CN118605327A - Control system and control method - Google Patents
Control system and control method Download PDFInfo
- Publication number
- CN118605327A CN118605327A CN202410853419.5A CN202410853419A CN118605327A CN 118605327 A CN118605327 A CN 118605327A CN 202410853419 A CN202410853419 A CN 202410853419A CN 118605327 A CN118605327 A CN 118605327A
- Authority
- CN
- China
- Prior art keywords
- supply
- load
- control
- demand system
- supply amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
本申请是申请日为2020年2月7日、申请号为202010082502.9、发明名称为“控制系统、控制装置以及控制方法”的申请的分案申请。This application is a divisional application of an application with a filing date of February 7, 2020, application number 202010082502.9, and invention name “Control system, control device, and control method”.
技术领域Technical Field
本发明涉及一种控制系统、控制装置以及控制方法。The invention relates to a control system, a control device and a control method.
背景技术Background Art
以往以来,已知一种预测机器设备(plant)的各种负荷(例如,电力负荷、热负荷、空气负荷等)、或者求出机器设备的最优运用(例如,使运用成本、排出气体等最小化那样的运用)的技术(例如,专利文献1、2等)。Conventionally, there is a known technology for predicting various loads of a plant (e.g., power load, heat load, air load, etc.) or for finding the optimal operation of the plant (e.g., operation that minimizes operating costs, exhaust gas, etc.) (e.g., Patent Documents 1 and 2).
现有技术文献Prior art literature
专利文献Patent Literature
专利文献1:日本特开2003-84805号公报Patent Document 1: Japanese Patent Application Publication No. 2003-84805
专利文献2:日本专利第4059014号公报Patent Document 2: Japanese Patent No. 4059014
发明内容Summary of the invention
发明要解决的问题Problem that the invention aims to solve
另外,为了求出机器设备的最优运用,例如需要解开混合整数规划问题、组合最优化问题等最优化问题。然而,一般来说,最优化问题的计算量大,因此,为了在实际运用时在现实的时间内解开最优化问题而需要大量的计算资源。因此,例如,利用对机器设备内的各种设备进行控制的控制器等计算资源比较少的机器或装置,很难在实际运用时求出机器设备的最优运用。In order to find the optimal operation of the equipment, it is necessary to solve optimization problems such as mixed integer programming problems and combinatorial optimization problems. However, in general, the amount of calculation required for optimization problems is large, so a large amount of computing resources is required to solve the optimization problems in a realistic time in actual operation. Therefore, for example, it is difficult to find the optimal operation of the equipment in actual operation by using machines or devices with relatively small computing resources such as controllers that control various devices in the equipment.
本发明的一个实施方式是鉴于上述内容而完成的,目的在于无需在实际运用时解开最优化问题而获得机器设备的最优运用。One embodiment of the present invention is completed in view of the above content, and its purpose is to achieve optimal operation of machinery and equipment without solving the optimization problem in actual operation.
用于解决问题的方案Solutions for solving problems
为了实现上述目的,一个实施方式所涉及的控制系统是包括对供需系统进行控制的控制装置的控制系统,所述控制装置具有:分配决定部,其使用将与所述供需系统中包括的负荷设备的负荷有关的值同与所述供需系统中包括的一个以上的供给设备各自的资源的供给量有关的值相对应的表,根据与被赋予的负荷有关的值来决定所述一个以上的供给设备各自供给的供给量的分配;以及输出部,其向所述供需系统输出控制指令,所述控制指令用于实现由所述分配决定部决定的供给量的分配。In order to achieve the above-mentioned purpose, a control system involved in one embodiment is a control system including a control device for controlling a supply and demand system, the control device comprising: an allocation determination unit, which uses a table that corresponds values related to the load of a load device included in the supply and demand system with values related to the supply quantity of each resource of one or more supply devices included in the supply and demand system, and determines the allocation of the supply quantity supplied by each of the one or more supply devices according to the values related to the assigned load; and an output unit, which outputs a control instruction to the supply and demand system, the control instruction being used to implement the allocation of the supply quantity determined by the allocation determination unit.
发明的效果Effects of the Invention
无需在实际运用时解开最优化问题而能够得到机器设备的最优运用。It is possible to achieve the best use of machinery and equipment without having to solve optimization problems in actual use.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是示出本实施方式所涉及的控制系统的整体结构的一例的图。FIG. 1 is a diagram showing an example of the overall configuration of a control system according to the present embodiment.
图2是示出供需系统模型的一例的图。FIG. 2 is a diagram showing an example of a supply and demand system model.
图3是示出本实施方式所涉及的分析装置的硬件结构的一例的图。FIG. 3 is a diagram showing an example of the hardware configuration of the analysis device according to the present embodiment.
图4是示出本实施方式所涉及的控制装置的硬件结构的一例的图。FIG. 4 is a diagram showing an example of a hardware configuration of a control device according to the present embodiment.
图5是示出本实施方式所涉及的控制系统的功能结构的一例的图。FIG. 5 is a diagram showing an example of a functional configuration of a control system according to the present embodiment.
图6是示出本实施方式所涉及的离线处理的一例的流程图。FIG. 6 is a flowchart showing an example of the off-line processing according to the present embodiment.
图7是示出控制用表的一例的图。FIG. 7 is a diagram showing an example of a control table.
图8是示出本实施方式所涉及的在线处理的一例的流程图。FIG. 8 is a flowchart showing an example of online processing according to the present embodiment.
附图标记说明Description of Reference Numerals
1:控制系统;10:分析装置;20:控制装置;30:供需系统;101:模型生成部;102:最优化部;103:表生成部;201:分配决定部;202:输出部;1000:控制用表。1: control system; 10: analysis device; 20: control device; 30: supply and demand system; 101: model generation unit; 102: optimization unit; 103: table generation unit; 201: allocation determination unit; 202: output unit; 1000: control table.
具体实施方式DETAILED DESCRIPTION
下面,说明本发明的一个实施方式。在本实施方式中,说明如下的控制系统1,该控制系统1在离线状态下解开最优化问题,并将其结果制成表,由此,无需在在线状态下(也就是说,在实际运用时)解开最优化问题而能够获得机器设备的最优运用。此外,离线是指未对机器设备的控制对象进行控制时,在线是指正在对机器设备的控制对象进行控制时(也就是说,实际运用时)。Next, an embodiment of the present invention is described. In this embodiment, a control system 1 is described, which solves the optimization problem in an offline state and tabulates the results, thereby achieving optimal operation of the equipment without solving the optimization problem in an online state (that is, in actual operation). In addition, offline refers to when the control object of the equipment is not being controlled, and online refers to when the control object of the equipment is being controlled (that is, in actual operation).
<整体结构><Overall structure>
首先,参照图1来说明本实施方式所涉及的控制系统1的整体结构。图1是示出本实施方式所涉及的控制系统1的整体结构的一例的图。First, the overall configuration of a control system 1 according to the present embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing an example of the overall configuration of a control system 1 according to the present embodiment.
如图1所示,本实施方式所涉及的控制系统1中包括分析装置10、控制装置20以及供需系统30。控制装置20与供需系统30例如以能够经由控制用的网络等进行通信的方式连接。As shown in Fig. 1, a control system 1 according to the present embodiment includes an analysis device 10, a control device 20, and a supply and demand system 30. The control device 20 and the supply and demand system 30 are connected to each other so as to be communicable via a control network or the like, for example.
供需系统30为各种机器设备等,包括消耗成本来生产和供给资源的多个供给设备以及消耗资源来实现规定的功能的负荷设备。The supply and demand system 30 is various equipment and devices, and includes a plurality of supply equipment that consumes costs to produce and supply resources, and load equipment that consumes resources to achieve prescribed functions.
例如,在供需系统30为食品制造机器设备的情况下,成本为电力,供给设备为冷冻机,负荷设备为制造设备等。在该情况下,例如,供给设备消耗电力来生产和供给冷水(或冷热),负荷设备需要冷水来进行食品的制造。For example, in the case where the supply and demand system 30 is a food manufacturing machine, the cost is electricity, the supply equipment is a refrigerator, and the load equipment is a manufacturing equipment, etc. In this case, for example, the supply equipment consumes electricity to produce and supply cold water (or cold and hot), and the load equipment needs cold water to manufacture food.
另外,例如在供需系统30是制铁机器设备的情况下,成本是燃料,供给设备是发电设备,负荷设备是传送带等。在该情况下,例如,供给设备消耗燃料来生产和供给电力,负荷设备需要电力来驱动传送带。In addition, for example, when the supply and demand system 30 is a steelmaking machine, the cost is fuel, the supply equipment is a power generation equipment, and the load equipment is a conveyor belt, etc. In this case, for example, the supply equipment consumes fuel to produce and supply electricity, and the load equipment requires electricity to drive the conveyor belt.
另外,例如,在供需系统30为BTG(Boiler、Turbine、Generator:锅炉、汽轮机、发电机)机器设备的情况下,成本为燃料,供给设备为锅炉,负荷设备为涡轮发电机等。在该情况下,例如,供给设备消耗燃料来生产和供给蒸汽,负荷设备需要蒸汽来生产电力。In addition, for example, when the supply and demand system 30 is a BTG (Boiler, Turbine, Generator) equipment, the cost is fuel, the supply equipment is a boiler, and the load equipment is a turbine generator, etc. In this case, for example, the supply equipment consumes fuel to produce and supply steam, and the load equipment requires steam to produce electricity.
此外,上述说明的供需系统30为一例,本实施方式能够应用于包括多个供给设备和一个以上的负荷设备的任意的供需系统30。In addition, the supply and demand system 30 described above is an example, and the present embodiment can be applied to any supply and demand system 30 including a plurality of supply facilities and one or more load facilities.
分析装置10为一般的计算机或计算机系统(例如,PC(个人计算机)、通用服务器等),在离线状态下分析供需系统30的模型(下面,称为“供需系统模型300”。),来生成控制用表1000。控制用表1000是用于控制装置20能够在在线状态下获得供需系统30的最优运用的数据,例如是将负荷设备所需要的资源的需要量与各供给设备的资源的供给量的最优的分配相对应的表。在后文中叙述控制用表1000的具体例。The analysis device 10 is a general computer or computer system (for example, a PC (personal computer), a general server, etc.), and analyzes the model of the supply and demand system 30 (hereinafter referred to as "supply and demand system model 300") in an offline state to generate a control table 1000. The control table 1000 is data for the control device 20 to obtain the optimal operation of the supply and demand system 30 in an online state, for example, a table that corresponds the required amount of resources required by the load equipment and the optimal allocation of the supply amount of resources of each supply equipment. A specific example of the control table 1000 will be described later.
在此,最优的分配(下面,称为“最优分配”。)是针对负荷设备所需要的资源的需要量而言使供需系统30的成本最小的各供给设备的供给量的分配。供需系统30的最优运用是指以该最优分配运用供需系统30(也就是说,控制各供给设备的供给量,使得成为最优分配)。Here, the optimal allocation (hereinafter referred to as "optimal allocation") is the allocation of the supply amount of each supply device that minimizes the cost of the supply and demand system 30 with respect to the required amount of resources required by the load device. The optimal operation of the supply and demand system 30 means operating the supply and demand system 30 with the optimal allocation (that is, controlling the supply amount of each supply device so as to achieve the optimal allocation).
控制装置20为各种控制器(例如,PLC(Programmable Logic Controller:可编程逻辑控制器)等),在在线状态下使用控制用表1000来获取供需系统30的最优运用(也就是说,各供给设备的供给量的最优分配),控制该供需系统30使得成为最优运用。此外,一般来说,控制装置20相比于分析装置10而言,多数情况下计算资源是有限的(例如,处理器的处理性能低)。特别是例如可以将相比于一般的PLC而言计算资源更有限的控制器用作控制装置20。The control device 20 is a controller of various types (e.g., a PLC (Programmable Logic Controller) etc.), and uses the control table 1000 in an online state to obtain the optimal operation of the supply and demand system 30 (that is, the optimal distribution of the supply amount of each supply device), and controls the supply and demand system 30 so that it is optimally operated. In addition, generally speaking, the control device 20 has limited computing resources (e.g., the processing performance of the processor is low) in most cases compared to the analysis device 10. In particular, for example, a controller with more limited computing resources than a general PLC can be used as the control device 20.
此外,图1所示的控制系统1的整体结构是一例,也可以是其它结构。例如,控制系统1可以包括多个分析装置10,也可以包括多个控制装置20。In addition, the overall structure of the control system 1 shown in FIG1 is an example, and other structures are also possible. For example, the control system 1 may include a plurality of analysis devices 10, and may include a plurality of control devices 20.
<供需系统模型300><Supply and demand system model 300>
在此,作为一例,参照图2来说明供需系统30为食品制造机器设备的情况下的供需系统模型300。图2是示出供需系统模型300的一例的图。Here, as an example, a supply and demand system model 300 in a case where the supply and demand system 30 is a food production facility will be described with reference to Fig. 2. Fig. 2 is a diagram showing an example of the supply and demand system model 300.
图2所示的供需系统模型300包括N台冷冻机3011~301N、配管302以及制造设备303。在图2所示的供需系统模型300中,各冷冻机3011~301N消耗电力来生产冷水,并经由配管302向制造设备303供给冷水。此外,在图2所示的例子中,各冷冻机3011~301N分别为供给设备1~供给设备N,制造设备303为负荷设备。The supply and demand system model 300 shown in Fig. 2 includes N refrigerators 301 1 to 301 N , a pipe 302, and a manufacturing facility 303. In the supply and demand system model 300 shown in Fig. 2 , each refrigerator 301 1 to 301 N consumes power to produce cold water, and supplies the cold water to the manufacturing facility 303 via the pipe 302. In the example shown in Fig. 2 , each refrigerator 301 1 to 301 N is a supply facility 1 to a supply facility N, and the manufacturing facility 303 is a load facility.
下面,在本实施方式中,作为一例,用图2所示的供需系统模型300表示供需系统30来进行说明。In the present embodiment, the supply and demand system 30 will be described below using the supply and demand system model 300 shown in FIG. 2 as an example.
<硬件结构><Hardware Structure>
接着,说明本实施方式所涉及的控制系统1中包括的分析装置10及控制装置20的硬件结构。Next, the hardware configurations of the analysis device 10 and the control device 20 included in the control system 1 according to the present embodiment will be described.
《分析装置10》《Analysis Device 10》
图3是示出本实施方式所涉及的分析装置10的硬件结构的一例的图。如图3所示,本实施方式所涉及的分析装置10具有输入装置11、显示装置12、外部I/F 13、通信I/F 14、处理器15以及存储器装置16。这些硬件通过总线17来以能够相互通信的方式连接。Fig. 3 is a diagram showing an example of the hardware configuration of the analysis device 10 according to the present embodiment. As shown in Fig. 3, the analysis device 10 according to the present embodiment includes an input device 11, a display device 12, an external I/F 13, a communication I/F 14, a processor 15, and a memory device 16. These hardware components are connected via a bus 17 so as to be able to communicate with each other.
输入装置11例如是各种按钮、触摸面板、键盘、鼠标等。显示装置12例如是显示器等。The input device 11 is, for example, various buttons, a touch panel, a keyboard, a mouse, etc. The display device 12 is, for example, a display, etc.
外部I/F 13是与外部装置之间的接口。作为外部装置,存在记录介质13a等。分析装置10能够经由外部I/F 13进行针对记录介质13a的读取、写入等。作为记录介质13a,例如存在SD存储卡(SD memory card)、USB存储器等。The external I/F 13 is an interface with an external device. As an external device, there is a recording medium 13a, etc. The analysis device 10 can read and write to the recording medium 13a via the external I/F 13. As the recording medium 13a, there is, for example, an SD memory card (SD memory card), a USB memory, etc.
通信I/F 14是用于将分析装置10连接于通信网络的接口。处理器15例如是CPU(Central Processing Unit:中央处理单元)等运算装置。存储器装置16例如是RAM(RandomAccess Memory:随机存取存储器)、ROM(Read Only Memory:只读存储器)、HDD(Hard DiskDrive:硬盘驱动器)、SSD(Solid State Drive:固态驱动器)、快闪存储器等存储装置。The communication I/F 14 is an interface for connecting the analysis device 10 to a communication network. The processor 15 is, for example, a computing device such as a CPU (Central Processing Unit). The memory device 16 is, for example, a storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), an SSD (Solid State Drive), or a flash memory.
本实施方式所涉及的分析装置10能够通过具有图3所示的硬件结构,来实现后述的离线处理。此外,图3所示的硬件结构为一例,分析装置10也可以具有其它硬件结构。例如,分析装置10可以具有多个处理器15,也可以具有多个存储器装置16。The analysis device 10 involved in this embodiment can realize the offline processing described later by having the hardware structure shown in Figure 3. In addition, the hardware structure shown in Figure 3 is an example, and the analysis device 10 can also have other hardware structures. For example, the analysis device 10 can have multiple processors 15 and multiple memory devices 16.
《控制装置20》《Control Device 20》
图4是示出本实施方式所涉及的控制装置20的硬件结构的一例的图。如图4所示,本实施方式所涉及的控制装置20具有输入装置21、显示装置22、外部I/F 23、通信I/F 24、处理器25以及存储器装置26。这些硬件通过总线27来以能够相互通信的方式连接。Fig. 4 is a diagram showing an example of the hardware configuration of the control device 20 according to the present embodiment. As shown in Fig. 4, the control device 20 according to the present embodiment includes an input device 21, a display device 22, an external I/F 23, a communication I/F 24, a processor 25, and a memory device 26. These hardware components are connected via a bus 27 so as to be able to communicate with each other.
输入装置21例如是各种按钮等。显示装置22例如是各种显示面板等。外部I/F 23为与外部装置之间的接口。作为外部装置,存在记录介质23a等。控制装置20能够经由外部I/F 23进行针对记录介质23a的读取、写入等。作为记录介质23a,例如存在SD存储卡、USB存储器等。The input device 21 is, for example, various buttons, etc. The display device 22 is, for example, various display panels, etc. The external I/F 23 is an interface with an external device. As an external device, there is a recording medium 23a, etc. The control device 20 can read and write to the recording medium 23a via the external I/F 23. As the recording medium 23a, there is, for example, an SD memory card, a USB memory, etc.
通信I/F 24是用于将控制装置20连接于通信网络的接口。处理器25例如是微处理器等运算装置。存储器装置26例如是快闪存储器等存储装置。此外,存储器装置26例如也可以是SD存储卡等。The communication I/F 24 is an interface for connecting the control device 20 to a communication network. The processor 25 is a computing device such as a microprocessor. The memory device 26 is a storage device such as a flash memory. The memory device 26 may be an SD memory card or the like.
本实施方式所涉及的控制装置20能够通过具有图4所示的硬件结构,来实现后述的在线处理。此外,图4所示的硬件结构为一例,控制装置20也可以具有其它硬件结构。例如,控制装置20可以具有多个处理器25,也可以具有多个存储器装置26。The control device 20 involved in this embodiment can realize the online processing described later by having the hardware structure shown in Figure 4. In addition, the hardware structure shown in Figure 4 is an example, and the control device 20 may also have other hardware structures. For example, the control device 20 may have multiple processors 25 and multiple memory devices 26.
<功能结构><Functional structure>
接着,参照图5来说明本实施方式所涉及的控制系统1的功能结构。图5是示出本实施方式所涉及的控制系统1的功能结构的一例的图。Next, the functional configuration of the control system 1 according to the present embodiment will be described with reference to Fig. 5. Fig. 5 is a diagram showing an example of the functional configuration of the control system 1 according to the present embodiment.
《分析装置10》《Analysis Device 10》
如图5所示,本实施方式所涉及的分析装置10具有模型生成部101、最优化部102以及表生成部103。上述各部例如通过用于使处理器15执行安装于分析装置10中的一个以上的程序的处理来实现。5 , the analysis device 10 according to the present embodiment includes a model generation unit 101, an optimization unit 102, and a table generation unit 103. Each of the above units is implemented by, for example, causing the processor 15 to execute one or more programs installed in the analysis device 10.
模型生成部101生成供需系统模型300。供需系统模型300由供需系统30中包括的供给设备、负荷设备的模型(下面,称为“设备模型”。)等构成。The model generation unit 101 generates a supply and demand system model 300. The supply and demand system model 300 is composed of models of supply equipment and load equipment included in the supply and demand system 30 (hereinafter referred to as "equipment models") and the like.
在此,关于供给设备1~N的设备模型,针对n=1、…、N,例如能够用下面的式(1)表示。Here, the facility model of the supply facilities 1 to N can be expressed by the following equation (1), for example, for n=1, ..., N.
[数式1][Formula 1]
eff=f(s;r)(1)eff=f(s;r)(1)
在此,s表示供给量,eff表示效率,r表示条件。用供给量/成本来表示效率eff,如果将成本设为c,则eff=s/c。另外,条件r例如是设备的针对供给量的各种条件、由用户设定的条件、环境条件(外部条件)等。此外,在本实施方式中,设为设备模型表示效率与成本之间的关系,但更一般地说,设备模型能够表现为表示供给量与成本之间的关系的模型。Here, s represents the supply amount, eff represents the efficiency, and r represents the condition. The efficiency eff is represented by supply amount/cost. If the cost is set to c, then eff = s/c. In addition, the condition r is, for example, various conditions for the supply amount of the equipment, conditions set by the user, environmental conditions (external conditions), etc. In addition, in this embodiment, the equipment model is used to represent the relationship between efficiency and cost, but more generally, the equipment model can be expressed as a model that represents the relationship between supply amount and cost.
例如,在供给设备为冷冻机的情况下,作为条件r,列举向负荷设备供给的冷水的温度等。另外,例如在供给设备为锅炉的情况下,作为条件r,列举向锅炉赋予的水的温度等。For example, when the supply device is a refrigerator, the condition r includes the temperature of the cold water supplied to the load device, etc. Also, when the supply device is a boiler, the condition r includes the temperature of the water supplied to the boiler, etc.
最优化部102使用表示条件r所能取的值的集合的信息(下面,称为“条件集合信息”。)以及由模型生成部101生成的供需系统模型300,针对供给设备能够供给的供给量的模式与条件r所能取的值的每种组合来解开最优化问题,由此计算该组合时的最优分配。The optimization unit 102 uses information representing a set of possible values of the condition r (hereinafter referred to as "condition set information") and the supply and demand system model 300 generated by the model generation unit 101 to solve the optimization problem for each combination of a pattern of supply quantities that the supply equipment can supply and the possible values of the condition r, thereby calculating the optimal allocation for that combination.
例如,如果将供给设备n能够供给的供给量的最大值设为Sn,则全部的供给设备能够供给的供给量的最大值表示为Smax=S1+S2+…+SN。因而,例如,如果设为σ1=0.1×Smax,σ2=0.2×Smax,…,σ10=1.0×Smax,则{σ1,σ2,…,σ10}为供给设备能够供给的供给量的一个模式。For example, if the maximum value of the supply amount that supply device n can supply is set to Sn , the maximum value of the supply amount that all supply devices can supply is expressed as Smax = S1 + S2 + ... + SN . Therefore, for example, if σ1 = 0.1 × Smax , σ2 = 0.2 × Smax , ..., σ10 = 1.0 × Smax , { σ1 , σ2 , ..., σ10 } is a pattern of the supply amounts that the supply devices can supply.
因此,例如在条件r所能取的值的集合为{r1,r2,r3}的情况下,最优化部102针对σi(i=1、…、10)与rj(j=1、2、3)的每种组合来解开最优化问题,从而决定最优分配。Therefore, for example, when the set of possible values of the condition r is {r 1 , r 2 , r 3 }, the optimization unit 102 solves the optimization problem for each combination of σ i (i=1, ..., 10) and r j (j=1, 2, 3) to determine the optimal allocation.
更具体地说,将供给设备n的供给量设为sn,将成本设为cn,最优化部102针对i与j的每种组合来解开下面的式(2)所示的最优化问题。More specifically, assuming that the supply amount of supply equipment n is sn and the cost is c n , the optimization unit 102 solves the optimization problem represented by the following equation (2) for each combination of i and j.
[数式2][Formula 2]
由此,针对i与j的每种组合获得最优分配s1 (i,j)、…、sN (i,j)。通过已知的方法(例如,上述的专利文献1、2等公开的方法等)解开上述的式(2)所示的最优化问题即可。Thus, the optimal allocation s 1 (i, j) , ..., s N (i, j) is obtained for each combination of i and j. The optimization problem shown in equation (2) can be solved by a known method (for example, the method disclosed in Patent Documents 1 and 2).
此外,上述的供给量的模式为一例,也可以是其它模式。作为供给量的模式,只要是在供需系统30中向负荷设备供给资源的全部的供给设备能够供给的供给量的模式即可,能够使用任意的模式。The above-mentioned supply amount pattern is an example, and other patterns may be used. As the supply amount pattern, any pattern may be used as long as it is a pattern of supply amount that can be supplied by all supply facilities that supply resources to load facilities in the supply and demand system 30.
表生成部103使用由最优化部102计算出的最优分配来生成控制用表1000。表生成部103例如通过针对供给量与条件r的每种组合对应最优分配,来生成控制用表1000。此外,该控制用表1000例如被保存到存储器装置16。The table generation unit 103 generates the control table 1000 using the optimal allocation calculated by the optimization unit 102. The table generation unit 103 generates the control table 1000 by, for example, associating the optimal allocation with each combination of the supply amount and the condition r. The control table 1000 is stored in the memory device 16, for example.
此外,在本实施方式中,设为由分析装置10生成供需系统模型300,但不限于此,也可以是,向分析装置10赋予由其它装置或机器生成的供需系统模型300。因而,分析装置10未必必须具有模型生成部101。In the present embodiment, the supply and demand system model 300 is generated by the analysis device 10, but the present invention is not limited thereto, and the supply and demand system model 300 generated by another device or apparatus may be provided to the analysis device 10. Therefore, the analysis device 10 does not necessarily have the model generation unit 101.
《控制装置20》《Control Device 20》
如图5所示,本实施方式所涉及的控制装置20具有分配决定部201和输出部202。这些各部例如通过用于使处理器25执行安装于控制装置20中的一个以上的程序的处理来实现。5 , the control device 20 according to the present embodiment includes an allocation determination unit 201 and an output unit 202. These units are implemented by, for example, causing the processor 25 to execute one or more programs installed in the control device 20.
分配决定部201使用表示当前的条件r的值的信息(下面,称为“条件信息”。)以及供需系统30中包括的负荷设备的当前的需要量(下面,称为“需要量当前值”),根据控制用表1000来决定最优分配。此外,控制用表1000例如被保存于存储器装置26。关于控制用表1000,例如可以通过从记录介质23a等被读出而保存于存储器装置26,也可以通过经由通信网络等从分析装置10接收而保存于存储器装置26。The allocation determination unit 201 uses information indicating the value of the current condition r (hereinafter referred to as "condition information") and the current demand of the load device included in the supply and demand system 30 (hereinafter referred to as "current demand value") to determine the optimal allocation based on the control table 1000. In addition, the control table 1000 is stored in the memory device 26, for example. The control table 1000 can be stored in the memory device 26 by being read out from the recording medium 23a, etc., or can be stored in the memory device 26 by being received from the analysis device 10 via a communication network, etc.
输出部202向供需系统30(更准确地说,是对供给设备的供给量进行控制的装置或机器)输出(发送)用于实现由分配决定部201决定的最优分配的控制指令。由此,实现供需系统30的最优运用。The output unit 202 outputs (transmits) a control instruction for realizing the optimal allocation determined by the allocation determination unit 201 to the supply and demand system 30 (more precisely, a device or machine that controls the supply amount of the supply equipment). Thus, the optimal operation of the supply and demand system 30 is realized.
<离线处理><Offline Processing>
接着,参照图6来说明本实施方式所涉及的离线处理。图6是示出本实施方式所涉及的离线处理的一例的流程图。Next, the offline process according to the present embodiment will be described with reference to Fig. 6. Fig. 6 is a flowchart showing an example of the offline process according to the present embodiment.
步骤S101:首先,模型生成部101生成供需系统模型300。此外,在供需系统模型300的生成中,使用已知的方法(例如,上述的专利文献1、2等公开的方法等)即可,但例如能够通过根据供给设备的目录规格等生成设备模型,来生成供需系统模型300。Step S101: First, the model generation unit 101 generates a supply and demand system model 300. In addition, in generating the supply and demand system model 300, a known method (for example, the method disclosed in the above-mentioned patent documents 1, 2, etc.) may be used, but for example, the supply and demand system model 300 can be generated by generating a device model based on the catalog specifications of the supply device, etc.
步骤S102:接着,最优化部102使用条件集合信息和通过上述的步骤S101生成的供需系统模型300,针对供给设备能够供给的供给量的模式与条件r所能取的值的每种组合来解开最优化问题,由此计算该组合时的最优分配。Step S102: Next, the optimization unit 102 uses the condition set information and the supply and demand system model 300 generated by the above step S101 to solve the optimization problem for each combination of the supply quantity pattern that the supply equipment can supply and the value that the condition r can take, thereby calculating the optimal allocation for this combination.
一般来说,在将供给量的模式设为{σ1,…,σI}、将条件集合信息设为{r1,…,rJ}的情况下,最优化部102针对i(i=1、…、I)与j(j=1、…、J)的每种组合来解开上述的式(2)所示的最优化问题,由此计算i与j的每种组合时的最优分配s1 (i,j)、…、sN (i,j)。Generally speaking, when the supply amount pattern is set to {σ 1 , …, σ I } and the condition set information is set to {r 1 , …, r J }, the optimization unit 102 solves the optimization problem shown in the above formula (2) for each combination of i (i=1, …, I) and j (j=1, …, J), thereby calculating the optimal allocation s 1 (i, j) , …, s N (i, j) for each combination of i and j.
步骤S103:然后,表生成部103使用通过上述的步骤S102计算出的最优分配s1 (i ,j)、…、sN (i,j),来生成控制用表1000。Step S103: Next, the table generation unit 103 generates the control table 1000 using the optimal assignments s 1 (i , j) , ..., s N (i, j) calculated in the above-mentioned step S102.
在此,例如设为I=10,J=3,{σ1=0.1×Smax,σ2=0.2×Smax,…,σ10=1.0×Smax},{r1=“条件1”,r2=“条件2”,r3=“条件3”}。另外,将σi与在条件rj下供给设备1~N能够供给的供给量的最大值Smax之间的比例设为负荷率d(i,j),将sn (i,j)与在σi和条件rj下供给设备n能够供给的供给量的最大值Sn之间的比例设为运转率an (i,j)。此时,最优化部102按i与j的每种组合,将条件rj、负荷率d(i,j)以及各供给设备n的运转率an (i,j)相对应,由此生成控制用表1000。在图7中示出这样生成的控制用表1000。图7是示出控制用表1000的一例的图。Here, for example, it is assumed that I=10, J=3, {σ 1 =0.1×S max , σ 2 =0.2×S max , ..., σ 10 =1.0×S max }, {r 1 = "condition 1", r 2 = "condition 2", r 3 = "condition 3"}. In addition, the ratio between σ i and the maximum value S max of the supply amount that can be supplied by the supply facilities 1 to N under the condition r j is defined as the load factor d (i, j) , and the ratio between s n (i, j) and the maximum value S n of the supply amount that can be supplied by the supply facility n under σ i and the condition r j is defined as the operation rate an (i, j) . At this time, the optimization unit 102 associates the condition r j , the load factor d (i, j) , and the operation rate an (i, j) of each supply facility n for each combination of i and j, thereby generating a control table 1000. FIG. 7 shows the control table 1000 generated in this way. FIG. 7 is a diagram showing an example of the control table 1000 .
在图7所示的控制用表1000中,按i与j的每种组合,针对n=1、…、N,将条件rj、负荷率d(i,j)以及各供给设备n的运转率an (i,j)相对应。例如,在i=1、j=1的情况下,将负荷率d(1,1)=10%与供给设备1~N的运转率a1 (1,1)~aN (1,1)相对应。In the control table 1000 shown in Fig. 7, the condition rj , the load factor d (i,j), and the operation rate an(i,j) of each supply facility n are associated with each combination of i and j, for n=1, ..., N. For example, when i=1, j=1, the load factor d (1,1) =10% is associated with the operation rates a1 (1,1) to aN (1,1) of the supply facilities 1 to N.
这样,本实施方式所涉及的分析装置10使用预先决定的供给量的模式和条件所能取的值,来计算出各供给设备的供给量的最优分配,在此基础上根据该计算结果来生成控制用表1000。由此,如后述那样,本实施方式所涉及的控制装置20在被赋予了条件信息和负荷设备的需要量当前值的情况下,能够使用控制用表1000来计算出各供给设备的供给量的最优分配。换言之,本实施方式所涉及的控制装置20无需解开最优化问题而能够获得最优分配。In this way, the analysis device 10 according to the present embodiment uses the predetermined supply amount pattern and the values that the condition can take to calculate the optimal distribution of the supply amount of each supply device, and on this basis, generates the control table 1000 based on the calculation result. As described later, the control device 20 according to the present embodiment, when given the condition information and the current value of the required amount of the load device, can calculate the optimal distribution of the supply amount of each supply device using the control table 1000. In other words, the control device 20 according to the present embodiment can obtain the optimal distribution without solving the optimization problem.
<在线处理><Online processing>
接着,参照图8来说明本实施方式所涉及的在线处理。图8是示出本实施方式所涉及的在线处理的一例的流程图。例如在每个控制周期重复执行下面的步骤S101~步骤S102。另外,例如在每个控制周期对控制装置20赋予条件信息和需要量当前值。Next, the online processing involved in the present embodiment is described with reference to FIG8. FIG8 is a flowchart showing an example of the online processing involved in the present embodiment. For example, the following steps S101 to S102 are repeatedly executed in each control cycle. In addition, for example, condition information and a current value of the required amount are given to the control device 20 in each control cycle.
步骤S201:分配决定部201使用被赋予的条件信息和需要量当前值,根据控制用表1000来决定最优分配s1、…、sN。Step S201: The distribution determination unit 201 determines the optimal distribution s 1 , ..., s N from the control table 1000 using the given condition information and the current value of the demand amount.
例如,在将条件信息设为rnow、将需要量当前值与供给设备1~N能够供给的供给量的最大值Smax之间的比例设为当前负荷率dnow的情况下,分配决定部201以条件rj和负荷率d(i,j)为关键字在控制用表1000中进行检索,来获取与条件信息rnow及当前负荷率dnow对应的运转率a1 (i,j)~aN (i,j)。然后,分配决定部201针对各n=1、…、N,通过sn=an (i,j)×Sn来决定最优分配s1、…、sN。此外,Sn为供给设备n能够供给的供给量的最大值。For example, when the condition information is r now and the ratio between the current value of the demand and the maximum value S max of the supply amount that can be supplied by the supply equipment 1 to N is the current load factor d now , the allocation decision unit 201 searches the control table 1000 using the condition r j and the load factor d (i, j) as keywords to obtain the operation rates a 1 (i, j) to a N (i, j) corresponding to the condition information r now and the current load factor d now . Then, the allocation decision unit 201 determines the optimal allocations s 1 , ..., s N by s n = a n (i, j) × S n for each n = 1 , ..., N. In addition, S n is the maximum value of the supply amount that can be supplied by the supply equipment n.
在此,在不存在与当前负荷率dnow一致的负荷率d(i,j)的情况下,例如将超过当前负荷率dnow的最小的负荷率d(i,j)设为一致的负荷率d(i,j)即可。Here, when there is no load factor d (i, j) that matches the current load factor d now , for example, the minimum load factor d (i, j) that exceeds the current load factor d now may be set as the matching load factor d (i, j) .
或者,在不存在与当前负荷率dnow一致的负荷率d(i,j)的情况下,例如将对与当前负荷率dnow之前的负荷率和之后的负荷率(也就是说,满足d(i′,j)≤dnow的最大的负荷率d(i′,j)和满足dnow≤d(i″,j)的最小的负荷率d(i″,j))分别对应的运转率a1 (i′,j)~aN (i′,j)和a1 (i″,j)~aN (i″,j)按比例分配所得到的值设为最优分配即可。具体地说,例如针对n=1、…、N,将供给设备n的最优分配sn设为sn=(1-w)×an (i′,j)+w×an (i″,j)即可。在此,w为w=(dnow-d(i′,j))/(d(i″,j)-d(i′,j))。例如,在能够对冷冻机连续地进行精细控制的情况下,像这样进行按比例分配(插值)的方法是有效的。Alternatively, when there is no load rate d (i, j) that is consistent with the current load rate d now , for example, the optimal allocation may be obtained by proportionally allocating the operation rates a 1 (i′, j) to a N (i′, j) and a 1 (i″, j) to a N (i″, j ) corresponding to the load rate before and the load rate after the current load rate d now (that is, the maximum load rate d (i′, j) that satisfies d ( i′, j) ≤ d now and the minimum load rate d (i″, j ) that satisfies d now ≤ d (i″, j)) . Specifically, for example, for n = 1, ..., N, the optimal allocation s n of the supply equipment n may be set to s n = (1-w) × a n (i′, j) + w × a n (i″, j) . Here, w is w = (d now - d (i′, j) )/(d (i″, j) - d (i′, j) ). For example, when a refrigerator can be continuously and finely controlled, such a method of performing proportional allocation (interpolation) is effective.
步骤S202:然后,输出部202向供需系统30输出用于实现通过上述的步骤S202决定的最优分配s1、…、sN的控制指令。由此,实现供需系统30的最优运用。Step S202: Then, the output unit 202 outputs a control command for realizing the optimal allocation s 1 , ..., s N determined in the above step S202 to the supply and demand system 30. Thus, the optimal operation of the supply and demand system 30 is realized.
这样,本实施方式所涉及的控制装置20使用在离线状态下生成的控制用表1000,来决定各供给设备的供给量的最优分配。此时,本实施方式所涉及的控制装置20仅通过进行控制用表1000的检索或检索结果的运算,就能够决定最优分配。即,本实施方式所涉及的控制装置20无需在决定最优分配时解开最优化问题。因此,即使是相比于一般的计算机或计算机系统而言计算资源更有限的控制装置20,也能够在在线状态下无延迟地决定最优分配,并实现最优运用。In this way, the control device 20 involved in the present embodiment uses the control table 1000 generated in an offline state to determine the optimal allocation of the supply amount of each supply device. At this time, the control device 20 involved in the present embodiment can determine the optimal allocation only by searching the control table 1000 or calculating the search result. That is, the control device 20 involved in the present embodiment does not need to solve the optimization problem when determining the optimal allocation. Therefore, even the control device 20 with more limited computing resources than a general computer or computer system can determine the optimal allocation without delay in an online state and achieve optimal operation.
本发明不限定于具体地公开的上述的实施方式,在不脱离权利要求书的范围内能够进行各种变形、变更、与现有技术的结合等。The present invention is not limited to the above-described specifically disclosed embodiments, and various modifications, changes, and combinations with prior arts can be made without departing from the scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410853419.5A CN118605327A (en) | 2020-02-07 | 2020-02-07 | Control system and control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410853419.5A CN118605327A (en) | 2020-02-07 | 2020-02-07 | Control system and control method |
CN202010082502.9A CN111367169A (en) | 2020-02-07 | 2020-02-07 | Control system, control device, and control method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010082502.9A Division CN111367169A (en) | 2020-02-07 | 2020-02-07 | Control system, control device, and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118605327A true CN118605327A (en) | 2024-09-06 |
Family
ID=71207982
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410853419.5A Pending CN118605327A (en) | 2020-02-07 | 2020-02-07 | Control system and control method |
CN202010082502.9A Pending CN111367169A (en) | 2020-02-07 | 2020-02-07 | Control system, control device, and control method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010082502.9A Pending CN111367169A (en) | 2020-02-07 | 2020-02-07 | Control system, control device, and control method |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN118605327A (en) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4059014B2 (en) * | 2001-06-19 | 2008-03-12 | 富士電機システムズ株式会社 | Optimal plant operation method and optimal plant design method |
CN101619850B (en) * | 2009-08-06 | 2011-04-13 | 杭州盘古自动化系统有限公司 | Dispatching method and dispatching system based on load online forecasting of thermoelectric power system |
US9037307B2 (en) * | 2010-01-12 | 2015-05-19 | Panasonic Intellectual Property Management Co., Ltd. | Supply-and-demand control apparatus, supply-and-demand control method, and supply-and-demand control system |
JP5481305B2 (en) * | 2010-07-30 | 2014-04-23 | 株式会社東芝 | Output distribution controller |
CN102290852B (en) * | 2011-06-16 | 2014-02-26 | 深圳市理工新能源有限公司 | Charging control method and system |
JP2013065134A (en) * | 2011-09-16 | 2013-04-11 | Hitachi Ltd | Energy trading system and method |
JP5878231B2 (en) * | 2012-03-09 | 2016-03-08 | メタウォーター株式会社 | Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program |
SG11201500172TA (en) * | 2012-07-13 | 2015-07-30 | Nitto Denko Corp | On-demand multiple power source management system, on-demand multiple power source management system program and computer-readable recording medium on which said program is recorded |
JP2014023232A (en) * | 2012-07-17 | 2014-02-03 | Toshiba Corp | Energy management device, energy management method, and energy management program |
JP2014155390A (en) * | 2013-02-12 | 2014-08-25 | Toshiba Corp | Energy optimum control apparatus, control method, and control program |
JP6160705B2 (en) * | 2014-05-19 | 2017-07-12 | Jfeスチール株式会社 | Electric power supply / demand guidance apparatus and electric power supply / demand guidance method |
SG11201702803SA (en) * | 2014-11-12 | 2017-06-29 | Hoya Corp | Method for manufacturing magnetic-disk substrate and method for manufacturing magnetic disk |
JP6830784B2 (en) * | 2016-09-30 | 2021-02-17 | 株式会社日本総合研究所 | Information information system |
CN108448649A (en) * | 2018-03-21 | 2018-08-24 | 广东电网有限责任公司电力科学研究院 | A kind of combined scheduling method and system based on autonomous learning group hunting algorithm |
WO2020019237A1 (en) * | 2018-07-26 | 2020-01-30 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for dispatching service providers |
CN110378590A (en) * | 2019-07-10 | 2019-10-25 | 国网福建省电力有限公司 | Based on the multiple-energy-source microgrid efficiency of operation evaluation method for improving DEA Model |
-
2020
- 2020-02-07 CN CN202410853419.5A patent/CN118605327A/en active Pending
- 2020-02-07 CN CN202010082502.9A patent/CN111367169A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN111367169A (en) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Integrated power and heat dispatch considering available reserve of combined heat and power units | |
Xie et al. | Energy-efficient scheduling algorithms for real-time parallel applications on heterogeneous distributed embedded systems | |
Rapp et al. | Power-and cache-aware task mapping with dynamic power budgeting for many-cores | |
CN102171627A (en) | Scheduling an application for performance on a heterogeneous computing system | |
WO2013134455A1 (en) | Online heurisitc algorithm for combined cooling heating and power plant optimization | |
Saha et al. | Thermal-constrained energy-aware partitioning for heterogeneous multi-core multiprocessor real-time systems | |
Tang et al. | Dynamic load balancing method based on optimal complete matching of weighted bipartite graph for simulation tasks in multi-energy system digital twin applications | |
JP7240862B2 (en) | Frequency control device and frequency control method | |
Ahmad et al. | An energy-efficient big data workflow scheduling algorithm under budget constraints for heterogeneous cloud environment | |
CN108988325A (en) | A kind of distribution network planning method counted and distributed generation resource and electric car access | |
US20210241393A1 (en) | Production allocation determining apparatus and production allocation determining method | |
CN117035478A (en) | Method, device and storage medium for evaluating demand response resources based on time scale | |
Liu et al. | Scheduling energy‐conscious tasks in distributed heterogeneous computing systems | |
JP2024046821A (en) | Data center management system | |
CN118605327A (en) | Control system and control method | |
CN108805363A (en) | Cooling heating and power generation system constant volume method and device | |
CN104881713A (en) | Method for achieving decoupling of optimization algorithm and iron and steel enterprise energy integrated scheduling problem | |
CN118428038A (en) | New energy hydrogen production electricity-hydrogen combined operation method, device and medium | |
Hewage et al. | Aging-aware CPU Core Management for Embodied Carbon Amortization in Cloud LLM Inference | |
Tavana et al. | Realizing complexity-effective on-chip power delivery for many-core platforms by exploiting optimized mapping | |
Cui et al. | Optimization of a combined heat and power generation system with ice thermal storage | |
CN106451454A (en) | Probabilistic load flow concurrent computation method based on cumulant | |
CN112859614A (en) | Control method, device and equipment for ultra-supercritical thermal power generating unit and storage medium | |
Barrefors et al. | A novel thermal-constrained energy-aware partitioning algorithm for heterogeneous multiprocessor real-time systems | |
Li et al. | Temperature minimization and thermal-driven scheduling for real-time periodic tasks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |