CN118598526A - Glass-ceramics, glass-ceramics products and methods for producing the same - Google Patents
Glass-ceramics, glass-ceramics products and methods for producing the same Download PDFInfo
- Publication number
- CN118598526A CN118598526A CN202410784173.0A CN202410784173A CN118598526A CN 118598526 A CN118598526 A CN 118598526A CN 202410784173 A CN202410784173 A CN 202410784173A CN 118598526 A CN118598526 A CN 118598526A
- Authority
- CN
- China
- Prior art keywords
- glass
- percent
- mgo
- ceramic
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002241 glass-ceramic Substances 0.000 title claims abstract description 351
- 238000000034 method Methods 0.000 title claims description 85
- 239000011521 glass Substances 0.000 claims abstract description 348
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 240
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 198
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 120
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 120
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 120
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims abstract description 78
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims abstract description 78
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 73
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 73
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 73
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 73
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 73
- 239000000203 mixture Substances 0.000 claims description 95
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 72
- 239000013078 crystal Substances 0.000 claims description 61
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 claims description 59
- 229910052670 petalite Inorganic materials 0.000 claims description 59
- 238000002425 crystallisation Methods 0.000 claims description 54
- 230000008025 crystallization Effects 0.000 claims description 54
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 53
- 239000010453 quartz Substances 0.000 claims description 52
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 claims description 50
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 40
- 238000012360 testing method Methods 0.000 claims description 38
- 238000004519 manufacturing process Methods 0.000 claims description 36
- 238000002834 transmittance Methods 0.000 claims description 31
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 29
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 29
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000006104 solid solution Substances 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 21
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 14
- 238000003426 chemical strengthening reaction Methods 0.000 claims description 13
- 230000006911 nucleation Effects 0.000 claims description 12
- 238000010899 nucleation Methods 0.000 claims description 12
- 238000005342 ion exchange Methods 0.000 claims description 11
- 238000013001 point bending Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000006025 fining agent Substances 0.000 claims description 2
- 239000008395 clarifying agent Substances 0.000 claims 8
- 229910011763 Li2 O Inorganic materials 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 99
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 34
- 239000010410 layer Substances 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 239000006059 cover glass Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000007496 glass forming Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 239000005345 chemically strengthened glass Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013003 hot bending Methods 0.000 description 3
- 238000006124 Pilkington process Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- YTZVWGRNMGHDJE-UHFFFAOYSA-N tetralithium;silicate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-][Si]([O-])([O-])[O-] YTZVWGRNMGHDJE-UHFFFAOYSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
Abstract
Description
本申请是针对申请号为202110901872.5,申请日为2021年08月06日,名称为“微晶玻璃、微晶玻璃制品及其制造方法”的发明专利申请的分案申请。This application is a divisional application for the invention patent application with application number 202110901872.5, application date August 6, 2021, and name “Microcrystalline glass, microcrystalline glass products and manufacturing methods thereof”.
技术领域Technical Field
本发明涉及一种微晶玻璃,尤其是涉及一种具有优异机械性能和光学性能的微晶玻璃和微晶玻璃制品及其制造方法。The present invention relates to a glass-ceramic, and in particular to a glass-ceramic and a glass-ceramic product having excellent mechanical and optical properties and a method for manufacturing the same.
背景技术Background Art
近年来,智能手机、PAD等便携式电子设备中,会使用覆盖玻璃来保护显示器,或者作为后盖板。此外,在汽车用光学设备、监控安防等设备上,也会使用保护物来保护透镜。这些作为用于覆盖玻璃或保护物用途的材料,需要其具有高可见光透射率以及优异的色彩平衡,即要求相关覆盖玻璃具有优异的光学性能。另一方面,便携式电子设备在使用过程中,不可避免的会存在跌落或者掉落的情形,这就要求覆盖玻璃具有优异的机械性能(如耐摔性等),以尽可能减少电子设备因跌落或者掉落而摔坏的几率。现有技术中,作为用于上述覆盖玻璃的材料常使用化学强化玻璃。然而,以往的化学强化玻璃很容易从玻璃表面垂直地产生龟裂,因此便携式电子设备掉落时,摔坏的几率会增加。In recent years, cover glass is used to protect the display or as a back cover in portable electronic devices such as smartphones and PADs. In addition, protective objects are also used to protect lenses on automotive optical equipment, monitoring and security equipment, etc. These materials used as cover glass or protective objects are required to have high visible light transmittance and excellent color balance, that is, the relevant cover glass is required to have excellent optical properties. On the other hand, portable electronic devices will inevitably fall or drop during use, which requires the cover glass to have excellent mechanical properties (such as drop resistance, etc.) to minimize the probability of electronic devices being broken due to falling or dropping. In the prior art, chemically strengthened glass is often used as a material for the above-mentioned cover glass. However, the previous chemically strengthened glass is easy to crack vertically from the glass surface, so when the portable electronic device falls, the probability of breaking will increase.
微晶玻璃通过在内部形成分散的结晶,能够具备化学强化玻璃中无法得到的物性值,并且由于在玻璃中形成微晶,其抗弯、耐磨性能等相对于一般的玻璃都有明显的优势。基于以上优点,目前有将微晶玻璃或其处理后的微晶玻璃制品应用于抗摔、抗压、耐划要求高的显示设备或电子设备中的趋势。但现有技术中的微晶玻璃存在雾度值高、耐摔性低等缺陷,难以满足高要求的显示设备或电子设备的应用。Glass-ceramics can have physical properties that cannot be obtained in chemically strengthened glass by forming dispersed crystals inside, and because of the formation of microcrystals in the glass, its bending resistance and wear resistance have obvious advantages over general glass. Based on the above advantages, there is a trend to apply glass-ceramics or processed glass-ceramics products to display devices or electronic devices with high requirements for drop resistance, pressure resistance, and scratch resistance. However, glass-ceramics in the prior art have defects such as high haze value and low drop resistance, which makes it difficult to meet the application requirements of display devices or electronic devices with high requirements.
发明内容Summary of the invention
本发明所要解决的技术问题是提供一种具有优异机械性能和光学性能的微晶玻璃和微晶玻璃制品。The technical problem to be solved by the present invention is to provide a microcrystalline glass and microcrystalline glass products with excellent mechanical properties and optical properties.
本发明解决技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve the technical problem is:
(1)微晶玻璃制品,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%。(1) A glass-ceramic product, wherein the components thereof are expressed in molar percentages as follows: SiO 2 : 65-75%; Al 2 O 3 : 1-8%; Li 2 O: 14-27%; and P 2 O 5 +ZrO 2 : 0.5-6%.
(2)根据(1)所述的微晶玻璃制品,其组分以摩尔百分比表示,还含有:ZnO+MgO:0~4%;和/或Na2O:0~3.5%;和/或B2O3:0~3%;和/或K2O:0~3%;和/或SrO:0~3%;和/或BaO:0~3%;和/或CaO:0~3%;和/或TiO2:0~3%;和/或Y2O3:0~3%;和/或澄清剂:0~1%。(2) The glass-ceramic product according to (1), further comprising, expressed in molar percentage, ZnO+MgO: 0-4%; and/or Na2O : 0-3.5%; and / or B2O3 : 0-3%; and/or K2O : 0-3%; and/or SrO: 0-3%; and/or BaO: 0-3%; and/or CaO: 0-3%; and/or TiO2 : 0-3%; and/or Y2O3 : 0-3%; and/or a clarifier: 0-1%.
(3)微晶玻璃制品,其组分以摩尔百分比表示,由SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%;ZnO+MgO:0~4%;Na2O:0~3.5%;B2O3:0~3%;K2O:0~3%;SrO:0~3%;BaO:0~3%;CaO:0~3%;TiO2:0~3%;Y2O3:0~3%;澄清剂:0~1%组成。(3) Microcrystalline glass products, whose components are expressed in molar percentage, consisting of SiO2 : 65-75 %; Al2O3 : 1-8%; Li2O : 14-27 %; P2O5 +ZrO2 : 0.5-6% ; ZnO+MgO : 0-4%; Na2O: 0-3.5%; B2O3: 0-3%; K2O : 0-3 %; SrO: 0-3%; BaO : 0-3%; CaO: 0-3%; TiO2 : 0-3%; Y2O3 : 0-3%; and clarifier: 0-1%.
(4)微晶玻璃制品,其组分以重量百分比表示,含有:SiO2:65~75%,Al2O3:1~8%,Li2O:14~27%,所述微晶玻璃制品中晶相含有硅酸锂,和/或石英及石英固溶体,和/或透锂长石。(4) Glass-ceramic products, whose components, expressed in weight percentage, contain: SiO 2 : 65-75%, Al 2 O 3 : 1-8%, Li 2 O: 14-27%, and the crystal phase of the glass-ceramic products contains lithium silicate, and/or quartz and quartz solid solution, and/or petalite.
(5)微晶玻璃制品,含有SiO2、Al2O3和Li2O作为必要组分,所述微晶玻璃制品中晶相含有硅酸锂,所述微晶玻璃制品的耐摔性为1700mm以上。(5) A glass-ceramic product comprising SiO 2 , Al 2 O 3 and Li 2 O as essential components, wherein the crystal phase of the glass-ceramic product comprises lithium silicate, and the drop resistance of the glass-ceramic product is above 1700 mm.
(6)根据(4)或(5)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%;ZnO+MgO:0~4%;Na2O:0~3.5%;B2O3:0~3%;K2O:0~3%;SrO:0~3%;BaO:0~3%;CaO:0~3%;TiO2:0~3%;Y2O3:0~3%;澄清剂:0~1%。(6) The glass-ceramic product according to any one of (4) or (5), wherein the components, expressed in molar percentage, are: SiO2 : 65-75%; Al2O3 : 1-8 %; Li2O: 14-27%; P2O5 + ZrO2: 0.5-6%; ZnO+MgO: 0-4%; Na2O : 0-3.5%; B2O3 : 0-3%; K2O: 0-3 %; SrO: 0-3%; BaO: 0-3%; CaO : 0-3%; TiO2 : 0-3 %; Y2O3 : 0-3%; and a clarifier: 0-1%.
(7)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:(Li2O+ZrO2)/(ZnO+MgO)为10以上,优选(Li2O+ZrO2)/(ZnO+MgO)为12~45,更优选(Li2O+ZrO2)/(ZnO+MgO)为13~40,进一步优选(Li2O+ZrO2)/(ZnO+MgO)为15~35。(7) The glass-ceramic product according to any one of (1) to (6), wherein the composition is expressed in molar percentage, wherein: (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 10 or more, preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 12 to 45, more preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 13 to 40, and further preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 15 to 35.
(8)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.05~1.5,优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.1~1,更优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.15~0.8,进一步优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.2~0.7。 ( 8) The glass-ceramic product according to any one of (1) to (6 ) , wherein the composition is expressed in molar percentage, wherein: ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) is 0.05 to 1.5 , preferably ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) is 0.1 to 1, more preferably ( B2O3 + Na2O +ZrO2)/(Al2O3+MgO) is 0.15 to 0.8, and further preferably (B2O3 + Na2O + ZrO2 ) /( Al2O3 +MgO) is 0.2 to 0.7 .
(9)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:(SiO2+Li2O)/(Al2O3+ZnO+MgO)为5~40,优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为8~30,更优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为10~25,进一步优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为11~20。(9) The glass-ceramic product according to any one of ( 1 ) to (6), wherein the composition is expressed in molar percentage, wherein: ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 5 to 40, preferably ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 8 to 30, more preferably ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO ) is 10 to 25, and further preferably ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 11 to 20.
(10)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为30~90,优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为35~80,更优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为38~75,进一步优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为40~70。(10) The glass-ceramic product according to any one of (1) to ( 6 ), wherein the composition is expressed in molar percentage, wherein: ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 30 to 90, preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2) / ( P2O5 + MgO) is 35 to 80, more preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 38 to 75, and further preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 40 to 70 .
(11)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:(SiO2+Al2O3)/(P2O5+ZrO2)为12~75,优选(SiO2+Al2O3)/(P2O5+ZrO2)为15~70,更优选(SiO2+Al2O3)/(P2O5+ZrO2)为17~65,进一步优选(SiO2+Al2O3)/(P2O5+ZrO2)为20~60。(11) The glass-ceramic product according to any one of (1) to (6), wherein the composition is expressed in molar percentage, wherein: (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 12 to 75, preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 15 to 70, more preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 17 to 65, and further preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 20 to 60.
(12)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:SiO2:67~73%,优选SiO2:68~72%;和/或Al2O3:2~6.5%,优选Al2O3:3~6%;和/或Li2O:15.5~25%,优选Li2O:17~23.5%;和/或ZnO+MgO:0.1~4%,优选ZnO+MgO:0.2~3%,更优选ZnO+MgO:0.5~2%;和/或P2O5+ZrO2:1~4%,优选P2O5+ZrO2:1.2~3%;和/或Na2O:0.5~3%,优选Na2O:0.5~2.5%;和/或B2O3:0.5~2.5%,优选B2O3:0.5~2%;和/或K2O:0~2%,优选K2O:0~1.5%;和/或SrO:0~2%,优选SrO:0~1%;和/或BaO:0~2%,优选BaO:0~1%;和/或CaO:0~2%,优选CaO:0~1%;和/或TiO2:0~2%,优选TiO2:0~1%;和/或Y2O3:0~2%,优选Y2O3:0~1%;和/或澄清剂:0~0.5%,优选澄清剂:0~0.2%。(12) The glass-ceramic product according to any one of (1) to (6), wherein the components are expressed in molar percentages, wherein: SiO2 : 67-73%, preferably SiO2 : 68-72%; and/or Al2O3 : 2-6.5%, preferably Al2O3 : 3-6 %; and/or Li2O : 15.5-25%, preferably Li2O : 17-23.5%; and/or ZnO+MgO: 0.1-4%, preferably ZnO+MgO: 0.2-3%, more preferably ZnO+MgO: 0.5-2%; and/or P2O5 +ZrO2: 1-4%, preferably P2O5 +ZrO2: 1.2-3 %; and/or Na2O : 0.5-3%, preferably Na2O : 0.5-2.5%; and/or B2O3 : 0.1-4%, preferably ZnO + MgO: 0.2-3% , more preferably ZnO + MgO: 0.5-2 %; : 0.5-2.5%, preferably B 2 O 3 : 0.5-2%; and/or K 2 O: 0-2%, preferably K 2 O: 0-1.5%; and/or SrO: 0-2%, preferably SrO: 0-1%; and/or BaO: 0-2%, preferably BaO: 0-1%; and/or CaO: 0-2%, preferably CaO: 0-1%; and/or TiO 2 : 0-2%, preferably TiO 2 : 0-1%; and/or Y 2 O 3 : 0-2%, preferably Y 2 O 3 : 0-1%; and/or clarifier: 0-0.5%, preferably clarifier: 0-0.2%.
(13)根据(1)~(6)任一所述的微晶玻璃制品,其组分以摩尔百分比表示,其中:ZnO:0~2%,优选ZnO:0~1.5%,更优选ZnO:0~1%;和/或MgO:0~4%,优选MgO:0~3%,更优选MgO:0~1.5%;和/或P2O5:0~3%,优选P2O5:0.2~2%,更优选P2O5:0.4~1.5%,进一步优选P2O5:0.5~1%;和/或ZrO2:0~4%,优选ZrO2:0.2~3.5%,更优选ZrO2:0.5~3%,进一步优选ZrO2:0.7~2.5%。(13) The glass-ceramic product according to any one of (1) to (6), wherein the components are expressed in molar percentage, wherein: ZnO: 0-2%, preferably ZnO: 0-1.5%, more preferably ZnO: 0-1%; and/or MgO: 0-4%, preferably MgO: 0-3%, more preferably MgO: 0-1.5%; and/or P 2 O 5 : 0-3%, preferably P 2 O 5 : 0.2-2%, more preferably P 2 O 5 : 0.4-1.5%, further preferably P 2 O 5 : 0.5-1%; and/or ZrO 2 : 0-4%, preferably ZrO 2 : 0.2-3.5%, more preferably ZrO 2 : 0.5-3%, further preferably ZrO 2 : 0.7-2.5%.
(14)根据(1)~(6)任一所述的微晶玻璃制品,所述微晶玻璃制品中晶相含有硅酸锂;和/或石英及石英固溶体;和/或透锂长石,优选微晶玻璃制品中的晶相含有二硅酸锂和透锂长石,二硅酸锂和透锂长石的合计含量具有比其他晶相更高的重量百分数,更优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃制品的重量百分比为50~80%,进一步优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃制品的重量百分比为55~75%,更进一步优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃制品的重量百分比为55~70%。(14) According to any one of the microcrystalline glass products described in (1) to (6), the crystalline phase in the microcrystalline glass product contains lithium silicate; and/or quartz and quartz solid solution; and/or petalite. Preferably, the crystalline phase in the microcrystalline glass product contains lithium disilicate and petalite, and the total content of lithium disilicate and petalite has a higher weight percentage than other crystalline phases. More preferably, the total content of lithium disilicate and petalite crystalline phases accounts for 50-80% of the weight percentage of the microcrystalline glass product. Further preferably, the total content of lithium disilicate and petalite crystalline phases accounts for 55-75% of the weight percentage of the microcrystalline glass product. Even more preferably, the total content of lithium disilicate and petalite crystalline phases accounts for 55-70% of the weight percentage of the microcrystalline glass product.
(15)根据(1)~(6)任一所述的微晶玻璃制品,二硅酸锂晶相占微晶玻璃制品的重量百分比为15~40%,优选二硅酸锂晶相占微晶玻璃制品的重量百分比为20~35%,更优选二硅酸锂晶相占微晶玻璃制品的重量百分比为25~35%;和/或透锂长石晶相占微晶玻璃制品的重量百分比为30~55%,优选透锂长石晶相占微晶玻璃制品的重量百分比为35~55%,更优选透锂长石晶相占微晶玻璃制品的重量百分比为35~50%;和/或石英及石英固溶体晶相占微晶玻璃制品的重量百分比为5~25%,优选石英及石英固溶体晶相占微晶玻璃制品的重量百分比为7~20%;和/或一硅酸锂晶相占微晶玻璃制品的重量百分比为0~10%,优选一硅酸锂晶相占微晶玻璃制品的重量百分比为0~7%,更优选一硅酸锂晶相占微晶玻璃制品的重量百分比为0~5%。(15) According to any one of (1) to (6) of the glass-ceramic product, the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic product is 15-40%, preferably the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic product is 20-35%, and more preferably the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic product is 25-35%; and/or the weight percentage of the petalite crystalline phase in the glass-ceramic product is 30-55%, preferably the weight percentage of the petalite crystalline phase in the glass-ceramic product is 35-55%, and more preferably the weight percentage of the petalite crystalline phase in the glass-ceramic product is 35-55%. The weight percentage of lithium feldspar crystal phase in the microcrystalline glass product is 35-50%; and/or the weight percentage of quartz and quartz solid solution crystal phase in the microcrystalline glass product is 5-25%, preferably the weight percentage of quartz and quartz solid solution crystal phase in the microcrystalline glass product is 7-20%; and/or the weight percentage of lithium silicate crystal phase in the microcrystalline glass product is 0-10%, preferably the weight percentage of lithium silicate crystal phase in the microcrystalline glass product is 0-7%, more preferably the weight percentage of lithium silicate crystal phase in the microcrystalline glass product is 0-5%.
(16)根据(1)~(6)任一所述的微晶玻璃制品,所述微晶玻璃制品的四点弯曲强度为680MPa以上,优选为700MPa以上,更优选为720MPa以上;和/或微晶玻璃制品的离子交换层深度为85μm以上,优选为100μm以上,更优选110μm以上;和/或微晶玻璃制品的表面应力为150MPa以上,优选为180MPa以上,更优选为200MPa以上;和/或微晶玻璃制品的落球试验高度为1500mm以上,优选为1600mm以上,更优选为1700mm以上;和/或微晶玻璃制品的断裂韧性为1MPa·m1/2以上,优选为1.1MPa·m1/2以上,更优选为1.2MPa·m1/2以上;和/或微晶玻璃制品的维氏硬度为750kgf/mm2以上,优选为780kgf/mm2以上,更优选为800kgf/mm2以上;和/或微晶玻璃制品的结晶度为55%以上,优选为65%以上,更优选为75%以上;和/或微晶玻璃制品的晶粒尺寸为35nm以下,优选为30nm以下,更优选为25nm以下。(16) The microcrystalline glass product according to any one of (1) to (6), wherein the four-point bending strength of the microcrystalline glass product is 680 MPa or more, preferably 700 MPa or more, and more preferably 720 MPa or more; and/or the ion exchange layer depth of the microcrystalline glass product is 85 μm or more, preferably 100 μm or more, and more preferably 110 μm or more; and/or the surface stress of the microcrystalline glass product is 150 MPa or more, preferably 180 MPa or more, and more preferably 200 MPa or more; and/or the drop ball test height of the microcrystalline glass product is 1500 mm or more, preferably 1600 mm or more, and more preferably 1700 mm or more; and/or the fracture toughness of the microcrystalline glass product is 1 MPa·m 1/2 or more, preferably 1.1 MPa·m 1/2 or more, and more preferably 1.2 MPa·m 1/2 or more; and/or the Vickers hardness of the microcrystalline glass product is 750 kgf/mm 2 or more, and preferably 780 kgf/mm 2 or more, more preferably 800kgf/mm2 or more; and/or the crystallinity of the microcrystalline glass product is 55% or more, preferably 65% or more, more preferably 75% or more; and/or the grain size of the microcrystalline glass product is 35nm or less, preferably 30nm or less, more preferably 25nm or less.
(17)根据(1)~(6)任一所述的微晶玻璃制品,1mm以下厚度的微晶玻璃制品的雾度为0.2%以下,优选为0.15%以下,更优选为0.12%以下;和/或1mm以下厚度的微晶玻璃制品,400~800nm波长的平均透过率87%以上,优选为88%以上,更优选为89%以上;和/或1mm以下厚度的微晶玻璃制品,550nm波长的透过率为88%以上,优选为90%以上,更优选为91%以上;和/或1mm以下厚度的微晶玻璃制品,400~800nm的平均光∣B∣值为0.8以下,优选为0.75以下,更优选为0.7以下;和/或1mm以下厚度的微晶玻璃制品的耐摔性为1700mm以上,优选为1800mm以上,更优选为2000mm以上。(17) According to any one of the microcrystalline glass products described in (1) to (6), the haze of the microcrystalline glass product with a thickness of less than 1 mm is less than 0.2%, preferably less than 0.15%, and more preferably less than 0.12%; and/or the average transmittance of the microcrystalline glass product with a thickness of less than 1 mm at a wavelength of 400 to 800 nm is greater than 87%, preferably greater than 88%, and more preferably greater than 89%; and/or the transmittance of the microcrystalline glass product with a thickness of less than 1 mm at a wavelength of 550 nm is greater than 88%, preferably greater than 90%, and more preferably greater than 91%; and/or the average optical |B| value of the microcrystalline glass product with a thickness of less than 1 mm at 400 to 800 nm is less than 0.8, preferably less than 0.75, and more preferably less than 0.7; and/or the drop resistance of the microcrystalline glass product with a thickness of less than 1 mm is greater than 1700 mm, preferably greater than 1800 mm, and more preferably greater than 2000 mm.
(18)根据(17)所述的微晶玻璃制品,所述微晶玻璃制品的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。(18) The microcrystalline glass product according to (17), wherein the thickness of the microcrystalline glass product is 0.2 to 1 mm, preferably 0.3 to 0.9 mm, more preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
(19)微晶玻璃,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%。(19) Glass-ceramics, whose components, expressed in molar percentage, contain: SiO 2 : 65-75%; Al 2 O 3 : 1-8%; Li 2 O: 14-27%; P 2 O 5 +ZrO 2 : 0.5-6%.
(20)根据(19)所述的微晶玻璃,其特征在于,其组分以摩尔百分比表示,还含有:ZnO+MgO:0~4%;和/或Na2O:0~3.5%;和/或B2O3:0~3%;和/或K2O:0~3%;和/或SrO:0~3%;和/或BaO:0~3%;和/或CaO:0~3%;和/或TiO2:0~3%;和/或Y2O3:0~3%;和/或澄清剂:0~1%。(20) The microcrystalline glass according to (19) is characterized in that its components, expressed in molar percentage, further contain: ZnO+MgO: 0-4%; and/or Na2O : 0-3.5 %; and/or B2O3 : 0-3%; and/or K2O : 0-3%; and/or SrO: 0-3%; and/or BaO: 0-3%; and/or CaO: 0-3%; and/or TiO2 : 0-3%; and/or Y2O3 : 0-3 %; and/or clarifier: 0-1%.
(21)微晶玻璃,其组分以摩尔百分比表示,由SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%;ZnO+MgO:0~4%;Na2O:0~3.5%;B2O3:0~3%;K2O:0~3%;SrO:0~3%;BaO:0~3%;CaO:0~3%;TiO2:0~3%;Y2O3:0~3%;澄清剂:0~1%组成。(21) Glass-ceramics, whose components, expressed in molar percentage, are composed of SiO2 : 65-75 %; Al2O3 : 1-8%; Li2O : 14-27%; P2O5 + ZrO2 : 0.5-6% ; ZnO+MgO: 0-4%; Na2O : 0-3.5%; B2O3: 0-3%; K2O : 0-3 %; SrO: 0-3%; BaO : 0-3%; CaO: 0-3 %; TiO2 : 0-3%; Y2O3 : 0-3%; and clarifier: 0-1%.
(22)微晶玻璃,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%,所述微晶玻璃中晶相含有硅酸锂,和/或石英及石英固溶体,和/或透锂长石。(22) Glass-ceramics, whose components, expressed in molar percentage, contain: SiO 2 : 65-75%; Al 2 O 3 : 1-8%; Li 2 O: 14-27%, wherein the crystal phase in the glass-ceramics contains lithium silicate, and/or quartz and quartz solid solution, and/or petalite.
(23)微晶玻璃,含有SiO2、Al2O3、Li2O作为必要组分,微晶玻璃中的晶相含有二硅酸锂和透锂长石,二硅酸锂和透锂长石的合计含量具有比其他晶相更高的重量百分数,1mm以下厚度的微晶玻璃的雾度为0.2%以下。(23) Glass-ceramics, comprising SiO2 , Al2O3 and Li2O as essential components, wherein the crystalline phase in the glass-ceramics comprises lithium disilicate and petalite, the total content of lithium disilicate and petalite having a higher weight percentage than other crystalline phases, and the haze of the glass-ceramics having a thickness of less than 1 mm is less than 0.2%.
(24)根据(22)~(23)任一所述的微晶玻璃,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%;ZnO+MgO:0~4%;Na2O:0~3.5%;B2O3:0~3%;K2O:0~3%;SrO:0~3%;BaO:0~3%;CaO:0~3%;TiO2:0~3%;Y2O3:0~3%;澄清剂:0~1%。(24) The glass-ceramics according to any one of (22) to (23), wherein the components, expressed in molar percentage, are: SiO2 : 65-75%; Al2O3 : 1-8 % ; Li2O : 14-27%; P2O5 +ZrO2: 0.5-6%; ZnO+MgO: 0-4%; Na2O : 0-3.5%; B2O3: 0-3 %; K2O: 0-3 %; SrO: 0-3%; BaO: 0-3%; CaO: 0-3%; TiO2 : 0-3 % ; Y2O3 : 0-3%; and a clarifier: 0-1%.
(25)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:(Li2O+ZrO2)/(ZnO+MgO)为10以上,优选(Li2O+ZrO2)/(ZnO+MgO)为12~45,更优选(Li2O+ZrO2)/(ZnO+MgO)为13~40,进一步优选(Li2O+ZrO2)/(ZnO+MgO)为15~35。(25) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentage, wherein: (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 10 or more, preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 12 to 45, more preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 13 to 40, and further preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 15 to 35.
(26)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.05~1.5,优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.1~1,更优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.15~0.8,进一步优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.2~0.7。(26) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentage, wherein: ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) is 0.05 to 1.5, preferably ( B2O3 + Na2O + ZrO2 )/( Al2O3 + MgO ) is 0.1 to 1, more preferably ( B2O3 + Na2O +ZrO2)/(Al2O3+MgO) is 0.15 to 0.8, and further preferably (B2O3 + Na2O + ZrO2 ) / ( Al2O3 +MgO) is 0.2 to 0.7 .
(27)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:(SiO2+Li2O)/(Al2O3+ZnO+MgO)为5~40,优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为8~30,更优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为10~25,进一步优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为11~20。(27) The glass-ceramics according to any one of (19) to (24) , wherein the components are expressed in molar percentage, wherein: ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO) is 5 to 40, preferably ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO ) is 8 to 30, more preferably ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO ) is 10 to 25, and further preferably ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO) is 11 to 20.
(28)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为30~90,优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为35~80,更优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为38~75,进一步优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为40~70。(28) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentage, wherein: ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) /( P2O5 +MgO) is 30 to 90, preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 )/( P2O5 +MgO) is 35 to 80, more preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 )/( P2O5 +MgO) is 38 to 75, and further preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 )/( P2O5 +MgO) is 40 to 70.
(29)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:(SiO2+Al2O3)/(P2O5+ZrO2)为12~75,优选(SiO2+Al2O3)/(P2O5+ZrO2)为15~70,更优选(SiO2+Al2O3)/(P2O5+ZrO2)为17~65,进一步优选(SiO2+Al2O3)/(P2O5+ZrO2)为20~60。(29) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentage, wherein: (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 12 to 75, preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 15 to 70, more preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 17 to 65, and further preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 20 to 60.
(30)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:SiO2:67~73%,优选SiO2:68~72%;和/或Al2O3:2~6.5%,优选Al2O3:3~6%;和/或Li2O:15.5~25%,优选Li2O:17~23.5%;和/或ZnO+MgO:0.1~4%,优选ZnO+MgO:0.2~3%,更优选ZnO+MgO:0.5~2%;和/或P2O5+ZrO2:1~4%,优选P2O5+ZrO2:1.2~3%;和/或Na2O:0.5~3%,优选Na2O:0.5~2.5%;和/或B2O3:0.5~2.5%,优选B2O3:0.5~2%;和/或K2O:0~2%,优选K2O:0~1.5%;和/或SrO:0~2%,优选SrO:0~1%;和/或BaO:0~2%,优选BaO:0~1%;和/或CaO:0~2%,优选CaO:0~1%;和/或TiO2:0~2%,优选TiO2:0~1%;和/或Y2O3:0~2%,优选Y2O3:0~1%;和/或澄清剂:0~0.5%,优选澄清剂:0~0.2%。(30) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentages, wherein: SiO 2 : 67-73%, preferably SiO 2 : 68-72%; and/or Al 2 O 3 : 2-6.5%, preferably Al 2 O 3 : 3-6%; and/or Li 2 O : 15.5-25%, preferably Li 2 O : 17-23.5%; and/or ZnO+MgO: 0.1-4%, preferably ZnO+MgO: 0.2-3%, more preferably ZnO+MgO: 0.5-2%; and/or P 2 O 5 +ZrO 2 : 1-4%, preferably P 2 O 5 +ZrO 2 : 1.2-3%; and/or Na 2 O: 0.5-3%, preferably Na 2 O: 0.5-2.5%; and/or B 2 O 3 : 0.5-2.5%, preferably B 2 O 3 : 0.5-2%; and/or K 2 O: 0-2%, preferably K 2 O: 0-1.5%; and/or SrO: 0-2%, preferably SrO: 0-1%; and/or BaO: 0-2%, preferably BaO: 0-1%; and/or CaO: 0-2%, preferably CaO: 0-1%; and/or TiO 2 : 0-2%, preferably TiO 2 : 0-1%; and/or Y 2 O 3 : 0-2%, preferably Y 2 O 3 : 0-1%; and/or clarifier: 0-0.5%, preferably clarifier: 0-0.2%.
(31)根据(19)~(24)任一所述的微晶玻璃,其组分以摩尔百分比表示,其中:ZnO:0~2%,优选ZnO:0~1.5%,更优选ZnO:0~1%;和/或MgO:0~4%,优选MgO:0~3%,更优选MgO:0~1.5%;和/或P2O5:0~3%,优选P2O5:0.2~2%,更优选P2O5:0.4~1.5%,进一步优选P2O5:0.5~1%;和/或ZrO2:0~4%,优选ZrO2:0.2~3.5%,更优选ZrO2:0.5~3%,进一步优选ZrO2:0.7~2.5%。(31) The glass-ceramics according to any one of (19) to (24), wherein the components are expressed in molar percentage, wherein: ZnO: 0-2%, preferably ZnO: 0-1.5%, more preferably ZnO: 0-1%; and/or MgO: 0-4%, preferably MgO: 0-3%, more preferably MgO: 0-1.5%; and/or P 2 O 5 : 0-3%, preferably P 2 O 5 : 0.2-2%, more preferably P 2 O 5 : 0.4-1.5%, further preferably P 2 O 5 : 0.5-1%; and/or ZrO 2 : 0-4%, preferably ZrO 2 : 0.2-3.5%, more preferably ZrO 2 : 0.5-3%, further preferably ZrO 2 : 0.7-2.5%.
(32)根据(19)~(24)任一所述的微晶玻璃,所述微晶玻璃中晶相含有硅酸锂;和/或石英及石英固溶体;和/或透锂长石,优选微晶玻璃中的晶相含有二硅酸锂和透锂长石,二硅酸锂和透锂长石的合计含量具有比其他晶相更高的重量百分数,更优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃的重量百分比为50~80%,进一步优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃的重量百分比为55~75%,更进一步优选二硅酸锂和透锂长石晶相的合计含量占微晶玻璃的重量百分比为55~70%。(32) The glass-ceramics according to any one of (19) to (24), wherein the crystalline phase in the glass-ceramics contains lithium silicate; and/or quartz and quartz solid solution; and/or petalite. Preferably, the crystalline phase in the glass-ceramics contains lithium disilicate and petalite, and the combined content of lithium disilicate and petalite has a higher weight percentage than other crystalline phases. More preferably, the combined content of lithium disilicate and petalite crystalline phases accounts for 50 to 80% of the weight percentage of the glass-ceramics. Further preferably, the combined content of lithium disilicate and petalite crystalline phases accounts for 55 to 75% of the weight percentage of the glass-ceramics. Even more preferably, the combined content of lithium disilicate and petalite crystalline phases accounts for 55 to 70% of the weight percentage of the glass-ceramics.
(33)根据(19)~(24)任一所述的微晶玻璃,二硅酸锂晶相占微晶玻璃的重量百分比为15~40%,优选二硅酸锂晶相占微晶玻璃的重量百分比为20~35%,更优选二硅酸锂晶相占微晶玻璃的重量百分比为25~35%;和/或透锂长石晶相占微晶玻璃的重量百分比为30~55%,优选透锂长石晶相占微晶玻璃的重量百分比为35~55%,更优选透锂长石晶相占微晶玻璃的重量百分比为35~50%;和/或石英及石英固溶体晶相占微晶玻璃的重量百分比为5~25%,优选石英及石英固溶体晶相占微晶玻璃的重量百分比为7~20%;和/或一硅酸锂晶相占微晶玻璃的重量百分比为0~10%,优选一硅酸锂晶相占微晶玻璃的重量百分比为0~7%,更优选一硅酸锂晶相占微晶玻璃的重量百分比为0~5%。(33) According to any one of (19) to (24), the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic is 15-40%, preferably the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic is 20-35%, and more preferably the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic is 25-35%; and/or the weight percentage of the petalite crystalline phase in the glass-ceramic is 30-55%, preferably the weight percentage of the petalite crystalline phase in the glass-ceramic is 35-55%, and more preferably The weight percentage of petalite crystal phase in the microcrystalline glass is 35-50%; and/or the weight percentage of quartz and quartz solid solution crystal phase in the microcrystalline glass is 5-25%, preferably the weight percentage of quartz and quartz solid solution crystal phase in the microcrystalline glass is 7-20%; and/or the weight percentage of lithium silicate crystal phase in the microcrystalline glass is 0-10%, preferably the weight percentage of lithium silicate crystal phase in the microcrystalline glass is 0-7%, more preferably the weight percentage of lithium silicate crystal phase in the microcrystalline glass is 0-5%.
(34)根据(19)~(24)任一所述的微晶玻璃,所述微晶玻璃的结晶度为55%以上,优选为65%以上,更优选为75%以上;和/或微晶玻璃的晶粒尺寸为35nm以下,优选为30nm以下,优选为25nm以下;和/或微晶玻璃本体落球高度为1800mm以上,优选为1900mm以上,更优选为2000mm以上;和/或微晶玻璃的维氏硬度为680kgf/mm2以上,优选为700kgf/mm2以上,更优选为710kgf/mm2以上;和/或微晶玻璃的热膨胀系数为60×10-7/K~90×10-7/K;和/或微晶玻璃的折射率为1.5250~1.5450。(34) The microcrystalline glass according to any one of (19) to (24), wherein the crystallinity of the microcrystalline glass is above 55%, preferably above 65%, and more preferably above 75%; and/or the grain size of the microcrystalline glass is below 35 nm, preferably below 30 nm, and more preferably below 25 nm; and/or the ball drop height of the microcrystalline glass body is above 1800 mm, preferably above 1900 mm, and more preferably above 2000 mm; and/or the Vickers hardness of the microcrystalline glass is above 680 kgf/ mm2 , preferably above 700 kgf/ mm2 , and more preferably above 710 kgf/ mm2 ; and/or the thermal expansion coefficient of the microcrystalline glass is 60× 10-7 /K to 90× 10-7 /K; and/or the refractive index of the microcrystalline glass is 1.5250 to 1.5450.
(35)根据(19)~(24)任一所述的微晶玻璃,1mm以下厚度的微晶玻璃的雾度为0.2%以下,优选为0.15%以下,更优选为0.12%以下;和/或1mm以下厚度的微晶玻璃,400~800nm波长的平均透过率87%以上,优选为88%以上,更优选为89%以上;和/或1mm以下厚度的微晶玻璃,550nm波长的透过率为88%以上,优选为90%以上,更优选为91%以上;和/或1mm以下厚度的微晶玻璃,400~800nm的平均光∣B∣值为0.8以下,优选为0.75以下,更优选为0.7以下。(35) According to any one of the microcrystalline glass described in (19) to (24), the haze of the microcrystalline glass with a thickness of less than 1 mm is less than 0.2%, preferably less than 0.15%, and more preferably less than 0.12%; and/or the average transmittance of the microcrystalline glass with a thickness of less than 1 mm at a wavelength of 400 to 800 nm is greater than 87%, preferably greater than 88%, and more preferably greater than 89%; and/or the transmittance of the microcrystalline glass with a thickness of less than 1 mm at a wavelength of 550 nm is greater than 88%, preferably greater than 90%, and more preferably greater than 91%; and/or the average optical |B| value of the microcrystalline glass with a thickness of less than 1 mm at 400 to 800 nm is less than 0.8, preferably less than 0.75, and more preferably less than 0.7.
(36)根据(35)所述的微晶玻璃,所述微晶玻璃的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。(36) The microcrystalline glass according to (35) has a thickness of 0.2 to 1 mm, preferably 0.3 to 0.9 mm, more preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm or 0.75 mm.
(37)玻璃组合物,其组分以摩尔百分比表示,含有:SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%。(37) A glass composition, wherein the components, expressed in molar percentage, include: SiO 2 : 65-75%; Al 2 O 3 : 1-8%; Li 2 O: 14-27%; P 2 O 5 + ZrO 2 : 0.5-6%.
(38)根据(37)所述的玻璃组合物,其组分以摩尔百分比表示,还含有:ZnO+MgO:0~4%;和/或Na2O:0~3.5%;和/或B2O3:0~3%;和/或K2O:0~3%;和/或SrO:0~3%;和/或BaO:0~3%;和/或CaO:0~3%;和/或TiO2:0~3%;和/或Y2O3:0~3%;和/或澄清剂:0~1%。(38) The glass composition according to (37), which comprises, expressed in molar percentage , the following: ZnO+MgO: 0-4%; and/or Na2O : 0-3.5%; and/or B2O3 : 0-3%; and/or K2O : 0-3%; and/or SrO: 0-3%; and/or BaO: 0-3%; and/or CaO: 0-3%; and/or TiO2 : 0-3%; and/or Y2O3 : 0-3%; and/or a fining agent: 0-1%.
(39)玻璃组合物,其组分以摩尔百分比表示,由SiO2:65~75%;Al2O3:1~8%;Li2O:14~27%;P2O5+ZrO2:0.5~6%;ZnO+MgO:0~4%;Na2O:0~3.5%;B2O3:0~3%;K2O:0~3%;SrO:0~3%;BaO:0~3%;CaO:0~3%;TiO2:0~3%;Y2O3:0~3%;澄清剂:0~1%组成。(39) A glass composition, the components of which, expressed in molar percentage, are composed of SiO2 : 65-75%; Al2O3 : 1-8%; Li2O: 14-27 %; P2O5 + ZrO2 : 0.5-6% ; ZnO + MgO: 0-4%; Na2O : 0-3.5%; B2O3 : 0-3 %; K2O : 0-3%; SrO: 0-3%; BaO: 0-3%; CaO: 0-3%; TiO2 : 0-3%; Y2O3 : 0-3%; and a clarifier: 0-1%.
(40)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:(Li2O+ZrO2)/(ZnO+MgO)为10以上,优选(Li2O+ZrO2)/(ZnO+MgO)为12~45,更优选(Li2O+ZrO2)/(ZnO+MgO)为13~40,进一步优选(Li2O+ZrO2)/(ZnO+MgO)为15~35。(40) The glass composition according to any one of (37) to (39), wherein the components are expressed in molar percentage, wherein: (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 10 or more, preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 12 to 45, more preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 13 to 40, and further preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 15 to 35.
(41)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.05~1.5,优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.1~1,更优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.15~0.8,进一步优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.2~0.7。(41) The glass composition according to any one of (37) to (39), wherein the components are expressed in molar percentage: ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) is 0.05 to 1.5, preferably ( B2O3 + Na2O + ZrO2 )/ ( Al2O3 +MgO) is 0.1 to 1, more preferably ( B2O3 + Na2O +ZrO2)/(Al2O3+MgO) is 0.15 to 0.8, and further preferably (B2O3 + Na2O + ZrO2 ) / ( Al2O3 + MgO) is 0.2 to 0.7.
(42)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:(SiO2+Li2O)/(Al2O3+ZnO+MgO)为5~40,优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为8~30,更优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为10~25,进一步优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为11~20。(42) The glass composition according to any one of (37) to (39) , wherein the components are expressed in molar percentage , wherein: ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 5 to 40, preferably ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 8 to 30, more preferably ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) is 10 to 25, and further preferably ( SiO2 + Li2O )/( Al2O3 + ZnO +MgO) is 11 to 20.
(43)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为30~90,优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为35~80,更优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为38~75,进一步优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为40~70。(43) The glass composition according to any one of (37) to (39), wherein the components are expressed in molar percentage, wherein: ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 30 to 90, preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 35 to 80, more preferably (SiO2 + Al2O3 + Li2O + Na2O + ZrO2) / (P2O5 + MgO ) is 38 to 75 , and further preferably ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) / ( P2O5 + MgO) is 40 to 70 .
(44)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:(SiO2+Al2O3)/(P2O5+ZrO2)为12~75,优选(SiO2+Al2O3)/(P2O5+ZrO2)为15~70,更优选(SiO2+Al2O3)/(P2O5+ZrO2)为17~65,进一步优选(SiO2+Al2O3)/(P2O5+ZrO2)为20~60。(44) The glass composition according to any one of (37) to ( 39 ), wherein the components are expressed in molar percentage, wherein: ( SiO2 + Al2O3 )/( P2O5 + ZrO2 ) is 12 to 75, preferably (SiO2 + Al2O3)/(P2O5 + ZrO2) is 15 to 70, more preferably (SiO2 + Al2O3 ) / ( P2O5 + ZrO2 ) is 17 to 65 , and further preferably ( SiO2 + Al2O3 )/( P2O5 + ZrO2 ) is 20 to 60.
(45)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:SiO2:67~73%,优选SiO2:68~72%;和/或Al2O3:2~6.5%,优选Al2O3:3~6%;和/或Li2O:15.5~25%,优选Li2O:17~23.5%;和/或ZnO+MgO:0.1~4%,优选ZnO+MgO:0.2~3%,更优选ZnO+MgO:0.5~2%;和/或P2O5+ZrO2:1~4%,优选P2O5+ZrO2:1.2~3%;和/或Na2O:0.5~3%,优选Na2O:0.5~2.5%;和/或B2O3:0.5~2.5%,优选B2O3:0.5~2%;和/或K2O:0~2%,优选K2O:0~1.5%;和/或SrO:0~2%,优选SrO:0~1%;和/或BaO:0~2%,优选BaO:0~1%;和/或CaO:0~2%,优选CaO:0~1%;和/或TiO2:0~2%,优选TiO2:0~1%;和/或Y2O3:0~2%,优选Y2O3:0~1%;和/或澄清剂:0~0.5%,优选澄清剂:0~0.2%。(45) The glass composition according to any one of (37) to (39), wherein the components are expressed in molar percentages, wherein: SiO2 : 67-73%, preferably SiO2 : 68-72%; and/or Al2O3 : 2-6.5% , preferably Al2O3 : 3-6%; and/or Li2O : 15.5-25%, preferably Li2O : 17-23.5%; and/or ZnO+MgO: 0.1-4%, preferably ZnO+MgO: 0.2-3%, more preferably ZnO+MgO: 0.5-2%; and/or P2O5 + ZrO2 : 1-4%, preferably P2O5 + ZrO2 : 1.2-3%; and/or Na2O : 0.5-3%, preferably Na2O : 0.5-2.5%; and/or B2O3 : 0.1-4%, preferably ZnO+ MgO: 0.2-3%, more preferably ZnO+ MgO : 0.5-2 %; : 0.5-2.5%, preferably B 2 O 3 : 0.5-2%; and/or K 2 O: 0-2%, preferably K 2 O: 0-1.5%; and/or SrO: 0-2%, preferably SrO: 0-1%; and/or BaO: 0-2%, preferably BaO: 0-1%; and/or CaO: 0-2%, preferably CaO: 0-1%; and/or TiO 2 : 0-2%, preferably TiO 2 : 0-1%; and/or Y 2 O 3 : 0-2%, preferably Y 2 O 3 : 0-1%; and/or clarifier: 0-0.5%, preferably clarifier: 0-0.2%.
(46)根据(37)~(39)任一所述的玻璃组合物,其组分以摩尔百分比表示,其中:ZnO:0~2%,优选ZnO:0~1.5%,更优选ZnO:0~1%;和/或MgO:0~4%,优选MgO:0~3%,更优选MgO:0~1.5%;和/或P2O5:0~3%,优选P2O5:0.2~2%,更优选P2O5:0.4~1.5%,进一步优选P2O5:0.5~1%;和/或ZrO2:0~4%,优选ZrO2:0.2~3.5%,更优选ZrO2:0.5~3%,进一步优选ZrO2:0.7~2.5%。(46) A glass composition according to any one of (37) to (39), wherein the components are expressed in molar percentage, wherein: ZnO: 0-2%, preferably ZnO: 0-1.5%, more preferably ZnO: 0-1%; and/or MgO: 0-4%, preferably MgO: 0-3%, more preferably MgO: 0-1.5%; and/or P 2 O 5 : 0-3%, preferably P 2 O 5 : 0.2-2%, more preferably P 2 O 5 : 0.4-1.5%, further preferably P 2 O 5 : 0.5-1%; and/or ZrO 2 : 0-4%, preferably ZrO 2 : 0.2-3.5%, more preferably ZrO 2 : 0.5-3%, further preferably ZrO 2 : 0.7-2.5%.
(47)根据(37)~(39)任一所述的玻璃组合物,所述玻璃组合物的热膨胀系数为55×10-7/K~65×10-7/K,和/或折射率为1.5100~1.5300。(47) The glass composition according to any one of (37) to (39), wherein the thermal expansion coefficient of the glass composition is 55×10 -7 /K to 65×10 -7 /K, and/or the refractive index is 1.5100 to 1.5300.
(48)玻璃盖板,采用(1)~(18)任一所述的微晶玻璃制品制成,和/或采用(19)~(36)任一所述的微晶玻璃制成,和/或采用(37)~(47)任一所述的玻璃组合物制成。(48) A glass cover plate, made of the microcrystalline glass product described in any one of (1) to (18), and/or made of the microcrystalline glass described in any one of (19) to (36), and/or made of the glass composition described in any one of (37) to (47).
(49)玻璃元器件,采用(1)~(18)任一所述的微晶玻璃制品制成,和/或采用(19)~(36)任一所述的微晶玻璃制成,和/或采用(37)~(47)任一所述的玻璃组合物制成。(49) Glass components are made of the microcrystalline glass products described in any one of (1) to (18), and/or made of the microcrystalline glass described in any one of (19) to (36), and/or made of the glass composition described in any one of (37) to (47).
(50)显示设备,含有(1)~(18)任一所述的微晶玻璃制品,和/或含有(19)~(36)任一所述的微晶玻璃,和/或含有(37)~(47)任一所述的玻璃组合物,和/或含有(48)所述的玻璃盖板,和/或含有(49)所述的玻璃元器件。(50) A display device comprising the microcrystalline glass product described in any one of (1) to (18), and/or the microcrystalline glass described in any one of (19) to (36), and/or the glass composition described in any one of (37) to (47), and/or the glass cover described in (48), and/or the glass component described in (49).
(51)电子设备,含有(1)~(18)任一所述的微晶玻璃制品,和/或含有(19)~(36)任一所述的微晶玻璃,和/或含有(37)~(47)任一所述的玻璃组合物,和/或含有(48)所述的玻璃盖板,和/或含有(49)所述的玻璃元器件。(51) An electronic device comprising a glass-ceramic product as described in any one of (1) to (18), and/or a glass-ceramic product as described in any one of (19) to (36), and/or a glass composition as described in any one of (37) to (47), and/or a glass cover as described in (48), and/or a glass component as described in (49).
(52)(1)~(18)任一所述的微晶玻璃制品的制造方法,所述方法包括以下步骤:生成玻璃组合物,然后对所述玻璃组合物通过晶化工艺形成微晶玻璃,再对所述微晶玻璃通过化学强化工艺形成微晶玻璃制品。(52) A method for manufacturing a microcrystalline glass product as described in any one of (1) to (18), the method comprising the following steps: generating a glass composition, subjecting the glass composition to a crystallization process to form a microcrystalline glass, and then subjecting the microcrystalline glass to a chemical strengthening process to form a microcrystalline glass product.
(53)根据(52)所述的微晶玻璃制品的制造方法,将玻璃组合物制造成玻璃成型体,然后对所述玻璃成型体通过晶化工艺形成微晶玻璃,再对所述微晶玻璃通过化学强化工艺形成微晶玻璃制品,或将微晶玻璃制造成微晶玻璃成型体,再对所述微晶玻璃成型体通过化学强化工艺形成微晶玻璃制品。(53) According to the method for manufacturing a microcrystalline glass product described in (52), a glass composition is manufactured into a glass molded body, and then the glass molded body is subjected to a crystallization process to form a microcrystalline glass, and then the microcrystalline glass is subjected to a chemical strengthening process to form a microcrystalline glass product, or microcrystalline glass is manufactured into a microcrystalline glass molded body, and then the microcrystalline glass molded body is subjected to a chemical strengthening process to form a microcrystalline glass product.
(54)根据(52)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温,该晶化处理温度为600~750℃,优选为650~720℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。(54) According to the method for manufacturing microcrystalline glass products described in (52), the crystallization process includes the following steps: heating to a specified crystallization treatment temperature, maintaining the temperature for a certain period of time after reaching the crystallization treatment temperature, and then cooling down, the crystallization treatment temperature is 600-750°C, preferably 650-720°C, and the holding time at the crystallization treatment temperature is 0-8 hours, preferably 1-6 hours.
(55)根据(52)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在第2温度下进行晶体生长工艺的处理,第1温度为470~600℃,在第1温度下的保持时间为0~24小时,优选为2~15小时,第2温度为600~750℃,在第2温度下的保持时间为0~10小时,优选为0.5~6小时。(55) According to the manufacturing method of microcrystalline glass products described in (52), the crystallization process includes the following steps: performing a nucleation process at a first temperature, and then performing a crystal growth process at a second temperature, the first temperature is 470-600°C, and the holding time at the first temperature is 0-24 hours, preferably 2-15 hours, and the second temperature is 600-750°C, and the holding time at the second temperature is 0-10 hours, preferably 0.5-6 hours.
(56)根据(52)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在第2温度和第3温度下进行晶体生长工艺的处理,第1温度为470~550℃,在第1温度下的保持时间为0~24小时,优选为2~15小时,第2温度为570~630℃,在第2温度下的保持时间为0~10小时,优选为0.5~6小时,第3温度为650~750℃,在第3温度下的保持时间为0~10小时,优选为0.5~6小时。(56) According to the manufacturing method of microcrystalline glass products described in (52), the crystallization process includes the following steps: performing a nucleation process at a first temperature, and then performing a crystal growth process at a second temperature and a third temperature, wherein the first temperature is 470-550°C, and the holding time at the first temperature is 0-24 hours, preferably 2-15 hours, the second temperature is 570-630°C, and the holding time at the second temperature is 0-10 hours, preferably 0.5-6 hours, and the third temperature is 650-750°C, and the holding time at the third temperature is 0-10 hours, preferably 0.5-6 hours.
(57)根据(52)所述的微晶玻璃制品的制造方法,所述化学强化工艺包括:微晶玻璃浸没于320℃~470℃的温度的熔融Na盐的盐浴中6~20小时,优选温度范围为360℃~460℃,优选时间范围为8~13小时;和/或微晶玻璃浸没于340℃~450℃的温度下熔融K盐的盐浴中1~24小时,优选时间范围为2~10小时;和/或微晶玻璃浸没于340℃~500℃的温度下熔融K盐和熔融Na盐混合盐盐浴中1~24小时,优选时间范围为2~10小时。(57) According to the method for manufacturing microcrystalline glass products described in (52), the chemical strengthening process includes: the microcrystalline glass is immersed in a salt bath of molten Na salt at a temperature of 320°C to 470°C for 6 to 20 hours, preferably in the temperature range of 360°C to 460°C, and the preferred time range is 8 to 13 hours; and/or the microcrystalline glass is immersed in a salt bath of molten K salt at a temperature of 340°C to 450°C for 1 to 24 hours, preferably in the time range of 2 to 10 hours; and/or the microcrystalline glass is immersed in a mixed salt bath of molten K salt and molten Na salt at a temperature of 340°C to 500°C for 1 to 24 hours, preferably in the time range of 2 to 10 hours.
(58)(19)~(36)任一所述的微晶玻璃的制造方法,所述方法包括以下步骤:生成玻璃组合物,然后对所述玻璃组合物通过晶化工艺形成微晶玻璃。(58) A method for manufacturing microcrystalline glass as described in any one of (19) to (36), the method comprising the following steps: generating a glass composition and then subjecting the glass composition to a crystallization process to form microcrystalline glass.
(59)根据(58)所述的微晶玻璃的制造方法,将玻璃组合物制造成玻璃成型体,然后对所述玻璃成型体通过晶化工艺形成微晶玻璃。(59) According to the method for manufacturing microcrystalline glass described in (58), the glass composition is manufactured into a glass molded body, and then the glass molded body is formed into microcrystalline glass through a crystallization process.
(60)根据(58)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温,该晶化处理温度为600~750℃,优选为650~720℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。(60) According to the method for manufacturing microcrystalline glass described in (58), the crystallization process includes the following steps: heating to a specified crystallization treatment temperature, maintaining the temperature for a certain period of time after reaching the crystallization treatment temperature, and then cooling down, the crystallization treatment temperature is 600-750°C, preferably 650-720°C, and the holding time at the crystallization treatment temperature is 0-8 hours, preferably 1-6 hours.
(61)根据(58)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在第2温度下进行晶体生长工艺的处理,第1温度为470~600℃,在第1温度下的保持时间为0~24小时,优选为2~15小时,第2温度为600~750℃,在第2温度下的保持时间为0~10小时,优选为0.5~6小时。(61) According to the method for manufacturing microcrystalline glass as described in (58), the crystallization process includes the following steps: performing a nucleation process at a first temperature, and then performing a crystal growth process at a second temperature, the first temperature is 470-600°C, and the holding time at the first temperature is 0-24 hours, preferably 2-15 hours, and the second temperature is 600-750°C, and the holding time at the second temperature is 0-10 hours, preferably 0.5-6 hours.
(62)根据(58)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在第2温度和第3温度下进行晶体生长工艺的处理,第1温度为470~550℃,在第1温度下的保持时间为0~24小时,优选为2~15小时,第2温度为570~630℃,在第2温度下的保持时间为0~10小时,优选为0.5~6小时,第3温度为650~750℃,在第3温度下的保持时间为0~10小时,优选为0.5~6小时。(62) According to the method for manufacturing microcrystalline glass as described in (58), the crystallization process includes the following steps: performing a nucleation process at a first temperature, and then performing a crystal growth process at a second temperature and a third temperature, wherein the first temperature is 470-550°C, and the holding time at the first temperature is 0-24 hours, preferably 2-15 hours, the second temperature is 570-630°C, and the holding time at the second temperature is 0-10 hours, preferably 0.5-6 hours, and the third temperature is 650-750°C, and the holding time at the third temperature is 0-10 hours, preferably 0.5-6 hours.
本发明的有益效果是:通过合理的组分设计,本发明获得的微晶玻璃和微晶玻璃制品具有优异的机械性能和光学性能,适用于电子设备或显示设备。The beneficial effects of the present invention are as follows: through reasonable component design, the microcrystalline glass and microcrystalline glass products obtained by the present invention have excellent mechanical properties and optical properties, and are suitable for electronic devices or display devices.
具体实施方式DETAILED DESCRIPTION
本发明的微晶玻璃和微晶玻璃制品是具有晶相和玻璃相的材料,其有别于非晶质固体。微晶玻璃和微晶玻璃制品的晶相可以通过X射线衍射分析的X射线衍射图案中出现的峰值角度进行辨别和/或通过TEMEDX测得。The glass-ceramics and glass-ceramics products of the present invention are materials having a crystalline phase and a glass phase, which are different from amorphous solids. The crystalline phase of the glass-ceramics and glass-ceramics products can be identified by the peak angle appearing in the X-ray diffraction pattern of X-ray diffraction analysis and/or measured by TEMEDX.
本发明的发明人经过反复试验和研究,对于构成微晶玻璃和微晶玻璃制品的特定成分,通过将其含量以及含量比例规定为特定值并使其析出特定的晶相,以较低的成本得到了本发明的微晶玻璃或微晶玻璃制品。After repeated experiments and studies, the inventors of the present invention have obtained the microcrystalline glass or microcrystalline glass products of the present invention at a relatively low cost by regulating the content and content ratio of the specific components constituting microcrystalline glass and microcrystalline glass products to specific values and precipitating specific crystalline phases.
在本发明微晶玻璃或微晶玻璃制品中,晶相含有硅酸锂;和/或石英及石英固溶体;和/或透锂长石。本发明所述的硅酸锂晶相包含一硅酸锂和/或二硅酸锂。本发明中晶相有时候也称为晶体。In the glass-ceramics or glass-ceramics products of the present invention, the crystalline phase contains lithium silicate; and/or quartz and quartz solid solution; and/or petalite. The lithium silicate crystalline phase of the present invention contains lithium monosilicate and/or lithium disilicate. In the present invention, the crystalline phase is sometimes also referred to as crystal.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有二硅酸锂,二硅酸锂的含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains lithium disilicate, and the content of lithium disilicate has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有透锂长石,透锂长石的含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains petalite, and the content of petalite has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有一硅酸锂,一硅酸锂的含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains lithium silicate, and the content of lithium silicate has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有石英及石英固溶体,石英及石英固溶体的含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains quartz and quartz solid solution, and the content of quartz and quartz solid solution has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有二硅酸锂和透锂长石,二硅酸锂和透锂长石的合计含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains lithium disilicate and petalite, and the combined content of lithium disilicate and petalite has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有一硅酸锂和透锂长石,一硅酸锂和透锂长石的合计含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains lithium silicate and petalite, and the combined content of lithium silicate and petalite has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有二硅酸锂和石英及石英固溶体,二硅酸锂和石英及石英固溶体的合计含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phase in the microcrystalline glass or microcrystalline glass products contains lithium disilicate, quartz and quartz solid solution, and the combined content of lithium disilicate, quartz and quartz solid solution has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有透锂长石和石英及石英固溶体,透锂长石和石英及石英固溶体的合计含量具有比其他晶相更高的重量百分数,使本发明微晶玻璃或微晶玻璃制品具有优异的性能。In some embodiments of the present invention, the crystalline phases in the microcrystalline glass or microcrystalline glass products contain petalite, quartz and quartz solid solution, and the combined content of petalite, quartz and quartz solid solution has a higher weight percentage than other crystalline phases, so that the microcrystalline glass or microcrystalline glass products of the present invention have excellent performance.
在一些实施方式中,二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为15~40%。在一些实施方式中,二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为20~35%。在一些实施方式中,二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为25~35%。In some embodiments, the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic or glass-ceramic product is 15-40%. In some embodiments, the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic or glass-ceramic product is 20-35%. In some embodiments, the weight percentage of the lithium disilicate crystalline phase in the glass-ceramic or glass-ceramic product is 25-35%.
在一些实施方式中,石英及石英固溶体晶相占微晶玻璃或微晶玻璃制品的重量百分比为5~25%。在一些实施方式中,石英及石英固溶体晶相占微晶玻璃或微晶玻璃制品的重量百分比为7~20%。In some embodiments, the weight percentage of quartz and quartz solid solution crystal phase in the glass-ceramic or glass-ceramic product is 5-25%. In some embodiments, the weight percentage of quartz and quartz solid solution crystal phase in the glass-ceramic or glass-ceramic product is 7-20%.
在一些实施方式中,透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为30~55%。在一些实施方式中,透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为35~55%。在一些实施方式中,透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为35~50%。In some embodiments, the weight percentage of the petalite crystalline phase in the glass-ceramic or glass-ceramic product is 30-55%. In some embodiments, the weight percentage of the petalite crystalline phase in the glass-ceramic or glass-ceramic product is 35-55%. In some embodiments, the weight percentage of the petalite crystalline phase in the glass-ceramic or glass-ceramic product is 35-50%.
在一些实施方式中,一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为0~10%。在一些实施方式中,一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为0~7%。在一些实施方式中,一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为0~5%。In some embodiments, the weight percentage of the lithium silicate crystal phase in the glass-ceramic or glass-ceramic product is 0-10%. In some embodiments, the weight percentage of the lithium silicate crystal phase in the glass-ceramic or glass-ceramic product is 0-7%. In some embodiments, the weight percentage of the lithium silicate crystal phase in the glass-ceramic or glass-ceramic product is 0-5%.
在一些实施方式中,二硅酸锂和透锂长石晶相的合计含量占微晶玻璃或微晶玻璃制品的重量百分比为50~80%。在一些实施方式中,二硅酸锂和透锂长石晶相的合计含量占微晶玻璃或微晶玻璃制品的重量百分比为55~75%。在一些实施方式中,二硅酸锂和透锂长石晶相的合计含量占微晶玻璃或微晶玻璃制品的重量百分比为55~70%。In some embodiments, the total content of lithium disilicate and petalite crystalline phases is 50-80% by weight of the glass-ceramic or glass-ceramic product. In some embodiments, the total content of lithium disilicate and petalite crystalline phases is 55-75% by weight of the glass-ceramic or glass-ceramic product. In some embodiments, the total content of lithium disilicate and petalite crystalline phases is 55-70% by weight of the glass-ceramic or glass-ceramic product.
下面,对本发明玻璃组合物、微晶玻璃及微晶玻璃制品的各组分(成分)的范围进行说明。在本说明书中,如果没有特殊说明,各组分的含量全部采用相对于换算成氧化物的组成的玻璃组合物、或微晶玻璃、或微晶玻璃制品物质总量的摩尔百分比(mol%)表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的玻璃组合物、微晶玻璃或微晶玻璃制品组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总摩尔量作为100%。此外,在本说明书中仅称为玻璃时为结晶化前的玻璃组合物,玻璃组合物结晶化后称为微晶玻璃,微晶玻璃制品是指经化学强化后的微晶玻璃。The following is an explanation of the scope of each component (ingredient) of the glass composition, glass-ceramics, and glass-ceramics products of the present invention. In this specification, unless otherwise specified, the content of each component is expressed in molar percentage (mol%) relative to the total amount of the glass composition, glass-ceramics, or glass-ceramics product material converted into an oxide composition. Here, the "composition converted into oxides" refers to the case where oxides, complex salts, hydroxides, etc. used as raw materials for the glass composition, glass-ceramics, or glass-ceramics products of the present invention decompose and transform into oxides when melted, and the total molar amount of the oxide material is taken as 100%. In addition, in this specification, when it is simply referred to as glass, it is a glass composition before crystallization, and a glass composition after crystallization is referred to as glass-ceramics, and a glass-ceramics product refers to chemically strengthened glass-ceramics.
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所使用的术语“约”指配方、参数和其他数量以及特征不是、且无需是精确的,如有需要,可以近似和/或更大或更低,这反映公差、换算因子和测量误差等。本文所称“和/或”是包含性的,例如“A;和/或B”,是指只有A,或者只有B,或者同时有A和B。Unless otherwise indicated in specific cases, the numerical ranges listed herein include upper and lower limits, and "above" and "below" include the endpoints, as well as all integers and fractions within the range, without limitation to the specific values listed when the range is defined. The term "about" as used herein means that the formula, parameters and other quantities and features are not and need not be exact, and may be approximate and/or larger or lower if necessary, reflecting tolerances, conversion factors and measurement errors, etc. "And/or" as used herein is inclusive, for example, "A; and/or B" means only A, or only B, or both A and B.
SiO2是本发明的玻璃组合物、微晶玻璃和微晶玻璃制品的基础组分,是形成微晶玻璃和微晶玻璃制品的晶相的主要成分之一,如果SiO2的含量低于65%,在微晶玻璃和微晶玻璃制品中形成晶体会变少并且晶体容易变粗,影响微晶玻璃和微晶玻璃制品的落球试验高度和雾度。因此,SiO2含量的下限为65%,优选下限为67%,更优选下限为68%。另一方面,如果SiO2含量超过75%,则玻璃熔化温度高,化料困难,并且在制造过程中不容易成型,影响玻璃的均匀一致性。因此,SiO2含量的上限为75%,优选上限为73%,更优选上限为72%。在一些实施方式中,可包含约65%、65.5%、66%、66.5%、67%、67.5%、68%、68.5%、69%、69.5%、70%、70.5%、71%、71.5%、72%、72.5%、73%、73.5%、74%、74.5%、75%的SiO2。 SiO2 is the basic component of the glass composition, glass-ceramics and glass-ceramics products of the present invention, and is one of the main components of the crystalline phase of glass-ceramics and glass-ceramics products. If the content of SiO2 is less than 65%, the crystals formed in glass-ceramics and glass-ceramics products will become less and the crystals will easily become coarser, affecting the drop ball test height and haze of glass-ceramics and glass-ceramics products. Therefore, the lower limit of the SiO2 content is 65%, preferably 67%, and more preferably 68%. On the other hand, if the SiO2 content exceeds 75%, the glass melting temperature is high, the material is difficult to smelt, and it is not easy to shape during the manufacturing process, affecting the uniformity of the glass. Therefore, the upper limit of the SiO2 content is 75%, preferably 73%, and more preferably 72%. In some embodiments, SiO2 may be comprised at about 65%, 65.5%, 66%, 66.5%, 67%, 67.5%, 68%, 68.5%, 69%, 69.5%, 70%, 70.5%, 71%, 71.5 %, 72%, 72.5%, 73%, 73.5%, 74%, 74.5%, 75%.
Al2O3是形成玻璃网状结构的组分,并且是形成透锂长石晶相的成分之一,其有利于玻璃的化学强化,提高微晶玻璃制品的落球试验高度,但如果其含量不足1%,则上述效果不佳。因此,Al2O3含量的下限为1%,优选为2%,更优选为3%。另一方面,如果Al2O3的含量超过8%,则玻璃的熔融性与耐失透性降低,并且玻璃晶化时晶体容易增大,降低微晶玻璃和微晶玻璃制品的强度。因此,Al2O3含量的上限为8%,优选上限为6.5%,更优选上限为6%。在一些实施方式中,可包含约1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的Al2O3。Al 2 O 3 is a component that forms a glass network structure and is one of the components that form a petalite crystal phase. It is beneficial to the chemical strengthening of glass and increases the drop ball test height of microcrystalline glass products. However, if its content is less than 1%, the above effect is not good. Therefore, the lower limit of the Al 2 O 3 content is 1%, preferably 2%, and more preferably 3%. On the other hand, if the Al 2 O 3 content exceeds 8%, the meltability and devitrification resistance of the glass are reduced, and the crystals tend to increase during glass crystallization, reducing the strength of microcrystalline glass and microcrystalline glass products. Therefore, the upper limit of the Al 2 O 3 content is 8%, preferably 6.5%, and more preferably 6%. In some embodiments, about 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8% Al 2 O 3 may be included.
Li2O是本发明中微晶玻璃和微晶玻璃制品形成晶体的必要组分,同时也是参与化学强化、提高微晶玻璃制品机械性能的必要组分,若Li2O含量不足14%,则微晶玻璃和微晶玻璃制品中晶体含量不足,降低微晶玻璃和微晶玻璃制品的强度。因此,Li2O含量的下限为14%,优选下限为15.5%,更优选下限为17%。另一方面,若过多地含有Li2O,则微晶玻璃和微晶玻璃制品的雾度升高。因此,Li2O含量的上限为27%,优选上限为25%,更优选上限为23.5%。在一些实施方式中,可包含约14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%的Li2O。 Li2O is an essential component for the formation of crystals in the glass-ceramics and glass-ceramics products of the present invention. It is also an essential component for participating in chemical strengthening and improving the mechanical properties of glass-ceramics products. If the Li2O content is less than 14%, the crystal content in the glass-ceramics and glass-ceramics products is insufficient, which reduces the strength of the glass-ceramics and glass-ceramics products. Therefore, the lower limit of the Li2O content is 14%, preferably 15.5%, and more preferably 17%. On the other hand, if too much Li2O is contained, the haze of the glass-ceramics and glass-ceramics products increases. Therefore, the upper limit of the Li2O content is 27%, preferably 25%, and more preferably 23.5%. In some embodiments, about 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20%, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25%, 25.5%, 26%, 26.5%, 27% Li2O may be included.
ZnO和MgO可促进微晶玻璃中形成石英及石英固溶体,其合计含量ZnO+MgO过高,则微晶玻璃和微晶玻璃制品的雾度升高。因此,ZnO+MgO限定为4%以下。若ZnO+MgO过低,微晶玻璃和微晶玻璃制品在低雾度情况下形不成石英及石英固溶体,不利于实现本发明微晶玻璃和微晶玻璃制品优异的机械性能。因此,优选ZnO+MgO为0.1~4%,更优选ZnO+MgO为0.2~3%,进一步优选ZnO+MgO为0.5~2%。在一些实施方式中,ZnO的含量优选为0~2%,更优选为0~1.5%,进一步优选为0~1%。在一些实施方式中,MgO的含量优选为0~4%,更优选为0~3%,进一步优选为0~1.5%。在一些实施方式中,ZnO+MgO的值可为0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%的ZnO。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%的MgO。ZnO and MgO can promote the formation of quartz and quartz solid solution in glass-ceramics. If the total content of ZnO+MgO is too high, the haze of glass-ceramics and glass-ceramics products will increase. Therefore, ZnO+MgO is limited to less than 4%. If ZnO+MgO is too low, glass-ceramics and glass-ceramics products cannot form quartz and quartz solid solution under low haze conditions, which is not conducive to achieving the excellent mechanical properties of the glass-ceramics and glass-ceramics products of the present invention. Therefore, it is preferred that ZnO+MgO is 0.1-4%, more preferably ZnO+MgO is 0.2-3%, and further preferably ZnO+MgO is 0.5-2%. In some embodiments, the content of ZnO is preferably 0-2%, more preferably 0-1.5%, and further preferably 0-1%. In some embodiments, the content of MgO is preferably 0-4%, more preferably 0-3%, and further preferably 0-1.5%. In some embodiments, the value of ZnO+MgO may be 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2% ZnO may be included. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4% MgO may be included.
发明人大量实验研究发现,在本发明的一些实施方式中,将Li2O和ZrO2的合计含量Li2O+ZrO2与ZnO和MgO的合计含量ZnO+MgO之间的比例(Li2O+ZrO2)/(ZnO+MgO)控制在10以上,可降低微晶玻璃和微晶玻璃制品的雾度,提高光透过率。因此,优选(Li2O+ZrO2)/(ZnO+MgO)为10以上,更优选(Li2O+ZrO2)/(ZnO+MgO)为12~45。进一步的,通过控制(Li2O+ZrO2)/(ZnO+MgO)在13~40范围内,还可进一步提高微晶玻璃的化学强化性能,提高微晶玻璃制品的离子交换层深度和表面应力,并有利于提高微晶玻璃制品的四点弯曲强度。因此,进一步优选(Li2O+ZrO2)/(ZnO+MgO)为13~40,更进一步优选(Li2O+ZrO2)/(ZnO+MgO)为15~35。在一些实施方式中,Li2O/(ZnO+MgO)的值可为10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45。The inventors have found through a large number of experimental studies that in some embodiments of the present invention, the ratio of the total content of Li 2 O and ZrO 2 (Li 2 O + ZrO 2 ) / (ZnO + MgO) between the total content of ZnO and MgO (ZnO + MgO) (Li 2 O + ZrO 2 ) / (ZnO + MgO) is controlled to be above 10, which can reduce the haze of microcrystalline glass and microcrystalline glass products and improve the light transmittance. Therefore, it is preferred that (Li 2 O + ZrO 2 ) / (ZnO + MgO) is above 10, and more preferably (Li 2 O + ZrO 2 ) / (ZnO + MgO) is 12 to 45. Furthermore, by controlling (Li 2 O + ZrO 2 ) / (ZnO + MgO) within the range of 13 to 40, the chemical strengthening performance of microcrystalline glass can be further improved, the depth of the ion exchange layer and the surface stress of the microcrystalline glass products can be increased, and the four-point bending strength of the microcrystalline glass products can be improved. Therefore, it is more preferred that ( Li2O + ZrO2 )/(ZnO+MgO) is 13 to 40, and it is even more preferred that ( Li2O + ZrO2 )/(ZnO+MgO) is 15 to 35. In some embodiments, the value of Li2O /(ZnO+MgO) may be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45.
在一些实施方式中,通过控制(SiO2+Li2O)/(Al2O3+ZnO+MgO)在5~40范围内,有利于提高微晶玻璃和微晶玻璃制品的落球试验高度和断裂韧性。因此,优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为5~40,更优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为8~30。进一步的,通过控制(SiO2+Li2O)/(Al2O3+ZnO+MgO)在10~25范围内,还有利于降低微晶玻璃和微晶玻璃制品的雾度,提高光透过率。因此,进一步优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为10~25,更进一步优选(SiO2+Li2O)/(Al2O3+ZnO+MgO)为11~20。在一些实施方式中,(SiO2+Li2O)/(Al2O3+ZnO+MgO)的值可为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40。In some embodiments, by controlling (SiO 2 +Li 2 O)/(Al 2 O 3 +ZnO+MgO) within the range of 5 to 40, it is beneficial to improve the drop ball test height and fracture toughness of microcrystalline glass and microcrystalline glass products. Therefore, it is preferred that (SiO 2 +Li 2 O)/(Al 2 O 3 +ZnO+MgO) is 5 to 40, and more preferably (SiO 2 +Li 2 O)/(Al 2 O 3 +ZnO+MgO) is 8 to 30. Furthermore, by controlling (SiO 2 +Li 2 O)/(Al 2 O 3 +ZnO+MgO) within the range of 10 to 25, it is also beneficial to reduce the haze of microcrystalline glass and microcrystalline glass products and improve the light transmittance. Therefore, it is more preferred that ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO) is 10 to 25, and it is even more preferred that ( SiO2 + Li2O )/( Al2O3 +ZnO+MgO) is 11 to 20. In some embodiments, the value of ( SiO2 + Li2O )/( Al2O3 + ZnO+MgO) may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 , 33 , 34, 35, 36, 37, 38, 39, 40.
P2O5和ZrO2具有成核的作用,当其合计含量P2O5+ZrO2在0.5%以上时,有利于形成本发明期望的晶体,以实现本发明微晶玻璃和微晶玻璃制品优异的机械性能和光学性能。若其合计含量P2O5+ZrO2超过6%,则微晶玻璃或微晶玻璃制品中的晶粒尺寸变大,微晶玻璃和微晶玻璃制品的雾度和透过率增加,机械性能下降。因此,P2O5+ZrO2为0.5~6%,优选P2O5+ZrO2为1~4%,更优选P2O5+ZrO2为1.2~3%。在一些实施方式中,P2O5+ZrO2的值可为0.5%、1%、1.2%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%。 P2O5 and ZrO2 have a nucleation effect. When their combined content P2O5 + ZrO2 is above 0.5%, it is beneficial to form the desired crystals of the present invention, so as to achieve the excellent mechanical and optical properties of the glass- ceramics and glass-ceramics products of the present invention. If their combined content P2O5 + ZrO2 exceeds 6%, the grain size in the glass-ceramics or glass-ceramics products becomes larger, the haze and transmittance of the glass-ceramics and glass-ceramics products increase, and the mechanical properties decrease. Therefore, P2O5 + ZrO2 is 0.5-6 %, preferably P2O5 + ZrO2 is 1-4%, and more preferably P2O5 + ZrO2 is 1.2-3 %. In some embodiments, the value of P 2 O 5 +ZrO 2 may be 0.5%, 1%, 1.2%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%.
在一些实施方式中,将SiO2和Al2O3的合计含量SiO2+Al2O3与P2O5和ZrO2的合计含量P2O5+ZrO2之间的比值(SiO2+Al2O3)/(P2O5+ZrO2)控制在12~75范围内,可提高微晶玻璃和微晶玻璃制品的结晶度,降低晶粒尺寸。因此,优选(SiO2+Al2O3)/(P2O5+ZrO2)为12~75,更优选(SiO2+Al2O3)/(P2O5+ZrO2)为15~70。进一步的,控制(SiO2+Al2O3)/(P2O5+ZrO2)在17~65范围内,还可进一步提高微晶玻璃制品的断裂韧性和耐摔性,提高微晶玻璃和微晶玻璃制品的落球试验高度。因此,进一步优选(SiO2+Al2O3)/In some embodiments, the ratio of the total content of SiO2 and Al2O3 (SiO2+Al2O3) to the total content of P2O5 and ZrO2 ( P2O5 + ZrO2 ) ( SiO2 + Al2O3 ) / ( P2O5 + ZrO2 ) is controlled within the range of 12 to 75, which can improve the crystallinity of the microcrystalline glass and microcrystalline glass products and reduce the grain size. Therefore, preferably (SiO2 + Al2O3 ) /( P2O5 + ZrO2 ) is 12 to 75 , and more preferably ( SiO2 + Al2O3 )/( P2O5 + ZrO2 ) is 15 to 70 . Furthermore, by controlling (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) within the range of 17 to 65, the fracture toughness and drop resistance of the microcrystalline glass products can be further improved, and the drop ball test height of the microcrystalline glass and microcrystalline glass products can be increased.
(P2O5+ZrO2)为17~65,更进一步优选(SiO2+Al2O3)/(P2O5+ZrO2)为20~60。在一些实施方式中,(SiO2+Al2O3)/(P2O5+ZrO2)的值可为12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75。(P 2 O 5 +ZrO 2 ) is 17-65, and more preferably (SiO 2 +Al 2 O 3 )/(P 2 O 5 +ZrO 2 ) is 20-60. In some embodiments, the value of ( SiO2 + Al2O3 )/( P2O5 + ZrO2 ) may be 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 , 65, 66, 67, 68, 69 , 70, 71, 72, 73, 74, 75.
P2O5能够在玻璃中形成晶核,促进晶体形成,提高微晶玻璃和微晶玻璃制品的强度,有利于降低微晶玻璃和微晶玻璃制品的雾度。另一方面,若过多地含有P2O5,则很容易在玻璃组合物产生过程中发生失透,增加玻璃的成型难度。因此,P2O5的含量范围优选为0~3%,更优选为0.2~2%,进一步优选为0.4~1.5%,更进一步优选为0.5~1%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%的P2O5。 P2O5 can form crystal nuclei in glass, promote crystal formation, improve the strength of microcrystalline glass and microcrystalline glass products, and help reduce the haze of microcrystalline glass and microcrystalline glass products. On the other hand, if too much P2O5 is contained , it is easy to cause devitrification during the production process of the glass composition, increasing the difficulty of glass molding. Therefore, the content range of P2O5 is preferably 0-3%, more preferably 0.2-2%, further preferably 0.4-1.5%, and further preferably 0.5-1%. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3% of P2O5 may be included .
ZrO2具有结晶析出形成晶核的作用,可细化晶粒,降低微晶玻璃和微晶玻璃制品的雾度。另一方面,若过多地含有ZrO2,微晶玻璃和微晶玻璃制品的雾度反而上升。因此,ZrO2的含量优选为0~4%,更优选为0.2~3.5%,进一步优选为0.5~3%,更进一步优选为0.7~2.5%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%的ZrO2。 ZrO2 has the function of crystallization and precipitation to form crystal nuclei, which can refine the grains and reduce the haze of microcrystalline glass and microcrystalline glass products. On the other hand, if too much ZrO2 is contained, the haze of microcrystalline glass and microcrystalline glass products will increase. Therefore, the content of ZrO2 is preferably 0-4%, more preferably 0.2-3.5%, further preferably 0.5-3%, and further preferably 0.7-2.5%. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4% ZrO2 may be included.
Na2O可降低微晶玻璃和微晶玻璃制品的雾度,提高微晶玻璃中的玻璃相,有利于微晶玻璃热弯成型,但是若过多含有Na2O,会导致微晶玻璃和微晶玻璃制品中的晶体粗化,反而导致微晶玻璃和微晶玻璃制品的雾度和透过率变差。因此,Na2O的含量范围为0~3.5%,优选为0.5~3%,更优选为0.5~2.5%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%的Na2O。 Na2O can reduce the haze of glass-ceramics and glass-ceramics products, increase the glass phase in glass-ceramics, and facilitate the hot bending of glass-ceramics. However, if too much Na2O is contained, it will cause the crystals in glass-ceramics and glass-ceramics products to coarsen, which will lead to the deterioration of the haze and transmittance of glass-ceramics and glass-ceramics products. Therefore, the content range of Na2O is 0-3.5%, preferably 0.5-3%, and more preferably 0.5-2.5%. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5% of Na2O may be included.
在一些实施方式中,将(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)控制在30~90范围内,可降低微晶玻璃和微晶玻璃制品的∣B∣值和雾度。因此,优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为30~90,更优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为35~80。进一步的,将(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)控制在38~75范围内,还可提高微晶玻璃和微晶玻璃制品的四点弯曲强度和维氏硬度,提高微晶玻璃制品的离子交换层深度和表面应力。因此,进一步优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为38~75,更进一步优选(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)为40~70。在一些实施方式中,In some embodiments, the |B| value and haze of the glass-ceramics and glass-ceramics products can be reduced by controlling ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 )/( P2O5 +MgO) within the range of 30 to 90. Therefore, ( SiO2 + Al2O3 + Li2O + Na2O +ZrO2)/( P2O5 +MgO) is preferably 30 to 90, and ( SiO2 + Al2O3 + Li2O + Na2O + ZrO2 ) /( P2O5 + MgO ) is more preferably 35 to 80 . Furthermore, by controlling (SiO 2 +Al 2 O 3 +Li 2 O+Na 2 O+ZrO 2 )/(P 2 O 5 +MgO) within the range of 38 to 75, the four-point bending strength and Vickers hardness of the microcrystalline glass and microcrystalline glass products can be improved, and the ion exchange layer depth and surface stress of the microcrystalline glass products can be improved. Therefore, it is further preferred that (SiO 2 +Al 2 O 3 +Li 2 O+Na 2 O+ZrO 2 )/(P 2 O 5 +MgO) is 38 to 75, and it is further preferred that (SiO 2 +Al 2 O 3 +Li 2 O+Na 2 O+ZrO 2 )/(P 2 O 5 +MgO) is 40 to 70. In some embodiments,
(SiO2+Al2O3+Li2O+Na2O+ZrO2)/(P2O5+MgO)的值可为30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90。The value of ( SiO2 + Al2O3 + Li2O + Na2O +ZrO2)/( P2O5 +MgO) can be 30, 31, 32 , 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 , 56 , 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90.
B2O3在玻璃中不参与晶体的形成,可增加微晶玻璃中玻璃相,有利于微晶玻璃热弯成型,但若过多的含有B2O3,则会促使晶粒迅速长大,在晶化处理时不易控制。因此B2O3含量的范围为0~3%,优选为0.5~2.5%,更优选为0.5~2%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%的B2O3。 B2O3 does not participate in the formation of crystals in glass, but can increase the glass phase in microcrystalline glass, which is beneficial to the hot bending of microcrystalline glass. However, if too much B2O3 is contained, it will cause the grains to grow rapidly, which is difficult to control during the crystallization process. Therefore, the content of B2O3 ranges from 0 to 3%, preferably from 0.5 to 2.5%, and more preferably from 0.5 to 2%. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3% B2O3 may be included.
在一些实施方式中,通过控制(B2O3+Na2O+ZrO2)/(Al2O3+MgO)在0.05~1.5范围内,可提高微晶玻璃和微晶玻璃制品的维氏硬度,降低微晶玻璃和微晶玻璃制品的晶粒尺寸。因此,优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.05~1.5,更优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.1~1。进一步的,通过控制(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.15~0.8,可进一步提高微晶玻璃和微晶玻璃制品的结晶度和耐摔性。因此,进一步优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.15~0.8,更进一步优选(B2O3+Na2O+ZrO2)/(Al2O3+MgO)为0.2~0.7。在一些实施方式中,(B2O3+Na2O+ZrO2)/(Al2O3+MgO)的值可为0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。In some embodiments, by controlling (B 2 O 3 +Na 2 O+ZrO 2 )/(Al 2 O 3 +MgO) within the range of 0.05 to 1.5, the Vickers hardness of glass-ceramics and glass-ceramics products can be increased, and the grain size of glass-ceramics and glass-ceramics products can be reduced. Therefore, preferably (B 2 O 3 +Na 2 O+ZrO 2 )/(Al 2 O 3 +MgO) is 0.05 to 1.5, and more preferably (B 2 O 3 +Na 2 O+ZrO 2 )/(Al 2 O 3 +MgO) is 0.1 to 1. Furthermore, by controlling (B 2 O 3 +Na 2 O+ZrO 2 )/(Al 2 O 3 +MgO) to 0.15 to 0.8, the crystallinity and drop resistance of glass-ceramics and glass-ceramics products can be further improved. Therefore, ( B2O3 + Na2O + ZrO2 ) / ( Al2O3 +MgO) is more preferably 0.15 to 0.8, and ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) is still more preferably 0.2 to 0.7. In some embodiments, the value of ( B2O3 + Na2O + ZrO2 )/( Al2O3 +MgO) may be 0.05, 0.1, 0.15 , 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45 , 1.5.
K2O可降低玻璃的粘度,热处理时促进晶体的形成,但如果过多地含有K2O,则很容易导致玻璃晶体粗化,降低微晶玻璃和微晶玻璃制品的透过率和落球试验高度。因此,K2O的含量为3%以下,优选为2%以下,更优选为1.5%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%的K2O。 K2O can reduce the viscosity of glass and promote the formation of crystals during heat treatment. However, if K2O is contained in excess, it is easy to cause coarsening of glass crystals and reduce the transmittance and drop test height of microcrystalline glass and microcrystalline glass products. Therefore, the content of K2O is 3% or less, preferably 2% or less, and more preferably 1.5% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3% K2O may be included.
SrO是提高玻璃的低温熔化性和抑制玻璃成型时析晶的任选组分,但含量过多时不利于玻璃成型。因此,本发明中SrO含量的范围为0~3%,优选为0~2%,更优选0~1%,进一步优选不含有SrO。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%的SrO。SrO is an optional component that improves the low temperature melting property of glass and inhibits crystallization during glass forming, but excessive content is not conducive to glass forming. Therefore, the content of SrO in the present invention ranges from 0 to 3%, preferably from 0 to 2%, more preferably from 0 to 1%, and further preferably does not contain SrO. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3% SrO may be included.
BaO是有助于提高玻璃的成玻性能的任选组分,含量过多时不利于玻璃成型。因此,本发明中BaO含量的范围为0~3%,优选为0~2%,更优选0~1%,进一步优选不含有BaO。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%的BaO。BaO is an optional component that helps improve the glass-forming properties of glass. Too much BaO is not conducive to glass forming. Therefore, the content of BaO in the present invention ranges from 0 to 3%, preferably from 0 to 2%, more preferably from 0 to 1%, and more preferably does not contain BaO. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3% BaO may be included.
CaO可以增加玻璃的硬度,含量过多时玻璃成型时容易发乳。因此本发明中CaO含量的范围为0~3%,优选为0~2%,更优选0~1%,进一步优选不含有CaO。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%的CaO。CaO can increase the hardness of glass. When the content is too high, the glass tends to milk during molding. Therefore, the content of CaO in the present invention is in the range of 0-3%, preferably 0-2%, more preferably 0-1%, and more preferably no CaO. In some embodiments, the CaO may be contained in an amount of about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%.
TiO2是一种有助于降低玻璃的熔制温度、提高化学稳定性的可选组分,本发明中通过含有3%以下的TiO2,可以使玻璃的晶化过程变得容易控制,优选TiO2的含量为2%以下,更优选为1%以下。在一些实施方式中,进一步优选不含有TiO2。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%的TiO2。 TiO2 is an optional component that helps to lower the melting temperature of glass and improve chemical stability. In the present invention, by containing less than 3% of TiO2 , the crystallization process of glass can be easily controlled. Preferably, the content of TiO2 is less than 2%, and more preferably less than 1%. In some embodiments, it is further preferred that TiO2 is not contained. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3% of TiO2 may be contained.
Y2O3可降低玻璃的熔炼难度,减少玻璃中分相,降低微晶玻璃和微晶玻璃制品的雾度和∣B∣值,若Y2O3含量过多,玻璃晶化时形成晶体困难,微晶玻璃和微晶玻璃制品的结晶度下降,因此Y2O3含量的上限为3%,优选为2%,更优选为1%,进一步优选为不含有Y2O3。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%的Y2O3。Y 2 O 3 can reduce the difficulty of melting glass, reduce phase separation in glass, and reduce the haze and |B| value of microcrystalline glass and microcrystalline glass products. If the Y 2 O 3 content is too much, it is difficult to form crystals during glass crystallization, and the crystallinity of microcrystalline glass and microcrystalline glass products decreases. Therefore, the upper limit of the Y 2 O 3 content is 3%, preferably 2%, more preferably 1%, and more preferably no Y 2 O 3. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3% Y 2 O 3 may be included.
在一些实施方式中,玻璃、微晶玻璃或微晶玻璃制品还可包括0~1%的澄清剂,以提高玻璃、微晶玻璃或微晶玻璃制品的除泡能力。这种澄清剂包括但不限于Sb2O3、SnO2、SnO和CeO2中的一种或多种,优选Sb2O3作为澄清剂。上述澄清剂单独或组合存在时,其含量的上限优选为0.5%,更优选为0.2%。在一些实施方式中,上述澄清剂中的一种或多种的含量约为0%、大于0%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%。In some embodiments, the glass, glass-ceramic or glass-ceramic product may further include 0-1% of a clarifier to improve the defoaming ability of the glass, glass-ceramic or glass-ceramic product. Such clarifiers include, but are not limited to, one or more of Sb 2 O 3 , SnO 2 , SnO and CeO 2 , preferably Sb 2 O 3 as a clarifier. When the above clarifiers are present alone or in combination, the upper limit of their content is preferably 0.5%, more preferably 0.2%. In some embodiments, the content of one or more of the above clarifiers is about 0%, greater than 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%.
为使本发明玻璃、微晶玻璃或微晶玻璃制品获得期望的机械性能、光学性能、生产性能和化学强化性能等优异性能,在本发明的一些实施方式中优选不含有F。PbO和As2O3是有毒物质,即使少量的加入也不符合环保的要求,因此本发明在一些实施方式中优选不含有PbO和As2O3。In order to make the glass, glass-ceramics or glass-ceramics products of the present invention obtain the desired excellent properties such as mechanical properties, optical properties, production performance and chemical strengthening performance, in some embodiments of the present invention, it is preferred that F is not contained. PbO and As 2 O 3 are toxic substances, and even a small amount of addition does not meet the requirements of environmental protection. Therefore, in some embodiments of the present invention, PbO and As 2 O 3 are preferably not contained.
本发明的一些实施方式中,通过含有着色剂,可以制备出具有颜色的玻璃组合物、微晶玻璃或微晶玻璃制品,可使玻璃组合物、微晶玻璃或微晶玻璃制品呈现不同的颜色。在一些实施方式中,可将抗微生物组分添加到玻璃组合物、微晶玻璃或微晶玻璃制品中。本文所述的微晶玻璃或微晶玻璃制品可用于例如厨房或餐饮工作台面的应用,其中很可能暴露于有害细菌。可添加到玻璃组合物、微晶玻璃或微晶玻璃制品的抗微生物组分包括但不限Ag,AgO,Cu,CuO,Cu2O等。在一些实施方式中,上述抗微生物组分的单独或组合含量为2%以下,优选为1%以下。In some embodiments of the present invention, a colored glass composition, glass-ceramic or glass-ceramic product can be prepared by containing a colorant, so that the glass composition, glass-ceramic or glass-ceramic product can present different colors. In some embodiments, an antimicrobial component can be added to the glass composition, glass-ceramic or glass-ceramic product. The glass-ceramic or glass-ceramic product described herein can be used in applications such as kitchen or dining countertops, where exposure to harmful bacteria is likely. The antimicrobial components that can be added to the glass composition, glass-ceramic or glass-ceramic product include but are not limited to Ag, AgO, Cu, CuO, Cu 2 O, etc. In some embodiments, the content of the above antimicrobial components alone or in combination is less than 2%, preferably less than 1%.
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明玻璃组合物、微晶玻璃或微晶玻璃制品中;但作为生产玻璃组合物、微晶玻璃或微晶玻璃制品的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的玻璃组合物、微晶玻璃或微晶玻璃制品中少量或痕量含有,此种情形也在本发明专利的保护范围内。The "does not contain" and "0%" recorded in this article mean that the compound, molecule or element is not intentionally added as a raw material to the glass composition, microcrystalline glass or microcrystalline glass product of the present invention; however, as raw materials and/or equipment for producing glass compositions, microcrystalline glass or microcrystalline glass products, there will be certain impurities or components that are not intentionally added, which will be contained in small amounts or trace amounts in the final glass composition, microcrystalline glass or microcrystalline glass product, and this situation is also within the scope of protection of the patent of this invention.
本发明的一些实施方式中,微晶玻璃和微晶玻璃制品中晶相含有二硅酸锂和透锂长石,和/或石英及石英固溶体,为本发明微晶玻璃和微晶玻璃制品提供高的强度,微晶玻璃和微晶玻璃制品断裂韧性变高;微晶玻璃和微晶玻璃制品的落球试验高度和四点弯曲强度变大;雾度降低,光透过率变大。本发明微晶玻璃化学强化性能优异,还可通过化学强化以获得更优异的机械强度。通过合理的组分设计,可使本发明微晶玻璃和微晶玻璃制品获得合适的晶粒大小,使本发明微晶玻璃和微晶玻璃制品具有高的强度。本发明中微晶玻璃和微晶玻璃制品具有良好的结晶度,使本发明微晶玻璃和微晶玻璃制品具有优异的机械性能。本文所称的结晶度是指结晶的完整程度,结晶完整的晶体内部质点的排列比较规则,衍射线强、尖锐且对称,衍射峰的半高宽接近仪器测量的宽度;结晶度差的晶体中有位错等缺陷,使衍射线峰形宽而弥散。结晶度越差,衍射能力越弱,衍射峰越宽,直到消失在背景之中。在一些实施方式中,微晶玻璃制品或微晶玻璃的结晶度为55%以上,优选为65%以上,更优选为75%以上。In some embodiments of the present invention, the crystalline phases in the glass-ceramics and glass-ceramics products contain lithium disilicate and petalite, and/or quartz and quartz solid solutions, which provide high strength for the glass-ceramics and glass-ceramics products of the present invention, and the fracture toughness of the glass-ceramics and glass-ceramics products increases; the drop ball test height and four-point bending strength of the glass-ceramics and glass-ceramics products increase; the haze decreases, and the light transmittance increases. The glass-ceramics of the present invention have excellent chemical strengthening properties, and can also be chemically strengthened to obtain better mechanical strength. Through reasonable component design, the glass-ceramics and glass-ceramics products of the present invention can obtain a suitable grain size, so that the glass-ceramics and glass-ceramics products of the present invention have high strength. The glass-ceramics and glass-ceramics products of the present invention have good crystallinity, so that the glass-ceramics and glass-ceramics products of the present invention have excellent mechanical properties. The crystallinity referred to herein refers to the completeness of crystallization. The arrangement of particles inside a complete crystal is relatively regular, the diffraction lines are strong, sharp and symmetrical, and the half-width of the diffraction peak is close to the width measured by the instrument. Crystals with poor crystallinity have defects such as dislocations, which make the diffraction peak wide and diffuse. The worse the crystallinity, the weaker the diffraction ability and the wider the diffraction peak, until it disappears into the background. In some embodiments, the crystallinity of the microcrystalline glass product or microcrystalline glass is 55% or more, preferably 65% or more, and more preferably 75% or more.
本发明微晶玻璃或微晶玻璃制品中晶粒尺寸和种类会影响微晶玻璃或微晶玻璃制品的雾度和透过率,晶粒越小,透过率越高,雾度越小,透过率越高。在一些实施方式中,1mm以下厚度的微晶玻璃制品或微晶玻璃的雾度为0.2%以下,优选为0.15%以下,更优选为0.12%以下。在一些实施方式中,微晶玻璃制品或微晶玻璃的晶粒尺寸为35nm以下,优选为30nm以下,更优选为25nm以下。The grain size and type in the glass-ceramics or glass-ceramics products of the present invention will affect the haze and transmittance of the glass-ceramics or glass-ceramics products. The smaller the grains, the higher the transmittance, and the smaller the haze, the higher the transmittance. In some embodiments, the haze of glass-ceramics products or glass-ceramics with a thickness of less than 1 mm is less than 0.2%, preferably less than 0.15%, and more preferably less than 0.12%. In some embodiments, the grain size of the glass-ceramics products or glass-ceramics is less than 35 nm, preferably less than 30 nm, and more preferably less than 25 nm.
在一些实施方式中,本发明微晶玻璃或微晶玻璃制品在可见光范围中呈现高的透过率,在一些实施方式中1mm以下厚度的微晶玻璃制品或微晶玻璃400~800nm的平均光透过率优选为89%以上。在一些优选的实施方式中,1mm以下厚度的微晶玻璃制品或微晶玻璃550nm的光透过率优选为91%以上。In some embodiments, the glass-ceramics or glass-ceramics products of the present invention exhibit high transmittance in the visible light range. In some embodiments, the average light transmittance of the glass-ceramics products or glass-ceramics with a thickness of less than 1 mm at 400 to 800 nm is preferably 89% or more. In some preferred embodiments, the light transmittance of the glass-ceramics products or glass-ceramics with a thickness of less than 1 mm at 550 nm is preferably 91% or more.
本发明的玻璃组合物、微晶玻璃和微晶玻璃制品可以通过如下方法进行生产和制造:The glass composition, glass-ceramics and glass-ceramics products of the present invention can be produced and manufactured by the following methods:
生成玻璃组合物:按照组分比例将原料混合均匀,将均匀的混合物放入铂制或石英制的坩埚中,根据玻璃组成的熔化难易度,在电炉或燃气炉中在1400~1650℃的温度范围内进行5~24小时。熔化,搅拌使其均匀后,降至适当的温度并浇铸到模具中,缓慢冷却而成。To form a glass composition: Mix the raw materials evenly according to the composition ratio, put the even mixture into a platinum or quartz crucible, and melt it in an electric furnace or gas furnace at a temperature range of 1400-1650°C for 5-24 hours, depending on the melting difficulty of the glass composition. After melting and stirring to make it even, cool it down to an appropriate temperature, cast it into a mold, and slowly cool it.
本发明的玻璃组合物可以通过众所周知的方法进行成型。The glass composition of the present invention can be formed by a well-known method.
本发明的玻璃组合物,在成型后或成型加工后通过晶化工艺进行晶化处理,在玻璃内部均匀地析出结晶。该晶化处理可以通过1个阶段进行,也可以通过2个阶段进行,还可以通过3个阶段进行。为了使微晶玻璃得到所期望的物理性质,优选的晶化工艺为:The glass composition of the present invention is crystallized by a crystallization process after forming or forming, and crystals are uniformly precipitated inside the glass. The crystallization process can be carried out in one stage, two stages, or three stages. In order to obtain the desired physical properties of the microcrystalline glass, the preferred crystallization process is:
上述通过1个阶段进行晶化处理,可以连续地进行核形成工艺与结晶生长工艺。即,升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温。该晶化处理温度优选为在600~750℃,为了能够析出所期望的晶相,更优选为650~720℃,在晶化处理温度下的保持时间,优选为0~8小时,更优选为1~6小时。The above-mentioned crystallization treatment is carried out in one stage, and the nucleation process and the crystal growth process can be carried out continuously. That is, the temperature is raised to a specified crystallization treatment temperature, and after reaching the crystallization treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered. The crystallization treatment temperature is preferably 600-750°C, and in order to precipitate the desired crystalline phase, it is more preferably 650-720°C. The holding time at the crystallization treatment temperature is preferably 0-8 hours, and more preferably 1-6 hours.
上述通过2个阶段进行晶化处理时,在第1温度下进行成核工艺的处理,然后在第2温度下进行晶体生长工艺的处理。第1温度优选为470~600℃,第2温度优选为600~750℃。在第1温度下的保持时间,优选为0~24小时,更优选为2~15小时。在第2温度下的保持时间,优选为0~10小时,更优选为0.5~6小时。When the crystallization process is performed in two stages, the nucleation process is performed at the first temperature, and then the crystal growth process is performed at the second temperature. The first temperature is preferably 470 to 600° C., and the second temperature is preferably 600 to 750° C. The holding time at the first temperature is preferably 0 to 24 hours, more preferably 2 to 15 hours. The holding time at the second temperature is preferably 0 to 10 hours, more preferably 0.5 to 6 hours.
上述通过3个阶段进行晶化处理时,在第1温度下进行成核工艺的处理,然后在第2温度和第3温度下进行晶体生长工艺的处理,第1温度优选为470~550℃,第2温度优选为570~630℃,第3温度优选为650~750℃。在第1温度下的保持时间,优选为0~24小时,更优选为2~15小时。在第2温度下的保持时间,优选为0~10小时,更优选为0.5~6小时。在第3温度下的保持时间,优选为0~10小时,更优选为0.5~6小时。When the crystallization process is performed in three stages, the nucleation process is performed at the first temperature, and then the crystal growth process is performed at the second and third temperatures. The first temperature is preferably 470 to 550°C, the second temperature is preferably 570 to 630°C, and the third temperature is preferably 650 to 750°C. The holding time at the first temperature is preferably 0 to 24 hours, more preferably 2 to 15 hours. The holding time at the second temperature is preferably 0 to 10 hours, more preferably 0.5 to 6 hours. The holding time at the third temperature is preferably 0 to 10 hours, more preferably 0.5 to 6 hours.
上述保持时间0小时,是指在达到其温度后不到1分钟又开始降温或升温。The above-mentioned holding time of 0 hours means that the temperature starts to drop or rise again within less than 1 minute after reaching the temperature.
在一些实施方式中,可通过各种工艺将本文所述的玻璃组合物或微晶玻璃制造成成形体,所述成形体包括但不限于片材,所述工艺包括但不限于狭缝拉制、浮法、辊压和本领域公知的其他形成片材的工艺。或者,可通过本领域所公知的浮法或辊压法来形成玻璃组合物或微晶玻璃。In some embodiments, the glass composition or glass-ceramic described herein can be manufactured into a formed body by various processes, including but not limited to a sheet, and the processes include but are not limited to slot drawing, float process, rolling and other processes for forming sheets known in the art. Alternatively, the glass composition or glass-ceramic can be formed by a float process or rolling process known in the art.
本发明的玻璃组合物或微晶玻璃,可以采用研磨或抛光加工等方法制造片材的玻璃成形体,但制造玻璃成形体的方法,并不限定于这些方法。The glass composition or glass-ceramics of the present invention can be manufactured into a glass molded body in the form of a sheet by grinding, polishing or the like, but the method for manufacturing the glass molded body is not limited to these methods.
本发明的玻璃组合物或微晶玻璃成形体,可以在一定温度下采用热弯或压型等方法制备形成各种形状,并不限定于这些方法。The glass composition or glass-ceramic formed body of the present invention can be formed into various shapes by heat bending or pressing at a certain temperature, but is not limited to these methods.
本发明所述的玻璃组合物、微晶玻璃和微晶玻璃制品可具有合理有用的任何厚度。The glass compositions, glass-ceramics, and glass-ceramics articles described herein can have any reasonably useful thickness.
本发明的微晶玻璃除了通过析出结晶提高机械特性之外,还可以通过形成压缩应力层获得更高的强度,从而制成微晶玻璃制品。In addition to improving mechanical properties by crystallization, the microcrystalline glass of the present invention can also obtain higher strength by forming a compressive stress layer, thereby making microcrystalline glass products.
在一些实施方式中,可将玻璃组合物或微晶玻璃加工成片材,和/或造型(如打孔、热弯等),定形后抛光和/或扫光,再通过化学强化工艺进行化学强化。In some embodiments, the glass composition or glass-ceramics can be processed into sheets, and/or shaped (such as punching, hot bending, etc.), polished and/or swept after shaping, and then chemically strengthened through a chemical strengthening process.
本发明所述的化学强化,即是离子交换法。在离子交换过程中,玻璃组合物或微晶玻璃中的较小的金属离子被靠近玻璃组合物或微晶玻璃的具有相同价态的较大金属离子置换或“交换”。用较大的离子置换较小的离子,在玻璃组合物或微晶玻璃中构建压缩应力,形成压缩应力层。The chemical strengthening described in the present invention is an ion exchange method. During the ion exchange process, smaller metal ions in the glass composition or glass-ceramic are replaced or "exchanged" by larger metal ions of the same valence state near the glass composition or glass-ceramic. The replacement of smaller ions with larger ions builds up compressive stress in the glass composition or glass-ceramic, forming a compressive stress layer.
在一些实施方式中,金属离子是单价碱金属离子(例如Na+、K+、Rb+、Cs+等),离子交换通过将玻璃组合物或微晶玻璃浸没在包含较大的金属离子的至少一种熔融盐的盐浴中来进行,该较大的金属离子用于置换玻璃组合物中的较小的金属离子。或者,其他单价金属离子例如Ag+、Tl+、Cu+等也可用于交换单价离子。用来化学强化玻璃组合物或微晶玻璃的一种或更多种离子交换过程可包括但不限于:将其浸没在单一盐浴中,或者将其浸没在具有相同或不同组成的多个盐浴中,在浸没之间有洗涤和/或退火步骤。In some embodiments, the metal ions are monovalent alkali metal ions (e.g., Na + , K + , Rb + , Cs + , etc.), and the ion exchange is performed by immersing the glass composition or glass-ceramic in a salt bath of at least one molten salt containing larger metal ions, which are used to replace smaller metal ions in the glass composition. Alternatively, other monovalent metal ions such as Ag + , Tl + , Cu + , etc. can also be used to exchange monovalent ions. One or more ion exchange processes used to chemically strengthen the glass composition or glass-ceramic may include, but are not limited to, immersing it in a single salt bath, or immersing it in multiple salt baths of the same or different compositions, with washing and/or annealing steps between immersions.
在一些实施方式中,玻璃组合物或微晶玻璃可通过在浸没于约320℃~470℃的温度的熔融Na盐(如NaNO3)的盐浴中约6~20小时来进行离子交换,优选温度范围为360℃~460℃,优选时间范围为8~13小时。在这种实施方式中,Na离子置换玻璃组合物或微晶玻璃中的部分Li离子,从而形成表面压缩层且呈现高机械性能。在一些实施方式中,玻璃组合物或微晶玻璃可通过在浸没于约340℃~450℃的温度下熔融K盐(如KNO3)的盐浴中1~24小时来进行离子交换,优选时间范围为2~10小时。在一些实施方式中,玻璃组合物或微晶玻璃可通过在浸没于约340℃~500℃的温度下熔融K盐(如KNO3)和熔融Na盐(如NaNO3)混合盐盐浴中1~24小时来进行离子交换,优选时间范围为2~10小时。In some embodiments, the glass composition or glass-ceramics can be ion-exchanged by immersing in a salt bath of molten Na salt (such as NaNO 3 ) at a temperature of about 320°C to 470°C for about 6 to 20 hours, preferably in the temperature range of 360°C to 460°C, and preferably in the time range of 8 to 13 hours. In this embodiment, Na ions replace part of the Li ions in the glass composition or glass-ceramics, thereby forming a surface compression layer and exhibiting high mechanical properties. In some embodiments, the glass composition or glass-ceramics can be ion-exchanged by immersing in a salt bath of molten K salt (such as KNO 3 ) at a temperature of about 340°C to 450°C for 1 to 24 hours, preferably in the time range of 2 to 10 hours. In some embodiments, the glass composition or glass-ceramics can be ion-exchanged by immersing in a mixed salt bath of molten K salt (such as KNO 3 ) and molten Na salt (such as NaNO 3 ) at a temperature of about 340°C to 500°C for 1 to 24 hours, preferably in the time range of 2 to 10 hours.
在一些实施方式中,还有向玻璃组合物或微晶玻璃的表层注入离子的离子注入法,以及对玻璃组合物或微晶玻璃进行加热,然后快速冷却的热强化法。In some embodiments, there is also an ion implantation method of implanting ions into the surface layer of the glass composition or glass-ceramics, and a heat strengthening method of heating the glass composition or glass-ceramics and then rapidly cooling it.
本发明微晶玻璃和/或微晶玻璃制品和/或玻璃组合物各项性能指标采用以下方法测试:The various performance indicators of the glass-ceramics and/or glass-ceramics products and/or glass compositions of the present invention are tested by the following methods:
[雾度][Haze]
采用雾度测试仪EEL57D,以1mm以下的样品制备,以GB2410-80为标准进行测试。The haze tester EEL57D was used to prepare samples with a thickness of less than 1 mm and the test was carried out according to the standard GB2410-80.
[晶粒尺寸][Grain size]
利用SEM扫描电镜进行测定,微晶玻璃通过在HF酸中进行表面处理,再对微晶玻璃表面进行喷金,在SEM扫描电镜下进行表面扫描,确定其晶粒的大小。Using a SEM scanning electron microscope, the microcrystalline glass is surface treated in HF acid, gold is sprayed on the surface of the microcrystalline glass, and the surface is scanned under the SEM scanning electron microscope to determine the size of its grains.
[光透过率][Light transmittance]
本文所述的光透过率均为外部透过率,有时候简称透过率。The light transmittances described in this article are all external transmittances, sometimes referred to as transmittance.
将样品加工成1mm以下并进行相对面平行抛光,利用日立U-41000形分光光度计测定400~800nm的平均光透过率。The sample was processed to a thickness of less than 1 mm and the opposite surfaces were polished parallel to each other, and the average light transmittance at 400 to 800 nm was measured using a Hitachi U-41000 spectrophotometer.
将样品加工成1mm以下并进行相对面平行抛光,利用日立U-41000形分光光度计测定550nm的光透过率。The sample was processed to a thickness of less than 1 mm and the opposite surfaces were polished parallel to each other, and the light transmittance at 550 nm was measured using a Hitachi U-41000 spectrophotometer.
[结晶度][Crystallinity]
将XRD衍射峰与数据库图谱进行对比,结晶度是通过计算结晶相衍射强度在整体图谱强度中所占比例所得,并且通过使用纯石英晶体进行内部标定。The XRD diffraction peaks were compared with the database spectrum, and the crystallinity was obtained by calculating the proportion of the crystalline phase diffraction intensity in the overall spectrum intensity, and was internally calibrated by using pure quartz crystals.
[表面应力]和[离子交换层深度][Surface stress] and [Ion exchange layer depth]
利用玻璃表面应力仪SLP-2000进行表面应力测定。The surface stress was measured using a glass surface stress meter SLP-2000.
利用玻璃表面应力仪SLP-2000进行离子交换层深度测定。The depth of the ion exchange layer was measured using a glass surface stress meter SLP-2000.
作为测定条件以样品的折射率为1.54、光学弹性常数为25.3[(nm/cm)/Mpa]进行计算。The calculation was performed under the measurement conditions that the refractive index of the sample was 1.54 and the photoelastic constant was 25.3 [(nm/cm)/Mpa].
[落球试验高度][Drop ball test height]
将150mm×57mm×0.7mm的微晶玻璃制品样品放置在玻璃承载夹具上,使132g的钢球从规定高度落下,样品不发生断裂而能够承受的冲击的最大落球试验高度。具体地说,试验从落球试验高度800mm开始实施,在不发生断裂的情况下,通过850mm、900mm、950mm、1000mm及以上依次改变高度。对于具有“落球试验高度”的实施例,以微晶玻璃制品为试验对象。在实施例中记录为1000mm的试验数据,表示即使从1000mm的高度使钢球落下微晶玻璃制品也不发生断裂而承受了冲击。本发明中落球试验高度有时候简称落球高度。A sample of a microcrystalline glass product of 150mm×57mm×0.7mm is placed on a glass supporting fixture, and a 132g steel ball is dropped from a specified height. The maximum drop ball test height at which the sample can withstand the impact without breaking. Specifically, the test is implemented starting from a drop ball test height of 800mm, and the height is changed in sequence through 850mm, 900mm, 950mm, 1000mm and above without breaking. For the embodiments with a "drop ball test height", microcrystalline glass products are used as test objects. The test data recorded as 1000mm in the embodiment indicates that even if a steel ball is dropped from a height of 1000mm, the microcrystalline glass product will withstand the impact without breaking. The drop ball test height in the present invention is sometimes referred to as the drop ball height.
[本体落球高度][Body drop height]
将150mm×57mm×0.7mm的微晶玻璃样品放置在玻璃承载夹具上,使32g的钢球从规定高度落下,样品不发生断裂而能够承受的冲击的最大落球试验高度即为本体落球高度。具体地说,试验从落球试验高度500mm开始实施,在不发生断裂的情况下,通过550mm、600mm、650mm、700mm及以上依次改变高度。对于具有“本体落球高度”的实施例,以微晶玻璃为试验对象。在实施例中记录为1000mm的试验数据,表示即使从1000mm的高度使钢球落下微晶玻璃也不发生断裂而承受了冲击。Place a 150mm×57mm×0.7mm microcrystalline glass sample on a glass supporting fixture, and drop a 32g steel ball from a specified height. The maximum drop ball test height that the sample can withstand without breaking is the main body drop ball height. Specifically, the test starts from a drop ball test height of 500mm, and the height is changed in sequence through 550mm, 600mm, 650mm, 700mm and above without breaking. For the embodiments with a "main body drop ball height", microcrystalline glass is used as the test object. The test data recorded as 1000mm in the embodiment indicates that even if a steel ball is dropped from a height of 1000mm, the microcrystalline glass will withstand the impact without breaking.
[断裂韧性][Fracture toughness]
使用直接测量压痕扩展裂纹尺寸的方法,试样规格为2mm×4mm×20mm,经过倒角、磨平和抛光,试样制备完成后,用维氏硬度压头在试样上加49N的力并维持30s的时间,打出压痕后,用三点弯曲的方法测定其断裂强度。The method of directly measuring the size of the indentation extension crack was used. The sample size was 2mm×4mm×20mm. After chamfering, grinding and polishing, the sample preparation was completed. A force of 49N was applied to the sample with a Vickers hardness indenter and maintained for 30s. After the indentation was made, the fracture strength was determined by the three-point bending method.
[四点弯曲强度][Four-point bending strength]
采用微机控制电子万能试验机CMT6502,样品规格为1mm以下厚度,以ASTM C158-2002为标准进行测试。The microcomputer-controlled electronic universal testing machine CMT6502 was used, the sample specification was less than 1mm thick, and the test was carried out according to ASTM C158-2002.
样品厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。The sample thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, further preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
[维氏硬度][Vickers hardness]
用相对面夹角为136°的金刚石四角锥压头在试验面上压入金字塔形状的凹陷时的负荷(N)除以通过凹陷的长度计算出的表面积(mm2)的值表示。使试验负荷为100(N)、保持时间为15(秒)进行。本发明中有时候将维氏硬度简称为硬度。The value is expressed as the load (N) when a diamond quadrangular pyramid indenter with an angle of 136° between opposite faces presses a pyramid-shaped depression into the test surface, divided by the surface area (mm 2 ) calculated from the length of the depression. The test load is 100 (N) and the holding time is 15 (seconds). In the present invention, Vickers hardness is sometimes referred to as simply hardness.
[热膨胀系数][Coefficient of thermal expansion]
热膨胀系数(α20℃-300℃)按照《GB/T7962.16-2010》测试方法进行测试。The thermal expansion coefficient (α 20℃-300℃ ) is tested according to the test method of "GB/T7962.16-2010".
[折射率][Refractive Index]
折射率(nd)按照《GB/T7962.1-2010》方法测试。The refractive index (n d ) is tested according to the method of GB/T7962.1-2010.
[∣B∣值][|B|value]
使用美能达CM-700d进行B值检测。用配套校正长筒和短筒分别进行仪器零位校准和白板校准,校准后用长筒再进行对空测试,判定仪器稳定校准可靠性(B≤0.05),仪器校正合格后将产品放置在零位长筒上进行测试。Use Minolta CM-700d to test the B value. Use the matching calibration long tube and short tube to perform instrument zero calibration and white plate calibration respectively. After calibration, use the long tube to perform air test to determine the stability and calibration reliability of the instrument (B≤0.05). After the instrument is calibrated, place the product on the zero long tube for testing.
∣B∣值是B值的绝对值。The |B| value is the absolute value of the B value.
[耐摔性][Drop resistance]
使用定向跌落试验机WH-2101进行耐摔性测试。通过在2D微晶玻璃制品上负载同样规格玻璃制品(每片重量为20g,负载2片),底座上铺设60-80目的砂纸,从规定高度自由落体,样品直接砸在砂纸上,不发生断裂而能够承受的冲击的高度即为耐摔性。具体地说,试验从高度600mm开始实施,在不发生断裂的情况下,通过700mm、800mm、900mm、1000mm及以上依次改变高度。对于具有“耐摔性”的实施例,以微晶玻璃制品为试验对象。在实施例中记录为2000mm的试验数据,表示即使从2000mm的高度带有负载的微晶玻璃制品也不发生断裂而承受了冲击,跌落试验机WH-2101最高实验高度为2000mm。The drop resistance test was carried out using the directional drop tester WH-2101. By loading glass products of the same specifications on 2D microcrystalline glass products (each piece weighs 20g, and 2 pieces are loaded), laying 60-80 mesh sandpaper on the base, and letting the sample fall freely from a specified height, the sample directly hits the sandpaper, and the height of the impact that can be withstood without breaking is the drop resistance. Specifically, the test is implemented from a height of 600mm, and the height is changed in sequence through 700mm, 800mm, 900mm, 1000mm and above without breaking. For the embodiments with "drop resistance", microcrystalline glass products are used as test objects. The test data recorded as 2000mm in the embodiment indicates that even if the microcrystalline glass products with load from a height of 2000mm do not break and withstand the impact, the maximum experimental height of the drop tester WH-2101 is 2000mm.
本发明微晶玻璃制品具有以下性能:The microcrystalline glass product of the present invention has the following properties:
1)在一些实施方式中,微晶玻璃制品的四点弯曲强度为680MPa以上,优选为700MPa以上,更优选为720MPa以上。1) In some embodiments, the four-point bending strength of the glass-ceramic product is 680 MPa or more, preferably 700 MPa or more, and more preferably 720 MPa or more.
2)在一些实施方式中,微晶玻璃制品的离子交换层深度为85μm以上,优选为100μm以上,更优选110μm以上。2) In some embodiments, the depth of the ion exchange layer of the microcrystalline glass product is greater than 85 μm, preferably greater than 100 μm, and more preferably greater than 110 μm.
3)在一些实施方式中,微晶玻璃制品的表面应力为150MPa以上,优选为180MPa以上,更优选为200MPa以上。3) In some embodiments, the surface stress of the microcrystalline glass product is greater than 150 MPa, preferably greater than 180 MPa, and more preferably greater than 200 MPa.
4)在一些实施方式中,微晶玻璃制品的落球试验高度为1500mm以上,优选为1600mm以上,更优选为1700mm以上。4) In some embodiments, the drop ball test height of the glass-ceramic product is greater than 1500 mm, preferably greater than 1600 mm, and more preferably greater than 1700 mm.
5)在一些实施方式中,微晶玻璃制品的断裂韧性为1MPa·m1/2以上,优选为1.1MPa·m1/2以上,更优选为1.2MPa·m1/2以上。5) In some embodiments, the fracture toughness of the glass-ceramic product is greater than 1 MPa·m 1/2 , preferably greater than 1.1 MPa·m 1/2 , and more preferably greater than 1.2 MPa·m 1/2 .
6)在一些实施方式中,微晶玻璃制品的维氏硬度为750kgf/mm2以上,优选为780kgf/mm2以上,更优选为800kgf/mm2以上。6) In some embodiments, the Vickers hardness of the microcrystalline glass product is 750 kgf/mm 2 or more, preferably 780 kgf/mm 2 or more, and more preferably 800 kgf/mm 2 or more.
7)在一些实施方式中,微晶玻璃制品的结晶度为55%以上,优选为65%以上,更优选为75%以上。7) In some embodiments, the crystallinity of the glass-ceramic product is 55% or more, preferably 65% or more, and more preferably 75% or more.
8)在一些实施方式中,微晶玻璃制品的晶粒尺寸为35nm以下,优选为30nm以下,更优选为25nm以下。8) In some embodiments, the grain size of the microcrystalline glass product is less than 35 nm, preferably less than 30 nm, and more preferably less than 25 nm.
9)在一些实施方式中,1mm以下厚度的微晶玻璃制品的雾度为0.2%以下,优选为0.15%以下,更优选为0.12%以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。9) In some embodiments, the haze of the microcrystalline glass product with a thickness of 1 mm or less is 0.2% or less, preferably 0.15% or less, and more preferably 0.12% or less. The thickness is preferably 0.2-1 mm, more preferably 0.3-0.9 mm, further preferably 0.5-0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
10)在一些实施方式中,1mm以下厚度的微晶玻璃制品,400~800nm波长的平均透过率87%以上,优选为88%以上,更优选为89%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。10) In some embodiments, the average transmittance of the microcrystalline glass product with a thickness of 1 mm or less at a wavelength of 400 to 800 nm is 87% or more, preferably 88% or more, and more preferably 89% or more. The thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, further preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
11)在一些实施方式中,1mm以下厚度的微晶玻璃制品,550nm波长的透过率为88%以上,优选为90%以上,更优选为91%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。11) In some embodiments, the transmittance of the glass-ceramic product with a thickness of 1 mm or less at a wavelength of 550 nm is 88% or more, preferably 90% or more, and more preferably 91% or more. The thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, further preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
12)在一些实施方式中,1mm以下厚度的微晶玻璃制品,400~800nm的平均光∣B∣值为0.8以下,优选为0.75以下,更优选为0.7以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。12) In some embodiments, for a glass-ceramic product having a thickness of less than 1 mm, the average optical |B| value at 400-800 nm is less than 0.8, preferably less than 0.75, and more preferably less than 0.7. The thickness is preferably 0.2-1 mm, more preferably 0.3-0.9 mm, further preferably 0.5-0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
13)在一些实施方式中,1mm以下厚度的微晶玻璃制品的耐摔性为1700mm以上,优选为1800mm以上,更优选为2000mm以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。13) In some embodiments, the drop resistance of a glass-ceramic product with a thickness of less than 1 mm is 1700 mm or more, preferably 1800 mm or more, and more preferably 2000 mm or more. The thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, more preferably 0.5 to 0.8 mm, and even more preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
本发明微晶玻璃具有以下性能:The microcrystalline glass of the present invention has the following properties:
1)在一些实施方式中,微晶玻璃的结晶度为55%以上,优选为65%以上,更优选为75%以上。1) In some embodiments, the crystallinity of the glass-ceramics is 55% or more, preferably 65% or more, and more preferably 75% or more.
2)在一些实施方式中,微晶玻璃的晶粒尺寸为35nm以下,优选为30nm以下,优选为25nm以下。2) In some embodiments, the grain size of the microcrystalline glass is less than 35 nm, preferably less than 30 nm, and preferably less than 25 nm.
3)在一些实施方式中,1mm以下厚度的微晶玻璃的雾度为0.2%以下,优选为0.15%以下,更优选为0.12%以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。3) In some embodiments, the haze of the microcrystalline glass with a thickness of 1 mm or less is 0.2% or less, preferably 0.15% or less, and more preferably 0.12% or less. The thickness is preferably 0.2-1 mm, more preferably 0.3-0.9 mm, further preferably 0.5-0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
4)在一些实施方式中,1mm以下厚度的微晶玻璃,400~800nm波长的平均透过率87%以上,优选为88%以上,更优选为89%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。4) In some embodiments, the average transmittance of the glass-ceramics with a thickness of less than 1 mm at a wavelength of 400 to 800 nm is 87% or more, preferably 88% or more, and more preferably 89% or more. The thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, further preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
5)在一些实施方式中,1mm以下厚度的微晶玻璃,550nm波长的透过率为88%以上,优选为90%以上,更优选为91%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。5) In some embodiments, the transmittance of the microcrystalline glass with a thickness of 1 mm or less at a wavelength of 550 nm is 88% or more, preferably 90% or more, and more preferably 91% or more. The thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, further preferably 0.5 to 0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
6)在一些实施方式中,1mm以下厚度的微晶玻璃制品,400~800nm的平均光∣B∣值为0.8以下,优选为0.75以下,更优选为0.7以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。6) In some embodiments, for a glass-ceramic product having a thickness of less than 1 mm, the average optical |B| value at 400-800 nm is less than 0.8, preferably less than 0.75, and more preferably less than 0.7. The thickness is preferably 0.2-1 mm, more preferably 0.3-0.9 mm, further preferably 0.5-0.8 mm, and further preferably 0.55 mm, 0.6 mm, 0.68 mm, 0.7 mm, or 0.75 mm.
7)在一些实施方式中,微晶玻璃本体落球高度为1800mm以上,优选为1900mm以上,更优选为2000mm以上。7) In some embodiments, the ball drop height of the microcrystalline glass body is greater than 1800 mm, preferably greater than 1900 mm, and more preferably greater than 2000 mm.
8)在一些实施方式中,微晶玻璃的维氏硬度为680kgf/mm2以上,优选为700kgf/mm2以上,更优选为710kgf/mm2以上。8) In some embodiments, the Vickers hardness of the glass-ceramics is 680 kgf/mm 2 or more, preferably 700 kgf/mm 2 or more, and more preferably 710 kgf/mm 2 or more.
9)在一些实施方式中,微晶玻璃的热膨胀系数(α20℃-120℃)为60×10-7/K~90×10-7/K。9) In some embodiments, the thermal expansion coefficient (α 20°C-120°C ) of the glass-ceramics is 60×10 -7 /K to 90×10 -7 /K.
10)在一些实施方式中,微晶玻璃的折射率(nd)为1.5250~1.5450。10) In some embodiments, the refractive index (n d ) of the glass-ceramics is 1.5250 to 1.5450.
本发明玻璃组合物具有以下性能:The glass composition of the present invention has the following properties:
1)在一些实施方式中,玻璃组合物的热膨胀系数(α20℃-120℃)为55×10-7/K~65×10-7/K。1) In some embodiments, the thermal expansion coefficient (α 20°C-120°C ) of the glass composition is 55×10 -7 /K to 65×10 -7 /K.
2)在一些实施方式中,玻璃组合物的折射率(nd)为1.5100~1.5300。2) In some embodiments, the glass composition has a refractive index (n d ) of 1.5100 to 1.5300.
本发明的微晶玻璃、微晶玻璃制品和玻璃组合物由于具有上述优异的性能,可广泛制作成玻璃盖板或玻璃元器件;同时,本发明微晶玻璃、微晶玻璃制品和玻璃组合物应用于电子设备或显示设备中,如手机、手表、电脑、触摸显示屏等,用于制造移动电话、智能电话、平板电脑、笔记本电脑、PDA、电视机、个人电脑、MTA机器或工业显示器的防护玻璃,或用于制造触摸屏、防护窗、汽车车窗、火车车窗、航空机械窗、触摸屏防护玻璃,或用于制造硬盘基材或太阳能电池基材,或用于制造白色家电,如用于制造冰箱部件或厨具。The microcrystalline glass, microcrystalline glass products and glass compositions of the present invention can be widely made into glass cover plates or glass components due to the above-mentioned excellent properties; at the same time, the microcrystalline glass, microcrystalline glass products and glass compositions of the present invention are applied to electronic devices or display devices, such as mobile phones, watches, computers, touch screens, etc., for manufacturing protective glass for mobile phones, smart phones, tablet computers, laptops, PDAs, televisions, personal computers, MTA machines or industrial displays, or for manufacturing touch screens, protective windows, car windows, train windows, aviation machinery windows, touch screen protective glass, or for manufacturing hard disk substrates or solar cell substrates, or for manufacturing white household appliances, such as for manufacturing refrigerator parts or kitchen utensils.
实施例Example
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。本发明实施例经过诸多努力以确保数值(例如数量、温度等)的精确性,但是必须考虑到存在一些误差和偏差。组成自身基于氧化物以重量%给出,且已标准化成100%。In order to further clearly illustrate and describe the technical solution of the present invention, the following non-limiting examples are provided. The present invention embodiments have been tried to ensure the accuracy of the values (such as quantity, temperature, etc.), but some errors and deviations must be taken into account. The composition itself is given in weight % based on the oxide and has been standardized to 100%.
<玻璃组合物实施例><Glass Composition Example>
本实施例采用上述玻璃组合物的制造方法得到具有表1~表2所示的组成的玻璃组合物。另外,通过本发明所述的测试方法测定各玻璃组合物的特性,并将测定结果表示在表1~表2中。In this example, the above-mentioned method for producing a glass composition is used to obtain a glass composition having the composition shown in Tables 1 and 2. In addition, the properties of each glass composition are measured by the test method described in the present invention, and the measurement results are shown in Tables 1 and 2.
表1.Table 1.
表2.Table 2.
<微晶玻璃实施例><Glass-ceramic Example>
本实施例采用上述微晶玻璃的制造方法得到具有表3~表4所示的组成的微晶玻璃。另外,通过本发明所述的测试方法测定各微晶玻璃的特性,并将测定结果表示在表3~表4中,实施例中微晶玻璃的样品测试厚度为0.7mm。This embodiment adopts the above-mentioned method for manufacturing microcrystalline glass to obtain microcrystalline glass having the composition shown in Tables 3 and 4. In addition, the properties of each microcrystalline glass are measured by the testing method described in the present invention, and the measurement results are shown in Tables 3 and 4. The sample test thickness of the microcrystalline glass in the embodiment is 0.7 mm.
表3.Table 3.
表4.Table 4.
<微晶玻璃制品实施例><Glass-ceramic product example>
本实施例采用上述微晶玻璃制品的制造方法得到具有表5~表6所示的组成的微晶玻璃制品。另外,通过本发明所述的测试方法测定各微晶玻璃制品的特性,并将测定结果表示在表5~表6中,实施例中微晶玻璃制品的样品测试厚度为0.7mm。This embodiment adopts the above-mentioned method for manufacturing microcrystalline glass products to obtain microcrystalline glass products having the compositions shown in Tables 5 and 6. In addition, the properties of each microcrystalline glass product are measured by the testing method described in the present invention, and the measurement results are shown in Tables 5 and 6. The sample test thickness of the microcrystalline glass product in the embodiment is 0.7 mm.
表5.Table 5.
表6.Table 6.
Claims (41)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410784173.0A CN118598526A (en) | 2021-08-06 | 2021-08-06 | Glass-ceramics, glass-ceramics products and methods for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410784173.0A CN118598526A (en) | 2021-08-06 | 2021-08-06 | Glass-ceramics, glass-ceramics products and methods for producing the same |
CN202110901872.5A CN113387586A (en) | 2021-08-06 | 2021-08-06 | Glass ceramics, glass ceramics product and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110901872.5A Division CN113387586A (en) | 2021-08-06 | 2021-08-06 | Glass ceramics, glass ceramics product and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118598526A true CN118598526A (en) | 2024-09-06 |
Family
ID=77622460
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410784173.0A Pending CN118598526A (en) | 2021-08-06 | 2021-08-06 | Glass-ceramics, glass-ceramics products and methods for producing the same |
CN202110901872.5A Pending CN113387586A (en) | 2021-08-06 | 2021-08-06 | Glass ceramics, glass ceramics product and manufacturing method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110901872.5A Pending CN113387586A (en) | 2021-08-06 | 2021-08-06 | Glass ceramics, glass ceramics product and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN118598526A (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113698082B (en) * | 2021-09-10 | 2023-03-21 | 成都光明光电股份有限公司 | Method for producing glass-ceramic molded body |
CN114262156A (en) * | 2021-11-11 | 2022-04-01 | 深圳旭安光学有限公司 | Crystallized glass, strengthened crystallized glass and preparation method thereof |
CN116199426A (en) * | 2021-11-30 | 2023-06-02 | 深圳市微思腾新材料科技有限公司 | High-strength glass composition, microcrystalline glass and preparation method thereof |
CN114195393B (en) * | 2021-12-24 | 2022-06-28 | 深圳市新旗滨科技有限公司 | Glass composition, microcrystalline glass, and preparation method and application thereof |
CN114195392A (en) * | 2021-12-24 | 2022-03-18 | 深圳市新旗滨科技有限公司 | Glass composition, microcrystalline glass, and preparation method and application thereof |
CN114671616B (en) * | 2022-04-01 | 2024-02-23 | 河北省沙河玻璃技术研究院 | High-strength transparent glass ceramic and preparation method thereof |
CN114605074A (en) * | 2022-04-07 | 2022-06-10 | 深圳市新旗滨科技有限公司 | Microcrystalline glass and preparation method thereof |
CN115304278A (en) * | 2022-07-20 | 2022-11-08 | 河北光兴半导体技术有限公司 | Composition for preparing transparent glass-ceramic, transparent glass-ceramic and preparation method and application thereof |
CN119661084A (en) * | 2022-07-22 | 2025-03-21 | 重庆鑫景特种玻璃有限公司 | Microcrystalline glass with excellent acid and alkali resistance as well as preparation method and application thereof |
CN115490428A (en) * | 2022-09-16 | 2022-12-20 | 四川虹科创新科技有限公司 | Transparent glass ceramics with ultrahigh drop strength and preparation method thereof |
CN115636589B (en) * | 2022-10-25 | 2024-11-22 | 成都光明光电股份有限公司 | Glass-ceramics, glass-ceramics products and methods for producing the same |
CN115925260A (en) * | 2022-11-28 | 2023-04-07 | 武汉理工大学 | High-strength microcrystalline glass with polycrystalline phase structure, and preparation method and application thereof |
CN115745409B (en) * | 2022-11-28 | 2024-04-19 | 武汉理工大学 | A high-hardness microcrystalline glass with multilayer structure, preparation method and application thereof |
CN115947547A (en) * | 2022-12-07 | 2023-04-11 | 河北光兴半导体技术有限公司 | A method for improving bonding force between glass film layers, glass ceramics and application |
CN116002980B (en) * | 2022-12-28 | 2024-08-02 | 河南旭阳光电科技有限公司 | Microcrystalline glass and preparation method and application thereof |
CN118026535A (en) * | 2024-01-23 | 2024-05-14 | 河北光兴半导体技术有限公司 | Transparent glass ceramic and preparation method and application thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69834385T2 (en) * | 1997-07-30 | 2007-04-19 | Hoya Corp. | METHOD FOR PRODUCING GLASS SUPPLEMENT FOR INFORMATION RECORDING |
CN104108883B (en) * | 2014-08-11 | 2019-03-08 | 中国地质大学(北京) | A kind of high-strength lithium disilicate glass ceramic and preparation method thereof |
CN109867447B (en) * | 2017-12-01 | 2022-02-01 | 成都光明光电股份有限公司 | Glass ceramics and substrate thereof |
CN107915412A (en) * | 2017-12-01 | 2018-04-17 | 成都光明光电股份有限公司 | Devitrified glass and its substrate |
CN115196874A (en) * | 2018-06-01 | 2022-10-18 | 日本电气硝子株式会社 | Tempered glass and glass for tempering |
EP3694813A2 (en) * | 2018-07-16 | 2020-08-19 | Corning Incorporated | Glass-ceramic articles with increased resistance to fracture and methods for making the same |
WO2020018393A1 (en) * | 2018-07-16 | 2020-01-23 | Corning Incorporated | Glass ceramic articles having improved properties and methods for making the same |
CN110104954B (en) * | 2019-05-28 | 2022-08-23 | 科立视材料科技有限公司 | Low-temperature crystallized ion-exchangeable glass ceramic |
CN110627365B (en) * | 2019-09-25 | 2022-12-27 | 重庆鑫景特种玻璃有限公司 | Transparent strengthened glass ceramic and preparation method thereof |
CN111087174B (en) * | 2019-12-19 | 2022-03-18 | 重庆鑫景特种玻璃有限公司 | Glass ceramic with high elastic modulus, reinforced glass ceramic and preparation method thereof |
CN112645600B (en) * | 2020-04-20 | 2022-07-15 | 重庆鑫景特种玻璃有限公司 | Glass ceramics and chemically strengthened glass ceramics |
CN112340998B (en) * | 2020-09-30 | 2023-05-23 | 重庆鑫景特种玻璃有限公司 | Protective piece, preparation method thereof, glass ceramic and electronic equipment |
-
2021
- 2021-08-06 CN CN202410784173.0A patent/CN118598526A/en active Pending
- 2021-08-06 CN CN202110901872.5A patent/CN113387586A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN113387586A (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118598526A (en) | Glass-ceramics, glass-ceramics products and methods for producing the same | |
TWI806355B (en) | Glass-ceramic, glass-ceramic product and manufacturing method thereof | |
KR102609966B1 (en) | Microcrystalline glass product and microcrystalline glass for electronic equipment cover plate | |
CN111268913B (en) | Microcrystalline glass product for electronic device cover plate and microcrystalline glass | |
CN111099829B (en) | Transparent microcrystalline glass, microcrystalline glass product and preparation method thereof | |
CN113402173B (en) | Glass ceramics, glass ceramics product and method for producing the same | |
CN111943514B (en) | Glass-ceramic and glass-ceramic article | |
TWI862184B (en) | Glass-ceramics, glass-ceramics products and manufacturing methods thereof | |
CN113402172B (en) | Glass ceramic and glass ceramic article | |
CN114671619B (en) | Glass ceramics and glass ceramics products | |
CN112919810B (en) | Glass-ceramic, glass-ceramic article and method for producing same | |
CN112939469B (en) | Glass ceramics and glass ceramics product | |
TWI855665B (en) | Glass-ceramics, glass-ceramics products and manufacturing methods thereof | |
CN115583798A (en) | Microcrystalline glass and microcrystalline glass articles containing nepheline crystalline phase | |
TW202442602A (en) | Glass-ceramics, glass-ceramics products and manufacturing methods thereof | |
CN115636589A (en) | Glass-ceramic, glass-ceramic product and manufacturing method thereof | |
TWI869634B (en) | Glass-ceramics, glass-ceramics products and manufacturing methods thereof | |
CN115028365B (en) | Glass ceramic, glass ceramic article and method of making the same | |
CN118993549A (en) | Glass ceramics, glass ceramics product and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |