CN118598251A - A nanocellulose-based solar interface evaporation device, preparation method and use thereof - Google Patents
A nanocellulose-based solar interface evaporation device, preparation method and use thereof Download PDFInfo
- Publication number
- CN118598251A CN118598251A CN202411073767.7A CN202411073767A CN118598251A CN 118598251 A CN118598251 A CN 118598251A CN 202411073767 A CN202411073767 A CN 202411073767A CN 118598251 A CN118598251 A CN 118598251A
- Authority
- CN
- China
- Prior art keywords
- solution
- hours
- reaction
- modified
- chitosan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001704 evaporation Methods 0.000 title claims abstract description 212
- 230000008020 evaporation Effects 0.000 title claims abstract description 211
- 229920001046 Nanocellulose Polymers 0.000 title claims abstract description 91
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 227
- 239000002135 nanosheet Substances 0.000 claims abstract description 157
- 239000000178 monomer Substances 0.000 claims abstract description 145
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 130
- 229920001661 Chitosan Polymers 0.000 claims abstract description 113
- 239000002243 precursor Substances 0.000 claims abstract description 107
- 239000000017 hydrogel Substances 0.000 claims abstract description 101
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 88
- 239000004964 aerogel Substances 0.000 claims abstract description 85
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 85
- 239000000661 sodium alginate Substances 0.000 claims abstract description 85
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 85
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 82
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 82
- 239000011159 matrix material Substances 0.000 claims abstract description 81
- 239000002131 composite material Substances 0.000 claims abstract description 78
- 239000000463 material Substances 0.000 claims abstract description 70
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 59
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 59
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 45
- 239000000499 gel Substances 0.000 claims abstract description 37
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 37
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229920000767 polyaniline Polymers 0.000 claims abstract description 27
- 238000011065 in-situ storage Methods 0.000 claims abstract description 25
- 238000004108 freeze drying Methods 0.000 claims abstract description 23
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 22
- 229920001690 polydopamine Polymers 0.000 claims abstract description 20
- 238000004132 cross linking Methods 0.000 claims abstract description 14
- 238000010257 thawing Methods 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims description 408
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 170
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 152
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 96
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 86
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 82
- 238000002156 mixing Methods 0.000 claims description 73
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 68
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 66
- 239000006185 dispersion Substances 0.000 claims description 66
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 59
- 238000010438 heat treatment Methods 0.000 claims description 56
- 238000005406 washing Methods 0.000 claims description 50
- 239000013535 sea water Substances 0.000 claims description 49
- 239000011148 porous material Substances 0.000 claims description 46
- 239000008367 deionised water Substances 0.000 claims description 44
- 229910021641 deionized water Inorganic materials 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 44
- 229960003638 dopamine Drugs 0.000 claims description 43
- 239000004201 L-cysteine Substances 0.000 claims description 41
- 235000013878 L-cysteine Nutrition 0.000 claims description 41
- 238000001914 filtration Methods 0.000 claims description 41
- 238000003756 stirring Methods 0.000 claims description 39
- 238000001035 drying Methods 0.000 claims description 36
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 34
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 33
- 239000011259 mixed solution Substances 0.000 claims description 33
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 31
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 30
- 238000007254 oxidation reaction Methods 0.000 claims description 30
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 27
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 27
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 25
- 230000008014 freezing Effects 0.000 claims description 23
- 238000007710 freezing Methods 0.000 claims description 23
- 238000003760 magnetic stirring Methods 0.000 claims description 22
- 230000003647 oxidation Effects 0.000 claims description 21
- 239000007864 aqueous solution Substances 0.000 claims description 20
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 19
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 18
- 230000004048 modification Effects 0.000 claims description 17
- 238000012986 modification Methods 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 15
- 239000000725 suspension Substances 0.000 claims description 14
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 11
- 238000010992 reflux Methods 0.000 claims description 11
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007853 buffer solution Substances 0.000 claims description 9
- 239000005457 ice water Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000010612 desalination reaction Methods 0.000 claims description 7
- 238000001879 gelation Methods 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- 239000006228 supernatant Substances 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 6
- 238000005956 quaternization reaction Methods 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 19
- 230000031700 light absorption Effects 0.000 abstract description 18
- 239000002121 nanofiber Substances 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 description 38
- 230000005540 biological transmission Effects 0.000 description 14
- 230000009194 climbing Effects 0.000 description 13
- 125000000524 functional group Chemical group 0.000 description 13
- 238000001000 micrograph Methods 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 6
- 150000001448 anilines Chemical class 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- -1 fluoride anions Chemical class 0.000 description 5
- 238000002329 infrared spectrum Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 229960003280 cupric chloride Drugs 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000005588 protonation Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 239000002937 thermal insulation foam Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000007336 electrophilic substitution reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/14—Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0091—Preparation of aerogels, e.g. xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/921—Titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/12—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/043—Details
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B5/00—Drying solid materials or objects by processes not involving the application of heat
- F26B5/04—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
- F26B5/06—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Molecular Biology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域Technical Field
本发明属于海水淡化技术领域,涉及一种纳米纤维素基太阳能界面蒸发器件、其制备方法及用途。The invention belongs to the technical field of seawater desalination and relates to a nanocellulose-based solar interface evaporation device, a preparation method and application thereof.
背景技术Background Art
淡水资源是人类赖以生存的根本,更在工业及食品生产等国民经济重要支柱产业中起着决定性的作用。目前,被认为最可能解决淡水资源短缺问题的技术便是海水淡化技术。较为成熟的海水淡化技术有蒸馏法、电渗析法、渗透法和冷冻法等。Freshwater resources are the foundation of human survival and play a decisive role in important pillar industries of the national economy such as industry and food production. At present, the technology that is considered most likely to solve the problem of freshwater shortage is seawater desalination technology. The more mature seawater desalination technologies include distillation, electrodialysis, osmosis and freezing.
太阳能驱动界面水蒸发技术,简单而言,就是使用太阳能作为“动力”,通过光热转换材料的设计,吸收太阳能并将其转化为热能,将水加热从而产生水蒸气。太阳能驱动界面水蒸发系统应用于海水淡化时,只需要将产生的水蒸气进行收集便能得到淡水资源,无需大规模的生产设备并避免了化石能源的消耗。Solar-driven interfacial water evaporation technology, in simple terms, uses solar energy as "power" and absorbs solar energy and converts it into heat energy through the design of photothermal conversion materials, heating water to produce water vapor. When the solar-driven interfacial water evaporation system is applied to seawater desalination, fresh water resources can be obtained by simply collecting the generated water vapor, without the need for large-scale production equipment and avoiding the consumption of fossil energy.
纳米纤维素气凝胶较低的导热率能够避免能量的浪费,而多孔的结构则能够增强太阳光的多重反射进而增强材料对于太阳能的吸收,另外纳米纤维素气凝胶优异的亲水性能够保障水分的快速传输。由于以上的几个优点,纳米纤维素气凝胶被认为是最为优异的太阳能水蒸发器的基底支撑材料。但纳米纤维素气凝胶本身并不吸收太阳光,因此需要与其他光热材料进行结合才能获得优异的水蒸气蒸发性能。The low thermal conductivity of nanocellulose aerogel can avoid energy waste, while the porous structure can enhance the multiple reflections of sunlight and thus enhance the material's absorption of solar energy. In addition, the excellent hydrophilicity of nanocellulose aerogel can ensure the rapid transmission of water. Due to the above advantages, nanocellulose aerogel is considered to be the most excellent base support material for solar water evaporators. However, nanocellulose aerogel itself does not absorb sunlight, so it needs to be combined with other photothermal materials to obtain excellent water vapor evaporation performance.
发明内容Summary of the invention
针对现有技术存在的不足,本发明的目的在于提供一种纳米纤维素基太阳能界面蒸发器件、其制备方法及用途。In view of the shortcomings of the prior art, the object of the present invention is to provide a nanocellulose-based solar interface evaporation device, a preparation method and use thereof.
为达此目的,本发明采用以下技术方案:To achieve this object, the present invention adopts the following technical solutions:
第一方面,本发明提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法包括:In a first aspect, the present invention provides a method for preparing a nanocellulose-based solar interface evaporation device, the preparation method comprising:
(Ⅰ)将氧化石墨烯分散于去离子水中,经超声分散后得到氧化石墨烯分散液,向所述氧化石墨烯分散液中加入L-半胱氨酸,在密封条件下混合搅拌直至所述L-半胱氨酸完全溶解,得到反应溶液;向所述反应溶液中加入氯化铜溶液,混合均匀后得到前驱体溶液,将所述前驱体溶液转移至反应釜中进行加热,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由还原氧化石墨烯和硫化铜组成的光热转换材料;(I) dispersing graphene oxide in deionized water, and obtaining a graphene oxide dispersion liquid after ultrasonic dispersion, adding L-cysteine to the graphene oxide dispersion liquid, and mixing and stirring under sealed conditions until the L-cysteine is completely dissolved to obtain a reaction solution; adding a copper chloride solution to the reaction solution, and mixing uniformly to obtain a precursor solution, and transferring the precursor solution to a reactor for heating, so that L-cysteine and copper chloride react to generate copper sulfide, and at the same time, the graphene oxide reacts to generate reduced graphene oxide, and after the reaction is completed, the reaction product is filtered, washed and dried to obtain a photothermal conversion material composed of reduced graphene oxide and copper sulfide;
(Ⅱ)将氟化锂加入盐酸溶液中,混合均匀后得到刻蚀溶液,向所述刻蚀溶液中加入钛碳化铝粉末,经磁力搅拌和水浴加热后得到悬浮液,采用去离子水对所述悬浮液依次进行洗涤和离心,重复洗涤和离心操作至少三次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;将所述Mxene纳米片分散于去离子水中形成Mxene分散液,将所述Mxene分散液转移至摇床中,向所述Mxene分散液中加入聚乙烯亚胺,在摇床中加热振荡以进行氨基化改性;随后,在室温下向所述Mxene分散液中加入多巴胺溶液,在摇床中混合振荡使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;(II) adding lithium fluoride to a hydrochloric acid solution, mixing well to obtain an etching solution, adding titanium aluminum carbide powder to the etching solution, stirring magnetically and heating in a water bath to obtain a suspension, washing the suspension with deionized water and centrifuging in sequence, repeating the washing and centrifuging operations at least three times, dispersing the precipitate in deionized water, letting it stand, and drying the supernatant to obtain Mxene nanosheets; dispersing the Mxene nanosheets in deionized water to form an Mxene dispersion, transferring the Mxene dispersion to a shaker, adding polyethyleneimine to the Mxene dispersion, and heating and shaking in a shaker to perform amino modification; subsequently, adding a dopamine solution to the Mxene dispersion at room temperature, mixing and shaking in a shaker to allow dopamine to undergo in-situ oxidation self-polymerization to form polydopamine, and finally filtering, washing, and drying to obtain modified Mxene nanosheets;
(Ⅲ)将壳聚糖分散于醋酸水溶液中,进行混合搅拌并加热直至壳聚糖完全溶解,得到壳聚糖溶液,向所述壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,进行混合搅拌并加热以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;将聚乙烯醇、丙三醇和去离子水混合均匀得到反应前体溶液,对所述反应前体溶液进行加热回流反应,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;将海藻酸钠溶于去离子水中得到海藻酸钠溶液,向所述海藻酸钠溶液中加入高碘酸钠,在室温和避光条件下进行搅拌以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;(III) dispersing chitosan in an acetic acid aqueous solution, mixing and stirring, and heating until the chitosan is completely dissolved to obtain a chitosan solution, dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution, mixing and stirring, and heating to quaternize the chitosan, and then filtering, washing, and drying to obtain quaternized chitosan; uniformly mixing polyvinyl alcohol, glycerol, and deionized water to obtain a reaction precursor solution, heating the reaction precursor solution to reflux reaction, filtering, washing, and drying after the reaction to obtain modified polyvinyl alcohol; dissolving sodium alginate in deionized water to obtain a sodium alginate solution, adding sodium periodate to the sodium alginate solution, stirring at room temperature and in the dark to cause an oxidation reaction, and filtering, washing, and drying after the reaction to obtain oxidized sodium alginate;
(Ⅳ)将步骤(Ⅲ)得到的所述季铵化壳聚糖、所述改性聚乙烯醇、所述氧化海藻酸钠加入纳米纤维素溶液中,混合均匀后得到前体混合液,向所述前体混合液中加入步骤(Ⅰ)得到的所述光热转换材料以及步骤(Ⅱ)得到的所述改性Mxene纳米片,经超声分散后得到凝胶前体溶液;(IV) adding the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate obtained in step (III) to the nanocellulose solution, mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (I) and the modified Mxene nanosheets obtained in step (II) to the precursor mixed solution, and obtaining a gel precursor solution after ultrasonic dispersion;
(Ⅴ)将戊二醛与盐酸溶液混合均匀,得到戊二醛酸溶液,将步骤(Ⅳ)得到的所述凝胶前体溶液倒入模具中,向所述凝胶前体溶液中滴入所述戊二醛酸溶液,混合搅拌以发生交联反应,反应结束后置于室温下静置以进行凝胶化,得到水凝胶中间体;将所述水凝胶中间体在低温条件下冷冻一段时间,随后取出解冻一段时间,重复进行冷冻和解冻过程至少三次,得到复合水凝胶;(V) mixing glutaraldehyde and hydrochloric acid solution uniformly to obtain glutaraldehyde acid solution, pouring the gel precursor solution obtained in step (IV) into a mold, dropping the glutaraldehyde acid solution into the gel precursor solution, mixing and stirring to cause a cross-linking reaction, and standing at room temperature after the reaction to gel to obtain a hydrogel intermediate; freezing the hydrogel intermediate under low temperature conditions for a period of time, then taking it out and thawing it for a period of time, repeating the freezing and thawing process at least three times to obtain a composite hydrogel;
(Ⅵ)将步骤(Ⅴ)得到的所述复合水凝胶浸泡于苯胺单体溶液中,向所述苯胺单体溶液中滴加过硫酸铵溶液,混合搅拌后静置以发生反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将所述改性复合水凝胶置于冷板上进行定向冷冻,所述改性复合水凝胶的一侧面与所述冷板的表面接触以在所述改性复合水凝胶的内部的竖直方向上形成温度梯度,在所述冷板上放置一段时间后将所述改性复合水凝胶取下置于冷冻干燥机中进行冷冻干燥,以在所述改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(VI) immersing the composite hydrogel obtained in step (V) in an aniline monomer solution, dropping an ammonium persulfate solution into the aniline monomer solution, mixing and stirring, and then standing to react to generate polyaniline. After the reaction is completed, filtering, washing and drying are performed in sequence to obtain a modified composite hydrogel, placing the modified composite hydrogel on a cold plate for directional freezing, contacting one side of the modified composite hydrogel with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel, and after being placed on the cold plate for a period of time, removing the modified composite hydrogel and placing it in a freeze dryer for freeze drying to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix;
(Ⅶ)将吡咯单体溶解于盐酸溶液中,混合均匀后得到吡咯单体溶液,将步骤(Ⅵ)得到的所述气凝胶基体浸泡于所述吡咯单体溶液中并进行磁力搅拌,使得所述吡咯单体进入所述气凝胶基体的孔道内部;随后,向所述吡咯单体溶液中加入三氯化铁溶液,在冰水浴环境下进行磁力搅拌以发生反应,使得所述吡咯单体在所述气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后经过滤、洗涤和液氮冷冻干燥后得到所述纳米纤维素基太阳能界面蒸发器件。(VII) dissolving pyrrole monomer in hydrochloric acid solution, mixing evenly to obtain pyrrole monomer solution, immersing the aerogel matrix obtained in step (VI) in the pyrrole monomer solution and performing magnetic stirring to allow the pyrrole monomer to enter the pores of the aerogel matrix; subsequently, adding ferric chloride solution to the pyrrole monomer solution, performing magnetic stirring in an ice-water bath environment to react, so that the pyrrole monomer undergoes in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole, and after the reaction is completed, filtering, washing and liquid nitrogen freeze-drying to obtain the nanocellulose-based solar interface evaporation device.
本发明以季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠和纳米纤维素溶液作为凝胶前体溶液,并在凝胶前体溶液中加入由氧化石墨烯和硫化铜组成的光热转换材料以及经聚乙烯亚胺和聚多巴胺改性的改性Mxene纳米片,在戊二醛交联剂的作用下,通过氢键交联和冻融循环作用构建了具有良好骨架结构的复合水凝胶;随后利用化学原位聚合,以过硫酸铵为氧化剂,引发了苯胺单体在复合水凝胶内部进行原位生长生成聚苯胺纳米纤维,通过定向冷冻干燥,得到了具有垂直排列的大孔通道的气凝胶基体,最后在气凝胶基体表面进行吡咯原位聚合反应生成聚吡咯,聚吡咯作为光吸收位点显著提高了太阳能界面蒸发器件的光捕获能力,有助于实现太阳能界面蒸发器件在全光谱范围内的宽吸收,提高了太阳能界面蒸发器件对太阳光的利用率。The invention uses quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and nanocellulose solution as gel precursor solution, adds photothermal conversion material composed of graphene oxide and copper sulfide and modified Mxene nanosheets modified by polyethyleneimine and polydopamine into the gel precursor solution, and constructs a composite hydrogel with a good skeleton structure through hydrogen bond crosslinking and freeze-thaw cycle under the action of glutaraldehyde crosslinking agent; then, chemical in-situ polymerization is used, and ammonium persulfate is used as an oxidant to induce in-situ growth of aniline monomer inside the composite hydrogel to generate polyaniline nanofibers; through directional freeze drying, an aerogel matrix with vertically arranged macroporous channels is obtained; finally, pyrrole in-situ polymerization reaction is performed on the surface of the aerogel matrix to generate polypyrrole; the polypyrrole, as a light absorption site, significantly improves the light capture ability of a solar interface evaporation device, helps to achieve wide absorption of the solar interface evaporation device in the full spectrum range, and improves the utilization rate of sunlight by the solar interface evaporation device.
影响太阳能界面蒸发器件对水蒸发速率的主要因素包括太阳能界面蒸发器件的结构设计和具有优异吸光性能的光热转换材料,还原氧化石墨烯具有较大的比表面积、良好的光热转换性能和优异的热稳定性,其太阳能-热转换效率高达90.1%,太阳能-蒸汽转换效率高达96.2%。硫化铜由于在近红外区域具有很强的光吸收能力,本发明将还原氧化石墨烯与硫化铜相结合,利用二者之间的协同增效作用,极大地提高了太阳能界面蒸发器件对太阳光的利用率。The main factors affecting the water evaporation rate of the solar interface evaporation device include the structural design of the solar interface evaporation device and the photothermal conversion material with excellent light absorption performance. Reduced graphene oxide has a large specific surface area, good photothermal conversion performance and excellent thermal stability. Its solar-thermal conversion efficiency is as high as 90.1%, and its solar-steam conversion efficiency is as high as 96.2%. Since copper sulfide has a strong light absorption capacity in the near-infrared region, the present invention combines reduced graphene oxide with copper sulfide, and utilizes the synergistic effect between the two, which greatly improves the utilization rate of sunlight by the solar interface evaporation device.
硫化铜是一种p型半导体材料,由晶格内的铜空位引起,通过等离子体的共震效应导致表面的载流子发生迁移而表现出优异的光热转换性能。目前制备硫化铜材料多以硫化钠、硫脲和二甲基亚砜作为硫源,需要使用大量的化学试剂。本发明采用生物质氨基酸—L-半胱氨酸作为硫源,以氯化铜为铜源,L-半胱氨酸在水热反应过程中发挥了还原剂、供硫剂和连接剂的三重作用,一方面,L-半胱氨酸中含有羧基(-COOH)、巯基(-SH)和氨基(-NH2),由于-SH的存在,对Cu2+离子具有很高的亲和力,在水热反应过程中,L-半胱氨酸释放H2S,作为硫化物源与Cu2+形成金属硫化物纳米颗粒;另一方面,L-半胱氨酸还可以作为还原剂,将氧化石墨烯被还原为还原氧化石墨烯;再一方面,由于纳米硫化铜不易分散,通过L-半胱氨酸作为连接剂,使得反应生成的硫化铜负载于氧化石墨烯片层上,通过水热反应一步合成硫化铜/还原氧化石墨烯光热转换材料。Copper sulfide is a p-type semiconductor material. It exhibits excellent photothermal conversion performance due to copper vacancies in the crystal lattice. The plasma resonance effect causes the migration of surface carriers. Currently, the preparation of copper sulfide materials mostly uses sodium sulfide, thiourea and dimethyl sulfoxide as sulfur sources, which requires the use of a large amount of chemical reagents. The present invention adopts biomass amino acid L-cysteine as a sulfur source and copper chloride as a copper source. L-cysteine plays a triple role of a reducing agent, a sulfur supplying agent and a connecting agent in the hydrothermal reaction process. On the one hand, L-cysteine contains a carboxyl group (-COOH), a thiol group (-SH) and an amino group (-NH 2 ). Due to the presence of -SH, it has a high affinity for Cu 2+ ions. In the hydrothermal reaction process, L-cysteine releases H 2 S, which serves as a sulfide source to form metal sulfide nanoparticles with Cu 2+ . On the other hand, L-cysteine can also serve as a reducing agent to reduce graphene oxide to reduced graphene oxide. On the other hand, since nano copper sulfide is not easy to disperse, L-cysteine is used as a connecting agent to load the copper sulfide generated by the reaction on the graphene oxide sheet, and the copper sulfide/reduced graphene oxide photothermal conversion material is synthesized in one step through the hydrothermal reaction.
还原氧化石墨烯与硫化铜之间的协同增效作用体现在:The synergistic effect between reduced graphene oxide and copper sulfide is reflected in:
一方面,硫化铜的局部表面等离子共振效应和电子在导带和价带之间跃迁(1.2~2.0eV)的过程有助于太阳能界面蒸发器件在全光谱范围内实现宽吸收,从而获得较高的表面温度,有利于提高太阳能界面蒸发器表面的水蒸发速率,并且硫化铜和还原氧化石墨烯都具有优异的光吸收能力,还原氧化石墨烯和硫化铜之间的电子相互作用也可进一步降低硫化铜的带隙,使得更多的光子被吸收,从而提高了太阳能界面蒸发器件对太阳光的利用率;On the one hand, the local surface plasmon resonance effect of copper sulfide and the process of electron transition between the conduction band and the valence band (1.2~2.0eV) help the solar interface evaporation device to achieve wide absorption in the full spectrum range, thereby obtaining a higher surface temperature, which is beneficial to increase the water evaporation rate on the surface of the solar interface evaporator. In addition, copper sulfide and reduced graphene oxide both have excellent light absorption capabilities. The electronic interaction between reduced graphene oxide and copper sulfide can also further reduce the band gap of copper sulfide, so that more photons are absorbed, thereby improving the utilization rate of solar light by the solar interface evaporation device.
另一方面,硫化铜与还原氧化石墨烯的耦合不仅改变了太阳能界面蒸发器件对太阳光的利用率,也使得太阳能界面蒸发器件的表面积和孔隙率提高,扩大的表面积可以增加气-水蒸发界面的面积,增加的孔隙率可以加速太阳能界面蒸发器件对海水的输送和水蒸汽的逸散,由此产生的热量可以有效传递给海水,有助于提高水蒸发速率;此外,由硫化铜纳米片组成的花簇状结构也使得入射光在光热转换材料上可以进行多次散射和吸收,赋予了光热转换材料优异的光热效应。On the other hand, the coupling of copper sulfide and reduced graphene oxide not only changes the utilization rate of sunlight by the solar interfacial evaporation device, but also increases the surface area and porosity of the solar interfacial evaporation device. The enlarged surface area can increase the area of the gas-water evaporation interface, and the increased porosity can accelerate the transport of seawater and the escape of water vapor by the solar interfacial evaporation device. The heat generated can be effectively transferred to seawater, which helps to increase the water evaporation rate. In addition, the flower cluster structure composed of copper sulfide nanosheets also allows the incident light to be scattered and absorbed multiple times on the photothermal conversion material, giving the photothermal conversion material an excellent photothermal effect.
Mxene纳米片具有可见光吸收能力强、光热转换效率高、光吸收范围宽等特性,其光热转换效率接近100%,但由于其固有的高表面能和界面范德华作用而易出现团聚现象。本发明通过氟化锂和盐酸原位生成氟化氢刻蚀法刻蚀钛碳化铝得到少层Mxene纳米片,将具有强吸光性的MXene纳米片加入前体混合液中,Mxene纳米片表面丰富的羟基官能团能够与前体混合液中的纳米纤维素的羟基官能团产生氢键作用,经过定向冷冻干燥后形成多孔、亲水以及具有垂直孔道结构的气凝胶基体,MXene纳米片附着于气凝胶基体的表面和孔道内壁,可以有效防止Mxene纳米片发生团聚。同时,通过加入MXene纳米片还能够显著增强太阳能界面蒸发器件的光吸收能力和吸水能力,这是由于,一方面,在海水蒸发过程中,当太阳光照射在太阳能界面蒸发器件时,部分太阳光被太阳能界面蒸发器件表面的MXene纳米片吸收,其余太阳光进入太阳能界面蒸发器件的孔道内部,经过多重反射后再次被孔道内壁上的MXene纳米片吸收,最后转换为热能并对水分进行加热产生水蒸气,气凝胶基体自身的多孔结构配合Mxene纳米片的吸光能力强化了太阳能界面蒸发器件对太阳光的吸收效果。另一方面,MXene纳米片表面过多的亲水官能团也进一步提高了气凝胶基体表面和孔道内壁的亲水性,促进了海水在其亲水表面快速移动传输,此外,通过氢键可以与水分子结合使其活化,降低海水的蒸发焓,从而加速海水的蒸发速率,有利于太阳能海水淡化。再一方面,本发明选择氧化石墨烯作为共同构建单元,辅助Mxene纳米片进行组装,Mxene纳米片与氧化石墨烯之间的强相互作用可以将Mxene纳米片粘合形成连续的薄片,二者协同分散以减少Mxene纳米片在气凝胶基体内的重新堆积,实现Mxene纳米片比表面积的最大化,使得冷冻干燥后的气凝胶基体表现出优异的机械强度;此外,由于Mxene纳米片本征的亲水性以及轻微还原的还原氧化石墨烯使得气凝胶基体整体表现为亲水性,结合稳定的垂直孔道结构,显著提高了太阳能界面蒸发器件的吸水能力。Mxene nanosheets have the characteristics of strong visible light absorption capacity, high photothermal conversion efficiency, wide light absorption range, etc., and their photothermal conversion efficiency is close to 100%, but due to their inherent high surface energy and interfacial van der Waals effect, they are prone to agglomeration. The present invention etches titanium aluminum carbide to obtain a few-layer Mxene nanosheets by using lithium fluoride and hydrochloric acid to generate hydrogen fluoride in situ, and adds MXene nanosheets with strong light absorption to the precursor mixture. The hydroxyl functional groups rich on the surface of the Mxene nanosheets can produce hydrogen bonds with the hydroxyl functional groups of nanocellulose in the precursor mixture. After directional freeze drying, a porous, hydrophilic aerogel matrix with a vertical pore structure is formed, and the MXene nanosheets are attached to the surface of the aerogel matrix and the inner wall of the pores, which can effectively prevent the Mxene nanosheets from agglomerating. At the same time, by adding MXene nanosheets, the light absorption capacity and water absorption capacity of the solar interface evaporation device can be significantly enhanced. This is because, on the one hand, during the evaporation of seawater, when sunlight irradiates the solar interface evaporation device, part of the sunlight is absorbed by the MXene nanosheets on the surface of the solar interface evaporation device, and the remaining sunlight enters the pores of the solar interface evaporation device, and after multiple reflections, it is absorbed again by the MXene nanosheets on the inner wall of the pores, and finally converted into heat energy and heats the water to produce water vapor. The porous structure of the aerogel matrix itself and the light absorption capacity of the MXene nanosheets enhance the absorption effect of the solar interface evaporation device on sunlight. On the other hand, the excessive hydrophilic functional groups on the surface of the MXene nanosheets further improve the hydrophilicity of the aerogel matrix surface and the inner wall of the pores, promoting the rapid movement and transmission of seawater on its hydrophilic surface. In addition, it can bind to water molecules through hydrogen bonds to activate them, reduce the evaporation enthalpy of seawater, thereby accelerating the evaporation rate of seawater, which is beneficial to solar desalination. On the other hand, the present invention selects graphene oxide as a common building unit to assist in the assembly of Mxene nanosheets. The strong interaction between the Mxene nanosheets and the graphene oxide can bond the Mxene nanosheets to form continuous sheets. The two are synergistically dispersed to reduce the re-accumulation of the Mxene nanosheets in the aerogel matrix, thereby maximizing the specific surface area of the Mxene nanosheets, so that the freeze-dried aerogel matrix exhibits excellent mechanical strength; in addition, due to the intrinsic hydrophilicity of the Mxene nanosheets and the slightly reduced reduced graphene oxide, the aerogel matrix exhibits hydrophilicity as a whole, combined with the stable vertical pore structure, which significantly improves the water absorption capacity of the solar interface evaporation device.
为了进一步提高Mxene纳米片的光吸收能力,并防止Mxene纳米片从气凝胶基体的表面或孔道内脱落,本发明在将Mxene纳米片加入前体混合液前,采用聚乙烯亚胺和多巴胺对Mxene纳米片进行联合改性,在Mxene纳米片表面形成聚乙烯亚胺/聚多巴胺交联网络,聚乙烯亚胺与聚多巴胺的协同作用体现在:一方面,聚乙烯亚胺和聚多巴胺为Mxene纳米片赋予了更加优异的亲水性,进一步提高了太阳能界面蒸发器件对海水的浸润能力,促进了海水在太阳能界面蒸发器件和表面和孔道内的扩散传输,同时,负载聚多巴胺后使得Mxene纳米片表面呈现粗糙的褶皱状形貌,有助于提高Mxene纳米片的光吸收率;另一方面,由于聚多巴胺含有多个羟基和氨基官能团,在静电吸附和氢键相互作用下,使得Mxene纳米片可以更加牢固地吸附在气凝胶基体的表面和孔道内壁,增强了改性Mxene纳米片在气凝胶基体上的负载强度,防止太阳能界面蒸发器件在长期使用过程中改性Mxene纳米片从其孔道内脱落;再一方面,通过Shiff碱和Michael加成反应,可以在MXene纳米片表面组装形成一层极薄的聚乙烯亚胺/聚多巴胺物理屏障膜,防止氧气不断向内扩散进入MXene晶格中,从而有效抑制MXene纳米片的自发氧化和脱落,提高了太阳能界面蒸发器件的环境稳定性和使用寿命。In order to further improve the light absorption capacity of the Mxene nanosheets and prevent the Mxene nanosheets from falling off from the surface or pores of the aerogel matrix, the present invention uses polyethyleneimine and dopamine to jointly modify the Mxene nanosheets before adding the Mxene nanosheets to the precursor mixture, so as to form a polyethyleneimine/polydopamine cross-linked network on the surface of the Mxene nanosheets. The synergistic effect of polyethyleneimine and polydopamine is reflected in: on the one hand, polyethyleneimine and polydopamine give the Mxene nanosheets more excellent hydrophilicity, further improve the wetting ability of the solar interface evaporation device for seawater, and promote the diffusion and transmission of seawater in the solar interface evaporation device and the surface and pores. At the same time, after loading polydopamine, the surface of the Mxene nanosheet presents a rough wrinkled morphology, which helps to improve the Mxene On the other hand, since polydopamine contains multiple hydroxyl and amino functional groups, the MXene nanosheets can be more firmly adsorbed on the surface of the aerogel matrix and the inner wall of the pores under the interaction of electrostatic adsorption and hydrogen bonds, which enhances the loading strength of the modified MXene nanosheets on the aerogel matrix and prevents the modified MXene nanosheets from falling off from the pores during long-term use of the solar interfacial evaporation device; on the other hand, through the Shiff base and Michael addition reaction, an extremely thin polyethyleneimine/polydopamine physical barrier film can be assembled on the surface of the MXene nanosheets to prevent oxygen from continuously diffusing inward into the MXene lattice, thereby effectively inhibiting the spontaneous oxidation and shedding of the MXene nanosheets, and improving the environmental stability and service life of the solar interfacial evaporation device.
本发明以季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠作为水凝胶的基体组分,在戊二醛交联和氢键的共同作用下形成了具有稳定骨架结构的水凝胶中间体,随后通过冻融循环工艺得到了复合水凝胶,复合水凝胶中存在两种不同的交联网络结构:The present invention uses quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate as the matrix components of the hydrogel, forms a hydrogel intermediate with a stable skeleton structure under the combined action of glutaraldehyde crosslinking and hydrogen bonding, and then obtains a composite hydrogel through a freeze-thaw cycle process. There are two different crosslinked network structures in the composite hydrogel:
一是由氧化海藻酸钠与季铵化壳聚糖通过席夫碱化学交联形成的具有优异机械强度的化学交联网络结构,氧化海藻酸钠中含有大量的羟基和羧基等官能团,这些官能团可以与改性聚乙烯醇和纳米纤维素上的羟基官能团通过氢键作用相互交联;此外,经过刻蚀、剥离和改性后得到的改性Mxene纳米片上也含有大量的亲水性官能团和氟负离子,可以使改性MXene纳米片均匀分布在由氧化海藻酸钠与季铵化壳聚糖形成的化学交联网络结构中;本发明采用2,3-环氧丙基三甲基氯化铵对壳聚糖进行季铵化改性,未改性的壳聚糖由于分子内和分子间大量氢键的存在,使得结晶度非常高,溶剂难以渗入,溶解性较差,本发明在壳聚糖分子结构中引入位阻大、水合能力强的2,3-环氧丙基三甲基氯化铵后,在壳聚糖的骨架上引入带有永久性正电荷的季铵盐官能团,壳聚糖分子中大部分氢键被破坏,而剩余的氢键和新形成的酰胺氢键较弱,从而有效破坏了氨基和羟基之间的氢键,难以形成新的结晶结构,使得壳聚糖分衍生物呈更无定形状态,结晶度下降,水溶性增加。The first is a chemically cross-linked network structure with excellent mechanical strength formed by oxidized sodium alginate and quaternized chitosan through Schiff base chemical cross-linking. Oxidized sodium alginate contains a large number of functional groups such as hydroxyl and carboxyl, which can be cross-linked with the hydroxyl functional groups on modified polyvinyl alcohol and nanocellulose through hydrogen bonding. In addition, the modified MXene nanosheets obtained after etching, stripping and modification also contain a large number of hydrophilic functional groups and fluoride anions, which can make the modified MXene nanosheets uniformly distributed in the chemically cross-linked network structure formed by oxidized sodium alginate and quaternized chitosan. The present invention adopts 2,3-epoxypropyltrimethyl chloride Chitosan is quaternized by ammonium. Unmodified chitosan has a very high crystallinity due to the presence of a large number of hydrogen bonds within and between molecules, making it difficult for solvents to penetrate and having poor solubility. The present invention introduces 2,3-epoxypropyltrimethylammonium chloride with large steric hindrance and strong hydration ability into the molecular structure of chitosan, and then introduces a quaternary ammonium salt functional group with a permanent positive charge on the skeleton of chitosan. Most of the hydrogen bonds in the chitosan molecules are destroyed, while the remaining hydrogen bonds and newly formed amide hydrogen bonds are weak, thereby effectively destroying the hydrogen bonds between the amino group and the hydroxyl group, making it difficult to form a new crystalline structure, so that the chitosan derivative is in a more amorphous state, the crystallinity is reduced, and the water solubility is increased.
二是由聚乙烯醇和丙三醇通过氢键作用形成的物理交联网络结构,物理交联网络结构互穿在化学交联网络结构中,该物理交联网络结构可以使水分子以团簇的形式蒸发来降低水的蒸发焓,在复合水凝胶中,改性聚乙烯醇分子链上还有大量的羟基,可以与水分子通过氢键和静电作用相结合,从而使水分子活化,产生大量的弱结合水分子,促进了水分的蒸发,提高了对太阳光的利用率;此外,改性聚乙烯醇上的羟基官能团还可以与聚多巴胺的氨基官能团之间通过氢键作用紧密交联,使得经聚多巴胺改性后的改性Mxene纳米片可以牢固附着在气凝胶基体上。The second is a physical cross-linked network structure formed by polyvinyl alcohol and propylene glycol through hydrogen bonding. The physical cross-linked network structure is interpenetrated in the chemical cross-linked network structure. The physical cross-linked network structure can make water molecules evaporate in the form of clusters to reduce the evaporation enthalpy of water. In the composite hydrogel, there are a large number of hydroxyl groups on the modified polyvinyl alcohol molecular chain, which can combine with water molecules through hydrogen bonding and electrostatic effects, thereby activating the water molecules and generating a large number of weakly bound water molecules, which promotes the evaporation of water and improves the utilization rate of sunlight. In addition, the hydroxyl functional groups on the modified polyvinyl alcohol can also be tightly cross-linked with the amino functional groups of polydopamine through hydrogen bonding, so that the modified Mxene nanosheets modified by polydopamine can be firmly attached to the aerogel matrix.
本发明在气凝胶基体中加入了纳米纤维素,借助纳米纤维素具有的力学增强性能、较低的热导率以及超亲水性等优势,可以进一步增强气凝胶基体的水分传输能力、热管理能力和力学强度。一方面,纳米纤维素上具有丰富的羟基等亲水性官能团,因此可以通过自身优异的亲水性将水分持续不断的输送到太阳能界面蒸发器件的表面,从而提高太阳能界面蒸发器件对海水的运输能力。另一方面,具有高长径比的纤维丝状结构的纳米纤维素在前体混合液中通过物理交叉缠绕和氢键作用形成了三维网络结构,经冷冻干燥后在气凝胶基体内构建了三维多孔结构,不仅为水蒸气的逸出提供了丰富的传输通道,而且可以有效提高气凝胶基体的力学强度。此外,在气凝胶基体中,改性Mxene纳米片优异的光吸收性能及光热转换性能保证了气凝胶基体能够吸收太阳光并转化为热量用于加热水分,借助改性Mxene纳米片上的羟基与纳米纤维素的羟基之间的氢键作用以及纳米纤维素自身的三维网络结构,可以有效缓解Mxene纳米片在凝胶前体溶液中的堆叠现象,避免了气凝胶基体的光吸收性能的下降。The present invention adds nanocellulose to the aerogel matrix, and by virtue of the mechanical enhancement performance, low thermal conductivity and super hydrophilicity of nanocellulose, the water transmission capacity, thermal management capacity and mechanical strength of the aerogel matrix can be further enhanced. On the one hand, nanocellulose has abundant hydrophilic functional groups such as hydroxyl groups, so it can continuously transport water to the surface of the solar interface evaporation device through its excellent hydrophilicity, thereby improving the transport capacity of the solar interface evaporation device for seawater. On the other hand, nanocellulose with a fiber filament structure with a high aspect ratio forms a three-dimensional network structure in the precursor mixture through physical cross-entanglement and hydrogen bonding, and constructs a three-dimensional porous structure in the aerogel matrix after freeze-drying, which not only provides abundant transmission channels for the escape of water vapor, but also effectively improves the mechanical strength of the aerogel matrix. In addition, in the aerogel matrix, the excellent light absorption and photothermal conversion properties of the modified Mxene nanosheets ensure that the aerogel matrix can absorb sunlight and convert it into heat for heating water. With the help of the hydrogen bonding between the hydroxyl groups on the modified Mxene nanosheets and the hydroxyl groups on nanocellulose and the three-dimensional network structure of nanocellulose itself, the stacking phenomenon of Mxene nanosheets in the gel precursor solution can be effectively alleviated, thereby avoiding the decrease in the light absorption performance of the aerogel matrix.
本发明在复合水凝胶中引入苯胺单体,在改性Mxene纳米片和过硫酸铵的共同作用下,苯胺单体会在复合水凝胶的三维网络结构中发生成核接枝以在改性Mxene纳米片表面自聚合形成短链聚苯胺纳米纤维,整个过程的反应机理为:The present invention introduces aniline monomers into the composite hydrogel. Under the combined action of the modified Mxene nanosheets and ammonium persulfate, the aniline monomers undergo nucleation grafting in the three-dimensional network structure of the composite hydrogel to self-polymerize on the surface of the modified Mxene nanosheets to form short-chain polyaniline nanofibers. The reaction mechanism of the whole process is as follows:
改性Mxene纳米片表面含有大量的-F、-O以及-OH官能团,在过硫酸铵形成的弱酸性环境下,Mxene纳米片上的-O和-OH官能团能够氧化苯胺单体,使其形成苯胺阳离子自由基或者中性自由基,在此过程中,两个苯胺阳离子自由基以头尾相连的方式聚合形成苯胺二聚体,同时,苯胺二聚体在初步聚合反应完成后可以通过苯胺的氧化产物中苯环的氢原子发生亲电取代形成苯胺二聚体来继续进行聚合,由于生成的苯胺二聚体的氧化电位远低于苯胺单体的氧化电位,因而苯胺二聚体在形成过程中可以通过随后的氧化或去质子化快速氧化并与其他游离的苯胺单体反应形成短链聚苯胺纳米纤维。The surface of the modified Mxene nanosheets contains a large number of -F, -O and -OH functional groups. In the weakly acidic environment formed by ammonium persulfate, the -O and -OH functional groups on the Mxene nanosheets can oxidize the aniline monomer to form aniline cationic radicals or neutral radicals. In this process, two aniline cationic radicals are polymerized in a head-to-tail manner to form aniline dimers. At the same time, after the initial polymerization reaction is completed, the aniline dimer can continue to polymerize by electrophilic substitution of the hydrogen atoms of the benzene ring in the oxidation product of aniline to form aniline dimers. Since the oxidation potential of the generated aniline dimer is much lower than that of the aniline monomer, the aniline dimer can be rapidly oxidized by subsequent oxidation or deprotonation during the formation process and react with other free aniline monomers to form short-chain polyaniline nanofibers.
当将复合水凝胶浸泡于苯胺单体溶液中时,苯胺单体会在改性MXene纳米片表面按上述反应过程发生自聚合,在改性MXene纳米片表面成核接枝形成短链聚苯胺纳米纤维,接枝形成的短链聚苯胺纳米纤维还会与光热转换材料中的还原氧化石墨烯之间通过氢键、π-π共轭相互作用以及范德华力紧密结合,在短链聚苯胺纳米纤维形成的“分子桥”作用下将改性MXene纳米片与光热转换材料连接,最终形成了具有稳定结构的改性复合水凝胶。此外,通过苯胺单体的自聚合形成的短链聚苯胺纳米纤维还可以插入还原氧化石墨烯的片层内,从而提高还原氧化石墨烯的片层间距,有效抑制了还原氧化石墨烯的团聚问题。When the composite hydrogel is immersed in the aniline monomer solution, the aniline monomer will self-polymerize on the surface of the modified MXene nanosheet according to the above reaction process, and form nuclei and grafted short-chain polyaniline nanofibers on the surface of the modified MXene nanosheet. The grafted short-chain polyaniline nanofibers will also be tightly bound to the reduced graphene oxide in the photothermal conversion material through hydrogen bonds, π-π conjugated interactions and van der Waals forces. Under the action of the "molecular bridge" formed by the short-chain polyaniline nanofibers, the modified MXene nanosheets are connected to the photothermal conversion material, and finally a modified composite hydrogel with a stable structure is formed. In addition, the short-chain polyaniline nanofibers formed by the self-polymerization of the aniline monomer can also be inserted into the lamellae of the reduced graphene oxide, thereby increasing the interlamellar spacing of the reduced graphene oxide and effectively inhibiting the agglomeration problem of the reduced graphene oxide.
由于冰晶的无序生长,采用传统的冷冻法制备得到的气凝胶基体大多表现出无序的孔隙结构,不仅内部孔道分布不均,而且开孔与闭孔结构并存,闭孔结构的存在使得水分运输和水蒸气逸散过程受到影响。本发明采用定向冷冻干燥制备得到了具有垂直孔道结构的气凝胶基体,其原理是通过对改性复合水凝胶施加温度梯度来控制改性复合水凝胶内的冰晶的生长方向,在温度梯度作用下,冰晶沿着垂直方向由低温端到高温端定向生长,随后在冷冻干燥机内经冷冻干燥后使得冰晶升华,最终的孔隙直接复制了冰晶的结构,在最终得到的气凝胶基体内形成了垂直方向排列的多孔结构。Due to the disordered growth of ice crystals, the aerogel matrix prepared by the traditional freezing method mostly shows a disordered pore structure, not only the internal pores are unevenly distributed, but also the open and closed pore structures coexist, and the existence of the closed pore structure affects the water transport and water vapor dissipation process. The present invention adopts directional freeze drying to prepare an aerogel matrix with a vertical pore structure. The principle is to control the growth direction of ice crystals in the modified composite hydrogel by applying a temperature gradient to the modified composite hydrogel. Under the action of the temperature gradient, the ice crystals grow directionally from the low temperature end to the high temperature end along the vertical direction, and then the ice crystals are sublimated after freeze drying in the freeze dryer. The final pores directly replicate the structure of the ice crystals, and a vertically arranged porous structure is formed in the final aerogel matrix.
本发明制备得到的轴向有序、规则排列的孔道通道的优势在于:The advantages of the axially ordered and regularly arranged pore channels prepared by the present invention are:
(1)采用定向冷冻工艺在气凝胶基体内部形成定向孔结构,使得水分运输的距离更短,水分运输的阻力更小,水蒸气的逸散更加充分,极大地提高了太阳能界面蒸发器件的模拟海水攀升距离和水蒸发速率,同时也能有效防止气凝胶基体内部出现闭孔结构;(1) A directional pore structure is formed inside the aerogel matrix by using a directional freezing process, which shortens the distance of water transport, reduces the resistance of water transport, and makes the water vapor escape more fully, greatly improving the simulated seawater climbing distance and water evaporation rate of the solar interface evaporation device, while also effectively preventing the formation of a closed-pore structure inside the aerogel matrix;
(2)当太阳光进入垂直孔道时可在垂直孔道的内壁之间发生多次折射,有助于提高太阳能界面蒸发器件对太阳光的吸光率,实现了对太阳能的高效吸收;(2) When sunlight enters the vertical channel, it can be refracted multiple times between the inner walls of the vertical channel, which helps to improve the solar interface evaporation device's absorption rate of sunlight and achieve efficient absorption of solar energy;
(3)这种垂直排列的大孔通道可以快速补给太阳能界面蒸发器件表面蒸发掉的水分,使太阳能界面蒸发器件能够长期保持高效运行,以提高太阳能界面蒸发器件对太阳光的吸收能力和水蒸发性能;(3) This vertically arranged macroporous channel can quickly replenish the water evaporated from the surface of the solar interface evaporation device, so that the solar interface evaporation device can maintain high efficiency for a long time, thereby improving the solar interface evaporation device's ability to absorb sunlight and water evaporation performance;
(4)随着冰晶的定向生长,光热转换材料和改性Mxene纳米片可以沉积在气凝胶基体的孔壁上,有利于光热转换材料和改性Mxene纳米片的充分暴露,以达到最大的孔隙利用率,从而提高太阳能界面蒸发器件的光热转换效率。(4) With the directional growth of ice crystals, photothermal conversion materials and modified Mxene nanosheets can be deposited on the pore walls of the aerogel matrix, which is conducive to the full exposure of photothermal conversion materials and modified Mxene nanosheets to achieve maximum pore utilization, thereby improving the photothermal conversion efficiency of solar interfacial evaporation devices.
本发明采用化学氧化聚合法在气凝胶基体的表面和内部负载了聚吡咯,采用FeCl3作为氧化剂来氧化吡咯单体合成聚吡咯,聚合反应开始时,在FeCl3的作用下,吡咯单体被氧化后产生一些阳离子自由基发生质子化反应,这些拥有化学活性的阳离子自由基两两结合生成双吡咯结构,双吡咯结构再被氧化后继续与其它氧化态的吡咯单体相互耦合,氧化和耦合过程持续进行,直至形成聚吡咯分子链,最终得到黑色不溶于水的聚吡咯。The invention adopts a chemical oxidation polymerization method to load polypyrrole on the surface and inside of an aerogel matrix, and adopts FeCl 3 as an oxidant to oxidize pyrrole monomers to synthesize polypyrrole. When the polymerization reaction starts, under the action of FeCl 3 , the pyrrole monomers are oxidized to generate some cationic free radicals to undergo protonation reaction, and these chemically active cationic free radicals are combined in pairs to generate a bipyrrole structure, and the bipyrrole structure is further oxidized and continues to couple with other oxidized pyrrole monomers, and the oxidation and coupling process continues until a polypyrrole molecular chain is formed, and finally a black water-insoluble polypyrrole is obtained.
由于聚吡咯本身呈现黑色,可以作为光吸收位点,在受到光照射时自发吸收大部分的光,显著提高了太阳能界面蒸发器件的光捕获能力;同时,气凝胶基体内部的垂直孔道结构使得太阳光在气凝胶基体内部发生反复折射散射,促进了光捕获,导致最终制备得到的太阳能界面蒸发器件在300~2500nm波长范围内几乎没有光透射,实现了全光谱宽吸收,吸收率约为98%,引入的光热转换材料和改性Mxene纳米片则可快速将太阳能转化为热能,以实现有效的能量转换,这些因素协同作用有利于加速太阳能界面蒸发器件的水界面蒸发。Since polypyrrole itself is black, it can be used as a light absorption site and spontaneously absorbs most of the light when irradiated with light, significantly improving the light capture ability of the solar interface evaporation device; at the same time, the vertical channel structure inside the aerogel matrix causes sunlight to be repeatedly refracted and scattered inside the aerogel matrix, promoting light capture, resulting in the final prepared solar interface evaporation device having almost no light transmission in the wavelength range of 300~2500nm, achieving full-spectrum wide absorption with an absorption rate of about 98%. The introduced photothermal conversion materials and modified Mxene nanosheets can quickly convert solar energy into thermal energy to achieve effective energy conversion. The synergistic effect of these factors is conducive to accelerating the water interface evaporation of the solar interface evaporation device.
聚吡咯和改性Mxene纳米片之间还能产生协同增效作用,主要体现在:There is also a synergistic effect between polypyrrole and modified Mxene nanosheets, which is mainly reflected in:
一方面,经HCl-LiF蚀刻后使得改性Mxene纳米片的表面暴露出丰富的含氟和含氧官能团,来自聚吡咯环中的N-H官能团和改性Mxene纳米片表面的含氟和含氧官能团能够在聚吡咯和改性Mxene纳米片之间形成稳定的物理吸附结构,从而有利于改性Mxene纳米片与聚吡咯进行复合,使得聚吡咯分子链得以均匀分布在MXene纳米片上并插入MXene纳米片的边缘和存在缺陷的部位,通过聚吡咯分子链的插入可以有效阻止改性MXene纳米片缺陷部位出现氧化降解反应;同时,聚吡咯嵌入到改性MXene纳米片的层状结构中,可以增大改性MXene纳米片的层间距,起到空间阻隔作用,一定程度上解决了改性Mxene纳米片的片层堆积问题;此外,聚吡咯颗粒包覆在改性MXene纳米片表面可以保护改性MXene纳米片不被氧化。与聚吡咯进行复合后的改性MXene纳米片被钝化,改性MXene纳米片的结构稳定性能得到了显著提高,在经过改性MXene纳米片掺杂后的聚吡咯的结构稳定性同样得到了提高。On the one hand, after HCl-LiF etching, the surface of the modified MXene nanosheets exposes abundant fluorine-containing and oxygen-containing functional groups. The N-H functional groups in the polypyrrole ring and the fluorine-containing and oxygen-containing functional groups on the surface of the modified MXene nanosheets can form a stable physical adsorption structure between the polypyrrole and the modified MXene nanosheets, which is beneficial to the composite of the modified MXene nanosheets and the polypyrrole, so that the polypyrrole molecular chains can be evenly distributed on the MXene nanosheets and inserted into the edges and defective parts of the MXene nanosheets. The insertion of the polypyrrole molecular chains can effectively prevent the oxidative degradation reaction of the defective parts of the modified MXene nanosheets; at the same time, the polypyrrole is embedded in the layered structure of the modified MXene nanosheets, which can increase the interlayer spacing of the modified MXene nanosheets and play a spatial barrier role, which solves the problem of sheet stacking of the modified MXene nanosheets to a certain extent; in addition, the polypyrrole particles coated on the surface of the modified MXene nanosheets can protect the modified MXene nanosheets from oxidation. The modified MXene nanosheets were passivated after being compounded with polypyrrole, and the structural stability of the modified MXene nanosheets was significantly improved. The structural stability of polypyrrole after being doped with the modified MXene nanosheets was also improved.
另一方面,传统的聚吡咯聚合反应中会添加引发剂,而本发明中的聚合过程中未使用其他引发剂参加反应,只是采用简单的FeCl3氧化剂对吡咯单体进行聚合反应,这是由于,改性MXene纳米片自身有酸性,在酸性条件下会发生吡咯环C-3位置的质子化反应,吡咯分子被质子化后还会持续地将其他分子质子化生成双吡咯结构直至生成聚吡咯分子长链。On the other hand, in the traditional polypyrrole polymerization reaction, an initiator is added, while in the polymerization process of the present invention, no other initiator is used to participate in the reaction, and only a simple FeCl3 oxidant is used to polymerize the pyrrole monomer. This is because the modified MXene nanosheets themselves are acidic, and under acidic conditions, a protonation reaction will occur at the C-3 position of the pyrrole ring. After the pyrrole molecules are protonated, they will continue to protonate other molecules to form a bipyrrole structure until a long chain of polypyrrole molecules is generated.
作为本发明一种优选的技术方案,步骤(Ⅰ)中,所述氧化石墨烯分散液中的氧化石墨烯的质量分数为10~20wt%,例如可以是10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%或20wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (I), the mass fraction of graphene oxide in the graphene oxide dispersion is 10-20wt%, for example, it can be 10wt%, 11wt%, 12wt%, 13wt%, 14wt%, 15wt%, 16wt%, 17wt%, 18wt%, 19wt% or 20wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述氧化石墨烯分散液中的氧化石墨烯与L-半胱氨酸的质量比为1:(15~25),例如可以是1:15、1:16、1:17、1:18、1:19、1:20、1:21、1:22、1:23、1:24或1:25,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of graphene oxide to L-cysteine in the graphene oxide dispersion is 1:(15~25), for example, it can be 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:21, 1:22, 1:23, 1:24 or 1:25, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述氯化铜溶液中的氯化铜的浓度为1~1.2mol/L,例如可以是1.0mol/L、1.02mol/L、1.04mol/L、1.06mol/L、1.08mol/L、1.1mol/L、1.12mol/L、1.14mol/L、1.16mol/L、1.18mol/L或1.2mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the concentration of cupric chloride in the cupric chloride solution is 1-1.2 mol/L, for example, it can be 1.0 mol/L, 1.02 mol/L, 1.04 mol/L, 1.06 mol/L, 1.08 mol/L, 1.1 mol/L, 1.12 mol/L, 1.14 mol/L, 1.16 mol/L, 1.18 mol/L or 1.2 mol/L, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述反应溶液中的L-半胱氨酸与氯化铜溶液中的氯化铜的质量比为(3~5):1,例如可以是3.0:1、3.2:1、3.4:1、3.6:1、3.8:1、4.0:1、4.2:1、4.4:1、4.6:1、4.8:1或5.0:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of L-cysteine in the reaction solution to copper chloride in the copper chloride solution is (3-5):1, for example, 3.0:1, 3.2:1, 3.4:1, 3.6:1, 3.8:1, 4.0:1, 4.2:1, 4.4:1, 4.6:1, 4.8:1 or 5.0:1, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述前驱体溶液的加热温度为140~160℃,例如可以是140℃、142℃、144℃、146℃、148℃、150℃、152℃、154℃、156℃、158℃或160℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional instances, the heating temperature of the precursor solution is 140-160°C, for example, it can be 140°C, 142°C, 144°C, 146°C, 148°C, 150°C, 152°C, 154°C, 156°C, 158°C or 160°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述前驱体溶液的加热时间为10~15h,例如可以是10h、10.5h、11h、11.5h、12h、12.5h、13h、13.5h、14h、14.5h或15h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the heating time of the precursor solution is 10 to 15 hours, for example, it can be 10 hours, 10.5 hours, 11 hours, 11.5 hours, 12 hours, 12.5 hours, 13 hours, 13.5 hours, 14 hours, 14.5 hours or 15 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅱ)中,所述盐酸溶液的浓度为3~5mol/L,例如可以是3.0mol/L、3.2mol/L、3.4mol/L、3.6mol/L、3.8mol/L、4.0mol/L、4.2mol/L、4.4mol/L、4.6mol/L、4.8mol/L或5.0mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (II), the concentration of the hydrochloric acid solution is 3-5 mol/L, for example, it can be 3.0 mol/L, 3.2 mol/L, 3.4 mol/L, 3.6 mol/L, 3.8 mol/L, 4.0 mol/L, 4.2 mol/L, 4.4 mol/L, 4.6 mol/L, 4.8 mol/L or 5.0 mol/L, but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述氟化锂与盐酸溶液的混合比例为1g:(15~25)mL,例如可以是1g:15mL、1g:16mL、1g:17mL、1g:18mL、1g:19mL、1g:20mL、1g:21mL、1g:22mL、1g:23mL、1g:24mL或1g:25mL,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mixing ratio of lithium fluoride and hydrochloric acid solution is 1g:(15~25)mL, for example, it can be 1g:15mL, 1g:16mL, 1g:17mL, 1g:18mL, 1g:19mL, 1g:20mL, 1g:21mL, 1g:22mL, 1g:23mL, 1g:24mL or 1g:25mL, but it is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述刻蚀溶液与所述钛碳化铝粉末的混合比例为1L:(30~40)g,例如可以是1L:30g、1L:31g、1L:32g、1L:33g、1L:34g、1L:35g、1L:36g、1L:37g、1L:38g、1L:39g或1L:40g,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mixing ratio of the etching solution and the titanium aluminum carbide powder is 1L:(30~40)g, for example, it can be 1L:30g, 1L:31g, 1L:32g, 1L:33g, 1L:34g, 1L:35g, 1L:36g, 1L:37g, 1L:38g, 1L:39g or 1L:40g, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述刻蚀溶液与所述钛碳化铝粉末混合时的水浴加热的温度为30~40℃,例如可以是30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃或40℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the temperature of the water bath heating when the etching solution and the titanium aluminum carbide powder are mixed is 30~40°C, for example, it can be 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C or 40°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述刻蚀溶液与所述钛碳化铝粉末混合时的水浴加热的时间为12~24h,例如可以是12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the water bath heating time when the etching solution and the titanium aluminum carbide powder are mixed is 12 to 24 hours, for example, it can be 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours or 24 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述Mxene分散液中的Mxene纳米片的浓度为3~5g/L,例如可以是3.0g/L、3.2g/L、3.4g/L、3.6g/L、3.8g/L、4.0g/L、4.2g/L、4.4g/L、4.6g/L、4.8g/L或5.0g/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the concentration of the Mxene nanosheets in the Mxene dispersion is 3 to 5 g/L, for example, 3.0 g/L, 3.2 g/L, 3.4 g/L, 3.6 g/L, 3.8 g/L, 4.0 g/L, 4.2 g/L, 4.4 g/L, 4.6 g/L, 4.8 g/L or 5.0 g/L, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述Mxene分散液中的Mxene纳米片与聚乙烯亚胺的质量比为1:(0.6~0.8),例如可以是1:0.6、1:0.62、1:0.64、1:0.66、1:0.68、1:0.7、1:0.72、1:0.74、1:0.76、1:0.78或1:0.8,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of the Mxene nanosheets to the polyethyleneimine in the Mxene dispersion is 1:(0.6~0.8), for example, it can be 1:0.6, 1:0.62, 1:0.64, 1:0.66, 1:0.68, 1:0.7, 1:0.72, 1:0.74, 1:0.76, 1:0.78 or 1:0.8, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述氨基化改性的加热振荡的加热温度为40~50℃,例如可以是40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃或50℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional embodiments, the heating temperature of the amino-modified heated oscillation is 40-50°C, for example, it can be 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C or 50°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述氨基化改性的加热振荡的摇床转速为150~250r/min,例如可以是150r/min、160r/min、170r/min、180r/min、180r/min、200r/min、210r/min、220r/min、230r/min、240r/min或250r/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the shaking speed of the amino-modified heated oscillating table is 150~250r/min, for example, it can be 150r/min, 160r/min, 170r/min, 180r/min, 180r/min, 200r/min, 210r/min, 220r/min, 230r/min, 240r/min or 250r/min, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述氨基化改性的加热振荡的改性时间为1~2h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the modification time of the heating oscillation for the amino modification is 1 to 2 hours, for example, it can be 1.0 h, 1.1 h, 1.2 h, 1.3 h, 1.4 h, 1.5 h, 1.6 h, 1.7 h, 1.8 h, 1.9 h or 2.0 h, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述多巴胺溶液由多巴胺和Tris-HCl缓冲溶液组成。In some optional examples, the dopamine solution consists of dopamine and Tris-HCl buffer solution.
在一些可选的实例中,所述Tris-HCl缓冲溶液的pH值为8~9,例如可以是8.0、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9或9.0,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional embodiments, the pH value of the Tris-HCl buffer solution is 8-9, for example, it can be 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 or 9.0, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述多巴胺溶液中的多巴胺的浓度为0.5~1.5g/L,例如可以是0.5g/L、0.6g/L、0.7g/L、0.8g/L、0.9g/L、1.0g/L、1.1g/L、1.2g/L、1.3g/L、1.4g/L或1.5g/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the concentration of dopamine in the dopamine solution is 0.5~1.5 g/L, for example, it can be 0.5 g/L, 0.6 g/L, 0.7 g/L, 0.8 g/L, 0.9 g/L, 1.0 g/L, 1.1 g/L, 1.2 g/L, 1.3 g/L, 1.4 g/L or 1.5 g/L, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
聚多巴胺能够显著促进Mxene纳米片的剥离,但当多巴胺溶液的浓度超过1.5g/L时,Mxene纳米片的剥离效果变差,这是由于过量的聚多巴胺纳米颗粒与MXene纳米片表面的官能团产生了更强的相互作用,从而使得MXene纳米片的层间距略有降低。Polydopamine can significantly promote the exfoliation of MXene nanosheets, but when the concentration of dopamine solution exceeds 1.5 g/L, the exfoliation effect of MXene nanosheets becomes worse. This is because the excess polydopamine nanoparticles produce a stronger interaction with the functional groups on the surface of MXene nanosheets, thereby slightly reducing the interlayer spacing of MXene nanosheets.
在一些可选的实例中,所述Mxene分散液与多巴胺溶液的体积比为(10~12):1,例如可以是10:1、10.2:1、10.4:1、10.6:1、10.8:1、11:1、11.2:1、11.4:1、11.6:1、11.8:1或12:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the volume ratio of the Mxene dispersion to the dopamine solution is (10-12):1, for example, it can be 10:1, 10.2:1, 10.4:1, 10.6:1, 10.8:1, 11:1, 11.2:1, 11.4:1, 11.6:1, 11.8:1 or 12:1, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述Mxene分散液与多巴胺溶液在摇床中混合振荡12~24h,例如可以是12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the Mxene dispersion and the dopamine solution are mixed and oscillated in a shaker for 12 to 24 hours, for example, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours or 24 hours, but are not limited to the listed values, and other values not listed within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅲ)中,所述醋酸水溶液中的醋酸的质量分数为2~3wt%,例如可以是2.0wt%、2.1wt%、2.2wt%、2.3wt%、2.4wt%、2.5wt%、2.6wt%、2.7wt%、2.8wt%、2.9wt%或3.0wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (III), the mass fraction of acetic acid in the acetic acid aqueous solution is 2-3wt%, for example, it can be 2.0wt%, 2.1wt%, 2.2wt%, 2.3wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.7wt%, 2.8wt%, 2.9wt% or 3.0wt%, but it is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖与醋酸水溶液的混合比例为1g:(40~60)mL,例如可以是1g:40mL、1g:42mL、1g:44mL、1g:46mL、1g:48mL、1g:50mL、1g:52mL、1g:54mL、1g:56mL、1g:58mL或1g:60mL,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mixing ratio of chitosan and acetic acid aqueous solution is 1g:(40~60)mL, for example, it can be 1g:40mL, 1g:42mL, 1g:44mL, 1g:46mL, 1g:48mL, 1g:50mL, 1g:52mL, 1g:54mL, 1g:56mL, 1g:58mL or 1g:60mL, but it is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖与醋酸水溶液混合时的加热温度为50~60℃,例如可以是50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃或60℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional embodiments, the heating temperature when the chitosan is mixed with the acetic acid aqueous solution is 50-60°C, for example, it can be 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C or 60°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖与醋酸水溶液混合时的搅拌时间为2~3h,例如可以是2.0h、2.1h、2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h或3.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional embodiments, the stirring time when the chitosan and the acetic acid aqueous solution are mixed is 2 to 3 hours, for example, it can be 2.0 hours, 2.1 hours, 2.2 hours, 2.3 hours, 2.4 hours, 2.5 hours, 2.6 hours, 2.7 hours, 2.8 hours, 2.9 hours or 3.0 hours, but it is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖溶液中的壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:(1.6~1.8),例如可以是1:1.6、1:1.62、1:1.64、1:1.66、1:1.68、1:1.7、1:1.72、1:1.74、1:1.76、1:1.78或1:1.8,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride in the chitosan solution is 1:(1.6~1.8), for example, it can be 1:1.6, 1:1.62, 1:1.64, 1:1.66, 1:1.68, 1:1.7, 1:1.72, 1:1.74, 1:1.76, 1:1.78 or 1:1.8, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖溶液与2,3-环氧丙基三甲基氯化铵在季铵化改性过程中的加热温度为75~85℃,例如可以是75℃、76℃、77℃、78℃、79℃、80℃、81℃、82℃、83℃、84℃或85℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the heating temperature of the chitosan solution and 2,3-epoxypropyltrimethylammonium chloride during the quaternization modification process is 75-85°C, for example, it can be 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C or 85°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述壳聚糖溶液与2,3-环氧丙基三甲基氯化铵在季铵化改性过程中的搅拌时间为10~12h,例如可以是10h、10.2h、10.4h、10.6h、10.8h、11h、11.2h、11.4h、11.6h、11.8h或12h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the stirring time of the chitosan solution and 2,3-epoxypropyltrimethylammonium chloride during the quaternization modification process is 10 to 12 hours, for example, it can be 10 hours, 10.2 hours, 10.4 hours, 10.6 hours, 10.8 hours, 11 hours, 11.2 hours, 11.4 hours, 11.6 hours, 11.8 hours or 12 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述聚乙烯醇、丙三醇和去离子水的质量比为1:(2.5~3.5):(1.8~2.2),例如可以是1:2.5:1.8、1:2.6:1.85、1:2.7:1.9、1:2.8:1.95、1:2.9:2、1:3.0:2.05、1:3.1:2.1、1:3.2:2.15、1:3.3:2.2、1:3.4:2.2或1:3.5:2.2,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of the polyvinyl alcohol, glycerol and deionized water is 1:(2.5~3.5):(1.8~2.2), for example, it can be 1:2.5:1.8, 1:2.6:1.85, 1:2.7:1.9, 1:2.8:1.95, 1:2.9:2, 1:3.0:2.05, 1:3.1:2.1, 1:3.2:2.15, 1:3.3:2.2, 1:3.4:2.2 or 1:3.5:2.2, but it is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述反应前体溶液的加热回流反应的反应温度为100~120℃,例如可以是100℃、102℃、104℃、106℃、108℃、110℃、112℃、114℃、116℃、118℃或120℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the reaction temperature of the heated reflux reaction of the reaction precursor solution is 100-120°C, for example, it can be 100°C, 102°C, 104°C, 106°C, 108°C, 110°C, 112°C, 114°C, 116°C, 118°C or 120°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述反应前体溶液的加热回流反应的反应时间为1~2h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the reaction time of the heating reflux reaction of the reaction precursor solution is 1 to 2 hours, for example, it can be 1.0h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2.0h, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述海藻酸钠溶液中的海藻酸钠的质量分数为3~5wt%,例如可以是3.0wt%、3.2wt%、3.4wt%、3.6wt%、3.8wt%、4.0wt%、4.2wt%、4.4wt%、4.6wt%、4.8wt%或5.0wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass fraction of sodium alginate in the sodium alginate solution is 3-5wt%, for example, 3.0wt%, 3.2wt%, 3.4wt%, 3.6wt%, 3.8wt%, 4.0wt%, 4.2wt%, 4.4wt%, 4.6wt%, 4.8wt% or 5.0wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述海藻酸钠溶液中的海藻酸钠与高碘酸钠的质量比为(2~3):1,例如可以是2.0:1、2.1:1、2.2:1、2.3:1、2.4:1、2.5:1、2.6:1、2.7:1、2.8:1、2.9:1或3.0:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of sodium alginate to sodium periodate in the sodium alginate solution is (2-3):1, for example, 2.0:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1 or 3.0:1, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述海藻酸钠溶液与高碘酸钠在氧化反应过程中的搅拌时间为3~5h,例如可以是3.0h、3.2h、3.4h、3.6h、3.8h、4.0h、4.2h、4.4h、4.6h、4.8h或5.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the stirring time of the sodium alginate solution and sodium periodate during the oxidation reaction is 3 to 5 hours, for example, it can be 3.0 hours, 3.2 hours, 3.4 hours, 3.6 hours, 3.8 hours, 4.0 hours, 4.2 hours, 4.4 hours, 4.6 hours, 4.8 hours or 5.0 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅳ)中,所述季铵化壳聚糖、所述改性聚乙烯醇、所述氧化海藻酸钠以及所述纳米纤维素溶液中的绝干纳米纤维素的质量比为1:(3~5):(0.5~0.8):(0.6~0.7),例如可以是1:3:0.5:0.6、1:3.2:0.55:0.61、1:3.4:0.6:0.62、1:3.6:0.65:0.63、1:3.8:0.7:0.64、1:4:0.75:0.65、1:4.2:0.8:0.66、1:4.4:0.7:0.67、1:4.6:0.75:0.68、1:4.8:0.8:0.69或1:5:0.85:0.7,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (IV), the mass ratio of the quaternized chitosan, the modified polyvinyl alcohol, the oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:(3-5):(0.5-0.8):(0.6-0.7), for example, it can be 1:3:0.5:0.6, 1:3.2:0.55:0.61, 1:3.4:0.6:0.62, 1 :3.6:0.65:0.63, 1:3.8:0.7:0.64, 1:4:0.75:0.65, 1:4.2:0.8:0.66, 1:4.4:0.7:0.67, 1:4.6:0.75:0.68, 1:4.8:0.8:0.69 or 1:5:0.85:0.7, but are not limited to the listed values, other values not listed within the numerical range are also applicable.
本发明在前体混合液中添加了纳米纤维素,增加了改性Mxene纳米片的层间距,减少了改性Mxene纳米片的堆叠现象,提高了气凝胶基体的光吸收性能,同时,改性Mxene纳米片的层间距的增加在一定程度上也阻隔了热量的传导和耗散。但当纳米纤维素的添加量低于本发明限定的范围下限时,会导致改性Mxene纳米片的层间距降低,改性Mxene纳米片出现堆叠现象,进而造成太阳能界面蒸发器件的表面温度下降。而纳米纤维素的添加量高于本发明限定的范围上限时,会导致前体混合液的黏度过大,影响光热转换材料和Mxene纳米片在前体混合液中的分散均匀性。The present invention adds nanocellulose to the precursor mixture, increases the interlayer spacing of the modified Mxene nanosheets, reduces the stacking phenomenon of the modified Mxene nanosheets, improves the light absorption performance of the aerogel matrix, and at the same time, the increase in the interlayer spacing of the modified Mxene nanosheets also blocks the conduction and dissipation of heat to a certain extent. However, when the amount of nanocellulose added is lower than the lower limit of the range defined by the present invention, the interlayer spacing of the modified Mxene nanosheets will be reduced, and the modified Mxene nanosheets will stack, thereby causing the surface temperature of the solar interface evaporation device to drop. When the amount of nanocellulose added is higher than the upper limit of the range defined by the present invention, the viscosity of the precursor mixture will be too large, affecting the dispersion uniformity of the photothermal conversion material and the Mxene nanosheets in the precursor mixture.
在一些可选的实例中,所述纳米纤维素溶液的质量分数为0.5~1.5wt%,例如可以是0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1.0wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%或1.5wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass fraction of the nanocellulose solution is 0.5~1.5wt%, for example, it can be 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1.0wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt% or 1.5wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、所述光热转换材料的质量以及所述改性Mxene纳米片的质量的比为1:(0.01~0.05):(0.005~0.01),例如可以是1:0.01:0.005、1:0.015:0.0055、1:0.02:0.006、1:0.025:0.0065、1:0.03:0.007、1:0.035:0.0075、1:0.04:0.008、1:0.045:0.0085、1:0.05:0.009、1:0.05:0.0095、1:0.05:0.01,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate in the precursor mixture, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets is 1:(0.01-0.05):(0.005-0.01), for example, 1:0.01:0.005, 1:0.015:0.0055, 1:0.02:0.0 06, 1: 0.025: 0.0065, 1: 0.03: 0.007, 1: 0.035: 0.0075, 1: 0.04: 0.008, 1: 0.045: 0.0085, 1: 0.05: 0.009, 1: 0.05: 0.0095, 1: 0.05: 0.01, but are not limited to the listed values, other values not listed within the numerical range are also applicable.
太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能随着改性Mxene纳米片添加量的增加呈先增大后减小的变化趋势,这是由于,改性Mxene纳米片具有优异的光热转换效率,加入改性MXene纳米片后可以显著增强太阳能界面蒸发器件的光吸收能力,同时,MXene纳米片表面过多的亲水官能团也进一步提高了气凝胶基体表面和孔道内壁的亲水性,促进了海水在其亲水表面快速移动传输,因此,随着Mxene纳米片添加量的提高,太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能均有显著提升。但当改性Mxene纳米片的添加量超过本发明限定的范围上限时,改性Mxene纳米片与海藻酸钠的物理交联形成了更加致密的网络结构,导致最终形成的气凝胶基体内的孔道孔径降低,影响了气凝胶基体内部的水分输送和水蒸气逸散,使得太阳能界面蒸发器件的吸水性能和蒸发性能下降;此外,当改性Mxene纳米片添加过量时,改性Mxene纳米片发生团聚现象,使得改性Mxene纳米片的片层间距随之降低,导致气凝胶基体对太阳光的吸收能力下降,气凝胶基体的导热性能也会随之增加,进而导致光热转换产生的热量被迅速传导并耗散,难以及时用于加热水分。The water absorption performance, evaporation performance and photothermal conversion performance of the solar interfacial evaporation device show a trend of first increasing and then decreasing with the increase of the amount of modified MXene nanosheets added. This is because the modified MXene nanosheets have excellent photothermal conversion efficiency. The addition of modified MXene nanosheets can significantly enhance the light absorption capacity of the solar interfacial evaporation device. At the same time, the excessive hydrophilic functional groups on the surface of the MXene nanosheets further improve the hydrophilicity of the aerogel matrix surface and the inner wall of the pores, and promote the rapid movement and transmission of seawater on its hydrophilic surface. Therefore, with the increase of the amount of MXene nanosheets added, the water absorption performance, evaporation performance and photothermal conversion performance of the solar interfacial evaporation device are significantly improved. However, when the amount of modified Mxene nanosheets added exceeds the upper limit of the range defined in the present invention, the physical crosslinking of the modified Mxene nanosheets and sodium alginate forms a denser network structure, resulting in a decrease in the pore size of the pores in the aerogel matrix finally formed, affecting the water transport and water vapor escape inside the aerogel matrix, and reducing the water absorption and evaporation performance of the solar interface evaporation device; in addition, when the modified Mxene nanosheets are added in excess, the modified Mxene nanosheets agglomerate, resulting in a decrease in the interlamellar spacing of the modified Mxene nanosheets, resulting in a decrease in the aerogel matrix's ability to absorb sunlight, and an increase in the thermal conductivity of the aerogel matrix, which in turn causes the heat generated by photothermal conversion to be rapidly conducted and dissipated, making it difficult to be used in time to heat water.
太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能随着光热转换材料添加量的增加呈先增大后减小的变化趋势,这是由于,光热转换材料在可见光和近红外辐射区域可以有效吸收太阳光并转化为热量,进而将海水蒸发为水蒸气,随着光热转换材料添加量的逐渐增大,太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能逐渐提高,当光热转换材料的添加量超过本发明限定的范围上限时,光热转换材料会发生团聚现象,进而影响了太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能。The water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device show a trend of first increasing and then decreasing with the increase of the amount of photothermal conversion material added. This is because the photothermal conversion material can effectively absorb sunlight in the visible light and near-infrared radiation regions and convert it into heat, thereby evaporating seawater into water vapor. As the amount of photothermal conversion material added gradually increases, the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device gradually improve. When the amount of photothermal conversion material added exceeds the upper limit of the range specified by the present invention, the photothermal conversion material will agglomerate, thereby affecting the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device.
在一些可选的实例中,所述前体混合液、光热转换材料和改性Mxene纳米片超声分散的超声功率为400~500W,例如可以是400W、410W、420W、430W、440W、450W、460W、470W、480W、490W或500W,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the ultrasonic power of the ultrasonic dispersion of the precursor mixture, the photothermal conversion material and the modified Mxene nanosheets is 400-500 W, for example, 400 W, 410 W, 420 W, 430 W, 440 W, 450 W, 460 W, 470 W, 480 W, 490 W or 500 W, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述前体混合液、光热转换材料和改性Mxene纳米片超声分散的超声时间为1~2h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the ultrasonic dispersion time of the precursor mixture, the photothermal conversion material and the modified Mxene nanosheets is 1 to 2 hours, for example, 1.0 hours, 1.1 hours, 1.2 hours, 1.3 hours, 1.4 hours, 1.5 hours, 1.6 hours, 1.7 hours, 1.8 hours, 1.9 hours or 2.0 hours, but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅴ)中,所述盐酸溶液的浓度为1~2mol/L,例如可以是1.0mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L或2.0mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (V), the concentration of the hydrochloric acid solution is 1-2 mol/L, for example, it can be 1.0 mol/L, 1.1 mol/L, 1.2 mol/L, 1.3 mol/L, 1.4 mol/L, 1.5 mol/L, 1.6 mol/L, 1.7 mol/L, 1.8 mol/L, 1.9 mol/L or 2.0 mol/L, but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述戊二醛酸溶液中的戊二醛的质量分数为2~3wt%,例如可以是2.0wt%、2.1wt%、2.2wt%、2.3wt%、2.4wt%、2.5wt%、2.6wt%、2.7wt%、2.8wt%、2.9wt%或3.0wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass fraction of glutaraldehyde in the glutaraldehyde acid solution is 2-3wt%, for example, 2.0wt%, 2.1wt%, 2.2wt%, 2.3wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.7wt%, 2.8wt%, 2.9wt% or 3.0wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述凝胶前体溶液中的季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与所述戊二醛酸溶液中的戊二醛的质量的比为1:(10~20),例如可以是1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19或1:20,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the ratio of the total mass of quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the gel precursor solution to the mass of glutaraldehyde in the glutaraldehyde acid solution is 1:(10-20), for example, it can be 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19 or 1:20, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,待所述戊二醛酸溶液全部滴加后混合搅拌0.5~1.5h以发生交联反应,例如可以是0.5h、0.6h、0.7h、0.8h、0.9h、1.0h、1.1h、1.2h、1.3h、1.4h或1.5h;随后静置3~5h以完成凝胶化,例如可以是3.0h、3.2h、3.4h、3.6h、3.8h、4.0h、4.2h、4.4h、4.6h、4.8h或5.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, after all the glutaraldehyde solution is added dropwise, the mixture is stirred for 0.5 to 1.5 hours to cause a cross-linking reaction, for example, 0.5 hours, 0.6 hours, 0.7 hours, 0.8 hours, 0.9 hours, 1.0 hours, 1.1 hours, 1.2 hours, 1.3 hours, 1.4 hours or 1.5 hours; and then the mixture is allowed to stand for 3 to 5 hours to complete gelation, for example, 3.0 hours, 3.2 hours, 3.4 hours, 3.6 hours, 3.8 hours, 4.0 hours, 4.2 hours, 4.4 hours, 4.6 hours, 4.8 hours or 5.0 hours, but the mixture is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述水凝胶中间体的冷冻温度为-20~-30℃,例如可以是-20℃、-21℃、-22℃、-23℃、-24℃、-25℃、-26℃、-27℃、-28℃、-29℃或-30℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the freezing temperature of the hydrogel intermediate is -20~-30°C, for example, it can be -20°C, -21°C, -22°C, -23°C, -24°C, -25°C, -26°C, -27°C, -28°C, -29°C or -30°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述水凝胶中间体的冷冻时间为3~5h,例如可以是3.0h、3.2h、3.4h、3.6h、3.8h、4.0h、4.2h、4.4h、4.6h、4.8h或5.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the freezing time of the hydrogel intermediate is 3 to 5 hours, for example, it can be 3.0 hours, 3.2 hours, 3.4 hours, 3.6 hours, 3.8 hours, 4.0 hours, 4.2 hours, 4.4 hours, 4.6 hours, 4.8 hours or 5.0 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述水凝胶中间体的解冻温度为30~40℃,例如可以是30℃、31℃、32℃、33℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃或40℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional embodiments, the thawing temperature of the hydrogel intermediate is 30-40°C, for example, it can be 30°C, 31°C, 32°C, 33°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C or 40°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述水凝胶中间体的解冻时间为3~5h,例如可以是3.0h、3.2h、3.4h、3.6h、3.8h、4.0h、4.2h、4.4h、4.6h、4.8h或5.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the thawing time of the hydrogel intermediate is 3 to 5 hours, for example, it can be 3.0 hours, 3.2 hours, 3.4 hours, 3.6 hours, 3.8 hours, 4.0 hours, 4.2 hours, 4.4 hours, 4.6 hours, 4.8 hours or 5.0 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅵ)中,所述苯胺单体溶液中的苯胺单体的浓度为1.5~2.5g/L,例如可以是1.5g/L、1.6g/L、1.7g/L、1.8g/L、1.9g/L、2.0g/L、2.1g/L、2.2g/L、2.3g/L、2.4g/L或2.5g/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (VI), the concentration of the aniline monomer in the aniline monomer solution is 1.5-2.5 g/L, for example, it can be 1.5 g/L, 1.6 g/L, 1.7 g/L, 1.8 g/L, 1.9 g/L, 2.0 g/L, 2.1 g/L, 2.2 g/L, 2.3 g/L, 2.4 g/L or 2.5 g/L, but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在短链聚苯胺纳米纤维原位生长过程中,苯胺单体溶液中的苯胺单体的浓度会对短链聚苯胺的纳米形貌产生显著影响,当苯胺单体溶液中的苯胺单体的浓度低于1.5g/L时,苯胺单体的浓度过低,不足以引发接枝过程,只形成了颗粒状的团簇物,无法形成短链聚苯胺纳米纤维。当苯胺单体溶液中的苯胺单体的浓度在1.5~2.5g/L范围内时,改性MXene纳米片的表面生长出的短链聚苯胺纳米纤维较为规整且数量密度较大。当苯胺单体溶液中的苯胺单体的浓度超过2.5g/L时,改性MXene纳米片的表面无法形成短链聚苯胺纳米纤维,这是由于,苯胺单体的浓度过高,导致苯胺单体在溶液中发生成核接枝生长,使得聚苯胺以游离态的形式在溶液中大量生成并沉降,而无法直接在改性MXene纳米片的表面接枝生长。During the in-situ growth of short-chain polyaniline nanofibers, the concentration of aniline monomer in the aniline monomer solution will have a significant effect on the nanomorphology of short-chain polyaniline. When the concentration of aniline monomer in the aniline monomer solution is lower than 1.5 g/L, the concentration of aniline monomer is too low to trigger the grafting process, and only granular clusters are formed, and short-chain polyaniline nanofibers cannot be formed. When the concentration of aniline monomer in the aniline monomer solution is in the range of 1.5~2.5 g/L, the short-chain polyaniline nanofibers grown on the surface of the modified MXene nanosheets are relatively regular and have a large number density. When the concentration of aniline monomer in the aniline monomer solution exceeds 2.5 g/L, short-chain polyaniline nanofibers cannot be formed on the surface of the modified MXene nanosheets. This is because the concentration of aniline monomer is too high, resulting in nucleation and grafting growth of aniline monomer in the solution, so that polyaniline is generated and precipitated in the solution in a large amount in the form of free state, and cannot be directly grafted and grown on the surface of the modified MXene nanosheets.
在一些可选的实例中,所述苯胺单体溶液中的苯胺单体与所述过硫酸铵溶液中的过硫酸铵的质量比为1:(2~3),例如可以是1:2.0、1:2.1、1:2.2、1:2.3、1:2.4、1:2.5、1:2.6、1:2.7、1:2.8、1:2.9或1:3.0,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the mass ratio of the aniline monomer in the aniline monomer solution to the ammonium persulfate in the ammonium persulfate solution is 1:(2-3), for example, 1:2.0, 1:2.1, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1:2.7, 1:2.8, 1:2.9 or 1:3.0, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,待所述过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌0.5~1.5h,例如可以是0.5h、0.6h、0.7h、0.8h、0.9h、1.0h、1.1h、1.2h、1.3h、1.4h或1.5h;随后静置2~3h以完成聚合反应生成聚苯胺,例如可以是2.0h、2.1h、2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h或3.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, after all the ammonium persulfate solution is dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 0.5 to 1.5 hours, for example, it can be 0.5 hours, 0.6 hours, 0.7 hours, 0.8 hours, 0.9 hours, 1.0 hours, 1.1 hours, 1.2 hours, 1.3 hours, 1.4 hours or 1.5 hours; and then allowed to stand for 2 to 3 hours to complete the polymerization reaction to generate polyaniline, for example, it can be 2.0 hours, 2.1 hours, 2.2 hours, 2.3 hours, 2.4 hours, 2.5 hours, 2.6 hours, 2.7 hours, 2.8 hours, 2.9 hours or 3.0 hours, but it is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述冷板的温度为-50~-60℃,例如可以是-50℃、-51℃、-52℃、-53℃、-54℃、-55℃、-56℃、-57℃、-58℃、-59℃或-60℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional instances, the temperature of the cold plate is -50~-60°C, for example, it can be -50°C, -51°C, -52°C, -53°C, -54°C, -55°C, -56°C, -57°C, -58°C, -59°C or -60°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述改性复合水凝胶在冷板上放置30~50min,例如可以是30min、32min、34min、36min、38min、40min、42min、44min、46min、48min或50min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the modified composite hydrogel is placed on a cold plate for 30 to 50 minutes, for example, 30 minutes, 32 minutes, 34 minutes, 36 minutes, 38 minutes, 40 minutes, 42 minutes, 44 minutes, 46 minutes, 48 minutes or 50 minutes, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述改性复合水凝胶在冷冻干燥机内的冷冻干燥的温度为-70~-80℃,例如可以是-70℃、-71℃、-72℃、-73℃、-74℃、-75℃、-76℃、-77℃、-78℃、-79℃或-80℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the freeze-drying temperature of the modified composite hydrogel in the freeze dryer is -70~-80°C, for example, it can be -70°C, -71°C, -72°C, -73°C, -74°C, -75°C, -76°C, -77°C, -78°C, -79°C or -80°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述改性复合水凝胶在冷冻干燥机内的冷冻干燥的时间为12~24h,例如可以是12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the freeze-drying time of the modified composite hydrogel in the freeze dryer is 12 to 24 hours, for example, it can be 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours or 24 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
作为本发明一种优选的技术方案,步骤(Ⅶ)中,所述盐酸溶液的浓度为0.5~1.5mol/L,例如可以是0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1.0mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L或1.5mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, in step (VII), the concentration of the hydrochloric acid solution is 0.5-1.5 mol/L, for example, it can be 0.5 mol/L, 0.6 mol/L, 0.7 mol/L, 0.8 mol/L, 0.9 mol/L, 1.0 mol/L, 1.1 mol/L, 1.2 mol/L, 1.3 mol/L, 1.4 mol/L or 1.5 mol/L, but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
在一些可选的实例中,所述吡咯单体与盐酸溶液的体积比为1:(10~20),例如可以是1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19或1:20,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:(10-20), for example, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19 or 1:20, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
本发明特别限定了吡咯单体与盐酸溶液的体积比为1:(10~20),吡咯单体与盐酸溶液的体积比会直接影响聚吡咯的生成量,聚吡咯的生成量过低或过高均会影响太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能,聚吡咯的生成量过低,亲水性和光热转换能力不足,太阳能界面蒸发器件难以吸收水分且内部的水分难以蒸发,导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能下降;聚吡咯的生成量过高,会堵塞太阳能界面蒸发器件内部的部分孔道,影响水分的传输和水蒸气的逸散,导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能下降。只有当吡咯单体与盐酸溶液的体积比在1:(10~20)范围内时,聚吡咯的生成量适中,既能保证太阳能界面蒸发器件拥有足够的光热转换性能,也不会堵塞太阳能界面蒸发器件内部的孔道结构。The present invention specifically limits the volume ratio of pyrrole monomer to hydrochloric acid solution to 1: (10-20), and the volume ratio of pyrrole monomer to hydrochloric acid solution will directly affect the amount of polypyrrole generated. Too low or too high a polypyrrole generation will affect the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. If the polypyrrole generation is too low, the hydrophilicity and photothermal conversion capacity are insufficient, and the solar interface evaporation device is difficult to absorb water and the internal water is difficult to evaporate, resulting in a decrease in the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device; if the polypyrrole generation is too high, it will block part of the pores inside the solar interface evaporation device, affect the transmission of water and the escape of water vapor, resulting in a decrease in the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. Only when the volume ratio of pyrrole monomer to hydrochloric acid solution is within the range of 1: (10-20), the amount of polypyrrole generated is moderate, which can ensure that the solar interface evaporation device has sufficient photothermal conversion performance and will not block the pore structure inside the solar interface evaporation device.
在一些可选的实例中,所述气凝胶基体浸泡于所述吡咯单体溶液时的磁力搅拌的转速为700~800r/min,例如可以是700r/min、710r/min、720r/min、730r/min、740r/min、750r/min、760r/min、770r/min、780r/min、790r/min或800r/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the speed of magnetic stirring when the aerogel matrix is immersed in the pyrrole monomer solution is 700-800 r/min, for example, it can be 700 r/min, 710 r/min, 720 r/min, 730 r/min, 740 r/min, 750 r/min, 760 r/min, 770 r/min, 780 r/min, 790 r/min or 800 r/min, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述气凝胶基体浸泡于所述吡咯单体溶液时的磁力搅拌的时间为1~2h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the magnetic stirring time when the aerogel matrix is immersed in the pyrrole monomer solution is 1 to 2 hours, for example, it can be 1.0h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2.0h, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述吡咯单体溶液中的吡咯单体与三氯化铁溶液中的三氯化铁的摩尔比为1:(1.5~2.5),例如可以是1:1.5、1:1.6、1:1.7、1:1.8、1:1.9、1:2.0、1:2.1、1:2.2、1:2.3、1:2.4或1:2.5,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the molar ratio of the pyrrole monomer in the pyrrole monomer solution to the ferric chloride in the ferric chloride solution is 1:(1.5~2.5), for example, it can be 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2.0, 1:2.1, 1:2.2, 1:2.3, 1:2.4 or 1:2.5, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述三氯化铁溶液中的三氯化铁的浓度为30~40g/L,例如可以是30g/L、31g/L、32g/L、33g/L、34g/L、34g/L、36g/L、37g/L、38g/L、39g/L或40g/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the concentration of ferric chloride in the ferric chloride solution is 30-40 g/L, for example, 30 g/L, 31 g/L, 32 g/L, 33 g/L, 34 g/L, 34 g/L, 36 g/L, 37 g/L, 38 g/L, 39 g/L or 40 g/L, but is not limited to the listed values, and other unlisted values within the numerical range are equally applicable.
在一些可选的实例中,所述吡咯单体溶液与三氯化铁溶液的冰水浴温度为0~10℃,例如可以是0℃、1℃、2℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃或10℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the ice water bath temperature of the pyrrole monomer solution and the ferric chloride solution is 0-10°C, for example, it can be 0°C, 1°C, 2°C, 3°C, 4°C, 5°C, 6°C, 7°C, 8°C, 9°C or 10°C, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
本发明选择在低温环境中进行吡咯单体的聚合反应,这是由于吡咯单体在高温环境中会快速聚合生成聚吡咯,并且大部分的聚吡咯并不会负载于气凝胶基体上。此外,在气凝胶基体上聚合生成的聚吡咯共轭链存在着很多缺陷,导致光热转换性能较差。在低温条件下的聚合反应体系的反应速率相对较慢,吡咯单体能够在气凝胶基体表面进行充分聚合,并且能够降低聚吡咯长分子链上的缺陷。The present invention selects to carry out the polymerization reaction of pyrrole monomer in a low temperature environment, because pyrrole monomer will quickly polymerize to form polypyrrole in a high temperature environment, and most of the polypyrrole will not be loaded on the aerogel matrix. In addition, there are many defects in the polypyrrole conjugated chain generated by polymerization on the aerogel matrix, resulting in poor light-to-heat conversion performance. The reaction rate of the polymerization reaction system under low temperature conditions is relatively slow, and the pyrrole monomer can be fully polymerized on the surface of the aerogel matrix, and the defects on the long molecular chain of polypyrrole can be reduced.
在一些可选的实例中,所述吡咯单体溶液与三氯化铁溶液的磁力搅拌的转速为300~400r/min,例如可以是300r/min、310r/min、320r/min、330r/min、340r/min、350r/min、360r/min、370r/min、380r/min、390r/min或400r/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the rotation speed of the magnetic stirring of the pyrrole monomer solution and the ferric chloride solution is 300-400 r/min, for example, it can be 300 r/min, 310 r/min, 320 r/min, 330 r/min, 340 r/min, 350 r/min, 360 r/min, 370 r/min, 380 r/min, 390 r/min or 400 r/min, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述吡咯单体溶液与三氯化铁溶液的磁力搅拌的时间为1~2h,例如可以是1.0h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the magnetic stirring time of the pyrrole monomer solution and the ferric chloride solution is 1 to 2 hours, for example, 1.0 h, 1.1 h, 1.2 h, 1.3 h, 1.4 h, 1.5 h, 1.6 h, 1.7 h, 1.8 h, 1.9 h or 2.0 h, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
在一些可选的实例中,所述液氮冷冻干燥的时间为10~20min,例如可以是10min、11min、12min、13min、14min、15min、16min、17min、18min、19min或20min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。In some optional examples, the liquid nitrogen freeze-drying time is 10 to 20 minutes, for example, it can be 10 minutes, 11 minutes, 12 minutes, 13 minutes, 14 minutes, 15 minutes, 16 minutes, 17 minutes, 18 minutes, 19 minutes or 20 minutes, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
第二方面,本发明提供了一种采用第一方面所述的制备方法制备得到的纳米纤维素基太阳能界面蒸发器件。In a second aspect, the present invention provides a nanocellulose-based solar interface evaporation device prepared by the preparation method described in the first aspect.
第三方面,本发明提供了一种第二方面所述的纳米纤维素基太阳能界面蒸发器件的用途,所述纳米纤维素基太阳能界面蒸发器件用于海水淡化。In a third aspect, the present invention provides a use of the nanocellulose-based solar interface evaporation device described in the second aspect, wherein the nanocellulose-based solar interface evaporation device is used for seawater desalination.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the present invention has the following beneficial effects:
本发明以季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠和纳米纤维素溶液作为凝胶前体溶液,并在凝胶前体溶液中加入由氧化石墨烯和硫化铜组成的光热转换材料以及经聚乙烯亚胺和聚多巴胺改性的改性Mxene纳米片,在戊二醛交联剂的作用下,通过氢键交联和冻融循环作用构建了具有良好骨架结构的复合水凝胶;随后利用化学原位聚合,以过硫酸铵为氧化剂,引发了苯胺单体在复合水凝胶内部进行原位生长生成聚苯胺纳米纤维,通过定向冷冻干燥,得到了具有垂直排列的大孔通道的气凝胶基体,最后在气凝胶基体表面进行吡咯原位聚合反应生成聚吡咯,聚吡咯作为光吸收位点显著提高了太阳能界面蒸发器件的光捕获能力,有助于实现太阳能界面蒸发器件在全光谱范围内的宽吸收,提高了太阳能界面蒸发器件对太阳光的利用率。The invention uses quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and nanocellulose solution as gel precursor solution, adds photothermal conversion material composed of graphene oxide and copper sulfide and modified Mxene nanosheets modified by polyethyleneimine and polydopamine into the gel precursor solution, and constructs a composite hydrogel with a good skeleton structure through hydrogen bond crosslinking and freeze-thaw cycle under the action of glutaraldehyde crosslinking agent; then, chemical in-situ polymerization is used, and ammonium persulfate is used as an oxidant to induce aniline monomer to grow in-situ inside the composite hydrogel to generate polyaniline nanofibers; an aerogel matrix with vertically arranged macroporous channels is obtained through directional freeze drying; finally, pyrrole in-situ polymerization reaction is performed on the surface of the aerogel matrix to generate polypyrrole; the polypyrrole, as a light absorption site, significantly improves the light capture ability of a solar interface evaporation device, helps to achieve wide absorption of the solar interface evaporation device in the full spectrum range, and improves the utilization rate of sunlight by the solar interface evaporation device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例1制备得到的光热转换材料在低放大倍数下的透射电镜图;FIG1 is a transmission electron microscope image of the photothermal conversion material prepared in Example 1 of the present invention at a low magnification;
图2为本发明实施例1制备得到的光热转换材料在高放大倍数下的透射电镜图;FIG2 is a transmission electron microscope image of the photothermal conversion material prepared in Example 1 of the present invention at a high magnification;
图3为氧化石墨烯、还原氧化石墨烯以及本发明实施例1制备得到的光热转换材料的红外光谱图;FIG3 is an infrared spectrum of graphene oxide, reduced graphene oxide and the photothermal conversion material prepared in Example 1 of the present invention;
图4为本发明实施例1制备得到的MXene纳米片的扫描电镜图;FIG4 is a scanning electron microscope image of MXene nanosheets prepared in Example 1 of the present invention;
图5为本发明实施例1制备得到的MXene纳米片的透射电镜图;FIG5 is a transmission electron microscope image of MXene nanosheets prepared in Example 1 of the present invention;
图6为本发明实施例1制备得到的气凝胶基体的内部结构的扫描电镜图;FIG6 is a scanning electron microscope image of the internal structure of the aerogel matrix prepared in Example 1 of the present invention;
图7为本发明实施例1制备得到的太阳能界面蒸发器件在低放大倍数下的扫描电镜图;FIG7 is a scanning electron microscope image of the solar interface evaporation device prepared in Example 1 of the present invention at a low magnification;
图8为本发明实施例1制备得到的太阳能界面蒸发器件在高放大倍数下的扫描电镜图;FIG8 is a scanning electron microscope image of the solar interface evaporation device prepared in Example 1 of the present invention at a high magnification;
图9为海水和本发明实施例1制备得到的太阳能界面蒸发器件在1kW/m光照密度下的平面温度分布图;FIG9 is a planar temperature distribution diagram of seawater and the solar interface evaporation device prepared in Example 1 of the present invention under a light intensity of 1 kW/m;
图10为本发明实施例1制备得到的太阳能界面蒸发器件的表面水接触角图;FIG10 is a diagram showing the surface water contact angle of the solar interface evaporation device prepared in Example 1 of the present invention;
图11为本发明实施例1-15制备得到的太阳能界面蒸发器件在蒸发性能测试时采用的海水蒸发实验装置的结构示意图。FIG. 11 is a schematic diagram of the structure of a seawater evaporation experimental device used in the evaporation performance test of the solar interface evaporation device prepared in Examples 1-15 of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合具体实施例及其附图,对本发明技术方案进行详细说明。在此记载的实施例为本发明的特定的具体实施方式,用于说明本发明的构思;这些说明均是解释性和示例性的,不应理解为对本发明实施方式及本发明保护范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书及其说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案。The technical solution of the present invention is described in detail below in conjunction with specific embodiments and their accompanying drawings. The embodiments recorded herein are specific embodiments of the present invention, which are used to illustrate the concept of the present invention; these descriptions are explanatory and exemplary and should not be construed as limitations on the embodiments of the present invention and the scope of protection of the present invention. In addition to the embodiments recorded herein, those skilled in the art can also adopt other obvious technical solutions based on the contents disclosed in the claims of this application and its specification, including technical solutions that adopt any obvious replacements and modifications to the embodiments recorded herein.
实施例1Example 1
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法具体包括如下步骤:This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, and the preparation method specifically comprises the following steps:
(1)将氧化石墨烯分散于去离子水中,经超声分散后得到质量分数为10wt%的氧化石墨烯分散液,向氧化石墨烯分散液中加入L-半胱氨酸,氧化石墨烯与L-半胱氨酸的质量比为1:15,混合搅拌直至L-半胱氨酸完全溶解,得到反应溶液;向反应溶液中加入浓度为1mol/L的氯化铜溶液,L-半胱氨酸与氯化铜的质量比为3:1,混合均匀后得到前驱体溶液,将前驱体溶液转移至反应釜中在140℃下加热15h,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由氧化石墨烯和硫化铜组成的光热转换材料;(1) Dispersing graphene oxide in deionized water, and obtaining a graphene oxide dispersion with a mass fraction of 10 wt% after ultrasonic dispersion, adding L-cysteine to the graphene oxide dispersion, the mass ratio of graphene oxide to L-cysteine being 1:15, and mixing and stirring until L-cysteine is completely dissolved to obtain a reaction solution; adding a copper chloride solution with a concentration of 1 mol/L to the reaction solution, the mass ratio of L-cysteine to copper chloride being 3:1, and mixing uniformly to obtain a precursor solution, transferring the precursor solution to a reactor and heating it at 140° C. for 15 h, so that L-cysteine reacts with copper chloride to generate copper sulfide, and at the same time, graphene oxide reacts to generate reduced graphene oxide, and after the reaction is completed, filtering, washing and drying the reaction product to obtain a photothermal conversion material composed of graphene oxide and copper sulfide;
(2)将氟化锂加入浓度为3mol/L的盐酸溶液中,氟化锂与盐酸溶液的混合比例为1g:25mL,混合均匀后得到刻蚀溶液,向刻蚀溶液中加入钛碳化铝粉末,刻蚀溶液与钛碳化铝粉末的混合比例1L:30g,经磁力搅拌和30℃水浴加热24h后得到悬浮液,采用去离子水对悬浮液依次进行洗涤和离心,重复洗涤和离心操作三次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;(2) Add lithium fluoride to a hydrochloric acid solution with a concentration of 3 mol/L, the mixing ratio of lithium fluoride to hydrochloric acid solution is 1 g:25 mL, and the etching solution is obtained after being evenly mixed. Titanium aluminum carbide powder is added to the etching solution, and the mixing ratio of the etching solution to titanium aluminum carbide powder is 1 L:30 g. After magnetic stirring and heating in a water bath at 30°C for 24 hours, a suspension is obtained. The suspension is washed and centrifuged with deionized water in sequence. After repeating the washing and centrifugation operations three times, the precipitate is dispersed in deionized water, and the supernatant is dried after standing to obtain Mxene nanosheets;
将Mxene纳米片分散于去离子水中形成浓度为3g/L的Mxene分散液,将Mxene分散液转移至摇床中,向Mxene分散液中加入聚乙烯亚胺,Mxene纳米片与聚乙烯亚胺的质量比为1:0.6,在摇床中加热振荡1h以进行氨基化改性,加热温度为50℃,摇床转速为150r/min;随后,在室温下向Mxene分散液中加入浓度为0.5g/L的多巴胺溶液,Mxene分散液与多巴胺溶液的体积比为10:1,其中,多巴胺溶液中的Tris-HCl缓冲溶液的pH值为8,在摇床中混合振荡12h使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;The Mxene nanosheets were dispersed in deionized water to form a Mxene dispersion with a concentration of 3 g/L, and the Mxene dispersion was transferred to a shaker, polyethyleneimine was added to the Mxene dispersion, the mass ratio of the Mxene nanosheets to the polyethyleneimine was 1:0.6, and the Mxene dispersion was heated and shaken in a shaker for 1 hour for amino modification, the heating temperature was 50°C, and the shaking speed was 150 r/min; then, a dopamine solution with a concentration of 0.5 g/L was added to the Mxene dispersion at room temperature, the volume ratio of the Mxene dispersion to the dopamine solution was 10:1, wherein the pH value of the Tris-HCl buffer solution in the dopamine solution was 8, and the dopamine was mixed and shaken in a shaker for 12 hours to allow the dopamine to undergo in-situ oxidation self-polymerization to form polydopamine, and finally the modified Mxene nanosheets were obtained after filtration, washing and drying;
(3)将壳聚糖分散于质量分数为2wt%的醋酸水溶液中,壳聚糖与醋酸水溶液的混合比例为1g:60mL,进行混合搅拌并在50℃下加热3h直至壳聚糖完全溶解,得到壳聚糖溶液;向壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:1.6,进行混合搅拌并在75℃下加热12h以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;(3) Dispersing chitosan in an acetic acid aqueous solution with a mass fraction of 2 wt % in a mixing ratio of chitosan to the acetic acid aqueous solution of 1 g:60 mL, stirring and mixing, and heating at 50 ° C for 3 h until the chitosan is completely dissolved to obtain a chitosan solution; dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution in a mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride of 1:1.6, stirring and mixing, and heating at 75 ° C for 12 h to quaternize the chitosan, and then filtering, washing and drying to obtain quaternized chitosan;
将聚乙烯醇、丙三醇和去离子水按照1:2.5:1.8的质量比混合均匀,得到反应前体溶液,对反应前体溶液进行加热回流反应,反应温度为100℃,反应时间为2h,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;Polyvinyl alcohol, glycerol and deionized water were mixed uniformly in a mass ratio of 1:2.5:1.8 to obtain a reaction precursor solution, and the reaction precursor solution was subjected to a reflux reaction at a reaction temperature of 100° C. for a reaction time of 2 h. After the reaction was completed, the modified polyvinyl alcohol was obtained by filtering, washing and drying;
将海藻酸钠溶于去离子水中得到质量分数为3wt%的海藻酸钠溶液,向海藻酸钠溶液中加入高碘酸钠,海藻酸钠与高碘酸钠的质量比为2:1,在室温和避光条件下搅拌3h以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;Dissolving sodium alginate in deionized water to obtain a sodium alginate solution with a mass fraction of 3 wt%, adding sodium periodate to the sodium alginate solution, with a mass ratio of sodium alginate to sodium periodate of 2:1, stirring at room temperature and in a dark environment for 3 h to cause an oxidation reaction, and filtering, washing and drying after the reaction to obtain oxidized sodium alginate;
(4)将步骤(3)得到的季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠加入质量分数为0.5wt%的纳米纤维素溶液中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比为1:3:0.5:0.6,混合均匀后得到前体混合液,向前体混合液中加入步骤(1)得到的光热转换材料以及步骤(2)得到的改性Mxene纳米片,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比为1:0.01:0.005,在400W的超声功率下超声分散2h,得到凝胶前体溶液;(4) adding the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate obtained in step (3) to a nanocellulose solution having a mass fraction of 0.5 wt %, wherein the mass ratio of the quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:3:0.5:0.6, and mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (1) and the modified Mxene nanosheets obtained in step (2) to the precursor mixed solution, wherein the total mass of the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixed solution, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are in a ratio of 1:0.01:0.005, and ultrasonically dispersing the mixture at an ultrasonic power of 400 W for 2 h to obtain a gel precursor solution;
(5)将戊二醛与浓度为1mol/L的盐酸溶液混合均匀,得到戊二醛酸溶液,戊二醛酸溶液中的戊二醛的质量分数为2wt%;将步骤(4)得到的凝胶前体溶液倒入模具中,向凝胶前体溶液中滴入戊二醛酸溶液,季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与戊二醛酸溶液中的戊二醛的质量的比为1:20,待戊二醛酸溶液全部滴加后混合搅拌0.5h以发生交联反应,随后静置3h以完成凝胶化,得到水凝胶中间体;将水凝胶中间体在-20℃下冷冻5h,随后取出,置于30℃下解冻5h,重复进行冷冻和解冻过程三次,得到复合水凝胶;(5) Glutaraldehyde is mixed evenly with a hydrochloric acid solution having a concentration of 1 mol/L to obtain a glutaraldehyde solution, wherein the mass fraction of glutaraldehyde in the glutaraldehyde solution is 2 wt %; the gel precursor solution obtained in step (4) is poured into a mold, and the glutaraldehyde solution is dripped into the gel precursor solution, wherein the ratio of the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate to the mass of the glutaraldehyde in the glutaraldehyde solution is 1:20; after all the glutaraldehyde solution is dripped, the mixture is stirred for 0.5 h to cause a cross-linking reaction, and then allowed to stand for 3 h to complete gelation, thereby obtaining a hydrogel intermediate; the hydrogel intermediate is frozen at -20°C for 5 h, then taken out, and thawed at 30°C for 5 h, and the freezing and thawing process is repeated three times to obtain a composite hydrogel;
(6)将步骤(5)得到的复合水凝胶浸泡于浓度为1.5g/L的苯胺单体溶液中,向苯胺单体溶液中滴加过硫酸铵溶液,苯胺单体与过硫酸铵的质量比为1:2,待过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌0.5h,随后静置2h以完成聚合反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将改性复合水凝胶置于-50℃的冷板上进行定向冷冻,改性复合水凝胶的一侧面与冷板的表面接触以在改性复合水凝胶的内部的竖直方向上形成温度梯度,在冷板上放置50min后将改性复合水凝胶取下置于冷冻干燥机中,在-70℃下进行冷冻干燥24h,以在改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(6) Soaking the composite hydrogel obtained in step (5) in an aniline monomer solution with a concentration of 1.5 g/L, and dropping an ammonium persulfate solution into the aniline monomer solution, wherein the mass ratio of the aniline monomer to the ammonium persulfate is 1:2. After all the ammonium persulfate solution has been dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 0.5 h, and then allowed to stand for 2 h to complete the polymerization reaction to generate polyaniline. After the reaction is completed, the mixed solution is filtered, washed, and dried in sequence to obtain a modified composite hydrogel. The modified composite hydrogel is placed on a cold plate at -50°C for directional freezing, and one side of the modified composite hydrogel is in contact with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel. After being placed on the cold plate for 50 min, the modified composite hydrogel is removed and placed in a freeze dryer, and freeze-dried at -70°C for 24 h to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix.
(7)将吡咯单体溶解于浓度为0.5mol/L的盐酸溶液中,吡咯单体与盐酸溶液的体积比为1:20,混合均匀后得到吡咯单体溶液,将步骤(6)得到的气凝胶基体浸泡于吡咯单体溶液中并以700r/min的转速进行磁力搅拌2h,使得吡咯单体进入气凝胶基体的孔道内部;(7) dissolving the pyrrole monomer in a 0.5 mol/L hydrochloric acid solution, wherein the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:20, and mixing them evenly to obtain a pyrrole monomer solution. The aerogel matrix obtained in step (6) is immersed in the pyrrole monomer solution and magnetically stirred at a speed of 700 r/min for 2 h, so that the pyrrole monomer enters the pores of the aerogel matrix.
随后,向吡咯单体溶液中加入浓度为30g/L的三氯化铁溶液,吡咯单体与三氯化铁的摩尔比为1:2.5,在0℃的冰水浴环境下,以300r/min的转速进行磁力搅拌2h以发生反应,使得吡咯单体在气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后依次经过滤、洗涤和液氮冷冻干燥10min后得到所述纳米纤维素基太阳能界面蒸发器件。Subsequently, a 30 g/L ferric chloride solution was added to the pyrrole monomer solution, the molar ratio of the pyrrole monomer to the ferric chloride was 1:2.5, and magnetic stirring was performed at a speed of 300 r/min for 2 hours in an ice water bath environment at 0°C to react, so that the pyrrole monomer underwent in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole. After the reaction was completed, the nanocellulose-based solar interface evaporation device was obtained after filtration, washing and liquid nitrogen freeze-drying for 10 minutes.
图1和图2分别为本实施例制备得到的光热转换材料在不同放大倍数下的透射电镜图,由图可以看出,还原氧化石墨烯的片层上均匀负载了大量的纳米硫化铜颗粒,纳米硫化铜颗粒的直径集中分布在50nm左右。FIG1 and FIG2 are transmission electron microscope images of the photothermal conversion material prepared in this embodiment at different magnifications, respectively. It can be seen from the figures that a large number of nano copper sulfide particles are evenly loaded on the reduced graphene oxide sheets, and the diameter of the nano copper sulfide particles is concentrated around 50 nm.
图3为氧化石墨烯、还原氧化石墨烯以及本实施例制备得到的光热转换材料的红外光谱图,由图中可以看出,在氧化石墨烯的红外光谱曲线中,3417cm-1处为羟基(-OH)的吸收峰,1598cm-1处为苯环结构C=C的吸收峰,1396cm-1处为羧基(C=O)的吸收峰。在还原氧化石墨烯的红外光谱曲线中,相应的吸收峰的强度较弱。在光热转换材料的红外光谱曲线中含有相应的还原氧化石墨烯的吸收峰和硫化铜的振动峰,表明硫化铜成功负载到还原氧化石墨烯的片层上。FIG3 is an infrared spectrum of graphene oxide, reduced graphene oxide, and the photothermal conversion material prepared in this embodiment. It can be seen from the figure that in the infrared spectrum curve of graphene oxide, 3417 cm -1 is the absorption peak of hydroxyl (-OH), 1598 cm -1 is the absorption peak of benzene ring structure C=C, and 1396 cm -1 is the absorption peak of carboxyl (C=O). In the infrared spectrum curve of reduced graphene oxide, the intensity of the corresponding absorption peak is weak. The infrared spectrum curve of the photothermal conversion material contains the corresponding absorption peak of reduced graphene oxide and the vibration peak of copper sulfide, indicating that copper sulfide is successfully loaded on the sheet of reduced graphene oxide.
图4和图5分别为本实施例制备得到的MXene纳米片的扫描电镜图和透射电镜图,由图中可以看出,经过氟化锂/盐酸体系蚀刻的钛碳化铝粉末表面出现了薄层透明片状结构。FIG4 and FIG5 are scanning electron microscope images and transmission electron microscope images of the MXene nanosheets prepared in this example, respectively. It can be seen from the figures that a thin layer of transparent flaky structure appears on the surface of the titanium aluminum carbide powder etched by the lithium fluoride/hydrochloric acid system.
图6为本实施例制备得到的气凝胶基体的内部结构的扫描电镜图,由图中可以看出,气凝胶基体内部存在大量的2μm左右的微孔,其孔道内壁上可以观察到大量均匀分布的粗糙凸起,此为附着于气凝胶孔道内壁的光热转换材料和改性MXene纳米片。FIG6 is a scanning electron microscope image of the internal structure of the aerogel matrix prepared in this embodiment. It can be seen from the figure that there are a large number of micropores of about 2 μm inside the aerogel matrix, and a large number of evenly distributed rough protrusions can be observed on the inner wall of the pores. These are the photothermal conversion materials and modified MXene nanosheets attached to the inner wall of the aerogel pores.
图7为本实施例制备得到的太阳能界面蒸发器件在低放大倍数下的扫描电镜图,由图中可以看出,由于在制备过程中使用了定向冷冻干燥,冰晶由下至上的生长排列,太阳能界面蒸发器件的内部均呈现平行排列的孔隙结构,同时,在相邻的孔隙结构之间产生了一些“树枝状”的层间交联结构,这是由于纳米纤维素的加入提高了凝胶前体溶液的粘度,和壳聚糖、聚乙烯醇以及海藻酸钠形成了稳定的交联网络,克服冰晶升华过程中的毛细管力和冰晶发育过程中的膨胀力,从而在相邻的孔隙结构间形成“亚结构”,有助于提高太阳能界面蒸发器件整体结构的稳定性。FIG7 is a scanning electron microscope image of the solar interface evaporation device prepared in this embodiment at a low magnification. It can be seen from the figure that due to the use of directional freeze-drying in the preparation process, the ice crystals grow and arrange from bottom to top, and the interior of the solar interface evaporation device presents a parallel arranged pore structure. At the same time, some "branch-like" interlayer cross-linked structures are generated between adjacent pore structures. This is because the addition of nanocellulose increases the viscosity of the gel precursor solution and forms a stable cross-linked network with chitosan, polyvinyl alcohol and sodium alginate, overcoming the capillary force in the sublimation process of ice crystals and the expansion force in the development process of ice crystals, thereby forming a "substructure" between adjacent pore structures, which helps to improve the stability of the overall structure of the solar interface evaporation device.
图8为本实施例制备得到的太阳能界面蒸发器件在高放大倍数下的扫描电镜图,由图中可以看出,聚吡咯颗粒均匀附着在改性MXene纳米片的褶皱片层结构内。FIG8 is a scanning electron microscope image of the solar interface evaporation device prepared in this embodiment at a high magnification. It can be seen from the image that the polypyrrole particles are evenly attached to the wrinkled sheet structure of the modified MXene nanosheet.
图9为海水和本实施例制备得到的太阳能界面蒸发器件在1kW/m光照密度下的平面温度分布图,由图中可以看出,在无光照条件下(0min),海水和太阳能界面蒸发器件的表面温度均较低,当给与初始光照后,二者的表面温度均稳步上升。光照30min后,海水和太阳能界面蒸发器件的表面温度趋于稳定,通过红外图像显示,光照30min后,海水的表面温度上升了9.6℃,而太阳能界面蒸发器件的表面温度则上升了24.3℃,说明本发明制备得到的太阳能界面蒸发器件具有良好的光热转换特性,并能有效利用局域热效应加热其内部吸收的海水。Figure 9 is a planar temperature distribution diagram of seawater and the solar interface evaporation device prepared in this embodiment under a light density of 1kW/m. It can be seen from the figure that under no light conditions (0min), the surface temperatures of seawater and the solar interface evaporation device are both low. After the initial light is given, the surface temperatures of both rise steadily. After 30 minutes of light exposure, the surface temperatures of seawater and the solar interface evaporation device tend to be stable. The infrared image shows that after 30 minutes of light exposure, the surface temperature of seawater rises by 9.6°C, while the surface temperature of the solar interface evaporation device rises by 24.3°C, indicating that the solar interface evaporation device prepared by the present invention has good light-heat conversion characteristics and can effectively use the local thermal effect to heat the seawater absorbed inside it.
图10为本实施例制备得到的太阳能界面蒸发器件的表面水接触角图,由图中可以看出,当水滴在太阳能界面蒸发器件表面的一瞬间便被快速吸收,即太阳能界面蒸发器件的水接触角几乎为0°,这表明本发明制备得到的太阳能界面蒸发器件的表面具有超亲水性,这种超亲水性可以保证水分在太阳能界面蒸发器件内部的快速运输,从而显著提高太阳能界面蒸发器件的吸水性能和蒸发性能。FIG10 is a diagram of the surface water contact angle of the solar interface evaporation device prepared in this embodiment. It can be seen from the figure that the water droplets are quickly absorbed when they are on the surface of the solar interface evaporation device, that is, the water contact angle of the solar interface evaporation device is almost 0°, which indicates that the surface of the solar interface evaporation device prepared by the present invention has super hydrophilicity. This super hydrophilicity can ensure the rapid transportation of water inside the solar interface evaporation device, thereby significantly improving the water absorption and evaporation performance of the solar interface evaporation device.
实施例2Example 2
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法具体包括如下步骤:This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, and the preparation method specifically comprises the following steps:
(1)将氧化石墨烯分散于去离子水中,经超声分散后得到质量分数为12wt%的氧化石墨烯分散液,向氧化石墨烯分散液中加入L-半胱氨酸,氧化石墨烯与L-半胱氨酸的质量比为1:18,混合搅拌直至L-半胱氨酸完全溶解,得到反应溶液;向反应溶液中加入浓度为1.05mol/L的氯化铜溶液,L-半胱氨酸与氯化铜的质量比为3.5:1,混合均匀后得到前驱体溶液,将前驱体溶液转移至反应釜中在145℃下加热14h,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由氧化石墨烯和硫化铜组成的光热转换材料;(1) Dispersing graphene oxide in deionized water, and obtaining a graphene oxide dispersion with a mass fraction of 12 wt% after ultrasonic dispersion, adding L-cysteine to the graphene oxide dispersion, the mass ratio of graphene oxide to L-cysteine being 1:18, and mixing and stirring until L-cysteine is completely dissolved to obtain a reaction solution; adding a copper chloride solution with a concentration of 1.05 mol/L to the reaction solution, the mass ratio of L-cysteine to copper chloride being 3.5:1, and mixing uniformly to obtain a precursor solution, transferring the precursor solution to a reactor and heating it at 145° C. for 14 h, so that L-cysteine reacts with copper chloride to generate copper sulfide, and at the same time, graphene oxide reacts to generate reduced graphene oxide, and after the reaction is completed, filtering, washing and drying the reaction product to obtain a photothermal conversion material composed of graphene oxide and copper sulfide;
(2)将氟化锂加入浓度为3.5mol/L的盐酸溶液中,氟化锂与盐酸溶液的混合比例为1g:22mL,混合均匀后得到刻蚀溶液,向刻蚀溶液中加入钛碳化铝粉末,刻蚀溶液与钛碳化铝粉末的混合比例1L:32g,经磁力搅拌和32℃水浴加热22h后得到悬浮液,采用去离子水对悬浮液依次进行洗涤和离心,重复洗涤和离心操作三次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;(2) Add lithium fluoride to a hydrochloric acid solution with a concentration of 3.5 mol/L, the mixing ratio of lithium fluoride to hydrochloric acid solution is 1 g:22 mL, and the etching solution is obtained after being evenly mixed. Titanium aluminum carbide powder is added to the etching solution, and the mixing ratio of the etching solution to titanium aluminum carbide powder is 1 L:32 g. After magnetic stirring and heating in a water bath at 32°C for 22 h, a suspension is obtained. The suspension is washed and centrifuged with deionized water in sequence. After repeating the washing and centrifugation operations three times, the precipitate is dispersed in deionized water, and the supernatant is dried after standing to obtain Mxene nanosheets;
将Mxene纳米片分散于去离子水中形成浓度为3.5g/L的Mxene分散液,将Mxene分散液转移至摇床中,向Mxene分散液中加入聚乙烯亚胺,Mxene纳米片与聚乙烯亚胺的质量比为1:0.65,在摇床中加热振荡1.2h以进行氨基化改性,加热温度为48℃,摇床转速为180r/min;随后,在室温下向Mxene分散液中加入浓度为0.8g/L的多巴胺溶液,Mxene分散液与多巴胺溶液的体积比为10.5:1,其中,多巴胺溶液中的Tris-HCl缓冲溶液的pH值为8.2,在摇床中混合振荡15h使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;The Mxene nanosheets were dispersed in deionized water to form a Mxene dispersion with a concentration of 3.5 g/L. The Mxene dispersion was transferred to a shaker, polyethyleneimine was added to the Mxene dispersion, the mass ratio of the Mxene nanosheets to the polyethyleneimine was 1:0.65, and the Mxene dispersion was heated and shaken in a shaker for 1.2 h for amino modification. The heating temperature was 48°C and the shaker speed was 180 r/min. Subsequently, a dopamine solution with a concentration of 0.8 g/L was added to the Mxene dispersion at room temperature. The volume ratio of the Mxene dispersion to the dopamine solution was 10.5:1, wherein the pH value of the Tris-HCl buffer solution in the dopamine solution was 8.2. The dopamine was mixed and shaken in a shaker for 15 h to allow the dopamine to undergo in-situ oxidation self-polymerization to form polydopamine. Finally, the modified Mxene nanosheets were obtained after filtration, washing and drying.
(3)将壳聚糖分散于质量分数为2.2wt%的醋酸水溶液中,壳聚糖与醋酸水溶液的混合比例为1g:55mL,进行混合搅拌并在52℃下加热2.8h直至壳聚糖完全溶解,得到壳聚糖溶液;向壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:1.65,进行混合搅拌并在78℃下加热11.5h以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;(3) Dispersing chitosan in an acetic acid aqueous solution with a mass fraction of 2.2 wt % in a mixing ratio of chitosan to the acetic acid aqueous solution of 1 g:55 mL, stirring and mixing, and heating at 52 ° C for 2.8 h until the chitosan is completely dissolved to obtain a chitosan solution; dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution in a mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride of 1:1.65, stirring and mixing, and heating at 78 ° C for 11.5 h to quaternize the chitosan, and then filtering, washing and drying to obtain quaternized chitosan;
将聚乙烯醇、丙三醇和去离子水按照1:2.8:1.9的质量比混合均匀,得到反应前体溶液,对反应前体溶液进行加热回流反应,反应温度为105℃,反应时间为1.8h,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;Polyvinyl alcohol, glycerol and deionized water were mixed uniformly in a mass ratio of 1:2.8:1.9 to obtain a reaction precursor solution, and the reaction precursor solution was subjected to a reflux reaction at a reaction temperature of 105° C. for a reaction time of 1.8 h. After the reaction was completed, the modified polyvinyl alcohol was obtained by filtering, washing and drying;
将海藻酸钠溶于去离子水中得到质量分数为3.5wt%的海藻酸钠溶液,向海藻酸钠溶液中加入高碘酸钠,海藻酸钠与高碘酸钠的质量比为2.2:1,在室温和避光条件下搅拌3.5h以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;Dissolving sodium alginate in deionized water to obtain a sodium alginate solution with a mass fraction of 3.5 wt %, adding sodium periodate to the sodium alginate solution, with a mass ratio of sodium alginate to sodium periodate of 2.2:1, stirring for 3.5 h at room temperature and in a dark environment to allow an oxidation reaction to occur, and filtering, washing and drying after the reaction to obtain oxidized sodium alginate;
(4)将步骤(3)得到的季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠加入质量分数为0.8wt%的纳米纤维素溶液中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比为1:3.5:0.6:0.62,混合均匀后得到前体混合液,向前体混合液中加入步骤(1)得到的光热转换材料以及步骤(2)得到的改性Mxene纳米片,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比为1:0.02:0.006,在420W的超声功率下超声分散1.8h,得到凝胶前体溶液;(4) adding the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate obtained in step (3) to a nanocellulose solution having a mass fraction of 0.8 wt %, wherein the mass ratio of the quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:3.5:0.6:0.62, and mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (1) and the modified Mxene nanosheets obtained in step (2) to the precursor mixed solution, wherein the total mass of the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixed solution, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are in a ratio of 1:0.02:0.006, and ultrasonically dispersing the mixture at an ultrasonic power of 420 W for 1.8 h to obtain a gel precursor solution;
(5)将戊二醛与浓度为1.2mol/L的盐酸溶液混合均匀,得到戊二醛酸溶液,戊二醛酸溶液中的戊二醛的质量分数为2.2wt%;将步骤(4)得到的凝胶前体溶液倒入模具中,向凝胶前体溶液中滴入戊二醛酸溶液,季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与戊二醛酸溶液中的戊二醛的质量的比为1:18,待戊二醛酸溶液全部滴加后混合搅拌0.8h以发生交联反应,随后静置3.5h以完成凝胶化,得到水凝胶中间体;将水凝胶中间体在-22℃下冷冻4.5h,随后取出,置于32℃下解冻4.5h,重复进行冷冻和解冻过程三次,得到复合水凝胶;(5) Glutaraldehyde is mixed evenly with a hydrochloric acid solution having a concentration of 1.2 mol/L to obtain a glutaraldehyde solution, wherein the mass fraction of glutaraldehyde in the glutaraldehyde solution is 2.2 wt %; the gel precursor solution obtained in step (4) is poured into a mold, and the glutaraldehyde solution is dripped into the gel precursor solution, wherein the ratio of the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate to the mass of the glutaraldehyde in the glutaraldehyde solution is 1:18; after all the glutaraldehyde solution is dripped, the mixture is stirred for 0.8 h to cause a cross-linking reaction, and then allowed to stand for 3.5 h to complete gelation, thereby obtaining a hydrogel intermediate; the hydrogel intermediate is frozen at -22°C for 4.5 h, then taken out, and thawed at 32°C for 4.5 h, and the freezing and thawing process is repeated three times to obtain a composite hydrogel;
(6)将步骤(5)得到的复合水凝胶浸泡于浓度为1.8g/L的苯胺单体溶液中,向苯胺单体溶液中滴加过硫酸铵溶液,苯胺单体与过硫酸铵的质量比为1:2.2,待过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌0.8h,随后静置2.2h以完成聚合反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将改性复合水凝胶置于-52℃的冷板上进行定向冷冻,改性复合水凝胶的一侧面与冷板的表面接触以在改性复合水凝胶的内部的竖直方向上形成温度梯度,在冷板上放置45min后将改性复合水凝胶取下置于冷冻干燥机中,在-72℃下进行冷冻干燥22h,以在改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(6) Soaking the composite hydrogel obtained in step (5) in an aniline monomer solution with a concentration of 1.8 g/L, and dropping an ammonium persulfate solution into the aniline monomer solution, wherein the mass ratio of the aniline monomer to the ammonium persulfate is 1:2.2. After all the ammonium persulfate solution has been dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 0.8 h, and then allowed to stand for 2.2 h to complete the polymerization reaction to generate polyaniline. After the reaction is completed, the mixed solution is filtered, washed, and dried in sequence to obtain a modified composite hydrogel. The modified composite hydrogel is placed on a cold plate at -52°C for directional freezing, and one side of the modified composite hydrogel is in contact with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel. After being placed on the cold plate for 45 min, the modified composite hydrogel is removed and placed in a freeze dryer, and freeze-dried at -72°C for 22 h to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix.
(7)将吡咯单体溶解于浓度为0.8mol/L的盐酸溶液中,吡咯单体与盐酸溶液的体积比为1:18,混合均匀后得到吡咯单体溶液,将步骤(6)得到的气凝胶基体浸泡于吡咯单体溶液中并以720r/min的转速进行磁力搅拌1.8h,使得吡咯单体进入气凝胶基体的孔道内部;(7) dissolving the pyrrole monomer in a 0.8 mol/L hydrochloric acid solution, wherein the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:18, and mixing them evenly to obtain a pyrrole monomer solution. The aerogel matrix obtained in step (6) is immersed in the pyrrole monomer solution and magnetically stirred at a speed of 720 r/min for 1.8 h, so that the pyrrole monomer enters the pores of the aerogel matrix.
随后,向吡咯单体溶液中加入浓度为32g/L的三氯化铁溶液,吡咯单体与三氯化铁的摩尔比为1:2.2,在2℃的冰水浴环境下,以320r/min的转速进行磁力搅拌1.8h以发生反应,使得吡咯单体在气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后依次经过滤、洗涤和液氮冷冻干燥12min后得到所述纳米纤维素基太阳能界面蒸发器件。Subsequently, a 32 g/L ferric chloride solution was added to the pyrrole monomer solution, the molar ratio of the pyrrole monomer to the ferric chloride was 1:2.2, and magnetic stirring was performed at a speed of 320 r/min for 1.8 h in an ice water bath environment at 2°C to react, so that the pyrrole monomer underwent in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole. After the reaction, the nanocellulose-based solar interface evaporation device was obtained by filtering, washing and liquid nitrogen freeze-drying for 12 minutes.
实施例3Example 3
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法具体包括如下步骤:This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, and the preparation method specifically comprises the following steps:
(1)将氧化石墨烯分散于去离子水中,经超声分散后得到质量分数为15wt%的氧化石墨烯分散液,向氧化石墨烯分散液中加入L-半胱氨酸,氧化石墨烯与L-半胱氨酸的质量比为1:20,混合搅拌直至L-半胱氨酸完全溶解,得到反应溶液;向反应溶液中加入浓度为1.1mol/L的氯化铜溶液,L-半胱氨酸与氯化铜的质量比为4:1,混合均匀后得到前驱体溶液,将前驱体溶液转移至反应釜中在150℃下加热12h,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由氧化石墨烯和硫化铜组成的光热转换材料;(1) Dispersing graphene oxide in deionized water, and obtaining a graphene oxide dispersion with a mass fraction of 15 wt% after ultrasonic dispersion, adding L-cysteine to the graphene oxide dispersion, the mass ratio of graphene oxide to L-cysteine being 1:20, and mixing and stirring until L-cysteine is completely dissolved to obtain a reaction solution; adding a copper chloride solution with a concentration of 1.1 mol/L to the reaction solution, the mass ratio of L-cysteine to copper chloride being 4:1, and mixing uniformly to obtain a precursor solution, transferring the precursor solution to a reactor and heating it at 150° C. for 12 h, so that L-cysteine reacts with copper chloride to generate copper sulfide, and at the same time, graphene oxide reacts to generate reduced graphene oxide, and after the reaction is completed, filtering, washing and drying the reaction product to obtain a photothermal conversion material composed of graphene oxide and copper sulfide;
(2)将氟化锂加入浓度为4mol/L的盐酸溶液中,氟化锂与盐酸溶液的混合比例为1g:20mL,混合均匀后得到刻蚀溶液,向刻蚀溶液中加入钛碳化铝粉末,刻蚀溶液与钛碳化铝粉末的混合比例1L:35g,经磁力搅拌和35℃水浴加热20h后得到悬浮液,采用去离子水对悬浮液依次进行洗涤和离心,重复洗涤和离心操作四次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;(2) Add lithium fluoride to a hydrochloric acid solution with a concentration of 4 mol/L, the mixing ratio of lithium fluoride to hydrochloric acid solution is 1 g:20 mL, and the etching solution is obtained after being evenly mixed. Titanium aluminum carbide powder is added to the etching solution, and the mixing ratio of the etching solution to titanium aluminum carbide powder is 1 L:35 g. After magnetic stirring and heating in a water bath at 35°C for 20 h, a suspension is obtained. The suspension is washed and centrifuged with deionized water in turn. After repeating the washing and centrifugation operations four times, the precipitate is dispersed in deionized water, and the supernatant is dried after standing to obtain Mxene nanosheets;
将Mxene纳米片分散于去离子水中形成浓度为4g/L的Mxene分散液,将Mxene分散液转移至摇床中,向Mxene分散液中加入聚乙烯亚胺,Mxene纳米片与聚乙烯亚胺的质量比为1:0.7,在摇床中加热振荡1.5h以进行氨基化改性,加热温度为45℃,摇床转速为200r/min;随后,在室温下向Mxene分散液中加入浓度为1g/L的多巴胺溶液,Mxene分散液与多巴胺溶液的体积比为11:1,其中,多巴胺溶液中的Tris-HCl缓冲溶液的pH值为8.5,在摇床中混合振荡20h使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;The Mxene nanosheets were dispersed in deionized water to form a 4 g/L Mxene dispersion, the Mxene dispersion was transferred to a shaker, polyethyleneimine was added to the Mxene dispersion, the mass ratio of the Mxene nanosheets to the polyethyleneimine was 1:0.7, and the Mxene dispersion was heated and shaken in a shaker for 1.5 h for amino modification, the heating temperature was 45°C, and the shaker speed was 200 r/min; then, a dopamine solution with a concentration of 1 g/L was added to the Mxene dispersion at room temperature, the volume ratio of the Mxene dispersion to the dopamine solution was 11:1, wherein the pH value of the Tris-HCl buffer solution in the dopamine solution was 8.5, and the dopamine was mixed and shaken in a shaker for 20 h to allow the dopamine to undergo in-situ oxidation self-polymerization to form polydopamine, and finally the modified Mxene nanosheets were obtained after filtration, washing and drying;
(3)将壳聚糖分散于质量分数为2.5wt%的醋酸水溶液中,壳聚糖与醋酸水溶液的混合比例为1g:50mL,进行混合搅拌并在55℃下加热2.5h直至壳聚糖完全溶解,得到壳聚糖溶液;向壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:1.7,进行混合搅拌并在80℃下加热11h以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;(3) Dispersing chitosan in an acetic acid aqueous solution with a mass fraction of 2.5 wt % and a mixing ratio of chitosan to the acetic acid aqueous solution of 1 g:50 mL, stirring and mixing, and heating at 55° C. for 2.5 h until the chitosan is completely dissolved to obtain a chitosan solution; dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution, with a mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride of 1:1.7, stirring and mixing, and heating at 80° C. for 11 h to quaternize the chitosan, and then filtering, washing and drying to obtain quaternized chitosan;
将聚乙烯醇、丙三醇和去离子水按照1:3:2的质量比混合均匀,得到反应前体溶液,对反应前体溶液进行加热回流反应,反应温度为110℃,反应时间为1.5h,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;Polyvinyl alcohol, glycerol and deionized water were mixed uniformly in a mass ratio of 1:3:2 to obtain a reaction precursor solution, and the reaction precursor solution was subjected to a reflux reaction at a reaction temperature of 110° C. and a reaction time of 1.5 h. After the reaction was completed, the modified polyvinyl alcohol was obtained by filtering, washing and drying;
将海藻酸钠溶于去离子水中得到质量分数为4wt%的海藻酸钠溶液,向海藻酸钠溶液中加入高碘酸钠,海藻酸钠与高碘酸钠的质量比为2.5:1,在室温和避光条件下搅拌4h以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;Dissolving sodium alginate in deionized water to obtain a sodium alginate solution with a mass fraction of 4 wt%, adding sodium periodate to the sodium alginate solution, with a mass ratio of sodium alginate to sodium periodate of 2.5:1, stirring at room temperature and in a dark environment for 4 hours to allow an oxidation reaction to occur, and filtering, washing and drying after the reaction to obtain oxidized sodium alginate;
(4)将步骤(3)得到的季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠加入质量分数为1wt%的纳米纤维素溶液中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比为1:4:0.6:0.65,混合均匀后得到前体混合液,向前体混合液中加入步骤(1)得到的光热转换材料以及步骤(2)得到的改性Mxene纳米片,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比为1:0.03:0.007,在450W的超声功率下超声分散1.5h,得到凝胶前体溶液;(4) adding the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate obtained in step (3) to a nanocellulose solution having a mass fraction of 1 wt%, wherein the mass ratio of the quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:4:0.6:0.65, and mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (1) and the modified Mxene nanosheets obtained in step (2) to the precursor mixed solution, wherein the total mass of the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixed solution, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are in a ratio of 1:0.03:0.007, and ultrasonically dispersing the mixture at an ultrasonic power of 450 W for 1.5 h to obtain a gel precursor solution;
(5)将戊二醛与浓度为1.5mol/L的盐酸溶液混合均匀,得到戊二醛酸溶液,戊二醛酸溶液中的戊二醛的质量分数为2.5wt%;将步骤(4)得到的凝胶前体溶液倒入模具中,向凝胶前体溶液中滴入戊二醛酸溶液,季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与戊二醛酸溶液中的戊二醛的质量的比为1:15,待戊二醛酸溶液全部滴加后混合搅拌1h以发生交联反应,随后静置4h以完成凝胶化,得到水凝胶中间体;将水凝胶中间体在-25℃下冷冻4h,随后取出,置于35℃下解冻4h,重复进行冷冻和解冻过程四次,得到复合水凝胶;(5) Glutaraldehyde is mixed evenly with a hydrochloric acid solution having a concentration of 1.5 mol/L to obtain a glutaraldehyde solution, wherein the mass fraction of glutaraldehyde in the glutaraldehyde solution is 2.5 wt %; the gel precursor solution obtained in step (4) is poured into a mold, and the glutaraldehyde solution is dripped into the gel precursor solution, wherein the ratio of the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate to the mass of the glutaraldehyde in the glutaraldehyde solution is 1:15; after all the glutaraldehyde solution is dripped, the mixture is stirred for 1 hour to cause a cross-linking reaction, and then allowed to stand for 4 hours to complete gelation, thereby obtaining a hydrogel intermediate; the hydrogel intermediate is frozen at -25°C for 4 hours, then taken out, and thawed at 35°C for 4 hours, and the freezing and thawing process is repeated four times to obtain a composite hydrogel;
(6)将步骤(5)得到的复合水凝胶浸泡于浓度为2g/L的苯胺单体溶液中,向苯胺单体溶液中滴加过硫酸铵溶液,苯胺单体与过硫酸铵的质量比为1:2.5,待过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌1h,随后静置2.5h以完成聚合反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将改性复合水凝胶置于-55℃的冷板上进行定向冷冻,改性复合水凝胶的一侧面与冷板的表面接触以在改性复合水凝胶的内部的竖直方向上形成温度梯度,在冷板上放置40min后将改性复合水凝胶取下置于冷冻干燥机中,在-75℃下进行冷冻干燥20h,以在改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(6) Soaking the composite hydrogel obtained in step (5) in a 2 g/L aniline monomer solution, and dropping an ammonium persulfate solution into the aniline monomer solution, wherein the mass ratio of the aniline monomer to the ammonium persulfate is 1:2.5. After all the ammonium persulfate solution has been dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 1 hour, and then allowed to stand for 2.5 hours to complete the polymerization reaction to generate polyaniline. After the reaction is completed, the mixed solution is filtered, washed, and dried in sequence to obtain a modified composite hydrogel. The modified composite hydrogel is placed on a cold plate at -55°C for directional freezing, and one side of the modified composite hydrogel is in contact with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel. After being placed on the cold plate for 40 minutes, the modified composite hydrogel is removed and placed in a freeze dryer, and freeze-dried at -75°C for 20 hours to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix.
(7)将吡咯单体溶解于浓度为1mol/L的盐酸溶液中,吡咯单体与盐酸溶液的体积比为1:15,混合均匀后得到吡咯单体溶液,将步骤(6)得到的气凝胶基体浸泡于吡咯单体溶液中并以750r/min的转速进行磁力搅拌1.5h,使得吡咯单体进入气凝胶基体的孔道内部;(7) dissolving the pyrrole monomer in a 1 mol/L hydrochloric acid solution, wherein the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:15, and mixing them evenly to obtain a pyrrole monomer solution. The aerogel matrix obtained in step (6) is immersed in the pyrrole monomer solution and magnetically stirred at a speed of 750 r/min for 1.5 h, so that the pyrrole monomer enters the pores of the aerogel matrix.
随后,向吡咯单体溶液中加入浓度为35g/L的三氯化铁溶液,吡咯单体与三氯化铁的摩尔比为1:2,在5℃的冰水浴环境下,以350r/min的转速进行磁力搅拌1.5h以发生反应,使得吡咯单体在气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后依次经过滤、洗涤和液氮冷冻干燥15min后得到所述纳米纤维素基太阳能界面蒸发器件。Subsequently, a 35 g/L ferric chloride solution was added to the pyrrole monomer solution, the molar ratio of the pyrrole monomer to the ferric chloride was 1:2, and magnetic stirring was performed at a speed of 350 r/min for 1.5 h in an ice water bath environment at 5°C to react, so that the pyrrole monomer underwent in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole. After the reaction, the nanocellulose-based solar interface evaporation device was obtained after filtration, washing and liquid nitrogen freeze-drying for 15 minutes.
实施例4Example 4
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法具体包括如下步骤:This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, and the preparation method specifically comprises the following steps:
(1)将氧化石墨烯分散于去离子水中,经超声分散后得到质量分数为18wt%的氧化石墨烯分散液,向氧化石墨烯分散液中加入L-半胱氨酸,氧化石墨烯与L-半胱氨酸的质量比为1:22,混合搅拌直至L-半胱氨酸完全溶解,得到反应溶液;向反应溶液中加入浓度为1.15mol/L的氯化铜溶液,L-半胱氨酸与氯化铜的质量比为4.5:1,混合均匀后得到前驱体溶液,将前驱体溶液转移至反应釜中在155℃下加热11h,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由氧化石墨烯和硫化铜组成的光热转换材料;(1) Dispersing graphene oxide in deionized water, and obtaining a graphene oxide dispersion with a mass fraction of 18 wt% after ultrasonic dispersion, adding L-cysteine to the graphene oxide dispersion, the mass ratio of graphene oxide to L-cysteine being 1:22, and mixing and stirring until L-cysteine is completely dissolved to obtain a reaction solution; adding a copper chloride solution with a concentration of 1.15 mol/L to the reaction solution, the mass ratio of L-cysteine to copper chloride being 4.5:1, and mixing uniformly to obtain a precursor solution, transferring the precursor solution to a reactor and heating it at 155° C. for 11 h, so that L-cysteine reacts with copper chloride to generate copper sulfide, and at the same time, graphene oxide reacts to generate reduced graphene oxide, and after the reaction is completed, filtering, washing and drying the reaction product to obtain a photothermal conversion material composed of graphene oxide and copper sulfide;
(2)将氟化锂加入浓度为4.5mol/L的盐酸溶液中,氟化锂与盐酸溶液的混合比例为1g:18mL,混合均匀后得到刻蚀溶液,向刻蚀溶液中加入钛碳化铝粉末,刻蚀溶液与钛碳化铝粉末的混合比例1L:38g,经磁力搅拌和38℃水浴加热15h后得到悬浮液,采用去离子水对悬浮液依次进行洗涤和离心,重复洗涤和离心操作四次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;(2) Add lithium fluoride to a hydrochloric acid solution with a concentration of 4.5 mol/L, the mixing ratio of lithium fluoride to hydrochloric acid solution is 1 g:18 mL, and the etching solution is obtained after being evenly mixed. Titanium aluminum carbide powder is added to the etching solution, and the mixing ratio of the etching solution to titanium aluminum carbide powder is 1 L:38 g. After magnetic stirring and heating in a water bath at 38°C for 15 h, a suspension is obtained. The suspension is washed and centrifuged with deionized water in turn. After repeating the washing and centrifugation operations four times, the precipitate is dispersed in deionized water, and the supernatant is dried after standing to obtain Mxene nanosheets;
将Mxene纳米片分散于去离子水中形成浓度为4.5g/L的Mxene分散液,将Mxene分散液转移至摇床中,向Mxene分散液中加入聚乙烯亚胺,Mxene纳米片与聚乙烯亚胺的质量比为1:0.75,在摇床中加热振荡1.8h以进行氨基化改性,加热温度为42℃,摇床转速为220r/min;随后,在室温下向Mxene分散液中加入浓度为1.2g/L的多巴胺溶液,Mxene分散液与多巴胺溶液的体积比为11.5:1,其中,多巴胺溶液中的Tris-HCl缓冲溶液的pH值为8.8,在摇床中混合振荡22h使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;The Mxene nanosheets were dispersed in deionized water to form a Mxene dispersion with a concentration of 4.5 g/L. The Mxene dispersion was transferred to a shaker, polyethyleneimine was added to the Mxene dispersion, the mass ratio of the Mxene nanosheets to the polyethyleneimine was 1:0.75, and the Mxene dispersion was heated and shaken in a shaker for 1.8 h for amino modification. The heating temperature was 42°C and the shaker speed was 220 r/min. Subsequently, a dopamine solution with a concentration of 1.2 g/L was added to the Mxene dispersion at room temperature. The volume ratio of the Mxene dispersion to the dopamine solution was 11.5:1, wherein the pH value of the Tris-HCl buffer solution in the dopamine solution was 8.8. The dopamine was mixed and shaken in a shaker for 22 h to allow the dopamine to undergo in-situ oxidation self-polymerization to form polydopamine. Finally, the modified Mxene nanosheets were obtained after filtration, washing and drying.
(3)将壳聚糖分散于质量分数为2.8wt%的醋酸水溶液中,壳聚糖与醋酸水溶液的混合比例为1g:45mL,进行混合搅拌并在58℃下加热2.2h直至壳聚糖完全溶解,得到壳聚糖溶液;向壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:1.75,进行混合搅拌并在82℃下加热10.5h以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;(3) Dispersing chitosan in an acetic acid aqueous solution with a mass fraction of 2.8 wt % and a mixing ratio of chitosan to the acetic acid aqueous solution of 1 g:45 mL, stirring and mixing, and heating at 58° C. for 2.2 h until the chitosan is completely dissolved to obtain a chitosan solution; dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution, with a mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride of 1:1.75, stirring and mixing, and heating at 82° C. for 10.5 h to quaternize the chitosan, and then filtering, washing and drying to obtain quaternized chitosan;
将聚乙烯醇、丙三醇和去离子水按照1:3.2:2.1的质量比混合均匀,得到反应前体溶液,对反应前体溶液进行加热回流反应,反应温度为115℃,反应时间为1.2h,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;Polyvinyl alcohol, glycerol and deionized water were mixed uniformly in a mass ratio of 1:3.2:2.1 to obtain a reaction precursor solution, and the reaction precursor solution was subjected to a reflux reaction at a reaction temperature of 115° C. and a reaction time of 1.2 h. After the reaction was completed, the modified polyvinyl alcohol was obtained by filtering, washing and drying;
将海藻酸钠溶于去离子水中得到质量分数为4.5wt%的海藻酸钠溶液,向海藻酸钠溶液中加入高碘酸钠,海藻酸钠与高碘酸钠的质量比为2.8:1,在室温和避光条件下搅拌4.5h以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;Dissolving sodium alginate in deionized water to obtain a sodium alginate solution with a mass fraction of 4.5 wt %, adding sodium periodate to the sodium alginate solution, with a mass ratio of sodium alginate to sodium periodate of 2.8:1, stirring at room temperature and in a dark environment for 4.5 h to allow an oxidation reaction to occur, and filtering, washing and drying after the reaction to obtain oxidized sodium alginate;
(4)将步骤(3)得到的季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠加入质量分数为1.2wt%的纳米纤维素溶液中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比为1:4.5:0.7:0.68,混合均匀后得到前体混合液,向前体混合液中加入步骤(1)得到的光热转换材料以及步骤(2)得到的改性Mxene纳米片,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比为1:0.04:0.008,在480W的超声功率下超声分散1.2h,得到凝胶前体溶液;(4) adding the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate obtained in step (3) to a nanocellulose solution having a mass fraction of 1.2 wt%, wherein the mass ratio of the quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:4.5:0.7:0.68, and mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (1) and the modified Mxene nanosheets obtained in step (2) to the precursor mixed solution, wherein the total mass of the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixed solution, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are in a ratio of 1:0.04:0.008, and ultrasonically dispersing the mixture at an ultrasonic power of 480 W for 1.2 h to obtain a gel precursor solution;
(5)将戊二醛与浓度为1.8mol/L的盐酸溶液混合均匀,得到戊二醛酸溶液,戊二醛酸溶液中的戊二醛的质量分数为2.8wt%;将步骤(4)得到的凝胶前体溶液倒入模具中,向凝胶前体溶液中滴入戊二醛酸溶液,季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与戊二醛酸溶液中的戊二醛的质量的比为1:12,待戊二醛酸溶液全部滴加后混合搅拌1.2h以发生交联反应,随后静置4.5h以完成凝胶化,得到水凝胶中间体;将水凝胶中间体在-28℃下冷冻3.5h,随后取出,置于38℃下解冻3.5h,重复进行冷冻和解冻过程四次,得到复合水凝胶;(5) Glutaraldehyde is mixed evenly with a hydrochloric acid solution having a concentration of 1.8 mol/L to obtain a glutaraldehyde solution, wherein the mass fraction of glutaraldehyde in the glutaraldehyde solution is 2.8 wt %; the gel precursor solution obtained in step (4) is poured into a mold, and the glutaraldehyde solution is dripped into the gel precursor solution, wherein the ratio of the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate to the mass of the glutaraldehyde in the glutaraldehyde solution is 1:12; after all the glutaraldehyde solution is dripped, the mixture is stirred for 1.2 h to cause a cross-linking reaction, and then allowed to stand for 4.5 h to complete gelation, thereby obtaining a hydrogel intermediate; the hydrogel intermediate is frozen at -28°C for 3.5 h, then taken out, and thawed at 38°C for 3.5 h, and the freezing and thawing process is repeated four times to obtain a composite hydrogel;
(6)将步骤(5)得到的复合水凝胶浸泡于浓度为2.2g/L的苯胺单体溶液中,向苯胺单体溶液中滴加过硫酸铵溶液,苯胺单体与过硫酸铵的质量比为1:2.8,待过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌1.2h,随后静置2.8h以完成聚合反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将改性复合水凝胶置于-58℃的冷板上进行定向冷冻,改性复合水凝胶的一侧面与冷板的表面接触以在改性复合水凝胶的内部的竖直方向上形成温度梯度,在冷板上放置35min后将改性复合水凝胶取下置于冷冻干燥机中,在-78℃下进行冷冻干燥15h,以在改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(6) Soaking the composite hydrogel obtained in step (5) in a 2.2 g/L aniline monomer solution, and dropping an ammonium persulfate solution into the aniline monomer solution, wherein the mass ratio of the aniline monomer to the ammonium persulfate is 1:2.8. After all the ammonium persulfate solution has been dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 1.2 h, and then allowed to stand for 2.8 h to complete the polymerization reaction to generate polyaniline. After the reaction is completed, the mixed solution is filtered, washed, and dried in sequence to obtain a modified composite hydrogel. The modified composite hydrogel is placed on a cold plate at -58°C for directional freezing, and one side of the modified composite hydrogel is in contact with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel. After being placed on the cold plate for 35 min, the modified composite hydrogel is removed and placed in a freeze dryer, and freeze-dried at -78°C for 15 h to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix.
(7)将吡咯单体溶解于浓度为1.2mol/L的盐酸溶液中,吡咯单体与盐酸溶液的体积比为1:12,混合均匀后得到吡咯单体溶液,将步骤(6)得到的气凝胶基体浸泡于吡咯单体溶液中并以780r/min的转速进行磁力搅拌1.2h,使得吡咯单体进入气凝胶基体的孔道内部;(7) dissolving the pyrrole monomer in a 1.2 mol/L hydrochloric acid solution, wherein the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:12, and mixing them evenly to obtain a pyrrole monomer solution. The aerogel matrix obtained in step (6) is immersed in the pyrrole monomer solution and magnetically stirred at a speed of 780 r/min for 1.2 h, so that the pyrrole monomer enters the pores of the aerogel matrix.
随后,向吡咯单体溶液中加入浓度为38g/L的三氯化铁溶液,吡咯单体与三氯化铁的摩尔比为1:1.8,在8℃的冰水浴环境下,以380r/min的转速进行磁力搅拌1.2h以发生反应,使得吡咯单体在气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后依次经过滤、洗涤和液氮冷冻干燥18min后得到所述纳米纤维素基太阳能界面蒸发器件。Subsequently, a 38 g/L ferric chloride solution was added to the pyrrole monomer solution, the molar ratio of the pyrrole monomer to the ferric chloride was 1:1.8, and magnetic stirring was performed at a speed of 380 r/min for 1.2 h in an ice water bath environment at 8°C to react, so that the pyrrole monomer underwent in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole. After the reaction, the nanocellulose-based solar interface evaporation device was obtained after filtration, washing and liquid nitrogen freeze-drying for 18 minutes.
实施例5Example 5
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,所述制备方法具体包括如下步骤:This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, and the preparation method specifically comprises the following steps:
(1)将氧化石墨烯分散于去离子水中,经超声分散后得到质量分数为20wt%的氧化石墨烯分散液,向氧化石墨烯分散液中加入L-半胱氨酸,氧化石墨烯与L-半胱氨酸的质量比为1:25,混合搅拌直至L-半胱氨酸完全溶解,得到反应溶液;向反应溶液中加入浓度为1.2mol/L的氯化铜溶液,L-半胱氨酸与氯化铜的质量比为5:1,混合均匀后得到前驱体溶液,将前驱体溶液转移至反应釜中在160℃下加热10h,使得L-半胱氨酸与氯化铜反应生成硫化铜,同时,氧化石墨烯反应生成还原氧化石墨烯,反应结束后对反应产物进行过滤、洗涤和干燥,得到由氧化石墨烯和硫化铜组成的光热转换材料;(1) Graphene oxide is dispersed in deionized water, and after ultrasonic dispersion, a graphene oxide dispersion with a mass fraction of 20wt% is obtained. L-cysteine is added to the graphene oxide dispersion, and the mass ratio of graphene oxide to L-cysteine is 1:25. The mixture is mixed and stirred until the L-cysteine is completely dissolved to obtain a reaction solution. A copper chloride solution with a concentration of 1.2 mol/L is added to the reaction solution, and the mass ratio of L-cysteine to copper chloride is 5:1. The mixture is mixed and uniformly obtained to obtain a precursor solution. The precursor solution is transferred to a reactor and heated at 160°C for 10 hours, so that L-cysteine reacts with copper chloride to generate copper sulfide. At the same time, graphene oxide reacts to generate reduced graphene oxide. After the reaction is completed, the reaction product is filtered, washed and dried to obtain a photothermal conversion material composed of graphene oxide and copper sulfide.
(2)将氟化锂加入浓度为5mol/L的盐酸溶液中,氟化锂与盐酸溶液的混合比例为1g:15mL,混合均匀后得到刻蚀溶液,向刻蚀溶液中加入钛碳化铝粉末,刻蚀溶液与钛碳化铝粉末的混合比例1L:40g,经磁力搅拌和40℃水浴加热12h后得到悬浮液,采用去离子水对悬浮液依次进行洗涤和离心,重复洗涤和离心操作五次后取沉淀物分散于去离子水中,静置后取上清液进行干燥,得到Mxene纳米片;(2) Add lithium fluoride to a hydrochloric acid solution with a concentration of 5 mol/L, the mixing ratio of lithium fluoride to hydrochloric acid solution is 1 g:15 mL, and the etching solution is obtained after being evenly mixed. Titanium aluminum carbide powder is added to the etching solution, and the mixing ratio of the etching solution to titanium aluminum carbide powder is 1 L:40 g. After magnetic stirring and heating in a 40°C water bath for 12 h, a suspension is obtained. The suspension is washed and centrifuged with deionized water in sequence. After repeating the washing and centrifugation operations five times, the precipitate is dispersed in deionized water, and the supernatant is dried after standing to obtain Mxene nanosheets;
将Mxene纳米片分散于去离子水中形成浓度为5g/L的Mxene分散液,将Mxene分散液转移至摇床中,向Mxene分散液中加入聚乙烯亚胺,Mxene纳米片与聚乙烯亚胺的质量比为1:0.8,在摇床中加热振荡2h以进行氨基化改性,加热温度为40℃,摇床转速为250r/min;随后,在室温下向Mxene分散液中加入浓度为1.5g/L的多巴胺溶液,Mxene分散液与多巴胺溶液的体积比为12:1,其中,多巴胺溶液中的Tris-HCl缓冲溶液的pH值为9,在摇床中混合振荡24h使得多巴胺发生原位氧化自聚合形成聚多巴胺,最后经过滤、洗涤和干燥后得到改性Mxene纳米片;The Mxene nanosheets were dispersed in deionized water to form a Mxene dispersion with a concentration of 5 g/L, and the Mxene dispersion was transferred to a shaker, polyethyleneimine was added to the Mxene dispersion, the mass ratio of the Mxene nanosheets to the polyethyleneimine was 1:0.8, and the Mxene dispersion was heated and shaken in a shaker for 2 hours for amino modification, the heating temperature was 40°C, and the shaking speed was 250 r/min; then, a dopamine solution with a concentration of 1.5 g/L was added to the Mxene dispersion at room temperature, and the volume ratio of the Mxene dispersion to the dopamine solution was 12:1, wherein the pH value of the Tris-HCl buffer solution in the dopamine solution was 9, and the dopamine was mixed and shaken in a shaker for 24 hours to allow the dopamine to undergo in-situ oxidation self-polymerization to form polydopamine, and finally the modified Mxene nanosheets were obtained after filtration, washing and drying;
(3)将壳聚糖分散于质量分数为3wt%的醋酸水溶液中,壳聚糖与醋酸水溶液的混合比例为1g:40mL,进行混合搅拌并在60℃下加热2h直至壳聚糖完全溶解,得到壳聚糖溶液;向壳聚糖溶液中滴入2,3-环氧丙基三甲基氯化铵,壳聚糖与2,3-环氧丙基三甲基氯化铵的质量比为1:1.8,进行混合搅拌并在85℃下加热10h以对壳聚糖进行季铵化改性,随后经过滤、洗涤和干燥后得到季铵化壳聚糖;(3) Dispersing chitosan in an acetic acid aqueous solution with a mass fraction of 3 wt % and a mixing ratio of chitosan to the acetic acid aqueous solution of 1 g:40 mL, stirring and mixing, and heating at 60 ° C for 2 h until the chitosan is completely dissolved to obtain a chitosan solution; dropping 2,3-epoxypropyltrimethylammonium chloride into the chitosan solution, with a mass ratio of chitosan to 2,3-epoxypropyltrimethylammonium chloride of 1:1.8, stirring and mixing, and heating at 85 ° C for 10 h to quaternize the chitosan, and then filtering, washing and drying to obtain quaternized chitosan;
将聚乙烯醇、丙三醇和去离子水按照1:3.5:2.2的质量比混合均匀,得到反应前体溶液,对反应前体溶液进行加热回流反应,反应温度为120℃,反应时间为1h,反应结束后经过滤、洗涤和干燥后得到改性聚乙烯醇;Polyvinyl alcohol, glycerol and deionized water are uniformly mixed in a mass ratio of 1:3.5:2.2 to obtain a reaction precursor solution, and the reaction precursor solution is subjected to a reflux reaction at a reaction temperature of 120° C. and a reaction time of 1 h. After the reaction is completed, the modified polyvinyl alcohol is obtained by filtering, washing and drying;
将海藻酸钠溶于去离子水中得到质量分数为5wt%的海藻酸钠溶液,向海藻酸钠溶液中加入高碘酸钠,海藻酸钠与高碘酸钠的质量比为3:1,在室温和避光条件下搅拌5h以发生氧化反应,反应结束后经过滤、洗涤和干燥后得到氧化海藻酸钠;Dissolving sodium alginate in deionized water to obtain a sodium alginate solution with a mass fraction of 5 wt%, adding sodium periodate to the sodium alginate solution, with a mass ratio of sodium alginate to sodium periodate of 3:1, stirring at room temperature and in a dark environment for 5 hours to cause an oxidation reaction, and filtering, washing and drying after the reaction to obtain oxidized sodium alginate;
(4)将步骤(3)得到的季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠加入质量分数为1.5wt%的纳米纤维素溶液中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比为1:5:0.8:0.7,混合均匀后得到前体混合液,向前体混合液中加入步骤(1)得到的光热转换材料以及步骤(2)得到的改性Mxene纳米片,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比为1:0.05:0.01,在500W的超声功率下超声分散1h,得到凝胶前体溶液;(4) adding the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate obtained in step (3) to a nanocellulose solution having a mass fraction of 1.5 wt %, wherein the mass ratio of the quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate and the absolute dry nanocellulose in the nanocellulose solution is 1:5:0.8:0.7, and mixing them evenly to obtain a precursor mixed solution, adding the photothermal conversion material obtained in step (1) and the modified Mxene nanosheets obtained in step (2) to the precursor mixed solution, wherein the total mass of the quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixed solution, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are in a ratio of 1:0.05:0.01, and ultrasonically dispersing the mixture at an ultrasonic power of 500 W for 1 h to obtain a gel precursor solution;
(5)将戊二醛与浓度为2mol/L的盐酸溶液混合均匀,得到戊二醛酸溶液,戊二醛酸溶液中的戊二醛的质量分数为3wt%;将步骤(4)得到的凝胶前体溶液倒入模具中,向凝胶前体溶液中滴入戊二醛酸溶液,季铵化壳聚糖、改性聚乙烯醇以及氧化海藻酸钠的总质量与戊二醛酸溶液中的戊二醛的质量的比为1:10,待戊二醛酸溶液全部滴加后混合搅拌1.5h以发生交联反应,随后静置5h以完成凝胶化,得到水凝胶中间体;将水凝胶中间体在-30℃下冷冻3h,随后取出,置于40℃下解冻3h,重复进行冷冻和解冻过程五次,得到复合水凝胶;(5) Glutaraldehyde is mixed evenly with a hydrochloric acid solution having a concentration of 2 mol/L to obtain a glutaraldehyde solution, wherein the mass fraction of glutaraldehyde in the glutaraldehyde solution is 3 wt %; the gel precursor solution obtained in step (4) is poured into a mold, and the glutaraldehyde solution is dripped into the gel precursor solution, wherein the ratio of the total mass of the quaternized chitosan, the modified polyvinyl alcohol and the oxidized sodium alginate to the mass of the glutaraldehyde in the glutaraldehyde solution is 1:10; after all the glutaraldehyde solution is dripped, the mixture is stirred for 1.5 h to cause a cross-linking reaction, and then allowed to stand for 5 h to complete gelation, thereby obtaining a hydrogel intermediate; the hydrogel intermediate is frozen at -30°C for 3 h, then taken out, and thawed at 40°C for 3 h, and the freezing and thawing process is repeated five times to obtain a composite hydrogel;
(6)将步骤(5)得到的复合水凝胶浸泡于浓度为2.5g/L的苯胺单体溶液中,向苯胺单体溶液中滴加过硫酸铵溶液,苯胺单体与过硫酸铵的质量比为1:3,待过硫酸铵溶液全部滴加后,对由苯胺单体溶液和过硫酸铵溶液组成的混合液进行磁力搅拌1.5h,随后静置3h以完成聚合反应生成聚苯胺,反应结束后依次经过滤、洗涤和干燥后得到改性复合水凝胶,将改性复合水凝胶置于-60℃的冷板上进行定向冷冻,改性复合水凝胶的一侧面与冷板的表面接触以在改性复合水凝胶的内部的竖直方向上形成温度梯度,在冷板上放置30min后将改性复合水凝胶取下置于冷冻干燥机中,在-80℃下进行冷冻干燥12h,以在改性复合水凝胶的内部形成垂直孔道,得到气凝胶基体;(6) Soaking the composite hydrogel obtained in step (5) in a 2.5 g/L aniline monomer solution, and dropping an ammonium persulfate solution into the aniline monomer solution, wherein the mass ratio of the aniline monomer to the ammonium persulfate is 1:3. After all the ammonium persulfate solution has been dropped, the mixed solution consisting of the aniline monomer solution and the ammonium persulfate solution is magnetically stirred for 1.5 h, and then allowed to stand for 3 h to complete the polymerization reaction to generate polyaniline. After the reaction is completed, the mixed solution is filtered, washed, and dried in sequence to obtain a modified composite hydrogel. The modified composite hydrogel is placed on a cold plate at -60°C for directional freezing, and one side of the modified composite hydrogel is in contact with the surface of the cold plate to form a temperature gradient in the vertical direction inside the modified composite hydrogel. After being placed on the cold plate for 30 min, the modified composite hydrogel is removed and placed in a freeze dryer, and freeze-dried at -80°C for 12 h to form vertical channels inside the modified composite hydrogel to obtain an aerogel matrix.
(7)将吡咯单体溶解于浓度为1.5mol/L的盐酸溶液中,吡咯单体与盐酸溶液的体积比为1:10,混合均匀后得到吡咯单体溶液,将步骤(6)得到的气凝胶基体浸泡于吡咯单体溶液中并以800r/min的转速进行磁力搅拌1h,使得吡咯单体进入气凝胶基体的孔道内部;(7) dissolving the pyrrole monomer in a 1.5 mol/L hydrochloric acid solution, wherein the volume ratio of the pyrrole monomer to the hydrochloric acid solution is 1:10, and mixing them evenly to obtain a pyrrole monomer solution. The aerogel matrix obtained in step (6) is immersed in the pyrrole monomer solution and magnetically stirred at a speed of 800 r/min for 1 h, so that the pyrrole monomer enters the pores of the aerogel matrix.
随后,向吡咯单体溶液中加入浓度为40g/L的三氯化铁溶液,吡咯单体与三氯化铁的摩尔比为1:1.5,在10℃的冰水浴环境下,以400r/min的转速进行磁力搅拌1h以发生反应,使得吡咯单体在气凝胶基体的表面和孔道内壁发生原位氧化自聚合形成聚吡咯,反应结束后依次经过滤、洗涤和液氮冷冻干燥20min后得到所述纳米纤维素基太阳能界面蒸发器件。Subsequently, a 40 g/L ferric chloride solution was added to the pyrrole monomer solution, the molar ratio of the pyrrole monomer to the ferric chloride was 1:1.5, and magnetic stirring was performed at a speed of 400 r/min for 1 hour in an ice water bath environment at 10°C to react, so that the pyrrole monomer underwent in-situ oxidation self-polymerization on the surface of the aerogel matrix and the inner wall of the pores to form polypyrrole. After the reaction, the nanocellulose-based solar interface evaporation device was obtained by filtering, washing and liquid nitrogen freeze-drying for 20 minutes.
实施例6Example 6
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比调整为1:3:0.5:0.5,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the mass ratio of quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate, and absolute dry nanocellulose in the nanocellulose solution is adjusted to 1:3:0.5:0.5, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例7Example 7
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,季铵化壳聚糖、改性聚乙烯醇、氧化海藻酸钠以及纳米纤维素溶液中的绝干纳米纤维素的质量比调整为1:3:0.5:0.8,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the mass ratio of quaternized chitosan, modified polyvinyl alcohol, oxidized sodium alginate, and absolute dry nanocellulose in the nanocellulose solution is adjusted to 1:3:0.5:0.8, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例8Example 8
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比调整为1:0.005:0.005,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the ratio of the total mass of quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixture, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets is adjusted to 1:0.005:0.005, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例9Embodiment 9
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比调整为1:0.08:0.005,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the total mass of quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixture, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are adjusted to 1:0.08:0.005, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例10Example 10
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比调整为1:0.01:0.001,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the ratio of the total mass of quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixture, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets is adjusted to 1:0.01:0.001, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例11Embodiment 11
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(4)中,前体混合液中的季铵化壳聚糖、改性聚乙烯醇和氧化海藻酸钠的总质量、光热转换材料的质量以及改性Mxene纳米片的质量的比调整为1:0.01:0.015,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device, which differs from Embodiment 1 in that, in step (4), the total mass of quaternized chitosan, modified polyvinyl alcohol and oxidized sodium alginate in the precursor mixture, the mass of the photothermal conversion material and the mass of the modified Mxene nanosheets are adjusted to 1:0.01:0.015, and the other process parameters and operating steps are exactly the same as those in Embodiment 1.
实施例12Example 12
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(6)中,苯胺单体溶液中的苯胺单体的浓度调整为1g/L,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device. The difference from Embodiment 1 is that in step (6), the concentration of the aniline monomer in the aniline monomer solution is adjusted to 1 g/L, and the other process parameters and operation steps are exactly the same as those in Embodiment 1.
实施例13Example 13
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(6)中,苯胺单体溶液中的苯胺单体的浓度调整为3g/L,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device. The difference from Embodiment 1 is that in step (6), the concentration of the aniline monomer in the aniline monomer solution is adjusted to 3 g/L, and the other process parameters and operation steps are exactly the same as those in Embodiment 1.
实施例14Embodiment 14
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(7)中,吡咯单体与盐酸溶液的体积比调整为1:15,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device. The difference from Embodiment 1 is that in step (7), the volume ratio of pyrrole monomer to hydrochloric acid solution is adjusted to 1:15, and the other process parameters and operation steps are exactly the same as those in Embodiment 1.
实施例15Embodiment 15
本实施例提供了一种纳米纤维素基太阳能界面蒸发器件的制备方法,与实施例1的区别在于,步骤(7)中,吡咯单体与盐酸溶液的体积比调整为1:25,其他工艺参数和操作步骤与实施例1完全相同。This embodiment provides a method for preparing a nanocellulose-based solar interface evaporation device. The difference from Embodiment 1 is that in step (7), the volume ratio of pyrrole monomer to hydrochloric acid solution is adjusted to 1:25, and the other process parameters and operation steps are exactly the same as those in Embodiment 1.
对实施例1-15制备得到的纳米纤维素基太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能进行测试,具体测试步骤如下:The water absorption performance, evaporation performance and photothermal conversion performance of the nanocellulose-based solar interface evaporation device prepared in Examples 1-15 were tested. The specific test steps are as follows:
(1)吸水性能(1) Water absorption performance
采用相同时间内的吸水距离衡量纳米纤维素基太阳能界面蒸发器件的吸水性能,将实施例1-15制备得到的纳米纤维素基太阳能界面蒸发器件裁剪为适宜尺寸的圆柱状试样,圆柱状试样的直径与毛细管内径相同,向毛细管内注入100mL的模拟海水,将圆柱状试样塞入毛细管内并使得模拟海水的液面恰好与圆柱状试样的底面接触,在360s内观察并记录模拟海水在圆柱状试样内的攀升距离,根据相同时段内的模拟海水的攀升距离衡量纳米纤维素基太阳能界面蒸发器件的吸水性能,重复测试3次,取平均值。The water absorption distance in the same time is used to measure the water absorption performance of the nanocellulose-based solar interface evaporation device. The nanocellulose-based solar interface evaporation device prepared in Examples 1-15 is cut into a cylindrical sample of appropriate size. The diameter of the cylindrical sample is the same as the inner diameter of the capillary. 100 mL of simulated seawater is injected into the capillary. The cylindrical sample is inserted into the capillary so that the liquid surface of the simulated seawater just contacts the bottom surface of the cylindrical sample. The climbing distance of the simulated seawater in the cylindrical sample is observed and recorded within 360 seconds. The water absorption performance of the nanocellulose-based solar interface evaporation device is measured according to the climbing distance of the simulated seawater in the same period of time. The test is repeated 3 times and the average value is taken.
(2)蒸发性能(2) Evaporation performance
采用水蒸发速率衡量纳米纤维素基太阳能界面蒸发器件的蒸发性能,通过自制的海水蒸发实验装置对实施例1-15制备得到的纳米纤维素基太阳能界面蒸发器件的水蒸发速率进行测试,如图11所示,海水蒸发实验装置由氙灯、烧杯、天平、隔热泡沫和吸水棉线组成,氙灯用于发射模拟太阳光并直射太阳能界面蒸发器件的表面,天平用来记录实验过程中烧杯内的模拟海水的质量变化,隔热泡沫用于隔绝模拟的太阳光,吸水棉线用于将烧杯内的模拟海水输送到太阳能界面蒸发器件内,记录1h内模拟海水的蒸发质量,重复测试3次,取平均值。The water evaporation rate is used to measure the evaporation performance of the nanocellulose-based solar interface evaporation device. The water evaporation rate of the nanocellulose-based solar interface evaporation device prepared in Examples 1-15 is tested by a homemade seawater evaporation experimental device, as shown in Figure 11. The seawater evaporation experimental device consists of a xenon lamp, a beaker, a balance, thermal insulation foam and absorbent cotton thread. The xenon lamp is used to emit simulated sunlight and directly illuminate the surface of the solar interface evaporation device. The balance is used to record the mass change of the simulated seawater in the beaker during the experiment. The thermal insulation foam is used to isolate the simulated sunlight. The absorbent cotton thread is used to transport the simulated seawater in the beaker to the solar interface evaporation device, and the evaporation mass of the simulated seawater within 1 hour is recorded. The test is repeated 3 times and the average value is taken.
水蒸发速率采用下式计算:The water evaporation rate is calculated using the following formula:
式中,Δm为模拟海水在1h内的蒸发质量(kg),A为太阳能界面蒸发器件受到模拟太阳光照射的面积(m2),V为水蒸发速率(kg/m2/h)。Where Δm is the mass of simulated seawater evaporated in 1 h (kg), A is the area of the solar interface evaporation device exposed to simulated sunlight (m 2 ), and V is the water evaporation rate (kg/m 2 /h).
(3)光热转换性能(3) Photothermal conversion performance
采用光热转换效率衡量纳米纤维素基太阳能界面蒸发器件的光热转换性能,在计算光热转换效率之前,需要计算模拟海水蒸发时的显热,其计算公式如下:The photothermal conversion efficiency is used to measure the photothermal conversion performance of the nanocellulose-based solar interface evaporation device. Before calculating the photothermal conversion efficiency, it is necessary to calculate the sensible heat when simulating seawater evaporation. The calculation formula is as follows:
式中,Q为单位质量模拟海水的显热(J/kg),T2为蒸发测试结束后太阳能界面蒸发器件的表面温度,T1为太阳能界面蒸发器件表面的初始温度,c为模拟海水从30℃到100℃时的比热(取4.2J/g/K)。Where Q is the sensible heat per unit mass of simulated seawater (J/kg), T2 is the surface temperature of the solar interface evaporation device after the evaporation test, T1 is the initial temperature of the surface of the solar interface evaporation device, and c is the specific heat of simulated seawater from 30°C to 100°C (taken as 4.2J/g/K).
光热转换效率采用下式计算:The photothermal conversion efficiency is calculated using the following formula:
式中,η为光热转换效率(%),m'为减去黑暗条件下的蒸发速率(0.053kg/m/h)后的水蒸发速率(kg/m/h),LV为模拟海水从液体到气体的相变潜热(取2260kJ/kg),Pin为太阳能界面蒸发器件表面输入的太阳能的功率密度。Where η is the photothermal conversion efficiency (%), m' is the water evaporation rate (kg/m/h) after subtracting the evaporation rate under dark conditions (0.053kg/m/h), LV is the latent heat of phase change from liquid to gas of simulated seawater (taken as 2260kJ/kg), and Pin is the power density of solar energy input to the surface of the solar interface evaporation device.
测试及计算结果见表1。The test and calculation results are shown in Table 1.
表1Table 1
由表1数据可以看出,实施例1-5制备得到的纳米纤维素基太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率均高于实施例6-15,这表明本发明制备得到的纳米纤维素基太阳能界面蒸发器件具备优异的吸水性能、蒸发性能和光热转换性能。It can be seen from the data in Table 1 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the nanocellulose-based solar interface evaporation devices prepared in Examples 1-5 are higher than those in Examples 6-15, which indicates that the nanocellulose-based solar interface evaporation device prepared in the present invention has excellent water absorption performance, evaporation performance and photothermal conversion performance.
由实施例1、实施例6和实施例7的测试数据可以看出,实施例6制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率低于实施例1,这是由于,实施例6中的绝干纳米纤维素的添加量过低,影响了气凝胶基体的内部多孔道结构,也影响了气凝胶基体亲水性的提升,导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能下降。而实施例7制备得到的太阳能界面蒸发器件的水蒸发速率和光热转换效率低于实施例1,这是由于,实施例7中的绝干纳米纤维素的添加量过高,不仅影响了气凝胶基体的内部多孔道结构,而且会导致凝胶前体溶液的黏度过高,影响了光热转换材料和改性Mxene纳米片在凝胶前体溶液中的分散均匀性,进而导致太阳能界面蒸发器件的蒸发性能和光热转换性能下降。It can be seen from the test data of Example 1, Example 6 and Example 7 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 6 are lower than those in Example 1. This is because the amount of absolute dry nanocellulose added in Example 6 is too low, which affects the internal multi-porous structure of the aerogel matrix and also affects the improvement of the hydrophilicity of the aerogel matrix, resulting in a decrease in the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. The water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 7 are lower than those in Example 1. This is because the amount of absolute dry nanocellulose added in Example 7 is too high, which not only affects the internal multi-porous structure of the aerogel matrix, but also causes the viscosity of the gel precursor solution to be too high, affecting the dispersion uniformity of the photothermal conversion material and the modified Mxene nanosheets in the gel precursor solution, thereby resulting in a decrease in the evaporation performance and photothermal conversion performance of the solar interface evaporation device.
由实施例1、实施例8和实施例9的测试数据可以看出,实施例8制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率低于实施例1,这是由于,实施例8中的光热转换材料的添加量过低,无法有效发挥光热转换材料对太阳光的吸收能力,同时,光热转换材料具有一定的亲水性,其添加量过低也会影响模拟海水攀升距离,最终导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能下降。而实施例9制备得到的太阳能界面蒸发器件的水蒸发速率和光热转换效率低于实施例1,这是由于,实施例9中的光热转换材料的添加量过高,光热转换材料在凝胶前体溶液中易产生团聚现象,影响其光热转换性能的发挥,最终导致太阳能界面蒸发器件的蒸发性能和光热转换性能下降。It can be seen from the test data of Example 1, Example 8 and Example 9 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 8 are lower than those in Example 1. This is because the amount of photothermal conversion material added in Example 8 is too low, and the photothermal conversion material cannot effectively exert its ability to absorb sunlight. At the same time, the photothermal conversion material has a certain hydrophilicity, and its addition amount is too low, which will also affect the simulated seawater climbing distance, and ultimately lead to a decrease in the water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. The water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 9 are lower than those in Example 1. This is because the amount of photothermal conversion material added in Example 9 is too high, and the photothermal conversion material is prone to agglomeration in the gel precursor solution, which affects its photothermal conversion performance, and ultimately leads to a decrease in the evaporation performance and photothermal conversion performance of the solar interface evaporation device.
由实施例1、实施例10和实施例11的测试数据可以看出,实施例10制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率低于实施例1,这是由于,实施例10中的改性Mxene纳米片的添加量过低,无法有效发挥改性Mxene纳米片对太阳光的吸收能力,同时,改性Mxene纳米片具有一定的亲水性,其添加量过低也会影响模拟海水攀升距离,最终导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能下降。而实施例11制备得到的太阳能界面蒸发器件的水蒸发速率和光热转换效率低于实施例1,这是由于,实施例11中的改性Mxene纳米片的添加量过高,由于其固有的高表面能和界面范德华作用导致其在凝胶前体溶液中易产生团聚现象,影响其光热转换性能的发挥,最终导致太阳能界面蒸发器件的蒸发性能和光热转换性能下降。It can be seen from the test data of Example 1, Example 10 and Example 11 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 10 are lower than those in Example 1. This is because the amount of modified Mxene nanosheets added in Example 10 is too low, and the modified Mxene nanosheets cannot effectively exert their ability to absorb sunlight. At the same time, the modified Mxene nanosheets have a certain hydrophilicity, and their addition is too low, which will also affect the simulated seawater climbing distance, and ultimately lead to the decrease of water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. The water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 11 are lower than those in Example 1. This is because the amount of modified Mxene nanosheets added in Example 11 is too high, and due to their inherent high surface energy and interfacial van der Waals effect, they are prone to agglomeration in the gel precursor solution, which affects their photothermal conversion performance, and ultimately leads to the decrease of evaporation performance and photothermal conversion performance of the solar interface evaporation device.
由实施例1、实施例12和实施例13的测试数据可以看出,实施例12制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率均低于实施例1,这是由于,实施例12中的苯胺单体溶液的浓度过低,一方面,聚苯胺本身是一种亲水性材料,其添加量过低会直接导致太阳能界面蒸发器件的亲水性下降,进而影响太阳能界面蒸发器件的吸水性能和蒸发性能;另一方面,苯胺单体自聚合形成的短链聚苯胺纳米纤维与改性Mxene纳米片和光热转换材料之间存在协同增效作用,其添加量过低会直接影响改性Mxene纳米片和光热转换材料的光热转换能力的发挥,进而间接导致太阳能界面蒸发器件的光热转换性能下降。而实施例13制备得到的太阳能界面蒸发器件的水蒸发速率和光热转换效率低于实施例1,这是由于实施例13中的苯胺单体溶液的浓度过高,改性MXene纳米片的表面无法形成短链聚苯胺纳米纤维,影响了改性MXene纳米片的光热转换能力的充分发挥,导致太阳能界面蒸发器件的蒸发性能和光热转换性能下降。It can be seen from the test data of Example 1, Example 12 and Example 13 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 12 are lower than those in Example 1. This is because the concentration of the aniline monomer solution in Example 12 is too low. On the one hand, polyaniline itself is a hydrophilic material. If its addition amount is too low, it will directly lead to a decrease in the hydrophilicity of the solar interface evaporation device, thereby affecting the water absorption and evaporation performance of the solar interface evaporation device; on the other hand, there is a synergistic effect between the short-chain polyaniline nanofibers formed by the self-polymerization of the aniline monomer and the modified Mxene nanosheets and the photothermal conversion material. If its addition amount is too low, it will directly affect the photothermal conversion ability of the modified Mxene nanosheets and the photothermal conversion material, thereby indirectly leading to a decrease in the photothermal conversion performance of the solar interface evaporation device. However, the water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 13 are lower than those in Example 1. This is because the concentration of the aniline monomer solution in Example 13 is too high, and short-chain polyaniline nanofibers cannot be formed on the surface of the modified MXene nanosheets, which affects the full photothermal conversion capacity of the modified MXene nanosheets, resulting in a decrease in the evaporation performance and photothermal conversion performance of the solar interface evaporation device.
由实施例1、实施例14和实施例15的测试数据可以看出,实施例14制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率低于实施例1,这是由于,实施例14中吡咯单体的添加量过高,生成过多的聚吡咯会堵塞太阳能界面蒸发器件内部的部分孔道,影响水分的传输和水蒸气的逸散,导致太阳能界面蒸发器件的吸水性能、蒸发性能和光热转换性能降低。而实施例15制备得到的太阳能界面蒸发器件的模拟海水攀升距离、水蒸发速率和光热转换效率低于实施例1,这是由于,实施例15中吡咯单体的添加量过低,一方面,聚吡咯本身是一种亲水性材料,其添加量过低会直接导致太阳能界面蒸发器件的亲水性降低,进而影响太阳能界面蒸发器件的吸水性能和蒸发性能,另一方面,聚吡咯作为光吸收位点,可以显著提高太阳能界面蒸发器件的光捕获能力,其生成量过低会直接影响太阳能界面蒸发器件的光热转换性能,同时,由于聚吡咯和改性Mxene纳米片之间还存在协同增效作用,聚吡咯的生成量过低也会在一定程度上影响改性Mxene纳米片的光热转换能力的充分发挥,从而间接影响太阳能界面蒸发器件的光热转换性能。It can be seen from the test data of Example 1, Example 14 and Example 15 that the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 14 are lower than those in Example 1. This is because the amount of pyrrole monomer added in Example 14 is too high, and the excessive amount of polypyrrole generated will block some of the pores inside the solar interface evaporation device, affecting the transmission of water and the escape of water vapor, resulting in reduced water absorption performance, evaporation performance and photothermal conversion performance of the solar interface evaporation device. However, the simulated seawater climbing distance, water evaporation rate and photothermal conversion efficiency of the solar interface evaporation device prepared in Example 15 are lower than those in Example 1. This is because the amount of pyrrole monomer added in Example 15 is too low. On the one hand, polypyrrole itself is a hydrophilic material. If its amount is too low, the hydrophilicity of the solar interface evaporation device will be reduced, thereby affecting the water absorption and evaporation performance of the solar interface evaporation device. On the other hand, polypyrrole, as a light absorption site, can significantly improve the light capture ability of the solar interface evaporation device. If its production amount is too low, it will directly affect the photothermal conversion performance of the solar interface evaporation device. At the same time, due to the synergistic effect between polypyrrole and the modified Mxene nanosheets, if the production amount of polypyrrole is too low, it will also affect the full play of the photothermal conversion ability of the modified Mxene nanosheets to a certain extent, thereby indirectly affecting the photothermal conversion performance of the solar interface evaporation device.
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。The applicant declares that the above is only a specific implementation mode of the present invention, but the protection scope of the present invention is not limited thereto. Those skilled in the art should understand that any changes or substitutions that can be easily thought of by those skilled in the art within the technical scope disclosed by the present invention are within the protection scope and disclosure scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411073767.7A CN118598251B (en) | 2024-08-07 | 2024-08-07 | A nanocellulose-based solar interface evaporation device, preparation method and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411073767.7A CN118598251B (en) | 2024-08-07 | 2024-08-07 | A nanocellulose-based solar interface evaporation device, preparation method and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118598251A true CN118598251A (en) | 2024-09-06 |
CN118598251B CN118598251B (en) | 2024-10-15 |
Family
ID=92552091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411073767.7A Active CN118598251B (en) | 2024-08-07 | 2024-08-07 | A nanocellulose-based solar interface evaporation device, preparation method and use thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118598251B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119019751A (en) * | 2024-09-23 | 2024-11-26 | 中鹏未来有限公司 | A method for preparing hydrogel using waste cotton, hydrogel and application thereof in drying treatment of landfill leachate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112108084A (en) * | 2020-10-13 | 2020-12-22 | 天津工业大学 | Preparation method of hydrogel with hierarchical pore structure for accelerating solar water evaporation |
CN114345135A (en) * | 2021-11-29 | 2022-04-15 | 长安大学 | A kind of MXene-based anti-swelling composite film production process and production device |
CN115725112A (en) * | 2022-11-09 | 2023-03-03 | 山东科技大学 | Janus double-layer aerogel and preparation method and application thereof |
KR20230089762A (en) * | 2021-12-14 | 2023-06-21 | 전남대학교산학협력단 | Method for manufacturing a composite of copper sulfide and carbon nitride, composite of copper sulfide and carbon nitride produced thereby, and seawater desalination system including the same |
-
2024
- 2024-08-07 CN CN202411073767.7A patent/CN118598251B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112108084A (en) * | 2020-10-13 | 2020-12-22 | 天津工业大学 | Preparation method of hydrogel with hierarchical pore structure for accelerating solar water evaporation |
CN114345135A (en) * | 2021-11-29 | 2022-04-15 | 长安大学 | A kind of MXene-based anti-swelling composite film production process and production device |
KR20230089762A (en) * | 2021-12-14 | 2023-06-21 | 전남대학교산학협력단 | Method for manufacturing a composite of copper sulfide and carbon nitride, composite of copper sulfide and carbon nitride produced thereby, and seawater desalination system including the same |
CN115725112A (en) * | 2022-11-09 | 2023-03-03 | 山东科技大学 | Janus double-layer aerogel and preparation method and application thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119019751A (en) * | 2024-09-23 | 2024-11-26 | 中鹏未来有限公司 | A method for preparing hydrogel using waste cotton, hydrogel and application thereof in drying treatment of landfill leachate |
CN119019751B (en) * | 2024-09-23 | 2025-06-13 | 中鹏未来有限公司 | A method for preparing hydrogel using waste cotton, hydrogel and application thereof in drying treatment of landfill leachate |
Also Published As
Publication number | Publication date |
---|---|
CN118598251B (en) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109385254B (en) | A kind of graphene elastic polymer phase change composite material and preparation method thereof | |
CN114405421B (en) | A kind of cellulose nanofiber airgel photothermal interface water evaporation material and preparation method thereof | |
CN107640757B (en) | Preparation method of composite carbon microsphere, composite carbon microsphere and lithium ion capacitor prepared from composite carbon microsphere | |
CN106115675B (en) | A kind of method for preparing mesoporous graphene | |
CN102874796A (en) | Nitrogen mixed grapheme hydrogel or aerogel and preparation method thereof | |
CN106025210A (en) | Molybdenum selenide/graphene/carbon nanotube composite material and preparation method thereof | |
CN118598251A (en) | A nanocellulose-based solar interface evaporation device, preparation method and use thereof | |
CN107161979B (en) | Carbon-based nanobelt porous material, and preparation method and application thereof | |
CN109929518A (en) | A kind of graphite oxide aerogel heat chemistry heat accumulation composite material and preparation method | |
CN117602610B (en) | Preparation method of bamboo hard carbon material and bamboo hard carbon material | |
CN103400701B (en) | A kind of manganese dioxide/carbon nanotube composite material and preparation method thereof | |
CN110217774B (en) | A starch-based hollow carbon microsphere material and its preparation method and heat storage application | |
CN101250325A (en) | Nano graphite flake/polyaniline composite rod material and preparation method thereof | |
CN111446432A (en) | Preparation method of nano silicon/carbon composite negative electrode material for lithium ion battery | |
CN103390509A (en) | Super-capacitor electrode material and preparation method thereof | |
CN110316719A (en) | A kind of MXene/ nitrogen-doped carbon nanometer pipe laminated film and preparation method thereof | |
CN112940340B (en) | Preparation method of polyurethane composite sponge with photo-thermal and electrothermal conversion performance | |
CN110961150A (en) | A kind of preparation method of porphyrin/carbon nitride layer-by-layer composite structure photocatalytic nanocomposite | |
CN115350720B (en) | A heterojunction structure rGO/g-CN aerogel and its preparation method and application | |
CN111285368B (en) | A kind of preparation method of nitrogen-boron double-doped porous hollow carbon nanocapsule material | |
CN111682215B (en) | A kind of preparation method of nitrogen-doped egg-yolk phenolic resin-based derivative carbon sphere | |
CN114479770A (en) | Photo-thermal phase change energy storage material and preparation method and application thereof | |
CN114573064A (en) | Preparation method of arched anti-salt-accumulation biochar-based-geopolymer/metal mesh hybrid membrane | |
CN108946797A (en) | The barium titanate@boron nitride composite and preparation method of one-dimensional nucleocapsid structure | |
CN114247432A (en) | A carbon fiber supported MOF material, preparation method and air water collecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |