[go: up one dir, main page]

CN118611791B - Calibration circuit, chip and parameter calibration method - Google Patents

Calibration circuit, chip and parameter calibration method Download PDF

Info

Publication number
CN118611791B
CN118611791B CN202411066700.0A CN202411066700A CN118611791B CN 118611791 B CN118611791 B CN 118611791B CN 202411066700 A CN202411066700 A CN 202411066700A CN 118611791 B CN118611791 B CN 118611791B
Authority
CN
China
Prior art keywords
data
calibration
circuit
parameter
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411066700.0A
Other languages
Chinese (zh)
Other versions
CN118611791A (en
Inventor
胡民
张同
朱海奇
杨志豪
肖自铧
王英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lianyun Technology Hangzhou Co ltd
Original Assignee
Lianyun Technology Hangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lianyun Technology Hangzhou Co ltd filed Critical Lianyun Technology Hangzhou Co ltd
Priority to CN202411066700.0A priority Critical patent/CN118611791B/en
Publication of CN118611791A publication Critical patent/CN118611791A/en
Application granted granted Critical
Publication of CN118611791B publication Critical patent/CN118611791B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本申请公开了一种校准电路、芯片和参数校准方法,属于电路领域。本申请提供的校准电路包括DFE电路、校准控制模块和数据对比模块;校准控制模块与DFE电路的控制端相连接,且用于向DFE电路提供控制信息,控制信息用于确定DFE电路的反馈参数;DFE电路的数据输出端与数据对比模块的第一输入端相连接,且DFE电路用于基于反馈参数对数据输入端输入的第一数据进行处理,得到第二数据,并通过数据输出端向第一输入端输出第二数据;数据对比模块,用于通过对比第二数据与第二输入端接收的随机数据,确定反馈参数的合适配置值;随机数据是基于第一数据得到的。

The present application discloses a calibration circuit, a chip and a parameter calibration method, which belongs to the field of circuits. The calibration circuit provided by the present application includes a DFE circuit, a calibration control module and a data comparison module; the calibration control module is connected to the control end of the DFE circuit and is used to provide control information to the DFE circuit, and the control information is used to determine the feedback parameter of the DFE circuit; the data output end of the DFE circuit is connected to the first input end of the data comparison module, and the DFE circuit is used to process the first data input by the data input end based on the feedback parameter to obtain the second data, and output the second data to the first input end through the data output end; the data comparison module is used to determine the appropriate configuration value of the feedback parameter by comparing the second data with the random data received by the second input end; the random data is obtained based on the first data.

Description

一种校准电路、芯片和参数校准方法A calibration circuit, a chip and a parameter calibration method

技术领域Technical Field

本申请属于电路领域,具体涉及一种校准电路、芯片和参数校准方法。The present application belongs to the field of circuits, and specifically relates to a calibration circuit, a chip, and a parameter calibration method.

背景技术Background Art

判决反馈均衡器(Decision Feedback Equalizer,DFE)常用于输入/输出(Input/Output,I/O)接口中的接收模块(Receive,RX),能够消除码间干扰,有效提升接收模块的接收性能。Decision Feedback Equalizer (DFE) is often used in the receiving module (Receive, RX) in the input/output (I/O) interface. It can eliminate inter-symbol interference and effectively improve the receiving performance of the receiving module.

为了使得码间干扰影响最小,相关技术中一般需要对DFE电路的反馈参数进行校准,测试出反馈参数的稳定可用的配置值。In order to minimize the impact of inter-symbol interference, the related art generally requires calibrating the feedback parameters of the DFE circuit to test stable and usable configuration values of the feedback parameters.

然而,校准过程中反馈参数是不确定的,反馈参数可能随着输出数据的变化而在多个配置参数之间切换,由于多个配置参数之间相互影响,相关技术中一般需要同时对DFE电路的多个配置参数的配置值进行校准,存在DFE电路的反馈参数的校准效率低的问题。举例而言,如图1所示,针对一阶DFE电路,反馈参数Y可能随着输出数据的变化而在两个配置参数(Y0,Y1)之间切换,对反馈参数Y进行校准过程中,需要测试出两个配置参数(Y0,Y1)的稳定可用的配置值,由于校准过程中配置参数之间相互影响,相关技术需要遍历配置参数(Y0,Y1)的配置值的多种排列组合,才能测试出反馈参数可用的配置值,难以快速找到反馈参数的稳定可用的配置值,校准效率较低。However, the feedback parameters are uncertain during the calibration process, and the feedback parameters may switch between multiple configuration parameters as the output data changes. Since multiple configuration parameters influence each other, the related technology generally needs to calibrate the configuration values of multiple configuration parameters of the DFE circuit at the same time, and there is a problem of low calibration efficiency of the feedback parameters of the DFE circuit. For example, as shown in Figure 1, for a first-order DFE circuit, the feedback parameter Y may switch between two configuration parameters (Y0, Y1) as the output data changes. During the calibration of the feedback parameter Y, it is necessary to test the stable and available configuration values of the two configuration parameters (Y0, Y1). Since the configuration parameters influence each other during the calibration process, the related technology needs to traverse multiple permutations and combinations of the configuration values of the configuration parameters (Y0, Y1) to test the available configuration values of the feedback parameters. It is difficult to quickly find the stable and available configuration values of the feedback parameters, and the calibration efficiency is low.

发明内容Summary of the invention

本申请实施例提供一种校准电路、芯片和参数校准方法,能够解决相关技术中DFE电路的反馈参数的校准效率低的问题。The embodiments of the present application provide a calibration circuit, a chip, and a parameter calibration method, which can solve the problem of low calibration efficiency of feedback parameters of a DFE circuit in the related art.

第一方面,本申请实施例提供了一种校准电路,包括:DFE电路、校准控制模块和数据对比模块;DFE电路具有数据输入端、控制端和数据输出端,数据对比模块具有第一输入端和第二输入端;In a first aspect, an embodiment of the present application provides a calibration circuit, including: a DFE circuit, a calibration control module, and a data comparison module; the DFE circuit has a data input terminal, a control terminal, and a data output terminal, and the data comparison module has a first input terminal and a second input terminal;

校准控制模块与DFE电路的控制端相连接,且用于向DFE电路提供控制信息,控制信息用于确定DFE电路的反馈参数;The calibration control module is connected to the control terminal of the DFE circuit and is used to provide control information to the DFE circuit, where the control information is used to determine feedback parameters of the DFE circuit;

DFE电路的数据输出端与数据对比模块的第一输入端相连接,且DFE电路用于基于反馈参数对数据输入端输入的第一数据进行处理,得到第二数据,并通过数据输出端向第一输入端输出第二数据;The data output terminal of the DFE circuit is connected to the first input terminal of the data comparison module, and the DFE circuit is used to process the first data inputted from the data input terminal based on the feedback parameter to obtain the second data, and output the second data to the first input terminal through the data output terminal;

数据对比模块,用于通过对比第二数据与第二输入端接收的随机数据,确定反馈参数的合适配置值;随机数据是基于第一数据得到的。The data comparison module is used to determine the appropriate configuration value of the feedback parameter by comparing the second data with the random data received at the second input terminal; the random data is obtained based on the first data.

第二方面,本申请实施例提供了一种芯片,该芯片包括第一方面所述的校准电路。In a second aspect, an embodiment of the present application provides a chip, which includes the calibration circuit described in the first aspect.

第三方面,本申请实施例提供了一种参数校准方法,该方法包括:In a third aspect, an embodiment of the present application provides a parameter calibration method, the method comprising:

获取控制信息,基于控制信息,确定DFE电路的反馈参数;Acquire control information, and determine feedback parameters of the DFE circuit based on the control information;

基于反馈参数对DFE电路数据输入端输入的第一数据进行处理,得到第二数据;Processing first data inputted from a data input terminal of the DFE circuit based on the feedback parameter to obtain second data;

通过对比所述第二数据与随机数据,确定所述反馈参数的合适配置值;所述随机数据是基于所述第一数据得到的。By comparing the second data with random data, a suitable configuration value of the feedback parameter is determined; the random data is obtained based on the first data.

在本申请实施例中,校准电路包括DFE电路、校准控制模块和数据对比模块;DFE电路具有数据输入端、控制端和数据输出端,数据对比模块具有第一输入端和第二输入端;校准控制模块与DFE电路的控制端相连接,且用于向DFE电路提供控制信息,控制信息用于确定DFE电路的反馈参数;DFE电路的数据输出端与数据对比模块的第一输入端相连接,且DFE电路用于基于反馈参数对数据输入端输入的第一数据进行处理,得到第二数据,并通过数据输出端向第一输入端输出第二数据;数据对比模块,用于通过对比第二数据与第二输入端接收的随机数据,确定反馈参数的合适配置值;随机数据是基于第一数据得到的。这样,在校准电路对DFE电路的反馈参数进行校准的过程中,通过校准控制模块提供的控制信息确定了DFE电路的反馈参数,与相关技术相比,可以避免反馈参数随着输出的第二数据的变化而在多个配置参数之间切换,进而避免校准过程中多个配置参数之间相互影响,从而快速地确定反馈参数的合适配置值,提高了反馈参数的校准效率。In an embodiment of the present application, the calibration circuit includes a DFE circuit, a calibration control module and a data comparison module; the DFE circuit has a data input terminal, a control terminal and a data output terminal, and the data comparison module has a first input terminal and a second input terminal; the calibration control module is connected to the control terminal of the DFE circuit and is used to provide control information to the DFE circuit, and the control information is used to determine the feedback parameter of the DFE circuit; the data output terminal of the DFE circuit is connected to the first input terminal of the data comparison module, and the DFE circuit is used to process the first data input by the data input terminal based on the feedback parameter to obtain the second data, and output the second data to the first input terminal through the data output terminal; the data comparison module is used to determine the appropriate configuration value of the feedback parameter by comparing the second data with the random data received by the second input terminal; the random data is obtained based on the first data. In this way, in the process of the calibration circuit calibrating the feedback parameter of the DFE circuit, the feedback parameter of the DFE circuit is determined by the control information provided by the calibration control module. Compared with the related art, it can avoid the feedback parameter from switching between multiple configuration parameters as the output second data changes, thereby avoiding the mutual influence between multiple configuration parameters during the calibration process, thereby quickly determining the appropriate configuration value of the feedback parameter, and improving the calibration efficiency of the feedback parameter.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为相关技术中提供的一种一阶DFE电路的示意性结构图;FIG1 is a schematic structural diagram of a first-order DFE circuit provided in the related art;

图2为本申请实施例提供的一种校准电路的示意性结构图;FIG2 is a schematic structural diagram of a calibration circuit provided in an embodiment of the present application;

图3为本申请实施例提供的另一种校准电路的示意性结构图;FIG3 is a schematic structural diagram of another calibration circuit provided in an embodiment of the present application;

图4为本申请实施例提供的又一种校准电路的示意性结构图;FIG4 is a schematic structural diagram of another calibration circuit provided in an embodiment of the present application;

图5为本申请实施例提供的再一种校准电路的示意性结构图;FIG5 is a schematic structural diagram of another calibration circuit provided in an embodiment of the present application;

图6为本申请实施例提供的一种芯片的示意性结构图;FIG6 is a schematic structural diagram of a chip provided in an embodiment of the present application;

图7为本申请实施例提供的一种电子设备的示意性结构图;FIG7 is a schematic structural diagram of an electronic device provided in an embodiment of the present application;

图8为本申请实施例提供的一种参数校准方法的示意性流程图;FIG8 is a schematic flow chart of a parameter calibration method provided in an embodiment of the present application;

图9为本申请实施例提供的另一种参数校准方法的示意性流程图;FIG9 is a schematic flow chart of another parameter calibration method provided in an embodiment of the present application;

图10为本申请实施例提供的又一种参数校准方法的示意性流程图;FIG10 is a schematic flow chart of another parameter calibration method provided in an embodiment of the present application;

图11为本申请实施例提供的再一种参数校准方法的示意性流程图。FIG. 11 is a schematic flowchart of yet another parameter calibration method provided in an embodiment of the present application.

附图标记说明:Description of reference numerals:

10-校准电路;100-DFE电路;110-模拟电路;120-D触发器;130-选择器;200-校准控制模块;300-数据对比模块;310-目标D触发器;400-数据对齐模块;600-芯片;700-电子设备;Input-外部输入数据;Y-反馈参数;Y0-配置参数;Y1-配置参数;Y2n-1-配置参数;d0-数字信号;golden_data-第一数据;golden_rx-随机数据;golden_rx_d-第三数据;d1-第二数据;{dn,…,d2,d1}-采样数据;Clock-时钟信号;f-反馈数据;m-控制信息;training_mode-控制指令。10-calibration circuit; 100-DFE circuit; 110-analog circuit; 120-D flip-flop; 130-selector; 200-calibration control module; 300-data comparison module; 310-target D flip-flop; 400-data alignment module; 600-chip; 700-electronic device; Input-external input data; Y-feedback parameter; Y0-configuration parameter; Y1-configuration parameter; Y2n - 1-configuration parameter; d0-digital signal; golden_data-first data; golden_rx-random data; golden_rx_d-third data; d1-second data; {dn,…,d2,d1}-sampling data; Clock-clock signal; f-feedback data; m-control information; training_mode-control instruction.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, rather than all the embodiments. All other embodiments obtained by ordinary technicians in this field based on the embodiments in the present application belong to the scope of protection of this application.

本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first", "second", etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first", "second", etc. are generally of one type, and the number of objects is not limited. For example, the first object can be one or more. In addition, "and/or" in the specification and claims represents at least one of the connected objects, and the character "/" generally indicates that the objects associated with each other are in an "or" relationship.

DFE常用于I/O接口中的接收模块,能够消除码间干扰,有效提升接收模块的接收性能。其中,码间干扰是指信号传输信道的时域响应存在拖尾现象,拖尾会影响到下一个码元。在时域上,DFE可以根据当前码元的判决结果,将当前码元的后续影响依次全部消减,从而使当前码元的码间干扰影响降到最低,甚至完全消除。在电路实现上,DFE可以通过数字高频滤波器来实现。例如,对于连续的输入数据,通过T周期延迟后采样的输入数据加上权重,然后与当前的输入数据相加并输出,从而将输入数据的码间干扰降低或完全消除。DFE is commonly used in the receiving module of the I/O interface. It can eliminate inter-symbol interference and effectively improve the receiving performance of the receiving module. Among them, inter-symbol interference refers to the tailing phenomenon of the time domain response of the signal transmission channel, which will affect the next code element. In the time domain, DFE can eliminate all subsequent effects of the current code element in turn according to the judgment result of the current code element, thereby minimizing the inter-symbol interference effect of the current code element or even completely eliminating it. In circuit implementation, DFE can be implemented through a digital high-frequency filter. For example, for continuous input data, the input data sampled after a T-period delay is added with a weight, and then added to the current input data and output, thereby reducing or completely eliminating the inter-symbol interference of the input data.

举例而言,如图1所示,DFE电路100的工作原理可以为:模拟电路110将外部输入数据Input转换为数字信号d0;D触发器120对数字信号d0进行采样后,输出采样数据d1。For example, as shown in FIG. 1 , the working principle of the DFE circuit 100 may be: the analog circuit 110 converts the external input data Input into a digital signal d0 ; and the D flip-flop 120 samples the digital signal d0 and outputs the sampled data d1 .

同时,选择器130的控制端可以接收反馈数据f,采样数据d1可以作为反馈数据f,用于调节前级的模拟电路110的反馈参数Y。具体而言,当采样数据d1为0时,反馈数据f=d1=0,选择器130可以根据反馈数据f为0,选择配置参数Y0作为反馈参数Y。当采样数据d1为1时,反馈数据f=d1=1,选择器130可以根据反馈数据f为1,选择配置参数Y1作为反馈参数Y。At the same time, the control end of the selector 130 can receive the feedback data f, and the sampled data d1 can be used as the feedback data f to adjust the feedback parameter Y of the previous analog circuit 110. Specifically, when the sampled data d1 is 0, the feedback data f=d1=0, and the selector 130 can select the configuration parameter Y0 as the feedback parameter Y according to the feedback data f being 0. When the sampled data d1 is 1, the feedback data f=d1=1, and the selector 130 can select the configuration parameter Y1 as the feedback parameter Y according to the feedback data f being 1.

其中,当前时刻的采样数据d1可以理解为前一个时钟的数字信号d0,反馈参数Y可以包括但不限于电压反馈参数和延时反馈参数中的至少一项,反馈参数Y可用于对输入数据Input进行转换处理而得到数字信号d0。The current sampling data d1 can be understood as the digital signal d0 of the previous clock, and the feedback parameter Y can include but is not limited to at least one of a voltage feedback parameter and a delay feedback parameter. The feedback parameter Y can be used to convert the input data Input to obtain the digital signal d0.

为了使得输入数据的码间干扰影响最小,相关技术中可以对DFE电路地配置参数进行校准,具体需要通过测试找出两个配置参数Y0、Y1的稳定可用的或者最佳的配置值。In order to minimize the impact of inter-symbol interference on input data, the configuration parameters of the DFE circuit may be calibrated in the related art. Specifically, stable, available or optimal configuration values of two configuration parameters Y0 and Y1 need to be found through testing.

需要指出的是,在修改Y0或Y1的配置值后,直接影响到下一个输入数据d0的正确性。针对连续多个输入数据,由于校准过程中各配置参数(例如Y0,Y1)互相影响,无法知道当前配置{Y0,Y1}中某一个配置参数配置错误还是所有配置参数都配置错误,若单独修改Y0或单独修改Y1的配置值,不太容易找到{Y0,Y1}的合适配置值。例如:只修改Y0的配置值,当前时刻d1=0,若Y0的配置值错误,会导致d0数据的正确性不确定;下一个时钟,d0被保存为d1 (d1<= d0),d1的正确性不确定,通过d1反馈的反馈参数Y不确定,后续输出的d0不确定。It should be pointed out that after modifying the configuration value of Y0 or Y1, the correctness of the next input data d0 is directly affected. For multiple consecutive input data, since the configuration parameters (such as Y0, Y1) affect each other during the calibration process, it is impossible to know whether one configuration parameter in the current configuration {Y0, Y1} is incorrectly configured or all configuration parameters are incorrectly configured. If the configuration value of Y0 or Y1 is modified separately, it is not easy to find the appropriate configuration value of {Y0, Y1}. For example: only modify the configuration value of Y0, d1=0 at the current moment, if the configuration value of Y0 is wrong, the correctness of the d0 data will be uncertain; in the next clock, d0 is saved as d1 (d1<= d0), the correctness of d1 is uncertain, the feedback parameter Y fed back by d1 is uncertain, and the subsequent output d0 is uncertain.

基于此,由于校准过程中各配置参数(例如Y0,Y1)互相影响,相关技术中一般需要同时对多个配置参数(例如Y0和Y1)的配置值进行测试。例如,Y0有10个候选配置值,Y1有10个候选配置值,相关技术需要遍历(Y0,Y1)的10*10种排列组合,才能找出配置参数(Y0,Y1)可用的配置值,难以快速找到配置参数的稳定可用的配置值,校准效率较低。Based on this, since the configuration parameters (such as Y0, Y1) affect each other during the calibration process, the related technology generally needs to test the configuration values of multiple configuration parameters (such as Y0 and Y1) at the same time. For example, Y0 has 10 candidate configuration values and Y1 has 10 candidate configuration values. The related technology needs to traverse 10*10 permutations and combinations of (Y0, Y1) to find the available configuration values of the configuration parameters (Y0, Y1). It is difficult to quickly find stable and available configuration values of the configuration parameters, and the calibration efficiency is low.

为了解决相关技术中DFE电路的反馈参数的校准效率低的问题,本申请实施例提供一种校准电路,通过校准控制模块输出的控制信息确定了DFE电路的反馈参数,与相关技术相比,可以避免反馈参数随着输出的第二数据的变化而在多个配置参数之间切换,进而避免校准过程中多个配置参数之间相互影响,从而快速地确定反馈参数的合适配置值,提高了校准效率。In order to solve the problem of low calibration efficiency of feedback parameters of the DFE circuit in the related art, an embodiment of the present application provides a calibration circuit, which determines the feedback parameters of the DFE circuit through control information output by a calibration control module. Compared with the related art, it can avoid the feedback parameters from switching between multiple configuration parameters as the output second data changes, thereby avoiding the mutual influence between multiple configuration parameters during the calibration process, thereby quickly determining the appropriate configuration value of the feedback parameter, and improving the calibration efficiency.

例如,本申请实施例可以通过校准控制模块控制DFE电路的选择器从多个配置参数中选择目标配置参数作为DFE电路的反馈参数,可以单独对一个目标配置参数进行校准,得到目标配置参数的合适配置值,避免目标配置参数的校准过程中受到其他配置参数的影响,进而可以分别确定得到各个配置参数的合适配置值,从而快速确定多个配置参数的合适配置值,提高了反馈参数的校准效率。For example, in the embodiment of the present application, the selector of the DFE circuit can be controlled by the calibration control module to select a target configuration parameter from multiple configuration parameters as a feedback parameter of the DFE circuit. One target configuration parameter can be calibrated separately to obtain a suitable configuration value of the target configuration parameter, thereby avoiding the influence of other configuration parameters during the calibration process of the target configuration parameter. Then, suitable configuration values of each configuration parameter can be determined separately, thereby quickly determining suitable configuration values of multiple configuration parameters and improving the calibration efficiency of the feedback parameters.

下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的校准电路和参数校准方法进行详细地说明。The calibration circuit and parameter calibration method provided in the embodiments of the present application are described in detail below through specific embodiments and their application scenarios in conjunction with the accompanying drawings.

如图2所示,本申请实施例提供的校准电路10,可以包括:As shown in FIG. 2 , the calibration circuit 10 provided in the embodiment of the present application may include:

DFE电路100、校准控制模块200和数据对比模块300;DFE circuit 100, calibration control module 200 and data comparison module 300;

DFE电路100具有数据输入端、控制端和数据输出端,数据对比模块300具有第一输入端和第二输入端;The DFE circuit 100 has a data input terminal, a control terminal and a data output terminal, and the data comparison module 300 has a first input terminal and a second input terminal;

校准控制模块200与DFE电路100的控制端相连接,且用于向DFE电路100提供控制信息,控制信息用于确定DFE电路的反馈参数;The calibration control module 200 is connected to the control terminal of the DFE circuit 100 and is used to provide control information to the DFE circuit 100, where the control information is used to determine feedback parameters of the DFE circuit;

DFE电路100的数据输出端与数据对比模块300的第一输入端相连接,且DFE电路100用于基于反馈参数对DFE电路100的数据输入端输入的第一数据进行处理,得到第二数据,并通过DFE电路100的数据输出端向数据对比模块300的第一输入端输出第二数据;The data output terminal of the DFE circuit 100 is connected to the first input terminal of the data comparison module 300, and the DFE circuit 100 is used to process the first data inputted from the data input terminal of the DFE circuit 100 based on the feedback parameter to obtain the second data, and output the second data to the first input terminal of the data comparison module 300 through the data output terminal of the DFE circuit 100;

数据对比模块300,用于通过对比第二数据与第二输入端接收的随机数据,确定反馈参数的合适配置值;其中,随机数据是基于所述第一数据得到的。The data comparison module 300 is used to determine a suitable configuration value of the feedback parameter by comparing the second data with the random data received at the second input terminal; wherein the random data is obtained based on the first data.

参考图1,需要指出的是,在DFE电路100的正常工作模式下,DFE电路100输出的第二数据的值是不固定的,例如,若当前时刻第二数据d1为0,反馈数据f为0,反馈参数Y为Y0;若下一个时钟第二数据d1为1,反馈数据f为1,反馈参数Y为Y1。可见,在正常工作模式下,反馈参数Y是不固定的,反馈参数Y可以随着第二数据d1的变化而在Y0与Y1之间切换,基于此,相关技术中在正常工作模式下单独对Y0的配置值进行校准时,校准出的Y0的配置值的准确性可能受到Y1的配置值的影响。或者,相关技术中在正常工作模式下单独对Y1的配置值进行校准时,校准出的Y1的配置值的准确性可能受到Y0的配置值的影响。换言之,在DFE电路100的正常工作模式下,若相关技术中单独对某一个配置参数进行校准时受到其他配置参数的影响,难以测试出合适的配置值。而若相关技术中在正常工作模式下同时对Y0和Y1的配置值进行校准,虽然可以测试出(Y0,Y1)的合适配置值,但校准过程中需要遍历(Y0,Y1)的很多种排列组合,所需校准时间比单独对各个配置参数进行校准更长,校准效率低。Referring to FIG. 1 , it should be noted that in the normal working mode of the DFE circuit 100 , the value of the second data output by the DFE circuit 100 is not fixed. For example, if the second data d1 is 0 at the current moment, the feedback data f is 0, and the feedback parameter Y is Y0; if the second data d1 is 1 at the next clock, the feedback data f is 1, and the feedback parameter Y is Y1. It can be seen that in the normal working mode, the feedback parameter Y is not fixed, and the feedback parameter Y can switch between Y0 and Y1 as the second data d1 changes. Based on this, when the configuration value of Y0 is calibrated separately in the normal working mode in the related art, the accuracy of the calibrated configuration value of Y0 may be affected by the configuration value of Y1. Alternatively, when the configuration value of Y1 is calibrated separately in the normal working mode in the related art, the accuracy of the calibrated configuration value of Y1 may be affected by the configuration value of Y0. In other words, in the normal working mode of the DFE circuit 100 , if the calibration of a certain configuration parameter is affected by other configuration parameters in the related art, it is difficult to test the appropriate configuration value. If the configuration values of Y0 and Y1 are calibrated simultaneously in the normal working mode in the related technology, although the appropriate configuration value of (Y0, Y1) can be tested, many permutations and combinations of (Y0, Y1) need to be traversed during the calibration process, and the required calibration time is longer than calibrating each configuration parameter separately, and the calibration efficiency is low.

而在本申请实施例提供的校准电路10中,反馈参数Y可以不随DFE电路100的数据输出端输出的第二数据的变化而变化,而是可以由校准控制模块200提供的控制信息m确定。例如,在DFE电路100的校准模式下,反馈数据f可以由校准控制模块200输出的控制信息m决定,反馈数据f=m。在DFE电路100的校准模式下,虽然第二数据的值仍是不固定的,但该校准模式下,反馈数据f不由第二数据决定,而可以由校准控制模块200输出的控制信息m决定,进而,在校准模式下,反馈参数Y可以是一直等于目标配置参数Ym,而不会随第二数据的变化而变化。In the calibration circuit 10 provided in the embodiment of the present application, the feedback parameter Y may not change with the change of the second data outputted from the data output terminal of the DFE circuit 100, but may be determined by the control information m provided by the calibration control module 200. For example, in the calibration mode of the DFE circuit 100, the feedback data f may be determined by the control information m outputted by the calibration control module 200, and the feedback data f=m. In the calibration mode of the DFE circuit 100, although the value of the second data is still not fixed, in this calibration mode, the feedback data f is not determined by the second data, but may be determined by the control information m outputted by the calibration control module 200. Thus, in the calibration mode, the feedback parameter Y may always be equal to the target configuration parameter Ym, and may not change with the change of the second data.

进而,本申请实施例在反馈参数的校准过程中,通过校准控制模块提供的控制信息确定了DFE电路的反馈参数,与相关技术相比,可以避免反馈参数随着输出的第二数据的变化而在多个配置参数之间切换,进而避免校准过程中多个配置参数之间相互影响,从而快速地确定反馈参数的合适配置值,提高了反馈参数的校准效率。Furthermore, in the embodiment of the present application, during the calibration process of the feedback parameters, the feedback parameters of the DFE circuit are determined by the control information provided by the calibration control module. Compared with the related art, it is possible to avoid the feedback parameters from switching between multiple configuration parameters as the output second data changes, thereby avoiding the mutual influence between multiple configuration parameters during the calibration process, thereby quickly determining the appropriate configuration value of the feedback parameter and improving the calibration efficiency of the feedback parameter.

需要指出的是,DFE电路的反馈参数可以从DFE电路的多个配置参数中选出,因此,确定反馈参数的合适配置值包括分别确定多个配置参数的合适配置值。下面结合DFE电路的具体工作原理进行举例说明。It should be noted that the feedback parameter of the DFE circuit can be selected from multiple configuration parameters of the DFE circuit, and therefore, determining the appropriate configuration value of the feedback parameter includes determining appropriate configuration values of the multiple configuration parameters respectively. The following is an example of the specific working principle of the DFE circuit.

如图3所示,在本申请实施例提供的校准电路10中,DFE电路100可以包括模拟电路110、D触发器120和选择器130;模拟电路110与D触发器120连接,D触发器120与数据对比模块300的第一输入端连接,选择器130的输出端与模拟电路110连接;选择器130的控制端与校准控制模块200连接;As shown in FIG3 , in the calibration circuit 10 provided in the embodiment of the present application, the DFE circuit 100 may include an analog circuit 110, a D flip-flop 120 and a selector 130; the analog circuit 110 is connected to the D flip-flop 120, the D flip-flop 120 is connected to the first input terminal of the data comparison module 300, and the output terminal of the selector 130 is connected to the analog circuit 110; the control terminal of the selector 130 is connected to the calibration control module 200;

选择器130用于接收校准控制模块200输出的控制信息,基于所述控制信息从多个配置参数中选择目标配置参数,将所述目标配置参数作为所述反馈参数。The selector 130 is used to receive the control information output by the calibration control module 200, select a target configuration parameter from a plurality of configuration parameters based on the control information, and use the target configuration parameter as the feedback parameter.

其中,选择器130具有多个输入端、控制端和输出端,选择器130的多个输入端用于接收多个配置参数的多个候选配置值,选择器130的控制端用于接收校准控制模块200输出的控制信息,选择器130的输出端用于输出目标配置参数以作为反馈参数。Among them, the selector 130 has multiple input terminals, a control terminal and an output terminal. The multiple input terminals of the selector 130 are used to receive multiple candidate configuration values of multiple configuration parameters, the control terminal of the selector 130 is used to receive control information output by the calibration control module 200, and the output terminal of the selector 130 is used to output the target configuration parameters as feedback parameters.

其中,反馈参数可以作为模拟电路110的工作参数,降低第一数据的码间干扰。The feedback parameter may be used as a working parameter of the analog circuit 110 to reduce inter-symbol interference of the first data.

其中,DFE电路100的控制端具体可以是选择器130的控制端,控制信息用于控制选择器130从多个配置参数中选择目标配置参数,将目标配置参数作为反馈参数;The control end of the DFE circuit 100 may specifically be a control end of the selector 130, and the control information is used to control the selector 130 to select a target configuration parameter from a plurality of configuration parameters, and use the target configuration parameter as a feedback parameter;

其中,模拟电路110用于基于反馈参数对第一数据进行处理,得到数字信号;The analog circuit 110 is used to process the first data based on the feedback parameter to obtain a digital signal;

其中,D触发器120用于对模拟电路110输出的数字信号进行采样,得到采样数据,将采样数据作为第二数据。The D flip-flop 120 is used to sample the digital signal output by the analog circuit 110 to obtain sampled data, and use the sampled data as the second data.

在实际应用中,针对阶数不同的DFE电路,具体可以将与模拟电路110连接的一个D触发器120输出的采样数据作为第二数据。In practical applications, for DFE circuits of different orders, the sampled data output by a D flip-flop 120 connected to the analog circuit 110 may be used as the second data.

例如,如图3所示,在一阶DFE电路中,D触发器120与模拟电路110连接,将D触发器120输出的采样数据d1作为第二数据。For example, as shown in FIG. 3 , in a first-order DFE circuit, a D flip-flop 120 is connected to an analog circuit 110 , and the sampled data d1 outputted by the D flip-flop 120 is used as the second data.

又例如,如图5所示,在n阶DFE电路中,n个D触发器120输出的采样数据为{dn,…,d2,d1},第一个D触发器120与模拟电路110连接,可以将第一个D触发器120输出的采样数据d1作为第二数据。For another example, as shown in FIG5 , in an n-stage DFE circuit, the sampling data output by the n D flip-flops 120 are {dn,…,d2,d1}, and the first D flip-flop 120 is connected to the analog circuit 110 , and the sampling data d1 output by the first D flip-flop 120 can be used as the second data.

其中,第一数据可以是一串已知的随机数据。例如,在实际应用中,DFE电路100可位于接收端,第一数据可以是发送端向接收端的DFE电路发送的一串已知的随机数据。The first data may be a string of known random data. For example, in practical applications, the DFE circuit 100 may be located at the receiving end, and the first data may be a string of known random data sent by the transmitting end to the DFE circuit of the receiving end.

在本申请实施例中,校准控制模块200可用于控制选择器130从多个配置参数中选择目标配置参数作为反馈参数,实现单独对目标配置参数进行校准,避免其他配置参数对目标配置参数的影响。In the embodiment of the present application, the calibration control module 200 can be used to control the selector 130 to select the target configuration parameter from multiple configuration parameters as the feedback parameter, so as to calibrate the target configuration parameter separately and avoid the influence of other configuration parameters on the target configuration parameter.

举例而言,反馈参数可以记为Y,目标配置参数可以记为Ym;校准控制模块200可控制选择器130从多个配置参数中选择Ym,使Y=Ym。For example, the feedback parameter may be recorded as Y, and the target configuration parameter may be recorded as Ym; the calibration control module 200 may control the selector 130 to select Ym from a plurality of configuration parameters such that Y=Ym.

其中,0≤m≤2n-1,n可以由DFE电路100的阶数决定。Here, 0≤m≤2 n −1, and n may be determined by the order of the DFE circuit 100 .

需要指出的是,校准控制模块200可控制选择器130从多个配置参数中选择目标配置参数Ym,将目标配置参数Ym确定为反馈参数Y,实现单独对目标配置参数Ym进行校准,避免其他配置参数对目标配置参数Ym的影响。It should be noted that the calibration control module 200 can control the selector 130 to select the target configuration parameter Ym from multiple configuration parameters, determine the target configuration parameter Ym as the feedback parameter Y, and calibrate the target configuration parameter Ym alone to avoid the influence of other configuration parameters on the target configuration parameter Ym.

在本申请实施例中,在反馈参数Y为目标配置参数Ym的情况下,数据对比模块300用于可以对目标配置参数Ym的多个候选配置值进行测试,得到目标配置参数的合适配置值。In the embodiment of the present application, when the feedback parameter Y is the target configuration parameter Ym, the data comparison module 300 is used to test multiple candidate configuration values of the target configuration parameter Ym to obtain a suitable configuration value of the target configuration parameter.

例如,在反馈参数为目标配置参数的情况下,在目标配置参数Ym为第一候选配置值时,若数据对比模块300对比第二数据与随机数据相同,可以将第一候选配置值确定目标配置参数的合适配置值。该合适配置值可以理解为稳定可用的、可以正常工作的配置值。而在反馈参数为目标配置参数的情况下,在目标配置参数Ym为第二候选配置值时,若数据对比模块300对比第二数据与随机数据不同,则第二候选配置值不是目标配置参数的合适配置值。For example, when the feedback parameter is the target configuration parameter, when the target configuration parameter Ym is the first candidate configuration value, if the data comparison module 300 compares the second data and the random data and finds that they are the same, the first candidate configuration value can be determined as the appropriate configuration value of the target configuration parameter. The appropriate configuration value can be understood as a stable and available configuration value that can work normally. In the case where the feedback parameter is the target configuration parameter, when the target configuration parameter Ym is the second candidate configuration value, if the data comparison module 300 compares the second data and the random data and finds that they are different, then the second candidate configuration value is not the appropriate configuration value of the target configuration parameter.

这样,通过多次校准,分别对目标配置参数的多个候选配置值进行测试,得到目标配置参数的合适配置值。In this way, through multiple calibrations, multiple candidate configuration values of the target configuration parameter are tested respectively to obtain appropriate configuration values of the target configuration parameter.

进一步地,目标配置参数可以是DFE电路中的多个配置参数中的任意一个配置参数,进而可以通过多次校准,分别对各个配置参数进行校准,测试得到各个目标配置参数的合适配置值,即反馈参数的合适配置值。Furthermore, the target configuration parameter may be any one of multiple configuration parameters in the DFE circuit, and then each configuration parameter may be calibrated separately through multiple calibrations to obtain a suitable configuration value of each target configuration parameter, that is, a suitable configuration value of the feedback parameter.

在本申请实施例中,选择器130的工作原理为:若选择器130接收到的反馈数据f=m,则选择器130从多个配置参数中选择与反馈数据对应的目标配置参数Ym作为反馈参数Y。In the embodiment of the present application, the working principle of the selector 130 is: if the feedback data f=m received by the selector 130, the selector 130 selects the target configuration parameter Ym corresponding to the feedback data as the feedback parameter Y from multiple configuration parameters.

如图1所示,在DFE电路100的正常工作模式下,反馈数据f可以由DFE电路100的D触发器120输出的采样数据d1决定,反馈数据f=d1。As shown in FIG. 1 , in the normal working mode of the DFE circuit 100 , the feedback data f may be determined by the sampled data d1 output by the D flip-flop 120 of the DFE circuit 100 , and the feedback data f=d1 .

需要指出的是,在正常工作模式下,采样数据d1的值是不固定的,例如,若当前时刻采样数据d1为0,反馈数据f为0,反馈参数Y为Y0;若下一个时钟采样数据d1为1,反馈数据f为1,反馈参数Y为Y1。可见,在正常工作模式下,反馈参数Y也是不固定的,反馈参数Y可以在Y0与Y1之间切换,基于此,相关技术中在正常工作模式下单独对Y0的配置值进行校准时,校准出的Y0的配置值的准确性可能受到Y1的配置值的影响。换言之,在DFE电路正常工作模式下,若相关技术中单独对某一个配置参数进行校准时受到其他配置参数的影响,难以测试出合适的配置值。而若相关技术中在正常工作模式下同时对Y0和Y1的配置值进行校准,虽然可以测试出(Y0,Y1)的合适配置值,但校准过程中需要遍历(Y0,Y1)的更多种排列组合,所需校准时间比单独对各个配置参数进行校准更长,校准效率低。It should be pointed out that in the normal working mode, the value of the sampling data d1 is not fixed. For example, if the current sampling data d1 is 0, the feedback data f is 0, and the feedback parameter Y is Y0; if the next clock sampling data d1 is 1, the feedback data f is 1, and the feedback parameter Y is Y1. It can be seen that in the normal working mode, the feedback parameter Y is also not fixed, and the feedback parameter Y can be switched between Y0 and Y1. Based on this, when the configuration value of Y0 is calibrated separately in the normal working mode in the related art, the accuracy of the calibrated configuration value of Y0 may be affected by the configuration value of Y1. In other words, in the normal working mode of the DFE circuit, if the calibration of a certain configuration parameter is affected by other configuration parameters in the related art, it is difficult to test the appropriate configuration value. If the configuration values of Y0 and Y1 are calibrated at the same time in the normal working mode in the related art, although the appropriate configuration value of (Y0, Y1) can be tested, more permutations and combinations of (Y0, Y1) need to be traversed during the calibration process, and the required calibration time is longer than that of calibrating each configuration parameter separately, and the calibration efficiency is low.

能够理解的是,在本申请实施例提供的校准电路10中,如图2所示,在DFE电路100的校准模式下,虽然采样数据的值仍是不固定的,但该校准模式下,反馈数据f不由采样数据决定,而可以由校准控制模块200输出的控制信息m决定,反馈数据f不随采样数据的变化而变化。进而,在校准模式下,反馈参数Y可以是一直等于目标配置参数Ym,而不会随采样数据的变化而变化。基于此,本申请实施例可以在校准模式下单独目标配置参数Ym的配置值进行校准,确定的Ym的合适配置值的准确性不会受到其他配置参数的影响。It can be understood that in the calibration circuit 10 provided in the embodiment of the present application, as shown in FIG2 , in the calibration mode of the DFE circuit 100, although the value of the sampled data is still not fixed, in the calibration mode, the feedback data f is not determined by the sampled data, but can be determined by the control information m output by the calibration control module 200, and the feedback data f does not change with the change of the sampled data. Furthermore, in the calibration mode, the feedback parameter Y can always be equal to the target configuration parameter Ym, and will not change with the change of the sampled data. Based on this, the embodiment of the present application can calibrate the configuration value of the target configuration parameter Ym alone in the calibration mode, and the accuracy of the determined appropriate configuration value of Ym will not be affected by other configuration parameters.

这样,本申请实施例在反馈参数的校准过程中,通过校准控制模块控制选择器从多个配置参数中选择目标配置参数作为反馈参数,单独对目标配置参数进行校准得到目标配置参数的合适配置值,避免目标配置参数的校准过程中受到其他反馈参数的影响,进而可以分别确定得到各个配置参数的合适配置值,从而快速确定多个配置参数的合适配置值,提高了校准效率。In this way, in the calibration process of the feedback parameters in the embodiment of the present application, the calibration control module controls the selector to select the target configuration parameter as the feedback parameter from multiple configuration parameters, and the target configuration parameter is calibrated separately to obtain the appropriate configuration value of the target configuration parameter, thereby avoiding the influence of other feedback parameters during the calibration process of the target configuration parameter, and then the appropriate configuration value of each configuration parameter can be determined separately, thereby quickly determining the appropriate configuration values of multiple configuration parameters, thereby improving the calibration efficiency.

举例而言,相关技术中一般需要同时对多个配置参数(例如Y0和Y1)的配置值进行测试。例如,Y0有10个候选值,Y1有10个候选值,相关技术需要遍历(Y0,Y1)的10*10种排列组合,才能找出配置参数(Y0,Y1)可用的配置值。而本申请实施例在配置参数的校准过程中,通过校准控制模块控制选择器选择Y0作为反馈参数,单独对Y0进行10次校准得到Y0的合适配置值;同理,通过校准控制模块控制选择器选择Y1作为反馈参数,单独对Y1进行10次校准得到Y1的合适配置值,一共可以校准20次得到(Y0,Y1)的合适配置值。显然,与相关技术中需要进行100次测试相比,本申请实施例进行20次测试所需的时间明显减少,可以快速确定配置参数(Y0,Y1)的合适配置值,提高了校准效率。For example, in the related art, it is generally necessary to test the configuration values of multiple configuration parameters (such as Y0 and Y1) at the same time. For example, Y0 has 10 candidate values and Y1 has 10 candidate values. The related art needs to traverse 10*10 permutations and combinations of (Y0, Y1) to find the available configuration values of the configuration parameters (Y0, Y1). In the embodiment of the present application, during the calibration process of the configuration parameters, the calibration control module controls the selector to select Y0 as the feedback parameter, and calibrates Y0 10 times alone to obtain the appropriate configuration value of Y0; similarly, the calibration control module controls the selector to select Y1 as the feedback parameter, and calibrates Y1 10 times alone to obtain the appropriate configuration value of Y1. A total of 20 calibrations can be performed to obtain the appropriate configuration value of (Y0, Y1). Obviously, compared with the 100 tests required in the related art, the time required for 20 tests in the embodiment of the present application is significantly reduced, and the appropriate configuration value of the configuration parameter (Y0, Y1) can be quickly determined, thereby improving the calibration efficiency.

在实际应用中,在DFE电路100的正常工作模式下,当前时刻模拟电路110的反馈参数Y由D触发器120在上一个时钟输出的采样数据d1决定。例如,若当前时刻反馈参数Y为Ym,说明上一个时钟的采样数据d1为m,将m作为反馈数据f,对应选择Ym作为反馈参数Y。In actual applications, in the normal working mode of the DFE circuit 100, the feedback parameter Y of the analog circuit 110 at the current moment is determined by the sampled data d1 outputted by the D flip-flop 120 at the previous clock. For example, if the feedback parameter Y at the current moment is Ym, it means that the sampled data d1 of the previous clock is m, and m is used as the feedback data f, and Ym is selected as the feedback parameter Y accordingly.

基于此,在本申请实施例单独对目标配置参数Ym进行校准过程中,可以针对上一个时钟输入的随机数据与控制信息m相同的情况,对比当前时刻的随机数据和采样数据是否相同,而无需对所有时刻输入的全部随机数据和采样数据进行对比,从而可以针对性地对目标配置参数Ym进行校准,提高目标配置参数Ym配置值的准确性和效率。下面举例说明。Based on this, in the process of calibrating the target configuration parameter Ym alone in the embodiment of the present application, the random data and the sampled data at the current moment can be compared to see if they are the same when the random data input at the previous clock is the same as the control information m, without having to compare all the random data and sampled data input at all moments, so that the target configuration parameter Ym can be calibrated in a targeted manner, thereby improving the accuracy and efficiency of the configuration value of the target configuration parameter Ym. An example is given below.

在一个具体的实施例中,为了提高目标配置参数Ym配置值的准确性,如图3所示,数据对比模块300可以包括目标D触发器310,目标D触发器310的输入端与数据对比模块300的第二输入端连接,以接收随机数据golden_rx,目标D触发器310用于对随机数据golden_rx进行采样,输出第三数据golden_rx_d;In a specific embodiment, in order to improve the accuracy of the configuration value of the target configuration parameter Ym, as shown in FIG3 , the data comparison module 300 may include a target D flip-flop 310, the input end of the target D flip-flop 310 is connected to the second input end of the data comparison module 300 to receive the random data golden_rx, and the target D flip-flop 310 is used to sample the random data golden_rx and output the third data golden_rx_d;

其中,随机数据golden_rx可以理解为当前时刻的随机数据,第三数据golden_rx_d可以理解为上一个时钟的随机数据。The random data golden_rx can be understood as random data at the current moment, and the third data golden_rx_d can be understood as random data at the previous clock.

数据对比模块300可以用于在第三数据golden_rx_d与控制信息m相同的情况下,通过对比D触发器120输出的第二数据(即采样数据d1)与目标D触发器310接收的随机数据golden_rx,确定反馈参数Y的合适配置值。The data comparison module 300 can be used to determine a suitable configuration value of the feedback parameter Y by comparing the second data (ie, the sampled data d1 ) output by the D flip-flop 120 with the random data golden_rx received by the target D flip-flop 310 when the third data golden_rx_d is the same as the control information m.

具体而言,数据对比模块300可以在第三数据golden_rx_d与控制信息m相同的情况下,通过对比D触发器120输出的采样数据d1与目标D触发器310接收的随机数据golden_rx是否相同,确定目标配置参数Ym的合适配置值。Specifically, when the third data golden_rx_d is the same as the control information m, the data comparison module 300 can determine the appropriate configuration value of the target configuration parameter Ym by comparing whether the sampled data d1 output by the D flip-flop 120 is the same as the random data golden_rx received by the target D flip-flop 310 .

在本申请实施例中,对目标配置参数Ym的校准过程可以包括:校准控制模块200控制选择器130从配置参数Y0和Y1中选择目标配置参数Ym作为反馈参数Y,Ym可以为Y0或者Y1;模拟电路110基于反馈参数Y对第一数据golden_data进行转换得到数字信号d0;D触发器120对模拟电路110输出的数字信号d0进行采样,得到采样数据d1;数据对比模块300在反馈参数Y为目标配置参数Ym的情况下,且在第三数据golden_rx_d与控制信息m相同的情况下,通过对比D触发器120输出的采样数据d1与目标D触发器310接收的随机数据golden_rx是否相同,确定目标配置参数Ym的合适配置值。In an embodiment of the present application, the calibration process of the target configuration parameter Ym may include: the calibration control module 200 controls the selector 130 to select the target configuration parameter Ym as the feedback parameter Y from the configuration parameters Y0 and Y1, and Ym may be Y0 or Y1; the analog circuit 110 converts the first data golden_data based on the feedback parameter Y to obtain the digital signal d0; the D flip-flop 120 samples the digital signal d0 output by the analog circuit 110 to obtain the sampled data d1; the data comparison module 300 determines the appropriate configuration value of the target configuration parameter Ym by comparing whether the sampled data d1 output by the D flip-flop 120 is the same as the random data golden_rx received by the target D flip-flop 310 when the feedback parameter Y is the target configuration parameter Ym and when the third data golden_rx_d is the same as the control information m.

其中,D触发器120的时钟信号Clock与目标D触发器310的时钟信号Clock的频率相同,可以理解为相同的时钟信号。The clock signal Clock of the D flip-flop 120 and the clock signal Clock of the target D flip-flop 310 have the same frequency, and can be understood as the same clock signal.

这样,本申请实施例单独对目标配置参数Ym进行校准过程中,数据对比模块300可以针对第三数据golden_rx_d与控制信息m相同的情况,对比随机数据golden_rx和第二数据(即采样数据d1)是否相同,而无需对所有时刻输入的全部随机数据和采样数据进行对比,从而可以针对性地对目标配置参数Ym进行校准,提高目标配置参数Ym配置值的准确性和效率。In this way, during the process of calibrating the target configuration parameter Ym alone in the embodiment of the present application, the data comparison module 300 can compare whether the random data golden_rx and the second data (i.e., the sampling data d1) are the same when the third data golden_rx_d is the same as the control information m, without having to compare all the random data and sampling data input at all times, so that the target configuration parameter Ym can be calibrated in a targeted manner, thereby improving the accuracy and efficiency of the configuration value of the target configuration parameter Ym.

在实际应用中,为了准确地对比输入至数据对比模块300的随机数据golden_rx与D触发器120输出至数据对比模块300的第二数据d1,输入至数据对比模块300的随机数据golden_rx与D触发器120输出至数据对比模块300的第二数据d1的相位可以对齐。In practical applications, in order to accurately compare the random data golden_rx input to the data comparison module 300 with the second data d1 output to the data comparison module 300 by the D flip-flop 120, the phases of the random data golden_rx input to the data comparison module 300 and the second data d1 output to the data comparison module 300 by the D flip-flop 120 can be aligned.

在一个具体的实施例中,DFE电路100的数据输入端输入的第一数据golden_data与数据对比模块300的第二输入端输入的随机数据golden_rx可以来自同一串随机数据,数据对比模块300的第二输入端输入的随机数据golden_rx可以与DFE电路的数据输出端输出的第二数据d1的相位对齐。In a specific embodiment, the first data golden_data input to the data input terminal of the DFE circuit 100 and the random data golden_rx input to the second input terminal of the data comparison module 300 may come from the same string of random data, and the random data golden_rx input to the second input terminal of the data comparison module 300 may be phase-aligned with the second data d1 output from the data output terminal of the DFE circuit.

或者,在另一个具体的实施例中,在数据对比模块300的第二输入端输入的随机数据与DFE电路的数据输出端输出的第二数据d1的相位不对齐的情况下,本申请可以对第一数据golden_data进行相位调整处理,得到相位调整后的随机数据golden_rx,使相位调整后的随机数据golden_rx与第二数据d1的相位对齐。Alternatively, in another specific embodiment, when the phases of the random data input to the second input end of the data comparison module 300 and the second data d1 output from the data output end of the DFE circuit are not aligned, the present application may perform phase adjustment processing on the first data golden_data to obtain the phase-adjusted random data golden_rx, so that the phases of the phase-adjusted random data golden_rx are aligned with the second data d1.

在一个具体的实施例中,如图4或图5所示,本申请实施例提供的校准电路还可以包括数据对齐模块400;数据对齐模块400与与数据对比模块300的第二输入端相连接;数据对齐模块400用于对第一数据golden_data进行相位调整,得到随机数据golden_rx,使随机数据golden_rx与DFE电路的数据输出端输出的第二数据d1的相位对齐。In a specific embodiment, as shown in FIG. 4 or FIG. 5 , the calibration circuit provided in the embodiment of the present application may further include a data alignment module 400; the data alignment module 400 is connected to the second input end of the data comparison module 300; the data alignment module 400 is used to perform phase adjustment on the first data golden_data to obtain random data golden_rx, so that the phase of the random data golden_rx is aligned with the second data d1 outputted from the data output end of the DFE circuit.

例如,如图4所示,在DFE电路100为一阶DFE电路的情况下,数据对齐模块400对第一数据golden_data进行相位调整得到随机数据golden_rx,使随机数据golden_rx与DFE电路的数据输出端输出的采样数据d1的相位对齐。For example, as shown in FIG. 4 , when the DFE circuit 100 is a first-order DFE circuit, the data alignment module 400 performs phase adjustment on the first data golden_data to obtain random data golden_rx, so that the phase of the random data golden_rx is aligned with the sampling data d1 outputted from the data output terminal of the DFE circuit.

又例如,如图5所示,在DFE电路100为n阶DFE电路的情况下,数据对齐模块400对随机数据golden_data进行相位调整得到随机数据golden_rx,使得随机数据golden_rx与DFE电路的数据输出端输出的第二数据(即第一个D触发器120输出的采样数据d1)的相位对齐。For another example, as shown in FIG5 , when the DFE circuit 100 is an n-order DFE circuit, the data alignment module 400 performs phase adjustment on the random data golden_data to obtain the random data golden_rx, so that the phase of the random data golden_rx is aligned with the second data output from the data output end of the DFE circuit (i.e., the sampling data d1 output by the first D flip-flop 120).

其中,所述数据对齐模块400可以包括诸如延时电路或者D触发器等具有数据对齐功能的器件,本申请对数据对齐模块的具体结构不作限制。The data alignment module 400 may include a device with a data alignment function such as a delay circuit or a D flip-flop, and the present application does not limit the specific structure of the data alignment module.

这样,通过数据对齐模块400将随机数据golden_rx与D触发器120输出至数据对比模块300的第二数据d1的相位对齐,可以准确地对比随机数据golden_rx与第二数据d1,适用于数据传递过程中发生偏移的情形。In this way, the data alignment module 400 aligns the phase of the random data golden_rx with the second data d1 output by the D flip-flop 120 to the data comparison module 300, so that the random data golden_rx and the second data d1 can be accurately compared, which is suitable for the case where a deviation occurs during data transmission.

如此,在数据传递过程中发生偏移的应用场景下,本申请可以采用数据对齐模块将数据对比模块接收的随机数据与DFE电路采集的采样数据进行相位对齐,进而,数据对比模块可以采用相位对齐后的随机数据与DFE电路采集的采样数据进行数据对比,避免数据对比模块的准确性受到数据传递过程中偏移现象的影响,保证了数据对比模块进行数据对比的准确性。In this way, in an application scenario where an offset occurs during data transmission, the present application can use a data alignment module to phase-align the random data received by the data comparison module with the sampled data collected by the DFE circuit. Then, the data comparison module can use the random data after phase alignment to compare the data with the sampled data collected by the DFE circuit, thereby preventing the accuracy of the data comparison module from being affected by the offset phenomenon during data transmission, thereby ensuring the accuracy of the data comparison performed by the data comparison module.

在实际应用中,DFE电路100的阶数不同,对应DFE电路100的配置参数的数量也不同。其中,DFE电路100可以包括n阶DFE电路,n为正整数;在n阶DFE电路中,D触发器120的数目可以为n个,第一个D触发器120与模拟电路110连接;n大于1的情况下,n个D触发器120依次串联连接;DFE电路100的配置参数的数目为2n个。In practical applications, the number of configuration parameters of the DFE circuit 100 is different for different orders of the DFE circuit 100. The DFE circuit 100 may include an n-order DFE circuit, where n is a positive integer; in the n-order DFE circuit, the number of D flip-flops 120 may be n, and the first D flip-flop 120 is connected to the analog circuit 110; when n is greater than 1, the n D flip-flops 120 are connected in series in sequence; the number of configuration parameters of the DFE circuit 100 is 2n .

例如,如图3和4所示,n等于1的情况下,DFE电路100为一阶DFE电路,DFE电路100输出的采样数据为d1,d1为一位二进制数,d1可以取0或者1。对应地,DFE电路100的配置参数包括2个:Y0和Y1。For example, as shown in FIGS. 3 and 4 , when n is equal to 1, the DFE circuit 100 is a first-order DFE circuit, and the sampled data output by the DFE circuit 100 is d1, where d1 is a binary number and d1 can be 0 or 1. Correspondingly, the configuration parameters of the DFE circuit 100 include two: Y0 and Y1.

又例如,如图5所示,n大于1的情况下,DFE电路100为n阶DFE电路,DFE电路100输出的采样数据为{dn,…,d2,d1},{dn,…,d2,d1}为n位二进制数,d1为采样数据{dn,…,d2,d1}的最低位数,n个位数中每个位数均可取0或者1,对应的{dn,…,d2,d1}可以取0、1、2、…、2n-1。对应地,DFE电路100的配置参数包括2n个:Y0、Y1、Y2、…、Y2n-1。For another example, as shown in FIG5 , when n is greater than 1, the DFE circuit 100 is an n-order DFE circuit, and the sampled data output by the DFE circuit 100 is {dn, …, d2, d1}, {dn, …, d2, d1} is an n-bit binary number, d1 is the lowest bit of the sampled data {dn, …, d2, d1}, and each of the n bits can be 0 or 1, and the corresponding {dn, …, d2, d1} can be 0, 1, 2, …, 2 n -1. Correspondingly, the configuration parameters of the DFE circuit 100 include 2 n : Y0, Y1, Y2, …, Y2 n -1.

进而,针对不同的DFE电路100,本申请实施例可以对不同DFE电路100的配置参数进行校准。其中,针对n阶DFE电路,校准控制模块200可用于控制选择器130从2n个配置参数中选择目标配置参数Ym作为反馈参数Y。Furthermore, for different DFE circuits 100, the embodiment of the present application can calibrate the configuration parameters of different DFE circuits 100. For an n-th order DFE circuit, the calibration control module 200 can be used to control the selector 130 to select the target configuration parameter Ym as the feedback parameter Y from 2n configuration parameters.

例如,如图3所示,DFE电路100包括一阶DFE电路,在一阶DFE电路中,D触发器120的数目为一个,配置参数的数目为两个;校准控制模块200可用于控制选择器130从两个配置参数中选择目标配置参数作为反馈参数。For example, as shown in FIG. 3 , the DFE circuit 100 includes a first-order DFE circuit, in which the number of D flip-flops 120 is one and the number of configuration parameters is two; the calibration control module 200 may be used to control the selector 130 to select a target configuration parameter from the two configuration parameters as a feedback parameter.

举例而言,在DFE电路100为一阶DFE电路的情况下,校准控制模块200可以输出控制信息m作为反馈数据f,0≤m≤1;一阶DFE电路的配置参数可以包括Y0和Y1,校准控制模块200可控制选择器130从Y0和Y1中选择目标配置参数,实现单独对目标配置参数Y0进行校准,避免配置参数Y1对目标配置参数Y0的影响,或者,实现单独对目标配置参数Y1进行校准,避免配置参数Y0对目标配置参数Y1的影响。For example, when the DFE circuit 100 is a first-order DFE circuit, the calibration control module 200 may output control information m as feedback data f, 0≤m≤1; the configuration parameters of the first-order DFE circuit may include Y0 and Y1, and the calibration control module 200 may control the selector 130 to select the target configuration parameter from Y0 and Y1, so as to calibrate the target configuration parameter Y0 alone to avoid the influence of the configuration parameter Y1 on the target configuration parameter Y0, or to calibrate the target configuration parameter Y1 alone to avoid the influence of the configuration parameter Y0 on the target configuration parameter Y1.

又例如,如图5所示,DFE电路100包括n阶DFE电路,n为大于1的整数;在n阶DFE电路中,D触发器120的数目为n个,第一个D触发器120与模拟电路110连接,n个D触发器120依次串联连接;For another example, as shown in FIG5 , the DFE circuit 100 includes an n-stage DFE circuit, where n is an integer greater than 1; in the n-stage DFE circuit, the number of D flip-flops 120 is n, the first D flip-flop 120 is connected to the analog circuit 110, and the n D flip-flops 120 are connected in series in sequence;

其中,第二数据为第一个D触发器120输出的采样数据,校准控制模块200可用于控制选择器130从2n个配置参数中选择目标配置参数Ym作为反馈参数Y。The second data is the sampled data output by the first D flip-flop 120 , and the calibration control module 200 can be used to control the selector 130 to select the target configuration parameter Ym as the feedback parameter Y from the 2 n configuration parameters.

其中,n个D触发器输出的采样数据{dn,…,d2,d1}为n位二进制数;Among them, the sampled data {dn,…,d2,d1} output by n D flip-flops is an n-bit binary number;

其中,可以将第一个D触发器输出的采样数据d1作为第二数据。The sampling data d1 output by the first D flip-flop may be used as the second data.

举例而言,在DFE电路100为n(n大于1)阶DFE电路的情况下,校准控制模块200可以输出控制信息m作为反馈数据f,0≤m≤2n-1;n阶DFE电路的配置参数可以包括Y0、Y1、Y2、…、Y2n-1,校准控制模块200可控制选择器130从Y0、Y1、Y2、…、Y2n-1中选择目标配置参数Ym,实现单独对目标配置参数Ym进行校准,避免其他配置参数对目标配置参数Ym的影响。For example, when the DFE circuit 100 is an n-order (n is greater than 1)-order DFE circuit, the calibration control module 200 may output control information m as feedback data f, 0≤m≤2n - 1; the configuration parameters of the n-order DFE circuit may include Y0, Y1, Y2, ..., Y2n - 1, and the calibration control module 200 may control the selector 130 to select the target configuration parameter Ym from Y0, Y1, Y2, ..., Y2n -1 to calibrate the target configuration parameter Ym alone, thereby avoiding the influence of other configuration parameters on the target configuration parameter Ym.

如图5所示,在DFE电路100为n阶DFE电路的情况下,数据对比模块300可以包括n个目标D触发器310;n大于1的情况下,n个目标D触发器310依次连接;第一个目标D触发器310的输入端用于随机数据golden_rx;n个目标D触发器310用于输出第三数据golden_PRE;As shown in FIG5 , when the DFE circuit 100 is an n-stage DFE circuit, the data comparison module 300 may include n target D flip-flops 310 ; when n is greater than 1, the n target D flip-flops 310 are connected in sequence; the input end of the first target D flip-flop 310 is used for the random data golden_rx; the n target D flip-flops 310 are used to output the third data golden_PRE;

其中,第三数据golden_PRE 为n位二进制数,可以表示为{golden_rx_dn,…,golden_rx_d2,golden_rx_d1};The third data golden_PRE is an n-bit binary number, which can be expressed as {golden_rx_dn, ..., golden_rx_d2, golden_rx_d1};

其中,数据对比模块300可用于在第三数据golden_PRE与控制信息m相同的情况下,通过对比由第一个D触发器120输出的第二数据d1与随机数据golden_rx是否相同,确定目标配置参数Ym的合适配置值。The data comparison module 300 may be used to determine a suitable configuration value of the target configuration parameter Ym by comparing whether the second data d1 output by the first D flip-flop 120 is the same as the random data golden_rx when the third data golden_PRE is the same as the control information m.

这样,本申请实施例单独对n阶DFE电路的目标配置参数Ym进行校准过程中,可以针对第三数据golden_PRE与控制信息m相同的情况,对比随机数据golden_rx和第二数据d1是否相同,而无需对所有时刻输入的全部随机数据和采样数据进行对比,从而可以针对性地对目标配置参数Ym进行校准,提高目标配置参数Ym的配置值的准确性。In this way, in the process of calibrating the target configuration parameter Ym of the n-order DFE circuit alone in the embodiment of the present application, the random data golden_rx and the second data d1 can be compared to see whether they are the same when the third data golden_PRE is the same as the control information m, without having to compare all the random data and sampling data input at all times, so that the target configuration parameter Ym can be calibrated in a targeted manner to improve the accuracy of the configuration value of the target configuration parameter Ym.

在本申请实施例中,如图3或图5所示,DFE电路100的数据输出端还与校准控制模块200连接,校准控制模块200还可以用于在确定反馈参数的合适配置值之后,控制DFE电路100的数据输出端与DFE电路100的控制端导通,以使DFE电路进入正常工作模式。In the embodiment of the present application, as shown in FIG. 3 or FIG. 5 , the data output end of the DFE circuit 100 is also connected to the calibration control module 200. The calibration control module 200 can also be used to control the data output end of the DFE circuit 100 to be connected to the control end of the DFE circuit 100 after determining a suitable configuration value of the feedback parameter, so that the DFE circuit enters a normal working mode.

具体而言,DFE电路100中可以包括多个配置参数,校准控制模块200可以用于在确定多个配置参数的合适配置值之后,控制DFE电路100的数据输出端与DFE电路100的控制端导通,以使DFE电路进入正常工作模式。Specifically, the DFE circuit 100 may include multiple configuration parameters. The calibration control module 200 may be used to control the data output end of the DFE circuit 100 to be connected with the control end of the DFE circuit 100 after determining appropriate configuration values of the multiple configuration parameters, so that the DFE circuit enters a normal working mode.

例如,如图3所示,在一阶DFE电路中,DFE电路100的数据输出端为D触发器120的输出端,DFE电路100的控制端为选择器130的控制端;D触发器120的输出端与校准控制模块200连接,校准控制模块200还可以用于在确定配置参数(Y0,Y1)的合适配置值之后,控制D触发器120的输出端与选择器130的控制端导通,以使DFE电路进入正常工作模式;在正常工作模式下,反馈数据f等于D触发器120的输出的采样数据d1,保证DFE电路100的反馈机制正常运行。For example, as shown in FIG3 , in a first-order DFE circuit, the data output end of the DFE circuit 100 is the output end of the D flip-flop 120, and the control end of the DFE circuit 100 is the control end of the selector 130; the output end of the D flip-flop 120 is connected to the calibration control module 200, and the calibration control module 200 can also be used to control the output end of the D flip-flop 120 to be connected to the control end of the selector 130 after determining the appropriate configuration value of the configuration parameter (Y0, Y1), so that the DFE circuit enters a normal operating mode; in the normal operating mode, the feedback data f is equal to the sampled data d1 of the output of the D flip-flop 120, so as to ensure that the feedback mechanism of the DFE circuit 100 operates normally.

又例如,如图5所示,在n阶DFE电路中,DFE电路100的数据输出端为n个D触发器120的输出端,DFE电路100的控制端为选择器130的控制端;n个D触发器120的输出端与校准控制模块200连接,校准控制模块200还可以用于在确定配置参数(Y0,Y1,…,Y2n-1)的合适配置值之后,控制D触发器120的输出端与选择器130的控制端导通,以使DFE电路进入正常工作模式;在正常工作模式下,反馈数据f等于D触发器120的输出的采样数据{dn,…,d2,d1}。For another example, as shown in FIG5 , in an n-order DFE circuit, the data output end of the DFE circuit 100 is the output end of n D flip-flops 120, and the control end of the DFE circuit 100 is the control end of the selector 130; the output ends of the n D flip-flops 120 are connected to the calibration control module 200, and the calibration control module 200 can also be used to control the output end of the D flip-flop 120 to be connected to the control end of the selector 130 after determining the appropriate configuration value of the configuration parameter (Y0, Y1, …, Y2 n -1), so that the DFE circuit enters the normal working mode; in the normal working mode, the feedback data f is equal to the sampled data {dn, …, d2, d1} of the output of the D flip-flop 120.

基于与上述任一实施例提供的校准电路相似的构思,本申请实施例还提供一种芯片。如图6所示,该芯片600可以包括上述任一实施例提供的校准电路10,且用于实现上述任一实施例提供的校准电路的全部功能,为避免重复,此处不再赘述。Based on the concept similar to the calibration circuit provided in any of the above embodiments, the present application embodiment further provides a chip. As shown in FIG6 , the chip 600 may include the calibration circuit 10 provided in any of the above embodiments, and is used to implement all the functions of the calibration circuit provided in any of the above embodiments, which will not be described here to avoid repetition.

基于与上述任一实施例提供的校准电路相似的构思,本申请实施例还提供一种电子设备,如图7所示,该电子设备700可以包括上述任一实施例提供的校准电路10,且用于实现上述任一实施例提供的校准电路的全部功能,为避免重复,此处不再赘述。Based on a concept similar to the calibration circuit provided in any of the above embodiments, an embodiment of the present application further provides an electronic device, as shown in FIG7 . The electronic device 700 may include the calibration circuit 10 provided in any of the above embodiments, and is used to implement all the functions of the calibration circuit provided in any of the above embodiments. To avoid repetition, it will not be described here.

基于与上述任一实施例提供的校准电路相似的构思,本申请实施例还提供一种参数校准方法,用于对DFE电路的反馈参数进行校准,该参数校准方法可以应用于上述任一实施例提供的校准电路。Based on a concept similar to the calibration circuit provided in any of the above embodiments, an embodiment of the present application further provides a parameter calibration method for calibrating feedback parameters of a DFE circuit. The parameter calibration method can be applied to the calibration circuit provided in any of the above embodiments.

如图8所示,本申请实施例提供一种参数校准方法,该参数校准方法可以包括:As shown in FIG8 , an embodiment of the present application provides a parameter calibration method, which may include:

步骤810:获取控制信息,基于控制信息,确定DFE电路的反馈参数;Step 810: Acquire control information, and determine feedback parameters of the DFE circuit based on the control information;

步骤820:基于反馈参数对DFE电路数据输入端输入的第一数据进行处理,得到第二数据;Step 820: Process the first data input from the data input terminal of the DFE circuit based on the feedback parameter to obtain second data;

步骤830:通过对比第二数据与随机数据,确定反馈参数的合适配置值;随机数据是基于第一数据得到的。Step 830: Determine a suitable configuration value of the feedback parameter by comparing the second data with the random data; the random data is obtained based on the first data.

其中,该参数校准方法用于对DFE电路100的反馈参数Y进行校准。The parameter calibration method is used to calibrate the feedback parameter Y of the DFE circuit 100 .

在步骤810中,本申请可以获取控制指令,控制指令可以记为training_mode,对控制指令进行解析得到控制信息,控制信息可以记为m。In step 810, the present application may obtain a control instruction, which may be recorded as training_mode, and parse the control instruction to obtain control information, which may be recorded as m.

其中,控制信息m可以用于确定DFE电路的反馈参数Y。The control information m may be used to determine a feedback parameter Y of the DFE circuit.

举例而言,基于控制信息m,从DFE电路的多个配置参数中选择一个目标配置参数Ym,将目标配置参数Ym作为DFE电路的反馈参数Y。For example, based on the control information m, a target configuration parameter Ym is selected from a plurality of configuration parameters of the DFE circuit, and the target configuration parameter Ym is used as the feedback parameter Y of the DFE circuit.

其中,控制指令可以是校准控制模块预先获取并存储的指令,也可以是校准控制模块从其他的控制模块接收的指令,本申请不作具体限制。The control instruction may be an instruction pre-acquired and stored by the calibration control module, or may be an instruction received by the calibration control module from other control modules, and this application does not impose any specific limitation thereto.

在步骤820中,本申请可以基于控制指令training_mode得到的控制信息m,控制选择器130从多个配置参数中选择目标配置参数Ym作为模拟电路110的反馈参数Y。In step 820 , the present application may control the selector 130 to select a target configuration parameter Ym as the feedback parameter Y of the analog circuit 110 from a plurality of configuration parameters based on the control information m obtained by the control instruction training_mode.

在步骤830中,在模拟电路110的反馈参数Y为目标配置参数Ym的情况下,本申请可以通过对比第二数据d1与随机数据golden_rx是否相同,确定目标配置参数Ym的合适配置值。In step 830 , when the feedback parameter Y of the analog circuit 110 is the target configuration parameter Ym, the present application can determine a suitable configuration value of the target configuration parameter Ym by comparing whether the second data d1 is the same as the random data golden_rx.

本申请实施例可以在DFE电路的校准模式下,基于控制指令training_mode得到的控制信息m,确定反馈数据f为m,然后控制选择器从多个配置参数中选择控制信息m对应的目标配置参数Ym作为反馈参数Y。In the calibration mode of the DFE circuit, the embodiment of the present application can determine that the feedback data f is m based on the control information m obtained by the control instruction training_mode, and then control the selector to select the target configuration parameter Ym corresponding to the control information m as the feedback parameter Y from multiple configuration parameters.

能够理解的是,在校准模式下,虽然DFE电路输出的第二数据的值是不固定的,但与正常工作模式相比反馈数据f不由第二数据决定,而可以由控制指令training_mode指示的控制信息m决定,反馈数据f不随第二数据的变化而变化。进而,在该校准模式下对目标配置参数Ym进行校准时,反馈参数Y可以固定为目标配置参数Ym,而不会随采样数据的变化而变化。基于此,本申请实施例可以在校准模式下单独目标配置参数Ym的配置值进行校准,确定的Ym的合适配置值,且准确性不会受到其他配置参数的影响。It can be understood that, in the calibration mode, although the value of the second data output by the DFE circuit is not fixed, compared with the normal working mode, the feedback data f is not determined by the second data, but can be determined by the control information m indicated by the control instruction training_mode, and the feedback data f does not change with the change of the second data. Furthermore, when the target configuration parameter Ym is calibrated in this calibration mode, the feedback parameter Y can be fixed to the target configuration parameter Ym, and will not change with the change of the sampled data. Based on this, the embodiment of the present application can calibrate the configuration value of the target configuration parameter Ym alone in the calibration mode, determine the appropriate configuration value of Ym, and the accuracy will not be affected by other configuration parameters.

根据本申请实施例提供的参数校准方法,通过获取控制信息,基于控制信息,确定DFE电路的反馈参数;基于反馈参数对第一数据进行处理,得到第二数据;通过对比第二数据与随机数据,确定反馈参数的合适配置值;随机数据是基于第一数据得到的。这样,通过控制信息从多个配置参数中选择目标配置参数作为反馈参数,可以单独对目标配置参数进行校准得到目标配置参数的合适配置值,避免目标配置参数的校准过程中受到其他反馈参数的影响,进而可以分别确定得到各个配置参数的合适配置值,从而快速确定反馈参数的合适配置值,提高了校准效率。According to the parameter calibration method provided by the embodiment of the present application, the feedback parameter of the DFE circuit is determined based on the control information by acquiring the control information; the first data is processed based on the feedback parameter to obtain the second data; the appropriate configuration value of the feedback parameter is determined by comparing the second data with the random data; the random data is obtained based on the first data. In this way, the target configuration parameter is selected from multiple configuration parameters as the feedback parameter through the control information, and the target configuration parameter can be calibrated separately to obtain the appropriate configuration value of the target configuration parameter, so as to avoid the influence of other feedback parameters during the calibration process of the target configuration parameter, and then the appropriate configuration value of each configuration parameter can be determined separately, so as to quickly determine the appropriate configuration value of the feedback parameter, and improve the calibration efficiency.

在另一个具体的实施例中,为了提高校准得到的目标配置参数的合适配置值的准确性,上述步骤830中,通过对比所述第二数据与随机数据,确定所述反馈参数的合适配置值,可以包括:In another specific embodiment, in order to improve the accuracy of the appropriate configuration value of the target configuration parameter obtained by calibration, in the above step 830, determining the appropriate configuration value of the feedback parameter by comparing the second data with the random data may include:

通过目标D触发器对所述随机数据进行采样处理,得到第三数据;Sampling the random data through a target D flip-flop to obtain third data;

在所述第三数据与所述控制信息相同的情况下,通过对比所述第二数据与随机数据,确定所述反馈参数的合适配置值。In the case that the third data is identical to the control information, a suitable configuration value of the feedback parameter is determined by comparing the second data with random data.

其中,第三数据可理解为上一个时钟输入的随机数据。The third data may be understood as random data input by the previous clock.

这样,在本申请实施例单独对目标配置参数Ym进行校准过程中,可以针对第三数据与控制信息m相同的情况,对比当前时刻的随机数据和第二数据是否相同,而无需对所有时刻输入的全部随机数据和采样数据进行对比,从而可以针对性地对目标配置参数Ym进行校准,提高目标配置参数Ym配置值的准确性和效率。In this way, in the process of calibrating the target configuration parameter Ym alone in the embodiment of the present application, the random data at the current moment and the second data can be compared to see whether they are the same when the third data is the same as the control information m, without having to compare all the random data and sampling data input at all moments, so that the target configuration parameter Ym can be calibrated in a targeted manner, thereby improving the accuracy and efficiency of the configuration value of the target configuration parameter Ym.

在另一个具体的实施例中,为了准确地对比随机数据与采样数据,在步骤830之前,该参数校准方法还可以包括:In another specific embodiment, in order to accurately compare the random data with the sampled data, before step 830, the parameter calibration method may further include:

对第一数据进行相位调整,得到随机数据,使随机数据与第二数据相位对齐。The first data is phase-adjusted to obtain random data, so that the phases of the random data and the second data are aligned.

这样,在进行数据对比之前,本申请实施例通过将随机数据golden_rx与第二数据d1的相位对齐,可以更加准确地对比随机数据golden_rx与第二数据d1,提高了目标配置参数Ym配置值的准确性。In this way, before data comparison, the embodiment of the present application can more accurately compare the random data golden_rx with the second data d1 by aligning the phases of the random data golden_rx and the second data d1, thereby improving the accuracy of the configuration value of the target configuration parameter Ym.

此外,本申请实施例确定的目标配置参数Ym的合适配置值可能有多个,这种情况下,在步骤830之后,本申请实施例还可以基于目标配置参数的多个合适配置值,确定目标配置参数的最佳配置值。该最佳配置值可以通过求平均数或者求中位数等方式确定。换言之,最佳配置值可以是多个合适配置值的平均值或者中位数。In addition, there may be multiple suitable configuration values of the target configuration parameter Ym determined by the embodiment of the present application. In this case, after step 830, the embodiment of the present application can also determine the optimal configuration value of the target configuration parameter based on multiple suitable configuration values of the target configuration parameter. The optimal configuration value can be determined by averaging or median. In other words, the optimal configuration value can be the average or median of multiple suitable configuration values.

进一步地,在步骤830之后,本申请实施例还可以在分别确定多个配置参数中各个配置参数的最佳配置值后,基于多个配置参数中各个配置参数的最佳配置值,确定DFE电路的多个配置参数的最佳配置值组合,进而能够校准出反馈参数的最佳配置值。而相关技术中得到的是(Y0,Y1)的合适配置值组合,不清楚组合内Y0和Y1是否相互影响,难以拆分出Y0和Y1的最佳配置值并计算Y0和Y1的最佳配置值组合。Furthermore, after step 830, the embodiment of the present application can also determine the optimal configuration value combination of multiple configuration parameters of the DFE circuit based on the optimal configuration value of each configuration parameter in the multiple configuration parameters after respectively determining the optimal configuration value of each configuration parameter in the multiple configuration parameters, thereby being able to calibrate the optimal configuration value of the feedback parameter. However, in the related art, what is obtained is a suitable configuration value combination of (Y0, Y1), and it is unclear whether Y0 and Y1 in the combination affect each other, and it is difficult to separate the optimal configuration values of Y0 and Y1 and calculate the optimal configuration value combination of Y0 and Y1.

此外,在其他实施例中,本申请实施例还可以在确定多个配置参数中各个配置参数的合适配置值之后,获取切换控制指令,基于切换控制指令指示的切换信息,控制DFE电路的输出端与DFE电路的控制端导通,以使DFE电路进入正常工作模式。在正常工作模式下,DFE电路的选择器的控制端输入的反馈数据f等于DFE电路的D触发器输出的采样数据。In addition, in other embodiments, the embodiments of the present application may also obtain a switching control instruction after determining a suitable configuration value of each configuration parameter in the plurality of configuration parameters, and control the output end of the DFE circuit to be connected to the control end of the DFE circuit based on the switching information indicated by the switching control instruction, so that the DFE circuit enters a normal working mode. In the normal working mode, the feedback data f input to the control end of the selector of the DFE circuit is equal to the sampled data output by the D flip-flop of the DFE circuit.

在实际应用中,DFE电路的阶数不同,对应DFE电路的配置参数的数量也不同,对应反馈参数的校准过程也不同。下面结合DFE电路的具体情况对参数校准方法的具体流程进行举例说明。In practical applications, the number of configuration parameters of the DFE circuits is different for different orders of the DFE circuits, and the calibration process of the corresponding feedback parameters is also different. The specific process of the parameter calibration method is described below with examples based on the specific situation of the DFE circuit.

例如,针对图3所示的一阶DFE电路,本申请实施例提供的参数校准方法可以分别对配置参数Y0和Y1进行校准。For example, for the first-order DFE circuit shown in FIG. 3 , the parameter calibration method provided in the embodiment of the present application can calibrate the configuration parameters Y0 and Y1 respectively.

在一阶DFE电路中,反馈数据f的取值范围等于采样数据d1的取值范围(0或1),控制指令training_mode可以依据d1的取值范围,提供以下3种工作模式:In the first-order DFE circuit, the value range of the feedback data f is equal to the value range of the sampled data d1 (0 or 1). The control instruction training_mode can provide the following three working modes according to the value range of d1:

在training_mode=0时,反馈数据f等于采样数据d1,一阶DFE电路进入正常工作模式;When training_mode=0, the feedback data f is equal to the sampled data d1, and the first-order DFE circuit enters the normal working mode;

在training_mode=1时,反馈数据f=m=0,一阶DFE电路进入对配置参数Y0的校准模式;When training_mode=1, the feedback data f=m=0, and the first-order DFE circuit enters the calibration mode for the configuration parameter Y0;

在training_mode=2时,反馈数据f=m=1,一阶DFE电路进入对配置参数Y1的校准模式。When training_mode=2, the feedback data f=m=1, and the first-order DFE circuit enters the calibration mode for the configuration parameter Y1.

如图9所示,本申请实施例提供一种对一阶DFE电路的配置参数Y0进行校准的方法,具体流程包括:As shown in FIG. 9 , the embodiment of the present application provides a method for calibrating the configuration parameter Y0 of a first-order DFE circuit, and the specific process includes:

开始校准测试时,设置控制指令training_mode=1;进入对配置参数Y0的校准模式;可以对配置参数Y0的多个候选配置值进行校准测试;When starting the calibration test, set the control instruction training_mode=1; enter the calibration mode for the configuration parameter Y0; and perform calibration tests on multiple candidate configuration values of the configuration parameter Y0;

设置Y0为第一个候选配置值Y0_min;Set Y0 to the first candidate configuration value Y0_min;

在发送端启动后DFE电路开始接收来自发送端的随机数据;After the transmitter is started, the DFE circuit starts to receive random data from the transmitter;

判断第三数据(即上一个时钟的随机数据)golden_rx_d是否为0;Determine whether the third data (i.e., the random data of the previous clock) golden_rx_d is 0;

若golden_rx_d不为0,则获取下一个时钟的随机数据;If golden_rx_d is not 0, get the random data of the next clock;

若golden_rx_d为0,则对比判断当前时钟的随机数据golden_rx是否等于d1;If golden_rx_d is 0, then compare and determine whether the random data golden_rx of the current clock is equal to d1;

若golden_rx不等于d1,则确定Y0当前的候选配置值不是合适配置值;If golden_rx is not equal to d1, it is determined that the current candidate configuration value of Y0 is not a suitable configuration value;

若golden_rx等于d1,则判断随机数据是否全部接收完毕;If golden_rx is equal to d1, it is determined whether all random data has been received;

若随机数据未全部接收完毕,则获取下一个时钟的随机数据;If the random data has not been completely received, the random data of the next clock is obtained;

若随机数据已全部接收完毕,则确定Y0当前的候选配置值为合适配置值;If all random data has been received, determine that the current candidate configuration value of Y0 is a suitable configuration value;

判断Y0的多个候选配置值是否全部遍历测试完成;Determine whether all candidate configuration values of Y0 have been traversed and tested;

若Y0的多个候选配置值未全部遍历,则在发送端复位后,更换Y0为下一个候选配置值,对下一个候选配置值进行校准测试;If multiple candidate configuration values of Y0 have not been traversed completely, after the transmitter is reset, Y0 is replaced with the next candidate configuration value, and a calibration test is performed on the next candidate configuration value;

若Y0的多个候选配置值已全部遍历,则结束校准测试,输出Y0所有的合适配置值。If all candidate configuration values of Y0 have been traversed, the calibration test is terminated and all suitable configuration values of Y0 are output.

类似地,如图10所示,本申请实施例提供一种对一阶DFE电路的配置参数Y1进行校准的方法,具体流程包括:Similarly, as shown in FIG10 , the embodiment of the present application provides a method for calibrating a configuration parameter Y1 of a first-order DFE circuit, and the specific process includes:

开始校准测试时,设置控制指令training_mode=2;进入对配置参数Y1的校准模式;可以对配置参数Y1的多个候选配置值进行校准测试;When starting the calibration test, set the control instruction training_mode=2; enter the calibration mode for the configuration parameter Y1; and perform calibration tests on multiple candidate configuration values of the configuration parameter Y1;

设置Y1为第一个候选配置值Y1_min;Set Y1 to the first candidate configuration value Y1_min;

在发送端启动后开始接收来自发送端的随机数据;After the sender starts, it starts receiving random data from the sender;

判断上一个时钟的随机数据golden_rx_d是否为1;Determine whether the random data golden_rx_d of the previous clock is 1;

若golden_rx_d不为1,则获取下一个时钟的随机数据;If golden_rx_d is not 1, get the random data of the next clock;

若golden_rx_d为1,则对比判断当前时钟的随机数据golden_rx是否等于d1;If golden_rx_d is 1, then compare and determine whether the random data golden_rx of the current clock is equal to d1;

若golden_rx不等于d1,则确定Y1当前的候选配置值不是合适配置值;If golden_rx is not equal to d1, it is determined that the current candidate configuration value of Y1 is not a suitable configuration value;

若golden_rx等于d1,则判断随机数据是否全部接收完毕;If golden_rx is equal to d1, it is determined whether all random data has been received;

若随机数据未全部接收完毕,则获取下一个时钟的随机数据;If the random data has not been completely received, the random data of the next clock is obtained;

若随机数据已全部接收完毕,则确定Y1当前的候选配置值为合适配置值;If all random data has been received, determine that the current candidate configuration value of Y1 is a suitable configuration value;

判断Y1的多个候选配置值是否全部遍历测试完成;Determine whether all candidate configuration values of Y1 have been traversed and tested;

若Y1的多个候选配置值未全部遍历,则在发送端复位后,更换Y1为下一个候选配置值,对下一个候选配置值进行校准测试;If multiple candidate configuration values of Y1 have not been traversed completely, after the transmitter is reset, Y1 is replaced with the next candidate configuration value, and a calibration test is performed on the next candidate configuration value;

若Y1的多个候选配置值已全部遍历,则结束校准测试,输出Y1所有的合适配置值。If all candidate configuration values of Y1 have been traversed, the calibration test is terminated and all suitable configuration values of Y1 are output.

在本申请实施例得到Y0和Y1的所有合适配置值集合后,还可以通过求平均值、求中位数等方法选取一组最合适的{Y0,Y1}配置值。将该配置值设置到一阶DFE电路中,然后修改training_mode = 0,则一阶DFE电路就可以工作在正常模式下,完成对输入信号码间干扰的抑制,输出还原后的采样数据。After obtaining all suitable configuration value sets of Y0 and Y1 in the embodiment of the present application, a set of the most suitable {Y0, Y1} configuration values can also be selected by averaging, median, etc. The configuration value is set to the first-order DFE circuit, and then training_mode is modified to 0, so that the first-order DFE circuit can work in normal mode, suppress the inter-symbol interference of the input signal, and output the restored sampled data.

此外,本申请实施例还可以支持n阶DFE电路的快速校准测试。针对图5所示的n阶DFE电路,本申请实施例提供的参数校准方法可以分别对配置参数Y0、Y1、…、Y2n-1进行校准。In addition, the embodiment of the present application can also support fast calibration test of n-order DFE circuit. For the n-order DFE circuit shown in FIG5 , the parameter calibration method provided by the embodiment of the present application can calibrate the configuration parameters Y0, Y1, ..., Y2 n -1 respectively.

在n阶DFE电路中,反馈数据f的取值范围由采样数据{dn,…,d2,d1}的取值范围(0、1、2、…、2n-1)决定,控制指令training_mode可以依据采样数据{dn,…,d2,d1}的取值范围,提供以下2n+1种工作模式:In an n-order DFE circuit, the value range of the feedback data f is determined by the value range (0, 1, 2, …, 2 n -1) of the sampled data {dn, …, d2, d1}. The control instruction training_mode can provide the following 2 n +1 working modes according to the value range of the sampled data {dn, …, d2, d1}:

在training_mode=0时,反馈数据f等于采样数据{dn,…,d2,d1},n阶DFE电路进入正常工作模式;When training_mode=0, the feedback data f is equal to the sampled data {dn,…,d2,d1}, and the n-order DFE circuit enters the normal working mode;

在training_mode=1时,反馈数据f=m=0,n阶DFE电路进入对配置参数Y0的校准模式;When training_mode=1, the feedback data f=m=0, and the n-order DFE circuit enters the calibration mode for the configuration parameter Y0;

在training_mode=2时,反馈数据f=m=1,n阶DFE电路进入对配置参数Y1的校准模式;When training_mode=2, the feedback data f=m=1, and the n-order DFE circuit enters the calibration mode for the configuration parameter Y1;

……;……;

在training_mode=2n时,反馈数据f=m=2n-1,n阶DFE电路进入对配置参数Y2n-1的校准模式。When training_mode= 2n , the feedback data f=m= 2n -1, and the n-th order DFE circuit enters the calibration mode for the configuration parameter Y2n -1.

其中,对于反馈数据f=m (0≤m≤2n-1) 的配置参数,校准测试流程参考图11。如图11所示,本申请实施例提供一种对n阶DFE电路的配置参数Ym进行校准的方法,具体流程包括:For the configuration parameter of feedback data f=m (0≤m≤2 n -1), the calibration test process refers to FIG11. As shown in FIG11, the embodiment of the present application provides a method for calibrating the configuration parameter Ym of an n-order DFE circuit, and the specific process includes:

开始校准测试时,设置控制指令training_mode=m+1;进入对配置参数Ym的校准模式;可以对配置参数Ym的多个候选配置值进行校准测试;When starting the calibration test, set the control instruction training_mode=m+1; enter the calibration mode for the configuration parameter Ym; and perform calibration tests on multiple candidate configuration values of the configuration parameter Ym;

设置Ym为第一个候选配置值Ym_min;Set Ym to the first candidate configuration value Ym_min;

在发送端启动后开始接收来自发送端的随机数据;After the sender starts, it starts receiving random data from the sender;

判断上一个时钟的随机数据golden_PRE是否为m;Determine whether the random data golden_PRE of the previous clock is m;

若golden_PRE不为m,则获取下一个时钟的随机数据;If golden_PRE is not m, get the random data of the next clock;

若golden_PRE为m,则对比判断随机数据golden_rx是否等于d1;If golden_PRE is m, then compare and determine whether the random data golden_rx is equal to d1;

若golden_rx不等于d1,则确定Y1当前的候选配置值不是合适配置值;If golden_rx is not equal to d1, it is determined that the current candidate configuration value of Y1 is not a suitable configuration value;

若golden_rx等于d1,则判断随机数据是否全部接收完毕;If golden_rx is equal to d1, it is determined whether all random data has been received;

若随机数据未全部接收完毕,则获取下一个时钟的随机数据;If the random data has not been completely received, the random data of the next clock is obtained;

若随机数据已全部接收完毕,则确定Ym当前的候选配置值为合适配置值;If all random data has been received, determine that the current candidate configuration value of Ym is a suitable configuration value;

判断Ym的多个候选配置值是否全部遍历测试完成;Determine whether all candidate configuration values of Ym have been traversed and tested;

若Ym的多个候选配置值未全部遍历,则在发送端复位后,更换Ym为下一个候选配置值,对下一个候选配置值进行校准测试;If multiple candidate configuration values of Ym have not been traversed completely, after the transmitter is reset, Ym is replaced with the next candidate configuration value, and a calibration test is performed on the next candidate configuration value;

若Ym的多个候选配置值已全部遍历,则结束校准测试,输出Ym所有的合适配置值。If all candidate configuration values of Ym have been traversed, the calibration test is terminated and all suitable configuration values of Ym are output.

在本申请实施例得到{Y2n-1,…,Y1,Y0}的所有合适配置值集合后,还可以通过求平均值、求中位数等方法选取一组最合适的{Y2n-1,…,Y1,Y0}的配置值。将该配置值设置到n阶DFE电路中,然后修改training_mode = 0,则n阶DFE电路就可以工作在正常模式下,完成对输入信号码间干扰的抑制,输出还原后的采样数据。After obtaining all suitable configuration value sets of {Y2n - 1, ..., Y1, Y0} in the embodiment of the present application, a set of most suitable configuration values of { Y2n -1, ..., Y1, Y0} can be selected by averaging, median, etc. The configuration value is set to the n-order DFE circuit, and then training_mode is modified to 0, so that the n-order DFE circuit can work in normal mode, suppress the inter-symbol interference of the input signal, and output the restored sampled data.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this article, the terms "comprise", "include" or any other variant thereof are intended to cover non-exclusive inclusion, so that the process, method, article or device including a series of elements includes not only those elements, but also includes other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the sentence "comprise one..." do not exclude the presence of other identical elements in the process, method, article or device including the element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved, for example, the described method may be performed in an order different from that described, and various steps may also be added, omitted, or combined. In addition, the features described with reference to certain examples may be combined in other examples.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that the above-mentioned embodiment methods can be implemented by means of software plus a necessary general hardware platform, and of course by hardware, but in many cases the former is a better implementation method. Based on such an understanding, the technical solution of the present application, or the part that contributes to the prior art, can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in each embodiment of the present application.

上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application are described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific implementation methods. The above-mentioned specific implementation methods are merely illustrative and not restrictive. Under the guidance of the present application, ordinary technicians in this field can also make many forms without departing from the purpose of the present application and the scope of protection of the claims, all of which are within the protection of the present application.

Claims (9)

1. A calibration circuit, comprising: the system comprises a decision feedback equalizer DFE circuit, a calibration control module and a data comparison module; the DFE circuit is provided with a data input end, a control end and a data output end, and the data comparison module is provided with a first input end and a second input end;
the calibration control module is connected with the control end of the DFE circuit and is used for providing control information for the DFE circuit, and the control information is used for determining feedback parameters of the DFE circuit;
The data output end of the DFE circuit is connected with the first input end of the data comparison module, and the DFE circuit is used for processing the first data input by the data input end based on the feedback parameter to obtain second data, and outputting the second data to the first input end through the data output end;
The data comparison module is used for determining a proper configuration value of the feedback parameter by comparing the second data with the random data received by the second input end; the random data is derived based on the first data;
the DFE circuit comprises an analog circuit, a D trigger and a selector; the analog circuit is connected with the D trigger, the D trigger is connected with the first input end of the data comparison module, the output end of the selector is connected with the analog circuit, and the control end of the selector is connected with the calibration control module;
The selector is configured to receive the control information output by the calibration control module, select a target configuration parameter from a plurality of configuration parameters based on the control information, and use the target configuration parameter as the feedback parameter.
2. The calibration circuit of claim 1, wherein the data comparison module comprises a target D flip-flop for receiving the random data, sampling the random data, and outputting third data;
the data comparison module is configured to determine an appropriate configuration value of the feedback parameter by comparing the second data with the random data received by the second input terminal when the third data is the same as the control information.
3. The calibration circuit of claim 1, wherein the DFE circuit comprises an n-order DFE circuit, n being a positive integer; in the n-order DFE circuit, the number of the D flip-flops is n, and the first D flip-flop is connected with the analog circuit; n is greater than 1, n D flip-flops are connected in series in turn; the number of the configuration parameters is 2 n;
the calibration control module is used for controlling the selector to select a target configuration parameter from 2 n configuration parameters as the feedback parameter.
4. A calibration circuit according to claim 3, wherein the data comparison module comprises n target D flip-flops; n is greater than 1, n target D flip-flops are sequentially connected in series; the input end of the first target D trigger is used for receiving the random data; n target D flip-flops are used for outputting third data;
the second data are sampling data output by the first D trigger; and the data comparison module is used for determining the proper configuration value of the target configuration parameter by comparing whether the sampling data output by the first D trigger is identical to the random data or not under the condition that the third data is identical to the control information.
5. The calibration circuit of any one of claims 1 to 4, further comprising a data alignment module;
The data alignment module is connected with the second input end of the data comparison module; the data alignment module is used for carrying out phase adjustment on the first data to obtain the random data, so that the random data are aligned with the second data in phase.
6. The calibration circuit of any one of claims 1 to 4,
The data output end of the DFE circuit is connected with the calibration control module, and the calibration control module is further used for controlling the data output end of the DFE circuit to be conducted with the control end of the DFE circuit after determining the proper configuration value of the feedback parameter so as to enable the DFE circuit to enter a normal working mode.
7. A chip comprising the calibration circuit of any one of claims 1-6.
8. A parameter calibration method applied to the calibration circuit of claim 1, comprising:
acquiring control information, and determining feedback parameters of a Decision Feedback Equalizer (DFE) circuit based on the control information;
processing the first data input by the data input end of the DFE circuit based on the feedback parameter to obtain second data;
determining a proper configuration value of the feedback parameter by comparing the second data with the random data; the random data is derived based on the first data.
9. The parameter calibration method of claim 8, comprising: the determining the appropriate configuration value of the feedback parameter by comparing the second data with random data includes:
sampling the random data through a target D trigger to obtain third data;
And under the condition that the third data is the same as the control information, determining the proper configuration value of the feedback parameter by comparing the second data with random data.
CN202411066700.0A 2024-08-02 2024-08-02 Calibration circuit, chip and parameter calibration method Active CN118611791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411066700.0A CN118611791B (en) 2024-08-02 2024-08-02 Calibration circuit, chip and parameter calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411066700.0A CN118611791B (en) 2024-08-02 2024-08-02 Calibration circuit, chip and parameter calibration method

Publications (2)

Publication Number Publication Date
CN118611791A CN118611791A (en) 2024-09-06
CN118611791B true CN118611791B (en) 2024-10-29

Family

ID=92553733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411066700.0A Active CN118611791B (en) 2024-08-02 2024-08-02 Calibration circuit, chip and parameter calibration method

Country Status (1)

Country Link
CN (1) CN118611791B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647430A (en) * 2023-06-12 2023-08-25 芯动微电子科技(珠海)有限公司 Offset voltage calibration method, comparison device and decision feedback equalization circuit
CN117176167A (en) * 2023-08-31 2023-12-05 南京芯驰半导体科技有限公司 A self-calibration chip, electronic equipment and chip self-calibration method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039624A1 (en) * 2011-09-12 2013-03-21 Rambus Inc. Offset and decision feedback equalization calibration
CN107395127B (en) * 2017-06-28 2020-07-10 记忆科技(深圳)有限公司 Method for automatic clock calibration of decision feedback equalizer
US10476707B2 (en) * 2018-03-05 2019-11-12 Samsung Display Co., Ltd. Hybrid half/quarter-rate DFE
US11271783B2 (en) * 2020-02-26 2022-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Decision feedback equalization embedded in a slicer
CN112422461B (en) * 2020-11-05 2022-04-19 硅谷数模(苏州)半导体有限公司 Decision feedback equalizer and data acquisition and correction method
CN116935906A (en) * 2022-04-04 2023-10-24 澜起电子科技(昆山)有限公司 Signal processing method and device for storage system interface circuit
CN117221056A (en) * 2023-10-10 2023-12-12 西安电子科技大学 Analog adaptive three-tap decision feedback equalizer circuit in high-speed SerDes
CN117997337A (en) * 2023-12-25 2024-05-07 电子科技大学 Self-calibration and frequency-selectable double-delay-line phase-locked loop circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647430A (en) * 2023-06-12 2023-08-25 芯动微电子科技(珠海)有限公司 Offset voltage calibration method, comparison device and decision feedback equalization circuit
CN117176167A (en) * 2023-08-31 2023-12-05 南京芯驰半导体科技有限公司 A self-calibration chip, electronic equipment and chip self-calibration method

Also Published As

Publication number Publication date
CN118611791A (en) 2024-09-06

Similar Documents

Publication Publication Date Title
JP5511091B2 (en) Programmable high-speed cable with embedded power control
US7965802B2 (en) Clock data restoring device
US10218373B1 (en) Analog-to-digital converter calibration system
US20080219390A1 (en) Receiver Circuit
US9853839B2 (en) System, method and software program for tuneable equalizer adaptation using sample interpolation
US20090146722A1 (en) Systems and Arrangements to Provide Input Offset Voltage Compensation
US20150085957A1 (en) Method Of Calibrating a Slicer In a Receiver Or the Like
US11765002B2 (en) Explicit solution for DFE optimization with constraints
US20080240224A1 (en) Structure for one-sample-per-bit decision feedback equalizer (dfe) clock and data recovery
CN118611791B (en) Calibration circuit, chip and parameter calibration method
US20210004041A1 (en) Sequence signal generator and sequence signal generation method
CN102315889A (en) High speed signal test method, apparatus thereof and system
JPWO2007049674A1 (en) Driver circuit, test apparatus and adjustment method
US10326429B1 (en) Receiver and common-mode voltage calibration method thereof
JP4764814B2 (en) Waveform equalization coefficient adjusting method and circuit, receiver circuit, and transmission apparatus
EP2991297B1 (en) Method for performing loop unrolled decision feedback equalization in an electronic device with aid of voltage feedforward, and associated apparatus
US8571095B2 (en) Equalization filter and distortion compensating method
US7224746B2 (en) Pre-compensation for digital bit streams
US12355409B2 (en) Variable gain amplifier with cross-coupled common mode reduction
US20220093140A1 (en) Dual reference voltage generator, equalizer circuit, and memory
JPWO2008114318A1 (en) Receiver circuit
US8704689B2 (en) Method of processing data samples and circuits therefor
CN115801511B (en) Decision feedback equalization circuit
TWI813062B (en) Retiming circuit module, signal transmission system and signal transmission method
CN113078923A (en) Signal transmission network, chip and signal processing device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant