组件1,其通过引用并入本文。本发明可应用于这些致动器组件1。例如,这种致动器组件1的实施例如图11和图12所示。在这点上,可移动部件20可以在移动范围内在移动平面中移动。致动器组件1可以包括连接在可移动部件20和支撑结构10之间的总共四根SMA线40,其中这些SMA线40处于没有一根SMA线40是共线的布置中,并且其中SMA线40能够被选择性地驱动以将可移动部件10相对于支撑结构移动到所述移动范围内的任何位置,而无需向可移动部件20施加围绕垂直于移动平面的主轴线的任何净扭矩。An actuator assembly 1 that can affect OIS is described in WO 2013 175197A1 or WO 2017 072525A1, which are incorporated herein by reference. The present invention can be applied to these actuator assemblies 1. For example, embodiments of such an actuator assembly 1 are shown in Figures 11 and 12. In this regard, the movable part 20 can move in a moving plane within a moving range. The actuator assembly 1 may include a total of four SMA wires 40 connected between the movable part 20 and the support structure 10, wherein these SMA wires 40 are in an arrangement in which none of the SMA wires 40 are colinear, and wherein the SMA wires 40 can be selectively driven to move the movable part 10 relative to the support structure to any position within the moving range without applying any net torque to the movable part 20 about a main axis perpendicular to the moving plane.
例如,SMA线40中的两个可以连接在可移动部件20和支撑结构10之间,以各自向可移动部件20施加在围绕主轴线的第一指向上围绕主轴线在所述移动平面中的扭矩,并且另外两根SMA线40连接在可移动部件20和支撑结构10之间,以各自向可移动部件施加在围绕主轴线的相反的第二指向上围绕主轴线在所述移动平面中的扭矩。四根SMA线40可以围绕主轴线在不同的角度位置布置成环,围绕主轴线的连续SMA线被连接以向可移动元件施加围绕主轴线在交替的指向上的力。For example, two of the SMA wires 40 may be connected between the movable component 20 and the support structure 10 to each apply a torque to the movable component 20 in a first orientation about the main axis in the plane of movement about the main axis, and another two SMA wires 40 may be connected between the movable component 20 and the support structure 10 to each apply a torque to the movable component in an opposite second orientation about the main axis in the plane of movement about the main axis. Four SMA wires 40 may be arranged in a loop at different angular positions about the main axis, with continuous SMA wires about the main axis being connected to apply forces to the movable element in alternating orientations about the main axis.
可替代地,可移动部件10可以包括具有透镜组件和图像传感器两者的相机模块。在SMA线收缩时倾斜相机模块是实现OIS的另一种方式。Alternatively, the movable part 10 may include a camera module having both a lens assembly and an image sensor. Tilting the camera module when the SMA wire is contracted is another way to implement OIS.
图6-图11更详细地描述了致动器组件1的具体实施例,其中致动器组件实现可移动部件20沿移动轴线的移动。这些具体实施例可用于例如在相机装置中实现AF或OIS。6-11 describe in more detail specific embodiments of the actuator assembly 1, wherein the actuator assembly implements the movement of the movable part 20 along the movement axis. These specific embodiments can be used, for example, to implement AF or OIS in a camera device.
图6A、图6B和图6C分别是根据本发明实施例的致动器组件1的平面图和侧视截面图。6A , 6B and 6C are respectively a plan view and a side cross-sectional view of the actuator assembly 1 according to an embodiment of the present invention.
致动器组件1包括支撑结构10,该支撑结构10上安装有图像传感器(未示出)。如下面所描述的,支撑结构10用作各种元件的安装平台,并且还限定了在装配期间需要的任何参考特征。The actuator assembly 1 comprises a support structure 10 on which an image sensor (not shown) is mounted. As described below, the support structure 10 serves as a mounting platform for various components and also defines any reference features required during assembly.
致动器组件1还包括透镜元件,该透镜元件在该示例中是可移动部件的一部分。透镜元件包括保持透镜(未示出)的透镜托架20,尽管可替代地,可以存在多个透镜。透镜可以由玻璃或塑料制成。透镜元件具有与图像传感器3对准的光学轴线O,并且被布置成将图像聚焦在图像传感器上。The actuator assembly 1 also includes a lens element, which in this example is part of the movable part. The lens element includes a lens holder 20 that holds a lens (not shown), although alternatively, there may be multiple lenses. The lens may be made of glass or plastic. The lens element has an optical axis O aligned with the image sensor 3 and is arranged to focus an image on the image sensor.
可替代地,尽管未示出,图像传感器可以是可移动部件的一部分,并且透镜元件可以相对于支撑结构固定。Alternatively, although not shown, the image sensor may be part of the movable component and the lens element may be fixed relative to the support structure.
尽管在该示例中致动器组件1是相机装置,但这通常不是必需的。在一些示例中,致动器组件1可以是光学设备,其中可移动部件是透镜元件,但是没有图像传感器。在其它示例中,致动组件1可以是这样类型的装置,该装置不是光学设备,并且在该装置中可移动元件不是透镜元件并且没有图像传感器。在一些示例中,致动器组件1可以是光学设备,其中可移动部件是支撑图像传感器的托架,其中透镜托架可以由另一致动器驱动,或者根本不可移动。Although in this example the actuator assembly 1 is a camera device, this is generally not required. In some examples, the actuator assembly 1 may be an optical device in which the movable component is a lens element, but there is no image sensor. In other examples, the actuator assembly 1 may be a device of a type that is not an optical device and in which the movable element is not a lens element and there is no image sensor. In some examples, the actuator assembly 1 may be an optical device in which the movable component is a bracket supporting an image sensor, in which the lens bracket may be driven by another actuator, or may not be movable at all.
致动器组件1还包括沿多个引导件52的滚珠支承件50形式的支承装置50,该引导件52将透镜托架20支撑在支撑结构10上。滚珠支承件50和引导件被构造成引导透镜托架20沿光轴O(因此,在该示例中该光轴O是移动方向)相对于支撑结构10的移动,同时约束透镜托架20在其它自由度上相对于支撑结构10的移动。The actuator assembly 1 also includes a support device 50 in the form of ball bearings 50 along a plurality of guides 52 that support the lens holder 20 on the support structure 10. The ball bearings 50 and guides are configured to guide movement of the lens holder 20 relative to the support structure 10 along the optical axis O (which is therefore the direction of movement in this example) while constraining movement of the lens holder 20 relative to the support structure 10 in other degrees of freedom.
致动器组件1还包括一对SMA线40a、40b,该对SMA线40a、40b被布置成彼此成角度,并且与移动方向成角度。在操作中,SMA线40a、40b驱动透镜托架20沿着光轴O移动。SMA线40a、40b中的每一个在第一端通过固定在支撑结构侧壁上的静态压接部分42a连接到支撑结构10。静态压接部分42a压接相应的SMA线40a、40b,以通过相应的电连接器44a提供机械连接和电连接。SMA线40a、40b还连接到设置在挠性件30上的移动压接部分42b,挠性件30在连接凸片34处附接到透镜托架20。压接部分42b通常通过电路径43连接到电连接器44b。在所示的实施例中,电路径43被示为直连接器。在一些其他实施例中,电路径43可以由类似于图3B所示的压接板43的迷宫路径或弹簧代替。结果,SMA线40中的每根通过挠性件30在一端连接到支撑结构10,在另一端连接到透镜托架20。The actuator assembly 1 also includes a pair of SMA wires 40a, 40b, which are arranged at an angle to each other and to the direction of movement. In operation, the SMA wires 40a, 40b drive the lens holder 20 to move along the optical axis O. Each of the SMA wires 40a, 40b is connected to the support structure 10 at a first end through a static crimping portion 42a fixed to the side wall of the support structure. The static crimping portion 42a crimps the corresponding SMA wire 40a, 40b to provide a mechanical connection and an electrical connection through a corresponding electrical connector 44a. The SMA wires 40a, 40b are also connected to a moving crimping portion 42b provided on the flexure 30, which is attached to the lens holder 20 at the connecting tab 34. The crimping portion 42b is typically connected to an electrical connector 44b via an electrical path 43. In the illustrated embodiment, the electrical path 43 is shown as a straight connector. In some other embodiments, the electrical path 43 may be replaced by a labyrinth path or spring similar to the crimp plate 43 shown in Figure 3B. As a result, each of the SMA wires 40 is connected to the support structure 10 at one end and to the lens holder 20 at the other end via the flexure 30.
在收缩时,SMA线40a在向上的方向上驱动透镜托架,而SMA线40b在相反的方向上驱动透镜托架。SMA线40的致动力也将透镜托架20拉向相应的滚珠支承件组50,并因此压在相应的滚珠支承件组50上。有利地,这种布置允许来自SMA线40的致动力直接作用于滚珠支承件50,从而减少透镜托架20和支撑结构10之间的噪声量。When retracted, the SMA wire 40a drives the lens holder in an upward direction, while the SMA wire 40b drives the lens holder in the opposite direction. The actuation force of the SMA wire 40 also pulls the lens holder 20 toward the corresponding ball bearing assembly 50, and thus presses on the corresponding ball bearing assembly 50. Advantageously, this arrangement allows the actuation force from the SMA wire 40 to act directly on the ball bearing 50, thereby reducing the amount of noise between the lens holder 20 and the support structure 10.
挠性件30具有两个相对的端部,其中一个端部附接到SMA线40,而另一个端部形成用于接合支撑结构10的相应表面的接触部分32。更具体地说,挠性件30使接触部分32偏置抵靠支撑结构10,从而产生摩擦力,该摩擦力约束透镜托架20的自由移动。The flexure 30 has two opposite ends, one of which is attached to the SMA wire 40 and the other of which forms a contact portion 32 for engaging a corresponding surface of the support structure 10. More specifically, the flexure 30 biases the contact portion 32 against the support structure 10, thereby generating a friction force that constrains the free movement of the lens holder 20.
与图5D的实施例相比,如图6B所示的实施例的挠性件30包括两个串联连接的枢轴。这种布置允许接触部分32沿与线收缩相同的方向缩回。Compared to the embodiment of Fig. 5D, the flexure 30 of the embodiment shown in Fig. 6B includes two pivots connected in series. This arrangement allows the contact portion 32 to retract in the same direction as the wire retraction.
挠性件30通常包括嵌套在一组外挠性臂35内的一组内挠性臂33。外挠性臂35具有用于连接到SMA线40的静态压接件42b。外挠性臂35包括位于第一端的突起31,该突起31与透镜托架20的相应突起22对准。即,突起31比压接件42b更朝向外挠性臂35的第一端定位。The flexure 30 generally includes a set of inner flexure arms 33 nested within a set of outer flexure arms 35. The outer flexure arms 35 have static crimps 42b for connecting to the SMA wire 40. The outer flexure arms 35 include protrusions 31 at a first end that align with corresponding protrusions 22 of the lens holder 20. That is, the protrusions 31 are positioned further toward the first end of the outer flexure arms 35 than the crimps 42b.
外挠性臂35朝向外挠性臂的第二端在沿着内挠性臂33的长度的位置处通过连杆36枢转地连接到相应的内挠性臂33。因此,外挠性臂35相对于内挠性臂33可绕连杆36枢转。The outer flexible arm 35 is pivotally connected to the corresponding inner flexible arm 33 by a link 36 at a position along the length of the inner flexible arm 33 toward the second end of the outer flexible arm. Therefore, the outer flexible arm 35 is pivotable about the link 36 relative to the inner flexible arm 33.
内挠性臂33通过另一连杆38在第一端连接到连接凸片34的可移动端。因此,内挠性臂33相对于透镜托架可绕连杆38枢转。内挠性臂33在它们的第二端连结以形成接触部分32,该接触部分32与外挠性臂35的第一端相对。因此,连杆36和连杆38通过枢轴沿着挠性件30串联连接在外挠性臂35的第一端处的突起31和朝向内挠性臂33的第二端的接触部分32之间。The inner flexible arm 33 is connected at a first end to the movable end of the connecting protrusion 34 by another link 38. Therefore, the inner flexible arm 33 is pivotable about the link 38 relative to the lens holder. The inner flexible arms 33 are connected at their second ends to form a contact portion 32, which is opposite to the first end of the outer flexible arm 35. Therefore, the link 36 and the link 38 are connected in series along the flexure 30 by the pivot axis between the protrusion 31 at the first end of the outer flexible arm 35 and the contact portion 32 toward the second end of the inner flexible arm 33.
在通电时,SMA线40收缩并将外挠性臂35的突起31拉向透镜托架20上的相应突起32,直到它们彼此接合。由此,在突起31、32之间形成枢轴,从而允许致动力通过外挠性臂35传递,以在连杆36处压缩内挠性臂33,内挠性臂33通过连杆38处的枢转运动,导致接触部分32缩回并从支撑结构10的表面脱离。When energized, the SMA wire 40 contracts and pulls the protrusion 31 of the outer flexible arm 35 toward the corresponding protrusion 32 on the lens holder 20 until they engage each other. Thus, a pivot is formed between the protrusions 31, 32, thereby allowing the actuation force to be transmitted through the outer flexible arm 35 to compress the inner flexible arm 33 at the link 36, and the inner flexible arm 33, through the pivoting movement at the link 38, causes the contact portion 32 to retract and disengage from the surface of the support structure 10.
在图6A至图6C的图示实施例中,其中致动力施加在比载荷(例如接触点32)更靠近支点(例如连杆36)的距离处,接触点32被布置成位移大于SMA线40中给定收缩的量。有利地,这种布置允许接触点32迅速缩回。可替代地,可以在与载荷相同的距离处施加力,或者在比载荷离支点更远的距离处施加力,以便通过更硬的偏置元件来克服偏置力。更具体地,挠性件30是力修正机构,其中输入力与输出力的比率可以适合于不同的应用。In the illustrated embodiment of FIGS. 6A-6C , where the actuation force is applied at a distance closer to the fulcrum (e.g., link 36) than the load (e.g., contact point 32), the contact point 32 is arranged to displace an amount greater than a given contraction in the SMA wire 40. Advantageously, this arrangement allows the contact point 32 to retract quickly. Alternatively, the force may be applied at the same distance as the load, or at a distance further from the fulcrum than the load, so that the biasing force is overcome by a stiffer biasing element. More specifically, the flexure 30 is a force modification mechanism in which the ratio of input force to output force can be adapted for different applications.
此外,致动力包括沿移动方向的力分量,用于驱动透镜托架20的移动。In addition, the actuating force includes a force component along the moving direction, which is used to drive the movement of the lens holder 20.
透镜托架20的表面形成端部止动件70,该端部止动件70限定了接触部分32中的移动极限。如图6A所示,当SMA线40通电时,致动力导致接触部分32后退,直到内挠性臂33的端部(例如,邻近连杆38的部分)邻接或接合端部止动件70。SMA线40的进一步收缩不会导致接触部分32的进一步缩回。相反,致动力将仅用于驱动透镜托架20的移动,从而允许更精确的位置控制。The surface of the lens holder 20 forms an end stop 70 that defines the limit of movement in the contact portion 32. As shown in FIG6A , when the SMA wire 40 is energized, the actuation force causes the contact portion 32 to retract until the end of the inner flexible arm 33 (e.g., the portion adjacent the link 38) abuts or engages the end stop 70. Further contraction of the SMA wire 40 will not result in further retraction of the contact portion 32. Instead, the actuation force will only be used to drive movement of the lens holder 20, thereby allowing for more precise position control.
通常,摩擦力足以约束透镜托架20的自由移动,但当SMA线40通电时,摩擦力不足以阻止透镜托架20和支撑结构10之间的相对移动。在一些实施例中,支撑结构10的接触部分32或突起22中的一个或两个可以设置有材料或涂层。Typically, the friction force is sufficient to constrain the free movement of the lens holder 20, but the friction force is insufficient to prevent relative movement between the lens holder 20 and the support structure 10 when the SMA wire 40 is energized. In some embodiments, one or both of the contact portion 32 or the protrusion 22 of the support structure 10 can be provided with a material or coating.
图7A和图7B分别是根据本发明实施例的致动器组件1的截断平面图和侧视截面图。7A and 7B are respectively a truncated plan view and a side cross-sectional view of an actuator assembly 1 according to an embodiment of the present invention.
致动器组件1在结构和功能上类似于图6A至图6C的致动器组件1。不再描述相似的特征。在该实施例中,挠性件30是不同设计的平面挠性件。The actuator assembly 1 is similar in structure and function to the actuator assembly 1 of Figures 6A to 6C. Similar features are not described again. In this embodiment, the flexure 30 is a planar flexure of a different design.
挠性件30包括两个相对的端部,其中一个端部附接到SMA线40,而另一个端部形成用于接合支撑结构10的相应表面的接触部分32。在该实施例中,挠性件30的接触部分32向内成曲面或弯曲,这对应于支撑结构10上的曲面或锥形表面轮廓。更具体地说,挠性件30使接触部分32偏置抵靠支撑结构10,从而产生摩擦力,该摩擦力约束透镜托架20的自由移动。因此,偏置力与支撑结构10的四边形侧成角度。The flexure 30 includes two opposing ends, one of which is attached to the SMA wire 40 and the other of which forms a contact portion 32 for engaging a corresponding surface of the support structure 10. In this embodiment, the contact portion 32 of the flexure 30 is curved or bent inwardly, which corresponds to the curved or tapered surface profile on the support structure 10. More specifically, the flexure 30 biases the contact portion 32 against the support structure 10, thereby generating a friction force that constrains the free movement of the lens holder 20. Therefore, the biasing force is angled with the quadrilateral side of the support structure 10.
类似于图6A至图6C的实施例,如图7B所示的该实施例的挠性件30包括两个串联连接的枢轴。这种布置允许接触部分32沿与线收缩相同的方向缩回。6A to 6C, the flexure 30 of this embodiment shown in Fig. 7B includes two pivots connected in series. This arrangement allows the contact portion 32 to retract in the same direction as the wire retraction.
挠性件30通常由嵌套在一组外挠性臂35内的一组内挠性臂33形成。如图7A所示,挠性件30具有平面轮廓。外挠性臂35具有用于连接到SMA线40的压接件42b。外挠性臂35包括位于第一端的突起31,该突起31与透镜托架20的相应突起22接合。因此,外挠性臂可绕透镜托架20的突起22枢转。即,突起31比压接件42b更朝向外挠性臂35的第一端定位。The flexure 30 is generally formed by a set of inner flexible arms 33 nested within a set of outer flexible arms 35. As shown in FIG. 7A , the flexure 30 has a planar profile. The outer flexible arm 35 has a crimp 42 b for connecting to the SMA wire 40. The outer flexible arm 35 includes a protrusion 31 at a first end that engages with a corresponding protrusion 22 of the lens holder 20. Thus, the outer flexible arm can pivot about the protrusion 22 of the lens holder 20. That is, the protrusion 31 is positioned more toward the first end of the outer flexible arm 35 than the crimp 42 b.
外挠性臂35朝向外挠性臂的第二端在沿着内挠性臂33的长度的位置处通过连杆36枢转地连接到相应的内挠性臂33。因此,外挠性臂35相对于内挠性臂33可绕连杆36枢转。The outer flexible arm 35 is pivotally connected to the corresponding inner flexible arm 33 by a link 36 at a position along the length of the inner flexible arm 33 toward the second end of the outer flexible arm. Therefore, the outer flexible arm 35 is pivotable about the link 36 relative to the inner flexible arm 33.
内挠性臂33通过另一连杆38在第一端连接到连接凸片34的可移动端。因此,内挠性臂33相对于透镜托架可绕连杆38枢转。内挠性臂33在它们的第二端连结以形成接触部分32,该接触部分32与外挠性臂35的第一端相对。因此,连杆36和连杆38是沿着挠性件30串联连接的枢轴,位于外挠性臂35的第一端的突起31和朝向内挠性臂33的第二端的接触部分32之间。The inner flexible arm 33 is connected at a first end to the movable end of the connecting lug 34 by another link 38. Therefore, the inner flexible arm 33 is pivotable about the link 38 relative to the lens holder. The inner flexible arms 33 are connected at their second ends to form a contact portion 32, which is opposite to the first end of the outer flexible arm 35. Therefore, the link 36 and the link 38 are pivots connected in series along the flexible member 30, located between the protrusion 31 at the first end of the outer flexible arm 35 and the contact portion 32 toward the second end of the inner flexible arm 33.
一旦通电,SMA线40收缩,并且通过在突起31、突起32之间形成的枢轴,致动力通过外挠性臂35传递,以在连杆36处压缩内挠性臂33,内挠性臂33通过连杆38处的枢轴运动,导致接触部分32缩回并从支撑结构10的表面脱离。Once energized, the SMA wire 40 contracts and the actuation force is transmitted through the outer flexible arm 35 via the pivot formed between the protrusions 31 and 32 to compress the inner flexible arm 33 at the link 36, and the inner flexible arm 33 moves via the pivot at the link 38, causing the contact portion 32 to retract and disengage from the surface of the support structure 10.
在图7A和图7B的图示实施例中,其中致动力施加在比载荷(例如接触点32)更靠近支点(例如连杆36)的距离处,接触点32被布置成位移大于SMA线40中给定收缩的量。有利地,这种布置允许接触点32迅速缩回。可替代地,可以在与载荷相同的距离处施加力,或者在比载荷离支点更远的距离处施加力,以便通过更硬的偏置元件来克服偏置力。更具体地,挠性件30是力修正机构,其中输入力与输出力的比率可以适合于不同的应用。In the illustrated embodiment of FIGS. 7A and 7B , where the actuation force is applied at a distance closer to the fulcrum (e.g., link 36) than the load (e.g., contact point 32), the contact point 32 is arranged to displace an amount greater than a given contraction in the SMA wire 40. Advantageously, this arrangement allows the contact point 32 to retract quickly. Alternatively, the force may be applied at the same distance as the load, or at a distance further from the fulcrum than the load, so that the biasing force is overcome by a stiffer biasing element. More specifically, the flexure 30 is a force modification mechanism in which the ratio of input force to output force can be adapted for different applications.
此外,致动力包括沿移动方向的力分量,用于驱动透镜托架20的移动。In addition, the actuating force includes a force component along the moving direction, which is used to drive the movement of the lens holder 20.
透镜托架20的表面形成端部止动件70,该端部止动件70限定了接触部分32中的移动范围。如图7A所示,当SMA线40通电时,致动力导致接触部分32后退,直到内挠性臂33的端部(例如,邻近连杆38的部分)邻接或接合端部止动件70。SMA线40中的进一步收缩不会导致接触部分32中的进一步缩回。相反,致动力仅用于驱动透镜托架20的移动,从而允许更精确的位置控制。The surface of the lens holder 20 forms an end stop 70 that limits the range of movement in the contact portion 32. As shown in FIG. 7A , when the SMA wire 40 is energized, the actuation force causes the contact portion 32 to retract until the end of the inner flexible arm 33 (e.g., the portion adjacent the link 38) abuts or engages the end stop 70. Further contraction in the SMA wire 40 does not result in further retraction in the contact portion 32. Instead, the actuation force is used only to drive movement of the lens holder 20, thereby allowing for more precise position control.
图8A是根据本发明的另一实施例的致动器组件1的截断平面图。类似于图6A至图6C的实施例,致动器组件1包括可移动部件20,该可移动部件20支撑在滚珠支承件上并且可沿着光轴O移动。为了简洁起见,不再显示相似的特征。Fig. 8A is a truncated plan view of an actuator assembly 1 according to another embodiment of the present invention. Similar to the embodiment of Figs. 6A to 6C, the actuator assembly 1 comprises a movable part 20 supported on a ball bearing and movable along an optical axis O. For the sake of brevity, similar features are not shown again.
如图8A所示,致动器组件1包括一对相对的SMA线40,每根线40的一端通过静态压接件42a附接到支撑结构10,另一端通过移动压接件42b附接到可移动部件20。更具体地,移动压接件42b通过柔性元件(例如平面压接板)连接到可移动部件20,以便允许移动压接件42b和可移动部件20之间的一定程度的相对移动。SMA线40与移动方向成角度,使得在收缩时,SMA线40施加用于在相反的移动方向上移动移动部件20的相应第一力分量,以驱动沿着光轴O的移动,并且施加用于在横向于光轴O的相反方向上的相应第二力分量(如图8A中的箭头所示)。As shown in FIG8A , the actuator assembly 1 includes a pair of opposing SMA wires 40, each of which is attached to the support structure 10 at one end via a static crimp 42a and to the movable part 20 at the other end via a moving crimp 42b. More specifically, the moving crimp 42b is connected to the movable part 20 via a flexible element (e.g., a planar crimp plate) so as to allow a certain degree of relative movement between the moving crimp 42b and the movable part 20. The SMA wires 40 are angled with respect to the direction of movement, so that when contracted, the SMA wires 40 apply a corresponding first force component for moving the movable part 20 in the opposite direction of movement to drive movement along the optical axis O, and apply a corresponding second force component for moving in the opposite direction transverse to the optical axis O (as shown by the arrows in FIG8A ).
致动器组件1包括屈曲挠性件30,屈曲挠性件30的两端固定地附接到移动压接件42b。本文的术语屈曲挠性件30通常指具有至少一个扭结36的挠性构件,该至少一个扭结36紧挨多个挠性臂。当受到压缩力时,扭结36的曲率可以增加,导致两个屈曲挠性件30的两端朝向彼此移动。挠性臂在压缩下可能会变硬,或者可能会弯曲。The actuator assembly 1 includes a flexure 30, the two ends of which are fixedly attached to the moving crimp 42b. The term flexure 30 herein generally refers to a flexible member having at least one kink 36 adjacent to a plurality of flexible arms. When subjected to a compressive force, the curvature of the kink 36 may increase, causing the two ends of the two flexure 30 to move toward each other. The flexible arms may stiffen under compression, or may bend.
通常,屈曲挠性件30可以用来代替如图5D、图6和图7所示的枢轴布置,作为力修正机构。更具体地说,当SMA线40不通电时,屈曲挠性件30在其接触部分32处偏置抵靠从支撑结构10延伸的相应突起22,并从而产生摩擦力,用于约束可移动部件20的自由移动。Generally, the buckling flexure 30 can be used as a force modification mechanism in place of the pivot arrangement shown in Figures 5D, 6 and 7. More specifically, when the SMA wire 40 is not energized, the buckling flexure 30 is biased at its contact portion 32 against the corresponding protrusion 22 extending from the support structure 10, and thereby generates a friction force for constraining the free movement of the movable member 20.
一旦在SMA线40中收缩,第二力分量压缩屈曲挠性件30,进一步弯曲屈曲挠性件30的扭结36,从而导致接触部分32从它们各自的突起22后退,例如沿着图8A所示的箭头。有利地,由于扭结36中的弯曲,屈曲臂30的使用允许接触部分32从支撑结构的突起22迅速地缩回。Upon contraction in the SMA wire 40, the second force component compresses the buckling flexure 30, further bending the kink 36 of the buckling flexure 30, thereby causing the contact portions 32 to retreat from their respective protrusions 22, such as along the arrows shown in Figure 8A. Advantageously, the use of the buckling arms 30 allows the contact portions 32 to be quickly retracted from the protrusions 22 of the support structure due to the bend in the kink 36.
突起22还起到端部止动件的作用,其限定了接触部分32中的移动极限。如图8A所示,当SMA线40通电时,致动力导致接触部分32后退,直到移动压接42b邻接或接合突起22。SMA线40中的进一步收缩不会导致接触部分32中的进一步缩回。相反,致动力将仅用于驱动透镜托架20的移动,从而允许更精确的位置控制。The protrusion 22 also acts as an end stop that defines the limit of movement in the contact portion 32. As shown in FIG8A , when the SMA wire 40 is energized, the actuation force causes the contact portion 32 to retreat until the moving crimp 42 b abuts or engages the protrusion 22. Further contraction in the SMA wire 40 will not result in further retraction in the contact portion 32. Instead, the actuation force will only be used to drive movement of the lens holder 20, allowing for more precise position control.
通常,摩擦力足以约束透镜托架20的自由移动,但当SMA线40通电时,摩擦力不足以阻止透镜托架20和支撑结构10之间的相对移动。在一些实施例中,支撑结构10的接触部分32或突起22中的一个或两个可以设置有所述的材料或涂层。Typically, the friction force is sufficient to constrain the free movement of the lens holder 20, but when the SMA wire 40 is energized, the friction force is insufficient to prevent relative movement between the lens holder 20 and the support structure 10. In some embodiments, one or both of the contact portion 32 or the protrusion 22 of the support structure 10 can be provided with the material or coating.
在一些其他实施例中,屈曲挠性件30可以在第一构造(例如,当接触部分32与突起22接合时)和第二构造(例如,当接触部分32从突起22脱离时)之间切换。更具体地,屈曲挠性件30可以仅在第一构造和第二构造下是稳定的。因此,在给SMA线40通电时,屈曲挠性件30可以迅速地朝向第二构造切换。In some other embodiments, the flexure 30 can switch between a first configuration (e.g., when the contact portion 32 is engaged with the protrusion 22) and a second configuration (e.g., when the contact portion 32 is disengaged from the protrusion 22). More specifically, the flexure 30 can be stable only in the first configuration and the second configuration. Therefore, when the SMA wire 40 is energized, the flexure 30 can quickly switch toward the second configuration.
图8B是根据本发明另一实施例的致动器组件1的截断平面图。类似于图6A至图6C的实施例,致动器组件1包括可移动部件20,该可移动部件20支撑在滚珠支承件上并且可沿着光轴O移动。为了简洁起见,不再显示相似的特征。Fig. 8B is a truncated plan view of an actuator assembly 1 according to another embodiment of the present invention. Similar to the embodiment of Figs. 6A to 6C, the actuator assembly 1 comprises a movable part 20 supported on a ball bearing and movable along an optical axis O. For the sake of brevity, similar features are not shown again.
如图8B所示,致动器组件1包括一对相对的SMA线40,每根线40的一端通过静态压接件42a附接到支撑结构10,并且另一端通过移动压接件42b附接到可移动部件20。更具体地,移动压接件42b通过柔性元件(例如平面压接板)连接到可移动部件20,以便允许移动压接件42b和可移动部件20之间的一定程度的相对移动。SMA线40与移动方向成角度,使得在收缩时,SMA线40施加用于在相反的移动方向上移动移动部件20的相应第一力分量,以驱动沿着光轴O的移动,并且施加用于在横向于光轴O的相反方向上的相应第二力分量(如图8B中的箭头所示)。As shown in FIG8B , the actuator assembly 1 includes a pair of opposing SMA wires 40, one end of each wire 40 being attached to the support structure 10 via a static crimp 42a, and the other end being attached to the movable part 20 via a moving crimp 42b. More specifically, the moving crimp 42b is connected to the movable part 20 via a flexible element (e.g., a planar crimp plate) so as to allow a certain degree of relative movement between the moving crimp 42b and the movable part 20. The SMA wires 40 are angled with respect to the direction of movement, so that when contracted, the SMA wires 40 apply a corresponding first force component for moving the movable part 20 in the opposite direction of movement to drive movement along the optical axis O, and apply a corresponding second force component for moving in the opposite direction transverse to the optical axis O (as shown by the arrows in FIG8B ).
致动器组件1包括屈曲挠性件30,屈曲挠性件30的两端固定地附接到移动压接件42b。屈曲挠性件30包括邻接多个挠性臂的多个扭结36。当受到压缩力时,扭结36的曲率可以增加,导致两个屈曲挠性件30的两端朝向彼此移动。挠性臂在压缩下可能会变硬,或者可能会弯曲。The actuator assembly 1 includes a flexure 30, the two ends of which are fixedly attached to the moving crimp 42b. The flexure 30 includes a plurality of kinks 36 adjoining a plurality of flexible arms. When subjected to a compressive force, the curvature of the kinks 36 may increase, causing the two ends of the two flexure 30 to move toward each other. The flexible arms may become stiff under compression, or may bend.
类似于图8A的实施例,屈曲挠性件30可以用作力修正机构。更具体地,当SMA线40未通电时,屈曲挠性件30在其接触部分32处(例如,在两个扭结36之间)偏置抵靠从支撑结构10延伸的相应突起22,并从而产生摩擦力,用于约束可移动部件20的自由移动。8A , the buckling flexure 30 can be used as a force correction mechanism. More specifically, when the SMA wire 40 is not energized, the buckling flexure 30 is biased against the corresponding protrusion 22 extending from the support structure 10 at its contact portion 32 (e.g., between the two kinks 36), and thereby generates a friction force for constraining the free movement of the movable component 20.
在SMA线40收缩时,第二力分量压缩屈曲挠性件30,进一步弯曲屈曲挠性件30的扭结36,从而导致接触部分32朝向可移动部件20移动并从突起22后退,例如沿着图8B所示的箭头。有利地,由于扭结36中的弯曲,屈曲臂30的使用允许接触部分32从支撑结构的突起22迅速地缩回。As the SMA wire 40 contracts, the second force component compresses the buckling flexure 30, further bending the kink 36 of the buckling flexure 30, thereby causing the contact portion 32 to move toward the movable member 20 and back away from the protrusion 22, such as along the arrows shown in FIG8B. Advantageously, the use of the buckling arm 30 allows the contact portion 32 to be quickly retracted from the protrusion 22 of the support structure due to the bend in the kink 36.
移动部分20的表面还起到端部止动件70的作用,其限制接触部分32的移动。如图8B所示,当SMA线40通电时,致动力导致接触部分32后退,直到屈曲挠性件30邻接或接合突起。SMA线40中的进一步收缩不会导致接触部分32中的进一步缩回。相反,致动力仅用于驱动透镜托架20的移动,从而允许更精确的位置控制。The surface of the moving portion 20 also acts as an end stop 70, which limits the movement of the contact portion 32. As shown in FIG8B, when the SMA wire 40 is energized, the actuation force causes the contact portion 32 to retreat until the flexure 30 abuts or engages the protrusion. Further contraction in the SMA wire 40 does not cause further retraction in the contact portion 32. Instead, the actuation force is used only to drive the movement of the lens holder 20, thereby allowing more precise position control.
在一些其他实施例中,屈曲挠性件30可以在第一构造(例如,当接触部分32与突起22接合时)和第二构造(例如,当接触部分32从突起22脱离时)之间切换。更具体地,屈曲挠性件30可以仅在第一构造和第二构造下是稳定的。因此,在给SMA线40通电时,屈曲挠性件30可以迅速地朝向第二构造切换。In some other embodiments, the flexure 30 can switch between a first configuration (e.g., when the contact portion 32 is engaged with the protrusion 22) and a second configuration (e.g., when the contact portion 32 is disengaged from the protrusion 22). More specifically, the flexure 30 can be stable only in the first configuration and the second configuration. Therefore, when the SMA wire 40 is energized, the flexure 30 can quickly switch toward the second configuration.
图9A和图9B分别是根据本发明实施例的致动器组件1的平面图和侧视截面图。9A and 9B are a plan view and a side cross-sectional view, respectively, of an actuator assembly 1 according to an embodiment of the present invention.
SMA致动装置102包括支撑结构10和可移动部件20。支撑结构10和可移动部件20是彼此面对的扁平的平行片。包括至少一个或更多个挠性件30的悬挂系统将可移动部件20支撑在支撑结构10上,并引导可移动部件20相对于支撑结构10沿着Z轴移动,在该示例中Z轴是移动轴O。更具体地,挠性件30将可移动部件20支承在支撑结构上,并因此可以被认为是支承件或唯一的支承件。如下文进一步描述的,悬架系统约束可移动部件20相对于支撑结构10沿着垂直于Z轴的X轴和Y轴的平移移动。The SMA actuator 102 includes a support structure 10 and a movable part 20. The support structure 10 and the movable part 20 are flat parallel sheets facing each other. A suspension system including at least one or more flexures 30 supports the movable part 20 on the support structure 10 and guides the movable part 20 to move relative to the support structure 10 along the Z axis, which in this example is the moving axis O. More specifically, the flexure 30 supports the movable part 20 on the support structure and can therefore be considered as a support or the only support. As further described below, the suspension system constrains the translational movement of the movable part 20 relative to the support structure 10 along the X axis and the Y axis perpendicular to the Z axis.
两根SMA线40如下布置以驱动可移动部件20相对于支撑结构10沿着移动轴的移动。SMA线40各自在一端通过静态压接部分42a连接到支撑结构10,并在另一端通过可移动压接部分42b连接到可移动部件20。静态压接部分42a和可移动压接部分42b压接SMA线40以提供机械连接和电连接。Two SMA wires 40 are arranged as follows to drive the movement of the movable part 20 along the movement axis relative to the support structure 10. The SMA wires 40 are each connected to the support structure 10 at one end through a static crimping portion 42a, and connected to the movable part 20 at the other end through a movable crimping portion 42b. The static crimping portion 42a and the movable crimping portion 42b crimp the SMA wires 40 to provide mechanical and electrical connections.
SMA线40相对于法向于Z轴的平面以第一锐角θ倾斜。第一锐角θ大于0度,使得它沿着Z轴向支撑结构10和可移动部件10施加第一力分量,并从而可以驱动沿着Z轴的移动。然而,当SMA线40收缩以驱动相对移动时,SMA线40成第一锐角θ的倾斜随着SMA线40的旋转而提供增益,从而导致沿着Z轴的相对移动量高于线的长度的变化。The SMA wire 40 is tilted at a first acute angle θ relative to a plane normal to the Z-axis. The first acute angle θ is greater than 0 degrees, so that it applies a first force component to the support structure 10 and the movable member 10 along the Z-axis, and can thereby drive movement along the Z-axis. However, when the SMA wire 40 is contracted to drive relative movement, the tilting of the SMA wire 40 at the first acute angle θ provides a gain as the SMA wire 40 rotates, resulting in a relative movement along the Z-axis that is greater than the change in the length of the wire.
两根SMA线40处于张力下,并且在它们以平行于Z轴的沿相反的方向的相应的第一力分量向可移动部件20施加力的指向上,两根SMA线40是相反的。也就是说,如图9B所示,最上面的SMA线40在其上端连接到可移动部件20,从而在可移动部件20上施加具有沿着Z轴的向下分量的力,并且最下面的SMA线40在其下端连接到可移动部件20,从而在可移动部件20上施加具有沿着Z轴的向上分量的力。因此,SMA线40驱动可移动部件20沿着Z轴在相反方向上的移动。The two SMA wires 40 are under tension, and are opposite in the direction in which they apply forces to the movable part 20 with respective first force components in opposite directions parallel to the Z-axis. That is, as shown in FIG9B , the uppermost SMA wire 40 is connected to the movable part 20 at its upper end, thereby applying a force having a downward component along the Z-axis on the movable part 20, and the lowermost SMA wire 40 is connected to the movable part 20 at its lower end, thereby applying a force having an upward component along the Z-axis on the movable part 20. Therefore, the SMA wires 40 drive the movable part 20 to move in opposite directions along the Z-axis.
如图9A的平面图所示,其中两根SMA线40从平行方向倾斜,投影在法向于作为移动轴的Z轴的平面上。由沿Y轴的SMA线4的段施加的力的分量在相同的方向上,并因此不产生联接。9A, where two SMA wires 40 are tilted from parallel and projected onto a plane normal to the Z axis as the axis of movement, the components of the force applied by the segments of the SMA wire 4 along the Y axis are in the same direction and therefore no coupling occurs.
在一些实施例中,悬挂系统不包括传统支承件。也就是说,挠性件30将可移动部件20支承在支撑结构10上。由于挠性件30在移动方向上最易变形的,所以挠性件30可以被认为是用于引导可移动部件20移动的支承件。In some embodiments, the suspension system does not include a conventional support member. That is, the flexible member 30 supports the movable member 20 on the support structure 10. Since the flexible member 30 is most easily deformed in the moving direction, the flexible member 30 can be considered as a support member for guiding the movable member 20 to move.
在所示的示例中,悬挂系统还包括由两个支承件50组成的支承装置,这两个支承件50以如下布置,以允许可移动部件20相对于支撑结构10沿着Z轴移动。支承件50允许可移动部件20沿Y轴进行一定程度的移动,同时约束或限制不受挠性件30约束的其他不希望的移动。支承件50也可以是平面支承元件。两个支承件50中的每一个都可以沿着Z轴延伸,从而允许可移动部件20相对于支撑板10沿着Z轴的移动。可以有多于两个的支承件,并且优选地,它们在致动器的范围内尽可能地间隔开。In the example shown, the suspension system also includes a support arrangement consisting of two supports 50 arranged as follows to allow the movable part 20 to move along the Z axis relative to the support structure 10. The supports 50 allow a certain degree of movement of the movable part 20 along the Y axis while constraining or limiting other undesirable movements that are not constrained by the flexure 30. The supports 50 can also be planar support elements. Each of the two supports 50 can extend along the Z axis, thereby allowing the movable part 20 to move along the Z axis relative to the support plate 10. There can be more than two supports, and preferably, they are spaced as far apart as possible within the range of the actuator.
图9C和图9D分别是适用于图9A和图9B的实施例的支承件50的放大平面图和放大侧视截面图。支承件50包括在沿Z轴延伸的支承件座圈54中运行的滚珠支承件52,以便允许在移动方向上相对移动。支承件座圈54通过仅在Y方向上可变形的弹性元件56连接到支撑结构10和可移动部件20。更具体地说,弹性元件56是足够薄的平面挠性件(如图13C所示),以沿着Y轴可变形,从而提供与Z轴正交的支承件座圈54的有限移动。因此,挠性件30可以使可移动部件20偏置抵靠支撑结构10的突起22,以产生摩擦力。9C and 9D are enlarged plan views and enlarged side cross-sectional views of the support 50 applicable to the embodiments of FIGS. 9A and 9B , respectively. The support 50 includes a ball bearing 52 running in a support race 54 extending along the Z axis so as to allow relative movement in the moving direction. The support race 54 is connected to the support structure 10 and the movable part 20 by an elastic element 56 that is deformable only in the Y direction. More specifically, the elastic element 56 is a sufficiently thin planar flexure (as shown in FIG. 13C ) to be deformable along the Y axis, thereby providing limited movement of the support race 54 orthogonal to the Z axis. Therefore, the flexure 30 can bias the movable part 20 against the protrusion 22 of the support structure 10 to generate a friction force.
两个支承件50沿X轴间隔开。结果,在支承件50内产生的反作用力一起作用,以约束可移动部件50相对于支撑结构10绕Z轴的旋转移动。The two supports 50 are spaced apart along the X-axis. As a result, the reaction forces generated within the supports 50 act together to restrict the rotational movement of the movable component 50 relative to the support structure 10 about the Z-axis.
如上所述,可移动部件20由一对挠性件30和支承件50支撑。图9A和图9B仅示出了单个挠性件30,其中没有示出以相反方式布置的另一个挠性件30。挠性件30分别通过第一端34和第二端36附接到支撑结构10和可移动部件20。第一端34和第二端38通过挠性臂38连接,并且可以沿着至少Y轴和Z轴相对于彼此移动。更具体地,挠性臂38在Y方向和Z方向上是可变形的,这允许这样的相对移动。As described above, the movable part 20 is supported by a pair of flexures 30 and a support 50. Figures 9A and 9B show only a single flexure 30, wherein another flexure 30 arranged in the opposite manner is not shown. The flexure 30 is attached to the support structure 10 and the movable part 20 by a first end 34 and a second end 36, respectively. The first end 34 and the second end 38 are connected by a flexible arm 38 and can move relative to each other along at least the Y-axis and the Z-axis. More specifically, the flexible arm 38 is deformable in the Y-direction and the Z-direction, which allows such relative movement.
如图9A的平面图所示,挠性臂38沿其长度成曲面。当SMA线40a未通电时,挠性件30被构造成使可移动部件20偏置抵靠支撑结构10。更具体地,可移动部件20与形成在支撑结构侧壁上的突起22处的接触表面接合并偏置抵靠该接触表面。来自挠性件30的偏置力在接触表面处产生摩擦力,当一根或更多根SMA线未通电时,摩擦力足以约束第二部件的移动。As shown in the plan view of FIG9A , the flexible arm 38 is curved along its length. When the SMA wire 40a is not energized, the flexible member 30 is configured to bias the movable component 20 against the support structure 10. More specifically, the movable component 20 engages and is biased against a contact surface at a protrusion 22 formed on the side wall of the support structure. The biasing force from the flexible member 30 generates a friction force at the contact surface, which is sufficient to constrain the movement of the second component when one or more SMA wires are not energized.
当SMA线40通电时,致动力的第二力分量对抗由挠性件30施加的偏置力,导致可移动部件20在横向于光轴的方向上从突起的接触表面后退。因此,在SMA线40通电时,接触表面处的摩擦力减少。这允许致动力的第一力分量驱动可移动部件20沿着Z轴移动,同时被支承件50完全支撑。When the SMA wire 40 is energized, the second force component of the actuation force opposes the biasing force applied by the flexure 30, causing the movable part 20 to retreat from the contact surface of the protrusion in a direction transverse to the optical axis. Therefore, when the SMA wire 40 is energized, the friction at the contact surface is reduced. This allows the first force component of the actuation force to drive the movable part 20 to move along the Z axis while being fully supported by the support 50.
在一些实施例中,SMA线40中的进一步收缩导致可移动部件20从支撑结构10的突起22脱离,从而消除了它们之间的摩擦。In some embodiments, further contraction in the SMA wire 40 causes the movable component 20 to disengage from the protrusion 22 of the support structure 10 , thereby eliminating friction therebetween.
与现有技术实施例100相反,突起22上的接触表面不同于致动器组件1中的支承件50(如果存在的话),但允许可移动部件20在移动范围内被完全支撑和引导。此外,突起22上的接触表面设置在致动器组件1的与支承件50(如果存在)不同的表面/侧上。因此,在接触表面产生的摩擦力与支承表面断开联接。因此,这两种表面可以单独定制,以满足它们的需求。有利地,与现有技术实施例相比,当将第二部件保持在适当位置时,本发明提供了更精确的位置控制。此外,因为接触表面不需要结合支承件,所以可以使用更宽范围的表面轮廓来产生摩擦力。In contrast to the prior art embodiment 100, the contact surface on the protrusion 22 is different from the support 50 (if any) in the actuator assembly 1, but allows the movable component 20 to be fully supported and guided within the range of movement. In addition, the contact surface on the protrusion 22 is arranged on a different surface/side of the actuator assembly 1 than the support 50 (if any). Therefore, the friction force generated at the contact surface is disconnected from the support surface. Therefore, these two surfaces can be customized separately to meet their needs. Advantageously, compared to the prior art embodiment, when the second component is kept in place, the present invention provides more precise position control. In addition, because the contact surface does not need to be combined with a support, a wider range of surface profiles can be used to generate friction.
图10A、图10B和图10C分别是根据本发明实施例的致动器组件200的分解透视图、放大的侧视截面图和侧面示意图。致动器组件200适于在结合到相机装置或其它光学装置中时提供光学图像稳定(OIS)。致动器组件200如下所述布置,但是总体上具有与WO 2017/755788中描述的致动器布置相似的布置和功能,除了下面描述的一些差异。因此,请参考WO2017/755788。Figures 10A, 10B and 10C are respectively an exploded perspective view, an enlarged side cross-sectional view and a side schematic view of an actuator assembly 200 according to an embodiment of the present invention. The actuator assembly 200 is suitable for providing optical image stabilization (OIS) when incorporated into a camera device or other optical device. The actuator assembly 200 is arranged as described below, but generally has an arrangement and function similar to the actuator arrangement described in WO 2017/755788, except for some differences described below. Therefore, please refer to WO2017/755788.
致动器组件200包括支撑板250和可移动部件260,在该示例中,它们分别是第一部件和第二部件。可移动部件260可相对于支撑结构260移动。The actuator assembly 200 comprises a support plate 250 and a movable member 260 , which in this example are a first member and a second member, respectively. The movable member 260 is movable relative to the support structure 260 .
支撑结构250和可移动部件260是由金属制成的一体片材,例如诸如不锈钢的钢。支撑结构250固定在支撑片270。The support structure 250 and the movable part 260 are a unitary sheet of metal, for example steel such as stainless steel. The support structure 250 is fixed to a support sheet 270 .
可移动部件260支撑透镜组件301。支撑片材270固定到基座302,图像传感器303安装在基座302上,然而在其他类型的光学装置中可以省略图像传感器303。通常,可移动部件260可以支撑图像传感器303,并且透镜组件301可以安装在基座302上。支撑结构250和可移动部件260中的每一个都设有与光轴O对准的中央孔,允许光从透镜组件301传递到图像传感器303,以允许图像传感器303捕获由透镜组件301形成的图像。The movable part 260 supports the lens assembly 301. The support sheet 270 is fixed to the base 302, and the image sensor 303 is mounted on the base 302, however, the image sensor 303 may be omitted in other types of optical devices. In general, the movable part 260 may support the image sensor 303, and the lens assembly 301 may be mounted on the base 302. Each of the support structure 250 and the movable part 260 is provided with a central hole aligned with the optical axis O, allowing light to pass from the lens assembly 301 to the image sensor 303 to allow the image sensor 303 to capture an image formed by the lens assembly 301.
致动器组件200包括围绕光轴O间隔开的四个平面支承件210,每个平面支承件具有在图10D中更详细示出的结构。每个平面支承件210包括例如通过粘合剂安装在支撑结构250上的支承元件211和作为可移动部件260的表面的支承表面212。支承元件211支承在支承表面212上。特别地,支承元件211的外表面213接触支承表面212,支承元件211的外表面213和支承表面212彼此共形(conform)。平面支承件210可以如WO 2017/755788中进一步详细描述的那样布置。The actuator assembly 200 includes four planar supports 210 spaced apart around the optical axis O, each planar support having a structure shown in more detail in FIG. 10D . Each planar support 210 includes a support element 211 mounted on a support structure 250, for example, by an adhesive, and a support surface 212 as a surface of a movable part 260. The support element 211 is supported on the support surface 212. In particular, the outer surface 213 of the support element 211 contacts the support surface 212, and the outer surface 213 of the support element 211 and the support surface 212 conform to each other. The planar supports 210 can be arranged as described in further detail in WO 2017/755788.
因此,可移动部件260能够相对于静态板260在平面支承件210的支承表面212上在正交于光轴O的两个维度中的任何方向上移动。Thus, the movable component 260 is able to move relative to the static plate 260 on the support surface 212 of the planar support 210 in any direction in two dimensions orthogonal to the optical axis O.
作为替代,平面支承件210可以颠倒,以包括安装在可移动部件260上的支承元件以及作为支撑结构250的表面的支承表面。在这种情况下,支撑结构250将形成第一部件,并且可移动部件260将形成第二部件。在这个意义上,透镜组件301可以安装在第一部件和第二部件中的任何一个上。Alternatively, the planar support 210 may be reversed to include a support element mounted on the movable part 260 and a support surface that is a surface of the support structure 250. In this case, the support structure 250 would form the first component and the movable part 260 would form the second component. In this sense, the lens assembly 301 may be mounted on either the first component or the second component.
致动器组件200包括连接在支撑结构250和可移动部件260之间的两个挠性件267。在该示例中,挠性件267在其一端处与可移动部件260一体形成,并在其另一端处安装到支撑结构250,然而挠性件267可以与支撑结构250一体形成并安装到可移动部件260,或者可以是安装到支撑结构250和可移动部件260中的每一个的分离的元件。The actuator assembly 200 includes two flexures 267 connected between the support structure 250 and the movable member 260. In this example, the flexures 267 are integrally formed with the movable member 260 at one end thereof and mounted to the support structure 250 at the other end thereof, however the flexures 267 may be integrally formed with the support structure 250 and mounted to the movable member 260, or may be separate elements mounted to each of the support structure 250 and the movable member 260.
挠性件267是弹性的,因此是弹性偏置元件。挠性件267被布置成充当弹性偏置装置,该弹性偏置装置将支撑结构250偏置成与可移动部件260的支承表面212接触。这可以通过构造挠性件267来实现,使得挠性件267从其松弛状态偏转以提供预加载力,该预加载力提供偏置。这在可移动部件260和支承表面212之间产生反作用,并且在可移动部件260和支承表面212之间产生摩擦力。The flexure 267 is resilient and is therefore a resilient biasing element. The flexure 267 is arranged to act as a resilient biasing device that biases the support structure 250 into contact with the bearing surface 212 of the movable part 260. This can be achieved by configuring the flexure 267 so that the flexure 267 deflects from its relaxed state to provide a preload force that provides a bias. This creates a reaction between the movable part 260 and the bearing surface 212, and a friction force is generated between the movable part 260 and the bearing surface 212.
同时,挠性件267允许可移动部件260相对于支撑结构250正交于光轴O移动。At the same time, the flexure 267 allows the movable component 260 to move orthogonally to the optical axis O relative to the support structure 250.
挠性件267由提供期望的机械性能且导电的合适材料制成,使得挠性件267可以电连接与其连接的SMA线280,用于传送提供给SMA线280的驱动电流。通常,该材料是具有相对高屈服(yield)的金属,例如钢,诸如不锈钢。The flexure 267 is made of a suitable material that provides desired mechanical properties and is conductive, so that the flexure 267 can be electrically connected to the SMA wire 280 connected thereto for transmitting the drive current provided to the SMA wire 280. Typically, the material is a metal with a relatively high yield, such as steel, such as stainless steel.
第二致动器组件200还包括连接在支撑结构250和可移动部件260之间的四根SMA线280。具体地,支撑结构250形成有压接件251,并且可移动部件260形成有压接件261,其中压接件251和261压接四根SMA线280,以将它们连接到支撑结构250和移动板260。对比WO2017/755788中公开的垂直于光轴O而延伸的SMA线280的布置,每根SMA致动器线280相对于支承表面212以大于0°的锐角α倾斜,以便在SMA致动器线280收缩时施加力(“上压力”),该力具有法向于支承表面212的分量,以将支撑结构250远离支承表面212偏置,并且该力具有平行于支承表面212的分量。The second actuator assembly 200 also includes four SMA wires 280 connected between the support structure 250 and the movable part 260. Specifically, the support structure 250 is formed with a crimping piece 251, and the movable part 260 is formed with a crimping piece 261, wherein the crimping pieces 251 and 261 crimp the four SMA wires 280 to connect them to the support structure 250 and the movable plate 260. In contrast to the arrangement of the SMA wires 280 extending perpendicular to the optical axis O disclosed in WO2017/755788, each SMA actuator wire 280 is inclined at an acute angle α greater than 0° relative to the support surface 212, so as to apply a force ("upper pressure") when the SMA actuator wire 280 contracts, the force having a component normal to the support surface 212 to bias the support structure 250 away from the support surface 212, and the force having a component parallel to the support surface 212.
SMA线280具有围绕光轴O的布置,该布置与WO 2017/755788中描述的布置相同,使得每根SMA线80在不同方向上施加平行于支承表面212的力的分量,并且SMA线280能够驱动可移动部件260在支承表面212上在两个维度中相对于支撑结构250移动。The SMA wires 280 have an arrangement around the optical axis O, which is the same as the arrangement described in WO 2017/755788, so that each SMA wire 80 applies a component of force parallel to the support surface 212 in different directions, and the SMA wires 280 are capable of driving the movable part 260 to move in two dimensions on the support surface 212 relative to the support structure 250.
由于SMA线280是相对的,因此它们的平均张力和因此上压力可以至少基本上独立于移动来控制。Because the SMA wires 280 are opposed, their average tension, and therefore upper pressure, can be controlled at least substantially independently of the movement.
SMA线280各自连接到控制电路,控制电路可以集成电路芯片中实现。控制电路在使用中向SMA致动器线280施加驱动信号,该驱动信号电阻性地加热SMA线280,使SMA线收缩。在操作中,选择性地驱动SMA线280,以使可移动部件260相对于支撑结构250在正交于光轴O的任何方向上沿着移动轴线移动。这种控制可用于正交于光轴O而相对于图像传感器移动透镜组件,以便提供如WO 2017/755788中所述的OIS。The SMA wires 280 are each connected to a control circuit, which can be implemented in an integrated circuit chip. The control circuit applies a drive signal to the SMA actuator wires 280 in use, which resistively heats the SMA wires 280, causing the SMA wires to contract. In operation, the SMA wires 280 are selectively driven to move the movable component 260 along the movement axis relative to the support structure 250 in any direction orthogonal to the optical axis O. Such control can be used to move the lens assembly relative to the image sensor orthogonal to the optical axis O to provide OIS as described in WO 2017/755788.
在没有施加驱动信号的情况下,SMA线280不收缩,因此挠性件267将可移动部件260偏置到支承表面212上,产生摩擦力,该摩擦力足以将可移动部件260保持在支承表面212上的适当位置。在这种状态下,可移动部件260被第二致动器组件200以零功耗保持在适当的位置。In the absence of an applied drive signal, the SMA wire 280 does not contract, and thus the flexure 267 biases the movable member 260 against the support surface 212, generating a friction force sufficient to hold the movable member 260 in position on the support surface 212. In this state, the movable member 260 is held in position by the second actuator assembly 200 with zero power consumption.
当SMA线280处于未通电状态时,挠性件267可被设计成提供足够的摩擦力以减少运动,从而提高第二致动器组件200的稳定性和/或减少可听见的噪声的风险。这一点很重要,因为在OIS无效的情况下(例如,非常高的亮度级)能够关闭OIS将降低功耗。在这种状态下,在典型的力作用在第二致动器组件200上的情况下,摩擦力应该将可移动部件260保持在支承表面212上的适当位置,该典型的力包括重力(其可以导致依赖于方位(姿态依赖))和惯性冲击力。否则,当第二致动器组件200振动时(例如,由于诸如移动电话(结合有第二致动器组件200)的设备的触觉效果),存在第二致动器组件200不够稳定和/或产生可听见的噪声的风险(例如,在可移动部件260和支承表面212之间或在透镜组件301和相机装置300的外壳之间)。当第二致动器组件200未通电时,SMA线280将松弛并且不施加太大的力。因此,透镜组件301的位置将由以下力的相互作用来确定:When the SMA wire 280 is in an unpowered state, the flexure 267 can be designed to provide sufficient friction to reduce movement, thereby improving the stability of the second actuator assembly 200 and/or reducing the risk of audible noise. This is important because being able to turn off the OIS will reduce power consumption in situations where the OIS is ineffective (e.g., very high light levels). In this state, the friction should maintain the movable part 260 in place on the support surface 212 under typical forces acting on the second actuator assembly 200, including gravity (which can cause orientation dependence (attitude dependence)) and inertial impact forces. Otherwise, when the second actuator assembly 200 vibrates (e.g., due to tactile effects of a device such as a mobile phone (incorporating the second actuator assembly 200)), there is a risk that the second actuator assembly 200 is not stable enough and/or generates audible noise (e.g., between the movable part 260 and the support surface 212 or between the lens assembly 301 and the housing of the camera device 300). When the second actuator assembly 200 is not powered, the SMA wire 280 will relax and not exert much force. Therefore, the position of the lens assembly 301 will be determined by the interaction of the following forces:
·透镜组件301和可移动部件260的组合重量;The combined weight of the lens assembly 301 and the movable member 260;
·挠性件267的刚度(在移动平面内);The stiffness of the flexure 267 (in the plane of movement);
·摩擦力;和Friction; and
·惯性(当加速时)。Inertia (when accelerating).
例如,当相机装置以使光轴O水平被保持时,透镜位置将“下垂(sag)”,直到挠性件267的复原力和摩擦力平衡了重量。For example, when the camera arrangement is held with the optical axis O horizontal, the lens position will "sag" until the restoring force of the flexure 267 and the friction force balance the weight.
通常,摩擦力以及由此来自挠性件267的偏置力的强度需要随着将要安装在可移动部件260上的相机透镜组件的质量增加而增加。Generally, the strength of the friction force, and thus the biasing force from flexure 267, needs to increase as the mass of the camera lens assembly to be mounted on movable member 260 increases.
另外,当相机加速时,硬惯性(hard inertia)可以相对于图像传感器303移动透镜组件301。这两种效果都是不理想的,会导致由于运动的模糊和对OIS的潜在干扰。为了获得最佳的OIS性能,需要刚性的稳定的系统。在SMA线280没有收缩的情况下,可移动部件260和支承表面212之间产生的摩擦力可以小于透镜组件301和可移动部件260的总重量。在这种情况下,当相机装置以使光轴水平被保持并且忽略系统中的其他力时,可移动部件260在重力的作用下保持在支承表面212上的适当位置。Additionally, as the camera accelerates, hard inertia can move the lens assembly 301 relative to the image sensor 303. Both of these effects are undesirable and can result in blur due to motion and potential interference with OIS. In order to achieve optimal OIS performance, a rigid, stable system is required. In the absence of contraction of the SMA wire 280, the friction generated between the movable component 260 and the support surface 212 can be less than the combined weight of the lens assembly 301 and the movable component 260. In this case, when the camera arrangement is held with the optical axis horizontal and other forces in the system are ignored, the movable component 260 is held in place on the support surface 212 by gravity.
如果在驱动SMA线280时遇到了达到这些效果的适当水平的摩擦力,那么这可能会妨碍OIS性能。然而,由于SMA线280的倾斜,由SMA线280施加在支撑结构250上的力具有法向于支承表面212的分量,该分量将支撑结构250远离支承表面212偏置,从而减少支撑结构250和支承表面212之间的摩擦力,以便减少对OIS性能的影响。This may hinder OIS performance if appropriate levels of friction to achieve these effects are encountered when driving the SMA wire 280. However, due to the tilt of the SMA wire 280, the force exerted by the SMA wire 280 on the support structure 250 has a component normal to the support surface 212, which biases the support structure 250 away from the support surface 212, thereby reducing the friction between the support structure 250 and the support surface 212 to reduce the impact on OIS performance.
为了提供适当的减少程度,在(i)当SMA线280驱动可移动部件260的最大程度的相对移动时产生的摩擦力和(ii)在SMA线280没有收缩时产生的摩擦力之间的比率可以小于0.9,更优选小于0.7。发明人已经发现,这可以通过实际的设计参数组来实现,其中尤其包括大于0.5°的角度α。在较小的致动器中,0.5°或更小的角度通常与SMA线280的端部之间非实际的小高度差相关联,而在较大的致动器中,这种小角度通常不提供足够的上压力。可以使用更大的角度,但是通常会导致更高的致动器。To provide an appropriate degree of reduction, the ratio between the friction force generated when (i) the SMA wire 280 drives the maximum relative movement of the movable part 260 and (ii) the friction force generated when the SMA wire 280 is not contracted can be less than 0.9, more preferably less than 0.7. The inventors have found that this can be achieved with a practical set of design parameters, including, among other things, an angle α greater than 0.5°. In smaller actuators, angles of 0.5° or less are often associated with an impractically small height difference between the ends of the SMA wire 280, while in larger actuators, such small angles often do not provide sufficient upward force. Larger angles can be used, but generally result in taller actuators.
为了在线未通电时约束可移动部件20的自由移动,平面支承件210可以设置有表面涂层或材料等。平面支承件210的摩擦系数,例如通过表面粗糙度,在0.05至0.6的范围内,或者在0.1至0.4的范围内,或者优选在0.05至0.4的范围内。这种布置可以允许偏置布置产生足够的摩擦力,以在SMA线280未通电时将第二部件保持在适当位置,但不会对第二部件的移动产生显著阻力。In order to constrain the free movement of the movable component 20 when the wire is not energized, the planar support 210 can be provided with a surface coating or material, etc. The coefficient of friction of the planar support 210, for example through surface roughness, is in the range of 0.05 to 0.6, or in the range of 0.1 to 0.4, or preferably in the range of 0.05 to 0.4. This arrangement can allow the biasing arrangement to generate sufficient friction to hold the second component in place when the SMA wire 280 is not energized, but will not generate significant resistance to the movement of the second component.
图11和图12示出了根据本发明的致动器组件的进一步实施例。这些致动器组件1的机械结构在例如WO 2013 175197A1或WO 2017 072525A1中描述,以上公开通过引用并入本文。Figures 11 and 12 show further embodiments of the actuator assembly according to the present invention. The mechanical structure of these actuator assemblies 1 is described in, for example, WO 2013 175197A1 or WO 2017 072525A1, the above disclosures being incorporated herein by reference.
致动器组件1包括支撑结构10和可移动部件20。可移动部件20可在移动范围内在移动平面内移动。特别地,可移动部件20可以在移动平面中平移和旋转地移动,即在移动平面中具有三个DOF。致动器组件1包括连接在可移动部件20和支撑结构10之间的总共四根SMA线40,其中这些SMA线40处于没有一根SMA线40是共线的布置中,并且其中SMA线40能够被选择性地驱动以将可移动部件10相对于支撑结构移动到所述移动范围内的任何位置,而无需向可移动部件20施加围绕垂直于移动平面的主轴线的任何净扭矩。The actuator assembly 1 comprises a support structure 10 and a movable part 20. The movable part 20 is movable within a range of motion in a plane of motion. In particular, the movable part 20 is movable in translation and rotation in the plane of motion, i.e., has three DOFs in the plane of motion. The actuator assembly 1 comprises a total of four SMA wires 40 connected between the movable part 20 and the support structure 10, wherein the SMA wires 40 are in an arrangement in which none of the SMA wires 40 are co-linear, and wherein the SMA wires 40 can be selectively driven to move the movable part 10 relative to the support structure to any position within the range of motion without applying any net torque to the movable part 20 about a main axis perpendicular to the plane of motion.
例如,SMA线40中的两根可以连接在可移动部件20和支撑结构10之间,以各自向可移动部件20施加在围绕主轴线的第一指向上围绕主轴线在所述移动平面中的扭矩,并且另外两根SMA线40连接在可移动部件20和支撑结构10之间,以各自向可移动部件施加在围绕主轴线的相反的第二指向上围绕主轴线在所述移动平面中的扭矩。四根SMA线40可以围绕主轴线在不同的角度位置布置成环,围绕主轴线的连续SMA线被连接以向可移动元件施加围绕主轴线在交替的指向上的力。For example, two of the SMA wires 40 may be connected between the movable component 20 and the support structure 10 to each apply a torque about the main axis in the plane of movement to the movable component 20 in a first orientation about the main axis, and another two SMA wires 40 may be connected between the movable component 20 and the support structure 10 to each apply a torque about the main axis in the plane of movement to the movable component in an opposite second orientation about the main axis. Four SMA wires 40 may be arranged in a loop at different angular positions about the main axis, with successive SMA wires about the main axis being connected to apply forces about the main axis in alternating orientations to the movable element.
通常,可以提供少于四根SMA线40,例如两根SMA线40用于驱动可移动部件在平面中平移的移动(并且由弹性元件对抗,例如弹簧),或者三根SMA线40用于驱动可移动部件在平面中平移的移动。Typically, fewer than four SMA wires 40 may be provided, such as two SMA wires 40 for driving translational movement of the movable member in a plane (and opposed by a resilient element, such as a spring), or three SMA wires 40 for driving translational movement of the movable member in a plane.
透镜组件可以相对于可移动部件固定,并且图像传感器可以相对于支撑结构固定,如WO 2013 175197A1中所述。可替代地,图像传感器可以相对于可移动部件固定,并且透镜组件可以相对于支撑结构固定,如WO 2017 072525A1中所述。在任一情况下,透镜相对于图像传感器的移动可能影响OIS。The lens assembly may be fixed relative to the movable part and the image sensor may be fixed relative to the support structure as described in WO 2013 175197A1. Alternatively, the image sensor may be fixed relative to the movable part and the lens assembly may be fixed relative to the support structure as described in WO 2017 072525A1. In either case, movement of the lens relative to the image sensor may affect OIS.
图11A示出了致动器组件1的侧视图,并且图11B示出了致动器组件1的平面图。支撑结构10包括偏置装置30。因此,在可移动部件20移动时,偏置装置30与支撑结构10保持静态。换句话说,支撑结构10包括经由偏置装置30的弹性元件联接的两个部分。Fig. 11A shows a side view of the actuator assembly 1, and Fig. 11B shows a plan view of the actuator assembly 1. The support structure 10 comprises a biasing device 30. Thus, when the movable part 20 moves, the biasing device 30 remains static with the support structure 10. In other words, the support structure 10 comprises two parts coupled via an elastic element of the biasing device 30.
特别地,偏置装置30包括四个挠性件形式的四个弹性元件。每个挠性件的第一端相对于支撑结构10固定。SMA线40连接到每个挠性件的第二端。每个挠性件的第二端包括第一摩擦表面10f,该第一摩擦表面10f与可移动部件20上的第二摩擦表面20f接合。挠性件被预加载以使摩擦表面10f、20f一起偏置。挠性件还提供偏置力来推动支承装置50,在所示实施例中,支承装置50是滚珠支承件的形式。In particular, the biasing device 30 includes four elastic elements in the form of four flexible members. The first end of each flexible member is fixed relative to the support structure 10. The SMA wire 40 is connected to the second end of each flexible member. The second end of each flexible member includes a first friction surface 10f, which engages with a second friction surface 20f on the movable part 20. The flexible members are preloaded to bias the friction surfaces 10f, 20f together. The flexible members also provide a biasing force to push the support device 50, which is in the form of a ball bearing in the embodiment shown.
在图11的实施例中,挠性件相对于SMA线成角度。结果,在SMA线40收缩时,挠性件可以变形(例如,在图12B中向上变形)。由此可以减少摩擦表面10f、20f之间的摩擦力F。特别地,在图11的相反的线构造中,SMA线40的相等收缩可以在不移动可移动部件20的情况下减少摩擦力F,而SMA线40的不同收缩可以导致可移动部件20的移动。In the embodiment of FIG. 11 , the flexure is angled relative to the SMA wire. As a result, the flexure can deform (e.g., deform upward in FIG. 12B ) when the SMA wire 40 contracts. The friction force F between the friction surfaces 10 f, 20 f can thereby be reduced. In particular, in the opposite wire configuration of FIG. 11 , equal contraction of the SMA wire 40 can reduce the friction force F without moving the movable part 20, while differential contraction of the SMA wire 40 can result in movement of the movable part 20.
图12A示出了致动器组件1的平面图,并且图12B示出了致动器组件1的侧视图。支撑结构10部分包括偏置装置30,并且可移动部件20部分包括偏置装置30。因此,当可移动部件20移动时,偏置装置30的一部分与支撑结构10保持静态,并且当可移动部件20移动时,偏置装置30的一部分与可移动部件20一起移动。特别地,偏置装置30包括四对挠性件形式的四对弹性元件,每对挠性件包括第一挠性件和第二挠性件。Fig. 12A shows a plan view of the actuator assembly 1, and Fig. 12B shows a side view of the actuator assembly 1. The support structure 10 partly includes the biasing device 30, and the movable part 20 partly includes the biasing device 30. Therefore, when the movable part 20 moves, a part of the biasing device 30 remains static with the support structure 10, and when the movable part 20 moves, a part of the biasing device 30 moves with the movable part 20. In particular, the biasing device 30 includes four pairs of elastic elements in the form of four pairs of flexible members, each pair of flexible members including a first flexible member and a second flexible member.
每个第一挠性件的第一端相对于支撑结构10固定。每个第二挠性件的第一端相对于可移动部件20固定。SMA线40连接在每对挠性件的第二端之间。每个挠性件的第二端部包括第一摩擦表面10f,该第一摩擦表面10f与可移动部件20上的相应第二摩擦表面20f接合。挠性件被预加载以使摩擦表面10f、20f一起偏置。挠性件还可以提供偏置力来加载支承装置50。The first end of each first flexure is fixed relative to the support structure 10. The first end of each second flexure is fixed relative to the movable member 20. The SMA wire 40 is connected between the second ends of each pair of flexures. The second end of each flexure includes a first friction surface 10f, which engages with a corresponding second friction surface 20f on the movable member 20. The flexures are preloaded to bias the friction surfaces 10f, 20f together. The flexures can also provide a biasing force to load the support device 50.
在图12的实施例中,SMA线40平行于挠性件。然而,SMA线从一对挠性件(即,在图12B中间隔在挠性件上方)偏离,即SMA线40不布置在与相应挠性件相同的平面中。结果,在SMA线40收缩时,挠性件可以被偏置(例如,在图12B中向上偏置)。由此可以减少摩擦表面10f、20f之间的摩擦力F。In the embodiment of FIG. 12 , the SMA wire 40 is parallel to the flexure. However, the SMA wire is offset from a pair of flexures (i.e., spaced above the flexures in FIG. 12B ), i.e., the SMA wire 40 is not arranged in the same plane as the corresponding flexures. As a result, when the SMA wire 40 contracts, the flexures may be biased (e.g., biased upward in FIG. 12B ). The friction force F between the friction surfaces 10 f, 20 f may thereby be reduced.
因此,提供了一种致动器组件,该致动器组件包括支撑结构和可移动部件,支撑结构包括第一摩擦表面,可移动部件包括接合第一摩擦表面的第二摩擦表面,该致动器组件还包括一根或更多根SMA线,该一根或更多根SMA线被布置成在收缩时使可移动部件相对于支撑结构移动到移动范围内的任何位置,该致动器组件还包括偏置装置,该偏置装置被布置成以法向力使第一摩擦表面和第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当一根或更多根SMA线没有收缩时,该静摩擦力在移动范围内的任何位置处约束可移动部件相对于支撑结构的移动。可移动部件或支撑结构可以包括偏置装置。这包括可移动部件部分包括偏置装置和支撑结构部分包括偏置装置。因此,偏置装置可以随可移动部件移动或相对于支撑结构保持静态。偏置装置被布置成在移动范围内的任何位置处仅在垂直于移动范围的方向上施加法向力。一根或更多根SMA线被布置成在收缩时减少第一摩擦表面和第二摩擦表面之间的法向力。Therefore, an actuator assembly is provided, the actuator assembly comprising a support structure and a movable part, the support structure comprising a first friction surface, the movable part comprising a second friction surface engaging the first friction surface, the actuator assembly further comprising one or more SMA wires, the one or more SMA wires being arranged to move the movable part relative to the support structure to any position within a range of motion when contracted, the actuator assembly further comprising a biasing device, the biasing device being arranged to bias the first friction surface and the second friction surface against each other with a normal force, thereby generating a static friction force, which constrains the movement of the movable part relative to the support structure at any position within the range of motion when the one or more SMA wires are not contracted. The movable part or the support structure may comprise the biasing device. This includes the movable part partially comprising the biasing device and the support structure partially comprising the biasing device. Therefore, the biasing device may move with the movable part or remain static relative to the support structure. The biasing device is arranged to apply a normal force only in a direction perpendicular to the range of motion at any position within the range of motion. The one or more SMA wires are arranged to reduce a normal force between the first friction surface and the second friction surface when contracted.
致动器组件1可以包括总共四根SMA线40。SMA线40可以被布置成以驱动可移动部件20在移动平面中在三个自由度上的移动。摩擦表面10f、20f可以平行于移动平面。偏置装置包括由可移动部件包括的弹性元件和/或由支撑结构包括的弹性元件。每个弹性元件在一端连接到可移动元件或支撑结构中的一个,并且每个弹性元件在另一端连接到相应的SMA线。相应SMA线的另一端连接到可移动元件或支撑结构的另一个,或连接到另一个弹性元件,该另一个弹性元件连接到可移动元件或支撑结构的另一个。每个弹性元件可以使摩擦表面10f、20f彼此偏置。每个弹性元件可以加载由致动器组件1包括的支承装置。弹性元件可以相对于SMA线成角度。可选地,弹性元件可以平行于SMA线,但是SMA线可以不与弹性元件共平面。The actuator assembly 1 may include a total of four SMA wires 40. The SMA wires 40 may be arranged to drive the movable component 20 to move in three degrees of freedom in the moving plane. The friction surfaces 10f, 20f may be parallel to the moving plane. The biasing device includes an elastic element included by the movable component and/or an elastic element included by the supporting structure. Each elastic element is connected to one of the movable element or the supporting structure at one end, and each elastic element is connected to a corresponding SMA wire at the other end. The other end of the corresponding SMA wire is connected to another of the movable element or the supporting structure, or is connected to another elastic element, which is connected to another of the movable element or the supporting structure. Each elastic element may bias the friction surfaces 10f, 20f against each other. Each elastic element may load the supporting device included by the actuator assembly 1. The elastic element may be angled relative to the SMA wire. Optionally, the elastic element may be parallel to the SMA wire, but the SMA wire may not be coplanar with the elastic element.
术语“形状记忆合金(shape memory alloy,SMA)线”可以指包含SMA的任何元件。SMA线通常可以描述为SMA元件。SMA元件可以具有适合于本文所述目的的任何形状。SMA元件可以是长形的,并且可以具有圆形的横截面或任何其他形状的横截面。横截面可以沿SMA元件的长度变化。SMA元件可以具有相对复杂的形状,诸如螺旋弹簧状。还可能的是,SMA元件的长度(无论如何定义)可以与SMA元件的其他尺寸中的一个或更多个相似。SMA元件可以是片材状的,并且这种片材可以是平面的或非平面的。SMA元件可以是柔韧的(pliant),或者换句话说,SMA元件可以是柔性的。在一些示例中,当在两个部件之间以直线连接时,SMA元件只能施加迫使两个部件在一起的张力。在其他示例中,SMA元件可以围绕部件弯曲,并且当SMA元件在张力下趋于伸直时,SMA元件可以向部件施加力。SMA元件可以是梁状的或刚性的,并且能够对元件施加不同的力(例如非张力)。SMA线元件可以包括也可以不包括非SMA的材料和/或部件。例如,SMA元件可以包括SMA的芯和非SMA材料的涂层。除非上下文另有要求,否则术语“SMA元件”可以指充当单个致动元件的SMA材料的任何构型,例如,该单个致动元件可以被独立地控制以产生作用于元件的力。例如,SMA元件可以包括机械地并联和/或串联布置的SMA材料的两个或更多个部分。在一些布置中,SMA元件可以是较大SMA元件的一部分。这种较大SMA元件可以包括可单独受控制的两个或更多个部分,从而形成两根或更多根SMA线。SMA元件可以包括SMA线、SMA箔、SMA膜或SMA材料的任何其它构型。SMA元件可以使用任何合适的方法制造,例如通过涉及拉伸、轧制、或沉积和/或其他成型工艺的方法。SMA元件可以表现出任何形状记忆效应,例如热形状记忆效应或磁形状记忆效应,并且可以以任何合适的方式控制,例如通过焦耳加热、另一种加热技术或通过施加磁场。The term "shape memory alloy (SMA) wire" may refer to any element containing SMA. SMA wires may generally be described as SMA elements. SMA elements may have any shape suitable for the purposes described herein. SMA elements may be elongated and may have a circular cross section or a cross section of any other shape. The cross section may vary along the length of the SMA element. SMA elements may have relatively complex shapes, such as a spiral spring shape. It is also possible that the length of the SMA element (however defined) may be similar to one or more of the other dimensions of the SMA element. The SMA element may be sheet-like, and such a sheet may be planar or non-planar. The SMA element may be pliant, or in other words, the SMA element may be flexible. In some examples, when connected in a straight line between two components, the SMA element can only apply tension that forces the two components together. In other examples, the SMA element may be bent around the component, and when the SMA element tends to straighten under tension, the SMA element may apply force to the component. The SMA element may be beam-like or rigid, and may be able to apply different forces (e.g., non-tension) to the element. The SMA wire element may or may not include non-SMA materials and/or components. For example, the SMA element may include a core of SMA and a coating of non-SMA material. Unless the context requires otherwise, the term "SMA element" may refer to any configuration of SMA material that acts as a single actuating element, for example, the single actuating element can be independently controlled to generate a force acting on the element. For example, the SMA element may include two or more parts of SMA material that are mechanically arranged in parallel and/or in series. In some arrangements, the SMA element may be a part of a larger SMA element. This larger SMA element may include two or more parts that can be individually controlled, thereby forming two or more SMA wires. The SMA element may include any other configuration of SMA wire, SMA foil, SMA film or SMA material. The SMA element may be manufactured using any suitable method, such as by methods involving stretching, rolling, or deposition and/or other forming processes. The SMA element may exhibit any shape memory effect, such as a thermal shape memory effect or a magnetic shape memory effect, and may be controlled in any suitable manner, such as by Joule heating, another heating technique, or by applying a magnetic field.
总体上,尽管已经针对SMA线描述了本发明,但是也可以使用除SMA线以外的致动器部件。例如,在任何上述实施例中,音圈电机(VCM)、压电元件或其他致动器可以用来代替SMA线。因此,以上对SMA线的任何引用都可以用致动器部件代替,并且对SMA线收缩的任何引用可以用对致动器部件的致动代替。In general, although the present invention has been described with respect to SMA wires, actuator components other than SMA wires may also be used. For example, in any of the above embodiments, a voice coil motor (VCM), a piezoelectric element, or other actuator may be used in place of an SMA wire. Thus, any reference to an SMA wire above may be replaced with an actuator component, and any reference to contraction of an SMA wire may be replaced with actuation of an actuator component.
本发明的各个方面在以下条款中阐述。本申请的权利要求在下文标题“权利要求书”下进一步提供。Various aspects of the invention are set out in the following clauses.The claims of the present application are further provided below under the heading "Claims".
1.一种致动器组件,包括:1. An actuator assembly comprising:
支撑结构,其包括第一摩擦表面;a support structure comprising a first friction surface;
可移动部件,其包括接合所述第一摩擦表面的第二摩擦表面;a movable member including a second friction surface engaging the first friction surface;
一根或更多根SMA线,其被布置成在收缩时将所述可移动部件相对于所述支撑结构移动到移动范围内的任何位置;one or more SMA wires arranged to move the movable member relative to the support structure to any position within a range of motion when retracted;
偏置装置,其被布置成以法向力使所述第一摩擦表面和所述第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当所述一根或更多根SMA线未收缩时,所述静摩擦力在所述移动范围内的任何位置处约束所述可移动部件相对于所述支撑结构的移动,a biasing device arranged to bias the first friction surface and the second friction surface against each other with a normal force so as to generate a static friction force which constrains movement of the movable component relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted,
其中所述可移动部件或所述支撑结构包括所述偏置装置,以便所述偏置装置与所述可移动部件一起移动或相对于所述支撑结构保持静态,并且所述偏置装置被布置成在移动范围内的任何位置处仅在垂直于所述移动范围的方向上施加所述法向力;wherein the movable part or the support structure comprises the biasing means so that the biasing means moves with the movable part or remains static relative to the support structure, and the biasing means is arranged to exert the normal force only in a direction perpendicular to the range of movement at any position within the range of movement;
其中所述一根或更多根SMA线被布置成在收缩时减少所述第一摩擦表面和所述第二摩擦表面之间的所述法向力。Wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted.
2.根据条款1所述的致动器组件,其中所述可移动部件包括经由所述偏置装置联接的两个部分,或者其中所述支撑结构包括经由所述偏置装置联接的两个部分。2. An actuator assembly according to clause 1, wherein the movable component comprises two parts connected via the biasing device, or wherein the support structure comprises two parts connected via the biasing device.
3.根据条款1或2所述的致动器组件,其中所述偏置装置包括弹性元件。3. An actuator assembly according to clause 1 or 2, wherein the biasing means comprises a resilient element.
4.根据条款3所述的致动器组件,其中所述偏置装置包括一个或更多个挠性件。4. An actuator assembly according to clause 3, wherein the biasing means comprises one or more flexible members.
5.根据任何前述条款所述的致动器组件,其中所述致动器组件包括用于支承所述可移动部件相对于所述支撑结构移动的支承装置。5. An actuator assembly according to any preceding clause, wherein the actuator assembly comprises support means for supporting the movable component for movement relative to the support structure.
可选地,其中所述偏置装置被布置成加载所述支承装置。Optionally, wherein the biasing means is arranged to load the support means.
6.根据条款2和条款5所述的致动器组件,其中所述支承装置设置在所述支撑结构或所述可移动部件的一部分上,并且其中所述第一摩擦表面或所述第二摩擦表面设置在所述支撑结构或所述可移动部件的另一部分上。6. An actuator assembly according to clause 2 and clause 5, wherein the bearing device is arranged on a part of the support structure or the movable part, and wherein the first friction surface or the second friction surface is arranged on another part of the support structure or the movable part.
7.根据条款6所述的致动器组件,其中所述一根或更多根SMA线联接到所述支撑结构或所述可移动部件的所述另一部分。7. An actuator assembly according to clause 6, wherein the one or more SMA wires are coupled to the support structure or the other portion of the movable component.
8.根据条款6或7所述的致动器组件,其中所述支撑结构或所述可移动部件的所述另一部分与所述偏置装置一体形成。8. An actuator assembly according to clause 6 or 7, wherein the support structure or the other part of the movable component is formed integrally with the biasing means.
9.根据条款5至8中任一项所述的致动器组件,其中所述一根或更多根SMA线被布置成在收缩时加载所述支承装置。9. An actuator assembly according to any of clauses 5 to 8, wherein the one or more SMA wires are arranged to load the support means when contracted.
10.根据条款5至9中任一项所述的致动器组件,其中所述支承装置包括滚动支承件,所述滚动支承件包括所述支撑结构上的支撑支承表面、所述可移动部件上的可移动支承表面以及布置在所述支撑支承表面和所述可移动支承表面之间的滚动支承元件。10. An actuator assembly according to any one of clauses 5 to 9, wherein the supporting device includes a rolling bearing member, the rolling bearing member including a supporting bearing surface on the supporting structure, a movable bearing surface on the movable part, and a rolling bearing element arranged between the supporting bearing surface and the movable bearing surface.
11.根据条款10所述的致动器组件,其中所述支撑支承表面和所述可移动支承表面平行于所述第一摩擦表面和所述第二摩擦表面。11. The actuator assembly of clause 10, wherein the support bearing surface and the movable bearing surface are parallel to the first friction surface and the second friction surface.
12.根据条款5至9中任一项所述的致动器组件,其中所述支承装置包括形成在所述支撑结构上的接合表面与所述可移动部件上的相应接合表面之间的平面支承件,所述支撑结构上的接合表面与与所述可移动部件上的相应接合表面接合。12. An actuator assembly according to any one of clauses 5 to 9, wherein the support device includes a planar support formed between a mating surface on the support structure and a corresponding mating surface on the movable part, and the mating surface on the support structure engages with the corresponding mating surface on the movable part.
13.根据条款5至12中任一项所述的致动器组件,其中所述支承装置与所述第一摩擦表面和所述第二摩擦表面分离。13. An actuator assembly according to any of clauses 5 to 12, wherein the bearing arrangement is separate from the first friction surface and the second friction surface.
14.根据条款5至13中任一项所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在三个自由度上的移动。14. An actuator assembly according to any of clauses 5 to 13, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement in three degrees of freedom.
15.根据条款14所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在移动平面内的移动。15. An actuator assembly according to clause 14, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement within a plane of movement.
16.根据条款5至13中任一项所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在一个自由度上的移动。16. An actuator assembly according to any of clauses 5 to 13, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement in one degree of freedom.
17.根据条款16所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为围绕螺旋轴线的螺旋移动。17. An actuator assembly according to clause 16, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to helical movement about a helical axis.
18.根据条款16所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为沿移动轴线的平移移动或围绕旋转轴线的旋转移动。18. An actuator assembly according to clause 16, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to translational movement along an axis of movement or rotational movement about an axis of rotation.
19.根据任何前述条款所述的致动器组件,其中所述一根或更多根SMA线被布置成在收缩时将所述第一摩擦表面和所述第二摩擦表面之间的法向力减少至少10%,优选至少20%,最优选至少50%。19. An actuator assembly according to any preceding clause, wherein the one or more SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface by at least 10%, preferably at least 20%, most preferably at least 50% when contracted.
20.根据任何前述条款所述的致动器组件,其中所述一根或更多根SMA线被布置成在收缩时使所述第一摩擦表面和所述第二摩擦表面脱离。20. An actuator assembly according to any preceding clause, wherein the one or more SMA wires are arranged to disengage the first and second friction surfaces upon contraction.
21.根据任何前述条款所述的致动器组件,其中所述一根或更多根SMA线被布置成在收缩时将所述可移动部件的至少一部分提离到与端部止动件接合。21. An actuator assembly according to any preceding clause, wherein the one or more SMA wires are arranged to lift at least a portion of the movable component out of engagement with an end stop when retracted.
22.根据条款21所述的致动器组件,其中所述端部止动件布置在所述可移动部件的另一部分上。22. An actuator assembly according to clause 21, wherein the end stop is arranged on another part of the movable part.
23.根据任何前述条款所述的致动器组件,其中所述可移动部件的静摩擦力与重量的比率大于1,优选大于3,进一步优选大于5。23. An actuator assembly according to any preceding clause, wherein the ratio of static friction to weight of the movable part is greater than 1, preferably greater than 3, and further preferably greater than 5.
24.根据任何前述条款所述的致动器组件,其中所述第一摩擦表面和所述第二摩擦表面之间的静摩擦系数在0.05和0.6之间的范围内,优选在0.1和0.4之间的范围内。24. An actuator assembly according to any preceding clause, wherein the coefficient of static friction between the first friction surface and the second friction surface is in the range between 0.05 and 0.6, preferably in the range between 0.1 and 0.4.
25.根据前述任何一个条款所述的致动器组件,其中所述一根或更多根SMA线向所述可移动部件施加相对于所述第一摩擦表面和所述第二摩擦表面成角度的力。25. An actuator assembly according to any of the preceding clauses, wherein the one or more SMA wires apply a force to the movable component that is angled relative to the first friction surface and the second friction surface.
26.根据前述任何一个条款所述的致动器组件,其中所述一根或更多根SMA线相对于所述第一摩擦表面和所述第二摩擦表面成角度。26. An actuator assembly according to any of the preceding clauses, wherein the one or more SMA wires are angled relative to the first friction surface and the second friction surface.
27.根据前述任何一个条款所述的致动器组件,其中所述一根或更多根SMA线相对于所述可移动部件相对于所述支撑结构的一个或更多个移动方向成角度。27. An actuator assembly according to any of the preceding clauses, wherein the one or more SMA wires are angled relative to one or more directions of movement of the movable component relative to the support structure.
28.根据前述条款中任何一项所述的致动器组件,其中所述一根或更多根SMA线包括至少两根相对的SMA线,所述至少两根相对的SMA线被布置成在收缩时减少所述第一摩擦表面和所述第二摩擦表面之间的法向力,并且在所述移动范围内在相反的方向上移动所述可移动部件。28. An actuator assembly according to any of the preceding clauses, wherein the one or more SMA wires include at least two opposing SMA wires, and the at least two opposing SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted, and move the movable part in opposite directions within the range of movement.
1a.一种致动器组件,包括:1a. An actuator assembly comprising:
支撑结构,其包括第一摩擦表面;a support structure comprising a first friction surface;
可移动部件,其包括接合所述第一摩擦表面的第二摩擦表面;a movable member including a second friction surface engaging the first friction surface;
支承装置,其用于支承所述可移动部件相对于所述支撑结构在移动范围内的移动;A support device for supporting the movement of the movable component relative to the support structure within a range of movement;
一根或更多根SMA线,其被布置成在收缩时将所述可移动部件相对于所述支撑结构移动到所述移动范围内的任何位置;one or more SMA wires arranged to, when retracted, move the movable member relative to the support structure to any position within the range of movement;
偏置装置,其被布置成以法向力使所述第一摩擦表面和所述第二摩擦表面抵靠彼此偏置,从而产生静摩擦力,当所述一根或更多根SMA线未收缩时,所述静摩擦力在所述移动范围内的任何位置处约束所述可移动部件相对于所述支撑结构的移动,a biasing device arranged to bias the first friction surface and the second friction surface against each other with a normal force so as to generate a static friction force which constrains movement of the movable component relative to the support structure at any position within the range of movement when the one or more SMA wires are not contracted,
其中所述一根或更多根SMA线被布置成在收缩时将所述可移动部件从所述第一摩擦表面提离,使得所述可移动部件支承在所述支承装置上。Wherein the one or more SMA wires are arranged to lift the movable component away from the first friction surface when contracted such that the movable component is supported on the support means.
可选地,其中所述偏置装置被布置成加载所述支承装置。Optionally, wherein the biasing means is arranged to load the support means.
2a.根据条款1a所述的致动器组件,其中所述偏置装置连接在所述可移动部件和所述支撑结构之间。2a. An actuator assembly according to clause 1a, wherein the biasing means is connected between the movable member and the support structure.
3a.根据条款2a所述的致动器组件,其中所述一根或更多根SMA线被构造成在收缩时将所述可移动部件从所述第一摩擦表面提离到所述支承装置上。3a. An actuator assembly according to clause 2a, wherein the one or more SMA wires are configured to lift the movable component away from the first friction surface and onto the support device when contracted.
4a.根据条款1a所述的致动器组件,其中所述可移动部件或所述支撑结构包括所述偏置装置,以便所述偏置装置与所述可移动部件一起移动或相对于所述支撑结构保持静态,并且所述偏置装置被布置成在移动范围内的任何位置处仅在垂直于所述移动范围的方向上施加所述法向力。4a. An actuator assembly according to claim 1a, wherein the movable part or the supporting structure includes the biasing device so that the biasing device moves with the movable part or remains static relative to the supporting structure, and the biasing device is arranged to apply the normal force only in a direction perpendicular to the moving range at any position within the moving range.
5a.根据条款1a或4a所述的致动器组件,其中所述可移动部件包括经由所述偏置装置联接的两个部分,或者其中所述支撑结构包括经由所述偏置装置联接的两个部分。5a. An actuator assembly according to clause 1a or 4a, wherein the movable member comprises two parts coupled via the biasing means, or wherein the support structure comprises two parts coupled via the biasing means.
6a.根据条款5a所述的致动器组件,其中所述支承装置支承所述支撑结构或所述可移动部件的一部分的移动,并且其中所述第一摩擦表面或所述第二摩擦表面设置在所述支撑结构或所述可移动部件的另一部分上。6a. An actuator assembly according to clause 5a, wherein the support device supports the movement of a part of the support structure or the movable component, and wherein the first friction surface or the second friction surface is arranged on another part of the support structure or the movable component.
7a.根据条款5a或6a所述的致动器组件,包括形成在可移动部件的所述两个部分之间或所述支撑结构的所述两个部分之间的端部止动件。7a. An actuator assembly according to clause 5a or 6a, comprising an end stop formed between the two parts of the movable component or between the two parts of the support structure.
8a.根据条款7a所述的致动器组件,其中所述一根或更多根SMA线被构造成在收缩时脱离所述摩擦表面并接合所述端部止动件。8a. The actuator assembly of clause 7a, wherein the one or more SMA wires are configured to disengage the friction surface and engage the end stop when retracted.
9a.根据条款5a至8a中任一项所述的致动器组件,其中所述一根或更多根SMA线连接到所述支撑结构或所述可移动部件的所述另一部分。9a. An actuator assembly according to any of clauses 5a to 8a, wherein the one or more SMA wires are connected to the support structure or the other part of the movable component.
10a.根据条款5a至9a中任一项所述的致动器组件,其中所述可移动部件的所述另一部分与所述偏置装置一体形成。10a. An actuator assembly according to any of clauses 5a to 9a, wherein the further portion of the movable member is formed integrally with the biasing means.
11a.根据条款1a至10a中任一项所述的致动器组件,其中所述偏置装置包括弹性元件。11a. An actuator assembly according to any of clauses 1a to 10a, wherein the biasing means comprises a resilient element.
12a.根据条款11所述的致动器组件,其中所述偏置装置包括一个或更多个挠性件。12a. An actuator assembly according to clause 11, wherein the biasing means comprises one or more flexures.
13a.根据条款1a至12a中任一项所述的致动器组件,其中所述一根或更多根SMA线被布置成在收缩时加载所述支承装置。13a. An actuator assembly according to any of clauses 1a to 12a, wherein the one or more SMA wires are arranged to load the support means when contracted.
14a.根据条款1a至13a中任一项所述的致动器组件,其中所述支承装置包括滚动支承件,所述滚动支承件包括所述支撑结构上的支撑支承表面、所述可移动部件上的可移动支承表面以及布置在所述支撑支承表面和所述可移动支承表面之间的滚动支承元件。14a. An actuator assembly according to any one of clauses 1a to 13a, wherein the support device includes a rolling support member, the rolling support member including a supporting support surface on the supporting structure, a movable supporting surface on the movable part, and a rolling support element arranged between the supporting support surface and the movable supporting surface.
15a.根据条款14a所述的致动器组件,其中所述支撑支承表面和所述可移动支承表面平行于所述第一摩擦表面和所述第二摩擦表面。15a. An actuator assembly according to clause 14a, wherein the support bearing surface and the movable bearing surface are parallel to the first friction surface and the second friction surface.
16a.根据条款1a至13a中任一项所述的致动器组件,其中所述支承装置包括形成在所述支撑结构上的接合表面与所述可移动部件上的相应接合表面之间的平面支承件,所述支撑结构上的接合表面与与所述可移动部件上的相应接合表面接合。16a. An actuator assembly according to any one of clauses 1a to 13a, wherein the support device includes a planar support formed between a bonding surface on the support structure and a corresponding bonding surface on the movable part, and the bonding surface on the support structure engages with the corresponding bonding surface on the movable part.
17a.根据条款1a至17a中任一项所述的致动器组件,其中所述支承装置与所述第一摩擦表面和所述第二摩擦表面分离。17a. An actuator assembly according to any of clauses 1a to 17a, wherein the bearing arrangement is separate from the first friction surface and the second friction surface.
18a.根据条款1a至17a中任一项所述的致动器组件,其中所述可移动部件的静摩擦力与重量的比率大于1,优选大于3,进一步优选大于5。18a. An actuator assembly according to any of clauses 1a to 17a, wherein the ratio of static friction to weight of the movable part is greater than 1, preferably greater than 3, further preferably greater than 5.
19a.根据条款1a至18a中任一项所述的致动器组件,其中所述第一摩擦表面和所述第二摩擦表面之间的静摩擦系数在0.05和0.6之间的范围内,优选在0.1和0.4之间的范围内。19a. An actuator assembly according to any of clauses 1a to 18a, wherein the coefficient of static friction between the first friction surface and the second friction surface is in the range between 0.05 and 0.6, preferably in the range between 0.1 and 0.4.
20a.根据条款1a至19a中任一项所述的致动器组件,其中所述一根或更多根SMA线向所述可移动部件施加相对于所述第一摩擦表面和所述第二摩擦表面成角度的力。20a. An actuator assembly according to any of clauses 1a to 19a, wherein the one or more SMA wires apply a force to the movable component that is angled relative to the first friction surface and the second friction surface.
21a.根据条款1a至20a中任一项所述的致动器组件,其中所述一根或更多根SMA线相对于所述第一摩擦表面和所述第二摩擦表面成角度。21a. An actuator assembly according to any of clauses 1a to 20a, wherein the one or more SMA wires are angled relative to the first friction surface and the second friction surface.
22a.根据条款1a至21a中任一项所述的致动器组件,其中所述一根或更多根SMA线相对于所述可移动部件相对于所述支撑结构的一个或更多个移动方向成角度。22a. An actuator assembly according to any of clauses 1a to 21a, wherein the one or more SMA wires are angled relative to one or more directions of movement of the movable component relative to the support structure.
23a.根据条款1a至22a中任一项所述的致动器组件,其中所述一根或更多根SMA线包括至少两根相对的SMA线,所述至少两根相对的SMA线被布置成在收缩时减少所述第一摩擦表面和所述第二摩擦表面之间的法向力,并且在所述移动范围内在相反的方向上移动所述可移动部件。23a. An actuator assembly according to any one of clauses 1a to 22a, wherein the one or more SMA wires include at least two opposing SMA wires, and the at least two opposing SMA wires are arranged to reduce the normal force between the first friction surface and the second friction surface when contracted, and move the movable part in opposite directions within the movement range.
24a.根据条款1a至23a中任一项所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在三个自由度上的移动。24a. An actuator assembly according to any of clauses 1a to 23a, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement in three degrees of freedom.
25a.根据条款24a所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在移动平面内的移动。25a. An actuator assembly according to clause 24a, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement within a plane of movement.
26a.根据条款1a至23a中任一项所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为在一个自由度上的移动。26a. An actuator assembly according to any of clauses 1a to 23a, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to movement in one degree of freedom.
27a.根据条款26a所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为围绕螺旋轴线的螺旋移动。27a. An actuator assembly according to clause 26a, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to helical movement about a helical axis.
28a.根据条款26a所述的致动器组件,其中所述支承装置将所述可移动部件相对于所述支撑结构的移动约束为沿移动轴线的平移移动或围绕旋转轴线的旋转移动。28a. An actuator assembly according to clause 26a, wherein the bearing arrangement constrains movement of the movable component relative to the support structure to translational movement along an axis of movement or rotational movement about an axis of rotation.
Claims (33)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2116960.2 | 2021-11-24 | ||
GB2116961.0A GB2613162B (en) | 2021-11-24 | 2021-11-24 | An actuator assembly |
GB2116961.0 | 2021-11-24 | ||
PCT/GB2022/052977 WO2023094813A1 (en) | 2021-11-24 | 2022-11-24 | An actuator assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118613654A true CN118613654A (en) | 2024-09-06 |
Family
ID=79163742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280078336.2A Pending CN118613654A (en) | 2021-11-24 | 2022-11-24 | Actuator assembly |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118613654A (en) |
GB (1) | GB2613162B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025040871A1 (en) * | 2023-08-22 | 2025-02-27 | Cambridge Mechatronics Limited | Sma actuator assembly |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201820383D0 (en) * | 2018-12-14 | 2019-01-30 | Cambridge Mechatronics Ltd | Zero power hold SMA Actuator assembly |
-
2021
- 2021-11-24 GB GB2116961.0A patent/GB2613162B/en active Active
-
2022
- 2022-11-24 CN CN202280078336.2A patent/CN118613654A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
GB2613162A (en) | 2023-05-31 |
GB202116961D0 (en) | 2022-01-05 |
GB2613162B (en) | 2023-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250027485A1 (en) | An actuator assembly | |
US20230400702A1 (en) | An actuator assembly | |
US20240026866A1 (en) | Actuator assembly | |
CN113195890B (en) | SMA Actuator Assemblies | |
US20250020111A1 (en) | An actuator assembly | |
GB2591699A (en) | Shape memory alloy actuation apparatus | |
CN119096047A (en) | Actuator assembly | |
CN118632984A (en) | Actuator assembly | |
WO2024153933A1 (en) | Actuator assembly | |
GB2569668A (en) | Shape memory alloy actuation apparatus | |
CN118613654A (en) | Actuator assembly | |
WO2019243846A1 (en) | Shape memory alloy actuation apparatus | |
CN117083457A (en) | Actuator assembly | |
US20230032266A1 (en) | Actuation apparatus | |
WO2023099924A1 (en) | Sma actuator assembly | |
WO2024141764A1 (en) | Actuator assembly | |
JP5031621B2 (en) | Actuator, image sensor and electronic device | |
WO2024074841A1 (en) | Actuator assembly | |
GB2570358A (en) | Shape memory alloy actuation apparatus | |
WO2025040908A1 (en) | Actuator assembly | |
WO2024246564A1 (en) | Actuator assembly | |
GB2633351A (en) | Actuator assembly | |
WO2025012590A1 (en) | Actuator assembly | |
WO2024261468A1 (en) | Actuator assembly | |
GB2630392A (en) | Actuator assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |