CN118590035B - Duty cycle correction circuit - Google Patents
Duty cycle correction circuit Download PDFInfo
- Publication number
- CN118590035B CN118590035B CN202411064528.5A CN202411064528A CN118590035B CN 118590035 B CN118590035 B CN 118590035B CN 202411064528 A CN202411064528 A CN 202411064528A CN 118590035 B CN118590035 B CN 118590035B
- Authority
- CN
- China
- Prior art keywords
- transistor
- adjustment unit
- signal
- duty cycle
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007493 shaping process Methods 0.000 claims abstract description 87
- 230000000630 rising effect Effects 0.000 claims abstract description 14
- 238000004904 shortening Methods 0.000 claims abstract 2
- 239000000872 buffer Substances 0.000 claims description 48
- 230000005669 field effect Effects 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 14
- 230000008054 signal transmission Effects 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101100228853 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) gds gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/156—Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
- H03K5/1565—Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/01—Shaping pulses
- H03K5/04—Shaping pulses by increasing duration; by decreasing duration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/01—Shaping pulses
- H03K5/12—Shaping pulses by steepening leading or trailing edges
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation ; Duty cycle modulation
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Manipulation Of Pulses (AREA)
Abstract
Description
技术领域Technical Field
本申请属于信号校准技术领域,具体涉及一种占空比校正电路。The present application belongs to the technical field of signal calibration, and in particular relates to a duty cycle correction circuit.
背景技术Background Art
随着集成电路制造工艺的进步,集成电路工作的上限频率也随之增加,这就要求电路系统工作的频率范围变宽。在频率范围较宽的电路系统中,为了保证信号传输的准确性,需要时钟信号在采样时的占空比校准为50%,但是由于电路系统容易受到工艺、电压和温度等影响,在信号传输的过程中,易产生占空比的失真,导致时钟信号在采样时的占空比严重偏离50%,进而导致信号传输错误。With the advancement of integrated circuit manufacturing technology, the upper limit frequency of integrated circuit operation has also increased, which requires the frequency range of circuit system operation to be wider. In a circuit system with a wide frequency range, in order to ensure the accuracy of signal transmission, the duty cycle of the clock signal needs to be calibrated to 50% during sampling. However, since the circuit system is easily affected by the process, voltage and temperature, the duty cycle is easily distorted during the signal transmission process, causing the duty cycle of the clock signal to seriously deviate from 50% during sampling, which in turn causes signal transmission errors.
为了解决占空比失真导致的信号传输错误,现有技术采用占空比校正电路对失真的时钟信号进行校正。在一些技术方案中,占空比校正电路包括检测单元、判断单元和占空比调整单元,检测单元用于检测时钟信号的占空比是否失真,判断单元判断占空比失真程度,占空比调整单元用于调整占空比。In order to solve the signal transmission error caused by duty cycle distortion, the prior art uses a duty cycle correction circuit to correct the distorted clock signal. In some technical solutions, the duty cycle correction circuit includes a detection unit, a judgment unit and a duty cycle adjustment unit, the detection unit is used to detect whether the duty cycle of the clock signal is distorted, the judgment unit judges the degree of duty cycle distortion, and the duty cycle adjustment unit is used to adjust the duty cycle.
由于单个占空比调整单元的调整范围有限,占空比校正电路需要多级占空比调整单元级联。然而,多级占空比调整单元级联后,共模增益下降明显,影响信号传输的精度和准确性。Since the adjustment range of a single duty cycle adjustment unit is limited, the duty cycle correction circuit requires multiple duty cycle adjustment units to be cascaded. However, after the multiple duty cycle adjustment units are cascaded, the common mode gain decreases significantly, affecting the precision and accuracy of signal transmission.
发明内容Summary of the invention
本申请的目的在于提供一种占空比校正电路,以解决共模增益下降的问题。The purpose of the present application is to provide a duty cycle correction circuit to solve the problem of common mode gain reduction.
为了达到上述目的,本申请提供了一种占空比校正电路,包括多个级联的占空比调整模块,所述占空比调整模块包括:In order to achieve the above object, the present application provides a duty cycle correction circuit, including a plurality of cascaded duty cycle adjustment modules, wherein the duty cycle adjustment module includes:
边沿调整单元,包括时钟信号输入端、反馈信号输入端和时钟信号输出端,所述边沿调整单元根据所述反馈信号输入端的信号,调整所述时钟信号输入端的信号的上升沿时间或下降沿时间,生成所述时钟信号输出端的信号;An edge adjustment unit, comprising a clock signal input terminal, a feedback signal input terminal and a clock signal output terminal, wherein the edge adjustment unit adjusts the rising edge time or the falling edge time of the signal at the clock signal input terminal according to the signal at the feedback signal input terminal to generate a signal at the clock signal output terminal;
波形整形单元,与两个所述边沿调整单元的时钟信号输出端连接,用于缩短所述时钟信号输出端的信号的上升沿时间和下降沿时间;A waveform shaping unit, connected to the clock signal output ends of the two edge adjustment units, and used to shorten the rising edge time and falling edge time of the signal at the clock signal output ends;
相位调整单元,连接在所述边沿调整单元和所述波形整形单元之间或连接所述波形整形单元的两个输出端,至少用于调整所述边沿调整单元输出共模信号的相位或所述边沿调整单元和所述波形整形单元输出共模信号的相位,增大多个级联的所述占空比调整模块的共模增益。A phase adjustment unit is connected between the edge adjustment unit and the waveform shaping unit or connected to the two output ends of the waveform shaping unit, and is at least used to adjust the phase of the common mode signal output by the edge adjustment unit or the phase of the common mode signal output by the edge adjustment unit and the waveform shaping unit, thereby increasing the common mode gain of multiple cascaded duty cycle adjustment modules.
可选的,所述边沿调整单元包括第一调整单元和第二调整单元,所述第一调整单元的输入端和所述第二调整单元的输入端为所述时钟信号输入端,所述第一调整单元的输出端和所述第二调整单元的输出端为所述时钟信号输出端,所述第一调整单元的控制端为所述反馈信号输入端,所述第一调整单元根据所述反馈信号输入端的信号,调整所述时钟信号输入端的信号并输出至所述时钟信号输出端。Optionally, the edge adjustment unit includes a first adjustment unit and a second adjustment unit, the input end of the first adjustment unit and the input end of the second adjustment unit are the clock signal input end, the output end of the first adjustment unit and the output end of the second adjustment unit are the clock signal output end, the control end of the first adjustment unit is the feedback signal input end, and the first adjustment unit adjusts the signal of the clock signal input end according to the signal of the feedback signal input end and outputs it to the clock signal output end.
可选的,所述第一调整单元包括第一晶体管、第二晶体管和第一反相器,所述第二调整单元包括第二反相器,所述第一晶体管为P沟道场效应晶体管,所述第二晶体管为N沟道场效应晶体管,所述第一晶体管的控制端和所述第二晶体管的控制端为所述第一调整单元的控制端,所述第一晶体管的第一端与第一电源连接,所述第一晶体管的第二端与所述第一反相器的第一电源端连接,所述第二晶体管的第一端与第二电源连接,所述第二晶体管的第二端与所述第一反相器的第二电源端连接,所述第一反相器的输入端为所述第一调整单元的输入端,所述第一反相器的输出端为所述第一调整单元的输出端,所述第二反相器的第一电源端与所述第一电源连接,所述第二反相器的第二电源端与所述第二电源连接,所述第二反相器的输入端和输出端分别为所述第二调整单元的输入端和输出端。Optionally, the first adjustment unit includes a first transistor, a second transistor and a first inverter, the second adjustment unit includes a second inverter, the first transistor is a P-channel field effect transistor, the second transistor is an N-channel field effect transistor, the control end of the first transistor and the control end of the second transistor are the control ends of the first adjustment unit, the first end of the first transistor is connected to a first power supply, the second end of the first transistor is connected to a first power supply end of the first inverter, the first end of the second transistor is connected to a second power supply end, the second end of the second transistor is connected to a second power supply end of the first inverter, the input end of the first inverter is the input end of the first adjustment unit, the output end of the first inverter is the output end of the first adjustment unit, the first power supply end of the second inverter is connected to the first power supply, the second power supply end of the second inverter is connected to the second power supply, and the input end and output end of the second inverter are the input end and output end of the second adjustment unit respectively.
可选的,所述第一反相器包括第三晶体管和第四晶体管,所述第三晶体管为P沟道场效应晶体管,所述第四晶体管为N沟道场效应晶体管,所述第三晶体管的控制端和所述第四晶体管的控制端为所述第一反相器的输入端,所述第三晶体管的第一端与所述第一晶体管连接,所述第三晶体管的第二端与所述第四晶体管的第二端为所述第一反相器的输出端,所述第四晶体管的第一端与所述第二晶体管连接;Optionally, the first inverter includes a third transistor and a fourth transistor, the third transistor is a P-channel field effect transistor, the fourth transistor is an N-channel field effect transistor, the control end of the third transistor and the control end of the fourth transistor are input ends of the first inverter, the first end of the third transistor is connected to the first transistor, the second end of the third transistor and the second end of the fourth transistor are output ends of the first inverter, and the first end of the fourth transistor is connected to the second transistor;
所述第二反相器包括第五晶体管和第六晶体管,所述第五晶体管为P沟道场效应晶体管,所述第六晶体管为N沟道场效应晶体管,所述第五晶体管的控制端和所述第六晶体管的控制端为所述第二反相器的输入端,所述第五晶体管的第一端为所述第一电源端连接,所述第五晶体管的第二端与所述第六晶体管的第二端为所述第二反相器的输出端,所述第六晶体管的第一端为所述第二电源端。The second inverter includes a fifth transistor and a sixth transistor, the fifth transistor is a P-channel field effect transistor, the sixth transistor is an N-channel field effect transistor, the control end of the fifth transistor and the control end of the sixth transistor are input ends of the second inverter, the first end of the fifth transistor is connected to the first power supply end, the second end of the fifth transistor and the second end of the sixth transistor are output ends of the second inverter, and the first end of the sixth transistor is the second power supply end.
可选的,所述波形整形单元包括第一缓冲器、第二缓冲器、第一锁存器和第二锁存器,所述第一缓冲器和所述第二缓冲器包括反相缓冲器,所述第一缓冲器的输入端为所述波形整形单元的第一输入端,所述第二缓冲器的输入端为所述波形整形单元的第二输入端,所述第一缓冲器依次通过第一节点、第二节点与所述波形整形单元的第二输出端连接,所述第二缓冲器依次通过第三节点、第四节点与所述波形整形单元的第二输出端连接,所述第一锁存器的输入端和输出端分别连接所述第三节点和所述第一节点,所述第二锁存器的输入端和输出端分别连接所述第四节点和所述第二节点。Optionally, the waveform shaping unit includes a first buffer, a second buffer, a first latch and a second latch, the first buffer and the second buffer include an inverting buffer, the input end of the first buffer is the first input end of the waveform shaping unit, the input end of the second buffer is the second input end of the waveform shaping unit, the first buffer is connected to the second output end of the waveform shaping unit through a first node and a second node in sequence, the second buffer is connected to the second output end of the waveform shaping unit through a third node and a fourth node in sequence, the input end and the output end of the first latch are connected to the third node and the first node respectively, and the input end and the output end of the second latch are connected to the fourth node and the second node respectively.
可选的,所述相位调整单元包括第一信号放大器和第二信号放大器,所述第一信号放大器和所述第二信号放大器用于使前一级的所述占空比调整模块的所述边沿调整单元和所述波形整形单元输出共模信号的相位移动180°,与当前级的所述占空比调整模块的共模信号同相,在当前级的所述占空比调整模块的边沿调整单元处两个共模信号同相求和,所述第一信号放大器的输入端与所述波形整形单元的第一输出端连接,所述第二信号放大器的输入端与所述波形整形单元的第二输出端连接。Optionally, the phase adjustment unit includes a first signal amplifier and a second signal amplifier, and the first signal amplifier and the second signal amplifier are used to shift the phase of the common-mode signal output by the edge adjustment unit and the waveform shaping unit of the duty cycle adjustment module of the previous stage by 180°, so as to be in phase with the common-mode signal of the duty cycle adjustment module of the current stage, and the two common-mode signals are summed in phase at the edge adjustment unit of the duty cycle adjustment module of the current stage, the input end of the first signal amplifier is connected to the first output end of the waveform shaping unit, and the input end of the second signal amplifier is connected to the second output end of the waveform shaping unit.
可选的,所述第一信号放大器和所述第二信号放大器包括反相缓冲器或推挽共源放大器。Optionally, the first signal amplifier and the second signal amplifier include inverting buffers or push-pull common-source amplifiers.
可选的,所述相位调整单元包括第一信号放大器和第二信号放大器,所述第一信号放大器和所述第二信号放大器用于使前一级的所述占空比调整模块的所述边沿调整单元输出共模信号的相位移动180°,与当前级的所述占空比调整模块的共模信号同相,在当前级的所述占空比调整模块的边沿调整单元处两个共模信号同相求和,两个所述边沿调整单元包括第一边沿调整单元和第二边沿调整单元,所述第一信号放大器的输入端与所述第一边沿调整单元的输出端及所述波形整形单元的第一输入端连接,所述第二信号放大器的输入端与所述第二边沿调整单元的输出端及所述波形整形单元的第二输入端连接。Optionally, the phase adjustment unit includes a first signal amplifier and a second signal amplifier, and the first signal amplifier and the second signal amplifier are used to shift the phase of the common-mode signal output by the edge adjustment unit of the duty cycle adjustment module of the previous stage by 180°, and to be in phase with the common-mode signal of the duty cycle adjustment module of the current stage, and the two common-mode signals are summed in phase at the edge adjustment unit of the duty cycle adjustment module of the current stage, and the two edge adjustment units include a first edge adjustment unit and a second edge adjustment unit, and the input end of the first signal amplifier is connected to the output end of the first edge adjustment unit and the first input end of the waveform shaping unit, and the input end of the second signal amplifier is connected to the output end of the second edge adjustment unit and the second input end of the waveform shaping unit.
可选的,所述第一信号放大器和所述第二信号放大器包括反相缓冲器或推挽共源放大器。Optionally, the first signal amplifier and the second signal amplifier include inverting buffers or push-pull common-source amplifiers.
可选的,所述占空比校正电路还包括检测模块和判断模块,所述检测模块用于检测时钟信号的占空比是否失真,所述判断模块连接所述检测模块和第一级的所述占空比调整模块,所述判断模块输出反映占空比失真程度的反馈信号至所述反馈信号输入端。Optionally, the duty cycle correction circuit also includes a detection module and a judgment module, the detection module is used to detect whether the duty cycle of the clock signal is distorted, the judgment module connects the detection module and the first-stage duty cycle adjustment module, and the judgment module outputs a feedback signal reflecting the degree of duty cycle distortion to the feedback signal input terminal.
本申请公开的占空比校正电路具有以下有益效果:The duty cycle correction circuit disclosed in the present application has the following beneficial effects:
本申请中,占空比校正电路包括多个级联的占空比调整模块,占空比调整模块包括边沿调整单元、波形整形单元和相位调整单元,边沿调整单元根据反馈信号输入端的反馈信号,调整时钟信号输入端的时钟信号的上升沿时间或下降沿时间,生成时钟信号输出端的信号,波形整形单元与两个边沿调整单元的时钟信号输出端连接,用于缩短时钟信号输出端的信号的上升沿时间和下降沿时间,相位调整单元连接在边沿调整单元和波形整形单元之间或连接波形整形单元的两个输出端。相位调整单元调整边沿调整单元和波形整形单元输出共模信号的相位,增大了多个级联的占空比调整模块的共模增益,提高了共模信号的传递效率以及信号传输的精度和准确性。In the present application, the duty cycle correction circuit includes a plurality of cascaded duty cycle adjustment modules, the duty cycle adjustment module includes an edge adjustment unit, a waveform shaping unit and a phase adjustment unit, the edge adjustment unit adjusts the rising edge time or falling edge time of the clock signal at the clock signal input end according to the feedback signal at the feedback signal input end, and generates a signal at the clock signal output end, the waveform shaping unit is connected to the clock signal output ends of the two edge adjustment units, and is used to shorten the rising edge time and falling edge time of the signal at the clock signal output end, and the phase adjustment unit is connected between the edge adjustment unit and the waveform shaping unit or connects the two output ends of the waveform shaping unit. The phase adjustment unit adjusts the phase of the common mode signal output by the edge adjustment unit and the waveform shaping unit, thereby increasing the common mode gain of the plurality of cascaded duty cycle adjustment modules, and improving the transmission efficiency of the common mode signal and the precision and accuracy of the signal transmission.
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。Other features and advantages of the present application will become apparent from the following detailed description, or may be learned in part by the practice of the present application.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。The drawings herein are incorporated into the specification and constitute a part of the specification, illustrate embodiments consistent with the present application, and together with the specification are used to explain the principles of the present application. Obviously, the drawings described below are only some embodiments of the present application, and for ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1是本申请实施例中占空比校正电路的结构示意图。FIG. 1 is a schematic diagram of the structure of a duty cycle correction circuit in an embodiment of the present application.
图2是本申请实施例中占空比调整模块的结构示意图。FIG. 2 is a schematic diagram of the structure of a duty cycle adjustment module in an embodiment of the present application.
图3是本申请实施例中边沿调整单元的结构示意图。FIG. 3 is a schematic diagram of the structure of an edge adjustment unit in an embodiment of the present application.
图4是本申请实施例中波形整形单元的结构示意图。FIG. 4 is a schematic diagram of the structure of a waveform shaping unit in an embodiment of the present application.
图5是本申请实施例中相位调整单元位于波形整形单元之后示意图。FIG. 5 is a schematic diagram showing that the phase adjustment unit is located after the waveform shaping unit in an embodiment of the present application.
图6是本申请实施例中相位调整单元位于波形整形单元之前示意图。FIG. 6 is a schematic diagram showing that a phase adjustment unit is located before a waveform shaping unit in an embodiment of the present application.
附图标记说明:Description of reference numerals:
10、占空比调整模块;10. Duty cycle adjustment module;
100、边沿调整单元;100a、第一边沿调整单元;100b、第二边沿调整单元;110、第一调整单元;111、第一晶体管;112、第二晶体管;113、第三晶体管;114、第四晶体管;120、第二调整单元;121、第五晶体管;122、第六晶体管;100, edge adjustment unit; 100a, first edge adjustment unit; 100b, second edge adjustment unit; 110, first adjustment unit; 111, first transistor; 112, second transistor; 113, third transistor; 114, fourth transistor; 120, second adjustment unit; 121, fifth transistor; 122, sixth transistor;
200、波形整形单元;210、第一缓冲器;220、第二缓冲器;230、第一锁存器;240、第二锁存器;200, waveform shaping unit; 210, first buffer; 220, second buffer; 230, first latch; 240, second latch;
300、相位调整单元;310、第一信号放大器;320、第二信号放大器。300, phase adjustment unit; 310, first signal amplifier; 320, second signal amplifier.
具体实施方式DETAILED DESCRIPTION
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。Example embodiments will now be described more fully with reference to the accompanying drawings. However, example embodiments can be implemented in a variety of forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this application will be more comprehensive and complete and fully convey the concept of the example embodiments to those skilled in the art.
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。In addition, described feature, structure or characteristic can be combined in one or more embodiments in any suitable manner. In the following description, many specific details are provided to provide a full understanding of the embodiments of the present application. However, those skilled in the art will appreciate that the technical scheme of the present application can be put into practice without one or more of the specific details, or other methods, components, devices, steps, etc. can be adopted. In other cases, known methods, devices, realizations or operations are not shown or described in detail to avoid blurring the various aspects of the application.
下面结合附图和具体实施例对本申请作进一步详述。在此需要说明的是,下面所描述的本申请各个实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。The present application is further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be noted that the technical features involved in the various embodiments of the present application described below can be combined with each other as long as they do not conflict with each other. The embodiments described below with reference to the accompanying drawings are exemplary and are intended to be used to explain the present application, and should not be understood as limiting the present application.
参见图1和图2所示,本实施例中占空比校正电路包括多个级联的占空比调整模块10,占空比调整模块10包括边沿调整单元100、波形整形单元200和相位调整单元300。1 and 2 , the duty cycle correction circuit in this embodiment includes a plurality of cascaded duty cycle adjustment modules 10 , and the duty cycle adjustment module 10 includes an edge adjustment unit 100 , a waveform shaping unit 200 and a phase adjustment unit 300 .
边沿调整单元100包括时钟信号输入端、反馈信号输入端和时钟信号输出端。边沿调整单元100根据反馈信号输入端的反馈信号,调整时钟信号输入端的时钟信号的上升沿时间或下降沿时间,生成时钟信号输出端的信号。占空比调整模块10包括两个边沿调整单元100,分别为第一边沿调整单元100a和第二边沿调整单元100b。The edge adjustment unit 100 includes a clock signal input terminal, a feedback signal input terminal and a clock signal output terminal. The edge adjustment unit 100 adjusts the rising edge time or the falling edge time of the clock signal at the clock signal input terminal according to the feedback signal at the feedback signal input terminal, and generates a signal at the clock signal output terminal. The duty cycle adjustment module 10 includes two edge adjustment units 100, namely a first edge adjustment unit 100a and a second edge adjustment unit 100b.
波形整形单元200包括第一输入端、第二输入端、第一输出端和第二输出端,波形整形单元200的第一输入端和第二输入端一一对应与第一边沿调整单元100a和第二边沿调整单元100b的时钟信号输出端连接。波形整形单元200用于缩短时钟信号输出端的信号的上升沿时间和下降沿时间,将时钟信号的上升沿与下降沿整形成锐利的边沿,即调整了高低电平各自的长度,进而达到调整占空比的目的。The waveform shaping unit 200 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal. The first input terminal and the second input terminal of the waveform shaping unit 200 are connected to the clock signal output terminals of the first edge adjustment unit 100a and the second edge adjustment unit 100b in a one-to-one correspondence. The waveform shaping unit 200 is used to shorten the rising edge time and the falling edge time of the signal at the clock signal output terminal, and shape the rising edge and the falling edge of the clock signal into sharp edges, that is, adjust the lengths of the high and low levels, thereby achieving the purpose of adjusting the duty cycle.
相位调整单元300包括第一输入端、第二输入端、第一输出端和第二输出端,相位调整单元300的第一输入端和第二输入端一一对应与波形整形单元200的第一输出端和第二输出端连接,相位调整单元300的第一输出端和第二输出端为占空比调整模块10的两个输出端。也就是说,相位调整单元300连接波形整形单元200的两个输出端。相位调整单元300用于调整边沿调整单元100和波形整形单元200输出共模信号的相位,增大了多个级联的占空比调整模块10的共模增益和差模增益。The phase adjustment unit 300 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal. The first input terminal and the second input terminal of the phase adjustment unit 300 are connected to the first output terminal and the second output terminal of the waveform shaping unit 200 in a one-to-one correspondence. The first output terminal and the second output terminal of the phase adjustment unit 300 are two output terminals of the duty cycle adjustment module 10. In other words, the phase adjustment unit 300 is connected to the two output terminals of the waveform shaping unit 200. The phase adjustment unit 300 is used to adjust the phase of the common mode signal output by the edge adjustment unit 100 and the waveform shaping unit 200, thereby increasing the common mode gain and differential mode gain of multiple cascaded duty cycle adjustment modules 10.
输入占空比调整模块10的时钟信号包括差分输入的第一输入时钟信号clk.inp和第二输入时钟信号clk.inm,第一输入时钟信号clk.inp从第一边沿调整单元100a的时钟信号输入端输入,第二输入时钟信号clk.inm从第二边沿调整单元100b的时钟信号输入端输入。反馈信号包括第一反馈信号Vdcc.m和第二反馈信号Vdcc.p,两个边沿调整单元100分别根据第一反馈信号Vdcc.m和第二反馈信号Vdcc.p,调整第一输入时钟信号clk.inp和第二输入时钟信号clk.inm的上升沿时间或下降沿时间,生成第一中间时钟信号clk.tsm和第二中间时钟信号clk.tsp,第一中间时钟信号clk.tsm和第二中间时钟信号clk.tsp再经过波形整形单元200整形,生成第一输出时钟信号clk.outp和第二输出时钟信号clk.outm。The clock signal of the input duty cycle adjustment module 10 includes a differential input first input clock signal clk.inp and a second input clock signal clk.inm, the first input clock signal clk.inp is input from the clock signal input end of the first edge adjustment unit 100a, and the second input clock signal clk.inm is input from the clock signal input end of the second edge adjustment unit 100b. The feedback signal includes a first feedback signal Vdcc.m and a second feedback signal Vdcc.p, and the two edge adjustment units 100 adjust the rising edge time or the falling edge time of the first input clock signal clk.inp and the second input clock signal clk.inm according to the first feedback signal Vdcc.m and the second feedback signal Vdcc.p respectively, to generate a first intermediate clock signal clk.tsm and a second intermediate clock signal clk.tsp, and the first intermediate clock signal clk.tsm and the second intermediate clock signal clk.tsp are then shaped by the waveform shaping unit 200 to generate a first output clock signal clk.outp and a second output clock signal clk.outm.
需要说明的是,相位调整单元300可连接波形整形单元200的两个输出端,但不限于此,相位调整单元300也可连接在边沿调整单元100和波形整形单元200之间,具体可视情况而定。也就是说,相位调整单元300的第一输入端和第二输入端一一对应与第一边沿调整单元100a和第二边沿调整单元100b的时钟信号输出端连接,相位调整单元300的第一输出端和第二输出端一一对应与波形整形单元200的第一输入端和第二输入端连接。波形整形单元200的第一输出端和第二输出端为占空比调整模块10的两个输出端。It should be noted that the phase adjustment unit 300 can be connected to the two output ends of the waveform shaping unit 200, but is not limited thereto. The phase adjustment unit 300 can also be connected between the edge adjustment unit 100 and the waveform shaping unit 200, depending on the specific situation. That is, the first input end and the second input end of the phase adjustment unit 300 are connected to the clock signal output ends of the first edge adjustment unit 100a and the second edge adjustment unit 100b in a one-to-one correspondence, and the first output end and the second output end of the phase adjustment unit 300 are connected to the first input end and the second input end of the waveform shaping unit 200 in a one-to-one correspondence. The first output end and the second output end of the waveform shaping unit 200 are the two output ends of the duty cycle adjustment module 10.
由于单个边沿调整单元100的调整范围有限,占空比校正电路需要多级边沿调整单元100级联。在占空比调整模块10为边沿调整单元100和波形整形单元200时,前一级的边沿调整单元100的输出端的共模信号与当前级共模输入信号相位相反,导致共模增益下降明显,共模信号的传递效率降低,影响信号传输的精度和准确性。Since the adjustment range of a single edge adjustment unit 100 is limited, the duty cycle correction circuit requires a cascade of multiple edge adjustment units 100. When the duty cycle adjustment module 10 is an edge adjustment unit 100 and a waveform shaping unit 200, the common mode signal at the output end of the edge adjustment unit 100 of the previous stage is opposite in phase to the common mode input signal of the current stage, resulting in a significant decrease in the common mode gain, a decrease in the transmission efficiency of the common mode signal, and affecting the precision and accuracy of signal transmission.
本实施例中,占空比校正电路包括多个级联的占空比调整模块10,占空比调整模块10包括边沿调整单元100、波形整形单元200和相位调整单元300,边沿调整单元100根据反馈信号输入端的反馈信号,调整时钟信号输入端的时钟信号的上升沿时间或下降沿时间,生成时钟信号输出端的信号,波形整形单元200与两个边沿调整单元100的时钟信号输出端连接,用于缩短时钟信号输出端的信号的上升沿时间和下降沿时间,相位调整单元300连接在边沿调整单元100和波形整形单元200之间或连接波形整形单元200的两个输出端。相位调整单元300调整边沿调整单元100和波形整形单元200输出共模信号的相位,增大了多个级联的占空比调整模块10的共模增益,提高了共模信号的传递效率以及信号传输的精度和准确性。In this embodiment, the duty cycle correction circuit includes a plurality of cascaded duty cycle adjustment modules 10, the duty cycle adjustment module 10 includes an edge adjustment unit 100, a waveform shaping unit 200 and a phase adjustment unit 300, the edge adjustment unit 100 adjusts the rising edge time or falling edge time of the clock signal at the clock signal input end according to the feedback signal at the feedback signal input end, and generates a signal at the clock signal output end, the waveform shaping unit 200 is connected to the clock signal output ends of the two edge adjustment units 100, and is used to shorten the rising edge time and falling edge time of the signal at the clock signal output end, and the phase adjustment unit 300 is connected between the edge adjustment unit 100 and the waveform shaping unit 200 or connected to the two output ends of the waveform shaping unit 200. The phase adjustment unit 300 adjusts the phase of the common mode signal output by the edge adjustment unit 100 and the waveform shaping unit 200, thereby increasing the common mode gain of the plurality of cascaded duty cycle adjustment modules 10, and improving the transmission efficiency of the common mode signal and the precision and accuracy of the signal transmission.
参见图2和图3所示,本实施例中边沿调整单元100包括第一调整单元110和第二调整单元120,第一调整单元110的输入端和第二调整单元120的输入端为时钟信号输入端,第一调整单元110的输出端和第二调整单元120的输出端为时钟信号输出端。第一调整单元110的控制端为反馈信号输入端,第一调整单元110根据反馈信号输入端的信号,调整时钟信号输入端的信号并输出至时钟信号输出端。2 and 3, the edge adjustment unit 100 in this embodiment includes a first adjustment unit 110 and a second adjustment unit 120. The input end of the first adjustment unit 110 and the input end of the second adjustment unit 120 are clock signal input ends, and the output end of the first adjustment unit 110 and the output end of the second adjustment unit 120 are clock signal output ends. The control end of the first adjustment unit 110 is a feedback signal input end. The first adjustment unit 110 adjusts the signal at the clock signal input end according to the signal at the feedback signal input end and outputs it to the clock signal output end.
边沿调整单元100由第一调整单元110和第二调整单元120构成,第一调整单元110和第二调整单元120并联,确保在极端情况下反馈环路失效时电路仍可将输入时钟信号传递下去,保证了时钟路径电路的稳定性。The edge adjustment unit 100 is composed of a first adjustment unit 110 and a second adjustment unit 120. The first adjustment unit 110 and the second adjustment unit 120 are connected in parallel to ensure that the circuit can still pass the input clock signal when the feedback loop fails in extreme cases, thereby ensuring the stability of the clock path circuit.
在一些实施例中,第一调整单元110包括第一晶体管111、第二晶体管112和第一反相器,第二调整单元120包括第二反相器。第一晶体管111为P沟道场效应晶体管,第二晶体管112为N沟道场效应晶体管。第一晶体管111的控制端和第二晶体管112的控制端为第一调整单元110的控制端,第一晶体管111的第一端与第一电源Vcc连接,第一晶体管111的第二端与第一反相器的第一电源端连接,第二晶体管112的第一端与第二电源连接,第二电源包括接地端GND,第二晶体管112的第二端与第一反相器的第二电源端连接。In some embodiments, the first adjustment unit 110 includes a first transistor 111, a second transistor 112 and a first inverter, and the second adjustment unit 120 includes a second inverter. The first transistor 111 is a P-channel field effect transistor, and the second transistor 112 is an N-channel field effect transistor. The control end of the first transistor 111 and the control end of the second transistor 112 are the control ends of the first adjustment unit 110, the first end of the first transistor 111 is connected to the first power supply Vcc, the second end of the first transistor 111 is connected to the first power supply end of the first inverter, the first end of the second transistor 112 is connected to the second power supply, the second power supply includes a ground terminal GND, and the second end of the second transistor 112 is connected to the second power supply end of the first inverter.
第一反相器的输入端为第一调整单元110的输入端,第一反相器的输出端为第一调整单元110的输出端。第二反相器的第一电源端与第一电源Vcc连接,第二反相器的第二电源端与第二电源连接,第二反相器的输入端和输出端分别为第二调整单元120的输入端和输出端。The input end of the first inverter is the input end of the first adjustment unit 110, and the output end of the first inverter is the output end of the first adjustment unit 110. The first power supply end of the second inverter is connected to the first power supply Vcc, the second power supply end of the second inverter is connected to the second power supply, and the input end and output end of the second inverter are the input end and output end of the second adjustment unit 120 respectively.
第一调整单元110包括第一晶体管111、第二晶体管112和第一反相器,第二调整单元120包括第二反相器,第一调整单元110和第二调整单元120结构简单,多级边沿调整单元100级联容易实现。The first adjustment unit 110 includes a first transistor 111, a second transistor 112 and a first inverter, and the second adjustment unit 120 includes a second inverter. The first adjustment unit 110 and the second adjustment unit 120 have simple structures, and the cascade connection of multiple edge adjustment units 100 is easy to implement.
在一些实施例中,第一反相器包括第三晶体管113和第四晶体管114,第三晶体管113为P沟道场效应晶体管,第四晶体管114为N沟道场效应晶体管。第三晶体管113的控制端和第四晶体管114的控制端为第一反相器的输入端,第三晶体管113的第一端与第一晶体管111的第二端连接,第三晶体管113的第二端与第四晶体管114的第二端为第一反相器的输出端,第四晶体管114的第一端与第二晶体管112的第二端连接。In some embodiments, the first inverter includes a third transistor 113 and a fourth transistor 114, the third transistor 113 is a P-channel field effect transistor, and the fourth transistor 114 is an N-channel field effect transistor. The control end of the third transistor 113 and the control end of the fourth transistor 114 are the input end of the first inverter, the first end of the third transistor 113 is connected to the second end of the first transistor 111, the second end of the third transistor 113 and the second end of the fourth transistor 114 are the output end of the first inverter, and the first end of the fourth transistor 114 is connected to the second end of the second transistor 112.
第二反相器包括第五晶体管121和第六晶体管122,第五晶体管121为P沟道场效应晶体管,第六晶体管122为N沟道场效应晶体管。第五晶体管121的控制端和第六晶体管122的控制端为第二反相器的输入端,第五晶体管121的第一端为第一电源端,与第一电源Vcc连接,第五晶体管121的第二端与第六晶体管122的第二端为第二反相器的输出端,第六晶体管122的第一端为第二电源端,与接地端GND连接。The second inverter includes a fifth transistor 121 and a sixth transistor 122, wherein the fifth transistor 121 is a P-channel field effect transistor, and the sixth transistor 122 is an N-channel field effect transistor. The control end of the fifth transistor 121 and the control end of the sixth transistor 122 are input ends of the second inverter, the first end of the fifth transistor 121 is a first power supply end, connected to the first power supply Vcc, the second end of the fifth transistor 121 and the second end of the sixth transistor 122 are output ends of the second inverter, and the first end of the sixth transistor 122 is a second power supply end, connected to the ground end GND.
第一晶体管111、第二晶体管112、第三晶体管113、第四晶体管114、第五晶体管121和第六晶体管122的控制端、第一端、第二端可分别为其栅极、源极和漏极。The control terminal, the first terminal, and the second terminal of the first transistor 111 , the second transistor 112 , the third transistor 113 , the fourth transistor 114 , the fifth transistor 121 , and the sixth transistor 122 may be the gate, the source, and the drain thereof, respectively.
若边沿调整单元100的输入信号为Vin,输出信号为Vout,反馈信号为Vdcc,则输出信号Vout与输入信号Vin的关系为以下公式1:If the input signal of the edge adjustment unit 100 is Vin, the output signal is Vout, and the feedback signal is Vdcc, then the relationship between the output signal Vout and the input signal Vin is as follows:
其中,gm1为第一晶体管111的跨导,gm3为第三晶体管113的跨导,gm5为第五晶体管121的跨导,gds1为第一晶体管111输出导纳,gds5为第五晶体管121输出导纳。第二晶体管112的跨导及输出跨导与第一晶体管111的跨导及输出跨导相同,第四晶体管114的跨导及输出跨导与第三晶体管113的跨导及输出跨导相同,第六晶体管122的跨导及输出跨导与第五晶体管121的跨导及输出跨导相同。Wherein, gm1 is the transconductance of the first transistor 111, gm3 is the transconductance of the third transistor 113, gm5 is the transconductance of the fifth transistor 121, gds1 is the output admittance of the first transistor 111, and gds5 is the output admittance of the fifth transistor 121. The transconductance and output transconductance of the second transistor 112 are the same as the transconductance and output transconductance of the first transistor 111, the transconductance and output transconductance of the fourth transistor 114 are the same as the transconductance and output transconductance of the third transistor 113, and the transconductance and output transconductance of the sixth transistor 122 are the same as the transconductance and output transconductance of the fifth transistor 121.
由式1可知,对输入信号Vin及反馈信号Vdcc,边沿调整单元100的增益差不多在同一个数量级,前一级的边沿调整单元100的输出端的共模信号在当前级的边沿调整单元100处反相求和,将导致共模增益明显下降。It can be seen from Formula 1 that for the input signal Vin and the feedback signal Vdcc, the gain of the edge adjustment unit 100 is almost at the same order of magnitude. The common-mode signal at the output end of the edge adjustment unit 100 of the previous stage is inverted and summed at the edge adjustment unit 100 of the current stage, which will cause the common-mode gain to decrease significantly.
参见图2和图4所示,波形整形单元200两个缓冲器(buffer)和两个锁存器(latch),具体包括第一缓冲器210、第二缓冲器220、第一锁存器230和第二锁存器240。第一缓冲器210和第二缓冲器220包括反相缓冲器。第一缓冲器210的输入端为波形整形单元200的第一输入端,第二缓冲器220的输入端为波形整形单元200的第二输入端,第一缓冲器210依次通过第一节点A、第二节点B与波形整形单元200的第一输出端连接,第二缓冲器220依次通过第三节点C、第四节点D与波形整形单元200的第二输出端连接。第一锁存器230的输入端和输出端分别连接第一节点A和第三节点C,第二锁存器240的输入端和输出端分别连接第四节点D和第二节点B。As shown in FIG. 2 and FIG. 4 , the waveform shaping unit 200 includes two buffers and two latches, specifically including a first buffer 210, a second buffer 220, a first latch 230, and a second latch 240. The first buffer 210 and the second buffer 220 include inverting buffers. The input end of the first buffer 210 is the first input end of the waveform shaping unit 200, and the input end of the second buffer 220 is the second input end of the waveform shaping unit 200. The first buffer 210 is connected to the first output end of the waveform shaping unit 200 through the first node A and the second node B in sequence, and the second buffer 220 is connected to the second output end of the waveform shaping unit 200 through the third node C and the fourth node D in sequence. The input end and the output end of the first latch 230 are connected to the first node A and the third node C, respectively, and the input end and the output end of the second latch 240 are connected to the fourth node D and the second node B, respectively.
若波形整形单元200的第一输入端信号为Vinp,波形整形单元200的第二输入端信号为Vinm,波形整形单元200的第一输出端信号为Voutm,波形整形单元200的第二输出端信号为Voutp,波形整形单元200的输入信号和输出信号的关系为以下公式2和3:If the first input terminal signal of the waveform shaping unit 200 is Vinp, the second input terminal signal of the waveform shaping unit 200 is Vinm, the first output terminal signal of the waveform shaping unit 200 is Voutm, and the second output terminal signal of the waveform shaping unit 200 is Voutp, the relationship between the input signal and the output signal of the waveform shaping unit 200 is the following formulas 2 and 3:
其中,gm_buffer1为第一缓冲器210的跨导,gm_latch3为第一锁存器230的跨导,gds_buffer1为第一缓冲器210输出导纳,gds_latch3为第一锁存器230输出导纳。第二缓冲器220的跨导及输出导纳与第一缓冲器210的跨导及输出导纳相同,第二锁存器240的跨导及输出导纳与第一锁存器230的跨导及输出导纳相同。Among them, gm_buffer1 is the transconductance of the first buffer 210, gm_latch3 is the transconductance of the first latch 230, gds_buffer1 is the output admittance of the first buffer 210, and gds_latch3 is the output admittance of the first latch 230. The transconductance and output admittance of the second buffer 220 are the same as those of the first buffer 210, and the transconductance and output admittance of the second latch 240 are the same as those of the first latch 230.
根据式1和式2可知,波形整形单元200的输出端对反馈信号Vdcc的共模传递函数为以下公式4:According to Formula 1 and Formula 2, the common-mode transfer function of the output terminal of the waveform shaping unit 200 to the feedback signal Vdcc is as follows:
若不借助相位调整单元300调整共模信号的相位,第二级的占空比调整模块10的边沿调整单元100的输出端的共模信号为以下公式5:If the phase adjustment unit 300 is not used to adjust the phase of the common mode signal, the common mode signal at the output end of the edge adjustment unit 100 of the second-stage duty cycle adjustment module 10 is expressed by the following formula 5:
将式5变形,可得以下公式6:Transforming formula 5, we can get the following formula 6:
由式5和式6可知,若不借助相位调整单元300调整共模信号的相位,前一级的共模信号与当前级的占空比调整模块10的边沿调整单元100的输入共模信号相位相反,将在当前级的边沿调整单元100处反相求和,从而降低共模信号的传递效率。It can be seen from Equations 5 and 6 that if the phase of the common-mode signal is not adjusted with the help of the phase adjustment unit 300, the common-mode signal of the previous stage and the input common-mode signal of the edge adjustment unit 100 of the duty cycle adjustment module 10 of the current stage will be in opposite phase, and will be summed in reverse phase at the edge adjustment unit 100 of the current stage, thereby reducing the transmission efficiency of the common-mode signal.
参见图2和图5所示,相位调整单元300包括第一信号放大器310和第二信号放大器320,第一信号放大器310和第二信号放大器320用于使前一级的占空比调整模块10的边沿调整单元100和波形整形单元200输出共模信号的相位移动180°,与当前级的占空比调整模块10的共模信号同相,在当前级的占空比调整模块10的边沿调整单元100处两个共模信号同相求和。第一信号放大器310的输入端与波形整形单元200的第一输出端连接,第二信号放大器320的输入端与波形整形单元200的第二输出端连接。2 and 5 , the phase adjustment unit 300 includes a first signal amplifier 310 and a second signal amplifier 320. The first signal amplifier 310 and the second signal amplifier 320 are used to shift the phase of the common mode signal output by the edge adjustment unit 100 and the waveform shaping unit 200 of the duty cycle adjustment module 10 of the previous stage by 180°, and to be in phase with the common mode signal of the duty cycle adjustment module 10 of the current stage, and the two common mode signals are summed in phase at the edge adjustment unit 100 of the duty cycle adjustment module 10 of the current stage. The input end of the first signal amplifier 310 is connected to the first output end of the waveform shaping unit 200, and the input end of the second signal amplifier 320 is connected to the second output end of the waveform shaping unit 200.
在相位调整单元300与波形整形单元200的两个输出端连接时,若波形整形单元200的第一输入端信号为Vinp,波形整形单元200的第二输入端信号为Vinm,相位调整单元300的第一输出端信号为Voutm,相位调整单元300的第二输出端信号为Voutp,则输入信号和输出信号的关系为以下公式7和8:When the phase adjustment unit 300 is connected to two output ends of the waveform shaping unit 200, if the first input end signal of the waveform shaping unit 200 is Vinp, the second input end signal of the waveform shaping unit 200 is Vinm, the first output end signal of the phase adjustment unit 300 is Voutm, and the second output end signal of the phase adjustment unit 300 is Voutp, the relationship between the input signal and the output signal is as follows: Formulas 7 and 8:
其中,gm_buffer5为第一信号放大器310的跨导,gds_buffer5为第一信号放大器310输出导纳,第二信号放大器320的跨导及输出导纳与第一信号放大器310的跨导及输出导纳相同。Among them, gm_buffer5 is the transconductance of the first signal amplifier 310 , gds_buffer5 is the output admittance of the first signal amplifier 310 , and the transconductance and output admittance of the second signal amplifier 320 are the same as the transconductance and output admittance of the first signal amplifier 310 .
由式7和8可得,其共模信号的相位相对于式2移动了180°,增益幅值增加了一个反相器的本征增益,其差模信号的相位无变化,增益幅值也增加了一个反相器的本征增益。结合式1与式9,可得占空比调整模块10链中的第二级的边沿调整单元100输出节点的共模信号为以下公式9:From equations 7 and 8, it can be obtained that the phase of the common-mode signal is shifted by 180° relative to equation 2, and the gain amplitude increases the intrinsic gain of an inverter. The phase of the differential-mode signal does not change, and the gain amplitude also increases the intrinsic gain of an inverter. Combining equations 1 and 9, the common-mode signal of the output node of the edge adjustment unit 100 of the second stage in the duty cycle adjustment module 10 chain can be obtained as the following equation 9:
由式9可见,未设置相位调整单元300时,占空比调整模块10级联链路前一级的共模信号将在当前级处反相求和,降低了共模信号的传递效率,在设置相位调整单元300后,其前一级的共模信号将在当前级处与输入共模信号同相求和,从而提高了共模增益,提高了共模信号的传递效率,降低了共模链路中的电压裕度开销。It can be seen from Formula 9 that when the phase adjustment unit 300 is not set, the common-mode signal of the previous stage of the cascade link of the duty cycle adjustment module 10 will be summed in anti-phase at the current stage, reducing the transmission efficiency of the common-mode signal. After the phase adjustment unit 300 is set, the common-mode signal of the previous stage will be summed in phase with the input common-mode signal at the current stage, thereby improving the common-mode gain, improving the transmission efficiency of the common-mode signal, and reducing the voltage margin overhead in the common-mode link.
需要说明的是,可在波形整形单元200的输出端设置相位调整单元300,使前一级的占空比调整模块10的边沿调整单元100和波形整形单元200输出共模信号在当前级的占空比调整模块10的边沿调整单元100处两个共模信号同相求和,但不限于此,也可降低波形整形单元200中第一锁存器230和第二锁存器240的增益,提高链路共模增益,具体可视情况而定。It should be noted that a phase adjustment unit 300 may be provided at the output end of the waveform shaping unit 200 so that the edge adjustment unit 100 of the duty cycle adjustment module 10 of the previous stage and the waveform shaping unit 200 output common mode signals, and the two common mode signals are summed in phase at the edge adjustment unit 100 of the duty cycle adjustment module 10 of the current stage, but the present invention is not limited thereto. The gain of the first latch 230 and the second latch 240 in the waveform shaping unit 200 may also be reduced to increase the common mode gain of the link, and the specific situation may depend on the situation.
降低波形整形单元200中第一锁存器230和第二锁存器240的增益,使,第二级占空比调整单元的输入信号Vincm与反馈信号Vdccm同相。此时式6将改写为以下公式10:The gain of the first latch 230 and the second latch 240 in the waveform shaping unit 200 is reduced so that , the input signal Vincm of the second-stage duty cycle adjustment unit is in phase with the feedback signal Vdccm. At this time, equation 6 will be rewritten as the following equation 10:
由式10可知,前一级的占空比调整模块10的边沿调整单元100的共模信号与当前级的占空比调整模块10的边沿调整单元100的共模信号也会同相求和,在逐级的叠加中提高了链路的共模增益。It can be seen from formula 10 that the common mode signal of the edge adjustment unit 100 of the duty cycle adjustment module 10 of the previous stage and the common mode signal of the edge adjustment unit 100 of the duty cycle adjustment module 10 of the current stage will also be summed in phase, thereby improving the common mode gain of the link in the step-by-step superposition.
需要说明的是,在设置相位调整单元300后,其前一级的共模信号将在当前级处与输入共模信号同相求和,从而提高了共模增益,同时可提高波形整形单元200中第一锁存器230和第二锁存器240的增益,使,避免锁存器增益降低影响差模增益。It should be noted that after the phase adjustment unit 300 is set, the common mode signal of the previous stage will be summed with the input common mode signal in phase at the current stage, thereby improving the common mode gain, and at the same time, the gain of the first latch 230 and the second latch 240 in the waveform shaping unit 200 can be improved, so that , to avoid the latch gain reduction affecting the differential mode gain.
在一些实施例中,第一信号放大器310和第二信号放大器320包括反相缓冲器。In some embodiments, the first signal amplifier 310 and the second signal amplifier 320 include inverting buffers.
需要说明的是,第一信号放大器310和第二信号放大器320可为反相缓冲器,但不限于此,第一信号放大器310和第二信号放大器320可为反相缓冲器也可为推挽共源放大器,具体可视情况而定。It should be noted that the first signal amplifier 310 and the second signal amplifier 320 may be inverting buffers, but are not limited thereto. The first signal amplifier 310 and the second signal amplifier 320 may be inverting buffers or push-pull common source amplifiers, depending on the specific situation.
第一信号放大器310和第二信号放大器320为反相缓冲器时,与第一缓冲器210和第二缓冲器220结构可相同,从而可简化电路结构。When the first signal amplifier 310 and the second signal amplifier 320 are inverting buffers, the structures thereof may be the same as those of the first buffer 210 and the second buffer 220 , thereby simplifying the circuit structure.
参见图2和图6所示,相位调整单元300包括第一信号放大器310和第二信号放大器320,第一信号放大器310和第二信号放大器320用于使前一级的占空比调整模块10的边沿调整单元100输出共模信号的相位移动180°,与当前级的占空比调整模块10的共模信号同相,在当前级的占空比调整模块10的边沿调整单元100处两个共模信号同相求和。第一信号放大器310的输入端与第一边沿调整单元100a的输出端连接,第一信号放大器310的输出端与波形整形单元200的第一输入端连接,第二信号放大器320的输入端与第二边沿调整单元100b的输出端连接,第二信号放大器320的输出端与波形整形单元200的第二输入端连接。2 and 6 , the phase adjustment unit 300 includes a first signal amplifier 310 and a second signal amplifier 320. The first signal amplifier 310 and the second signal amplifier 320 are used to shift the phase of the common mode signal output by the edge adjustment unit 100 of the duty cycle adjustment module 10 of the previous stage by 180°, and make it in phase with the common mode signal of the duty cycle adjustment module 10 of the current stage. The two common mode signals are summed in phase at the edge adjustment unit 100 of the duty cycle adjustment module 10 of the current stage. The input end of the first signal amplifier 310 is connected to the output end of the first edge adjustment unit 100a, the output end of the first signal amplifier 310 is connected to the first input end of the waveform shaping unit 200, the input end of the second signal amplifier 320 is connected to the output end of the second edge adjustment unit 100b, and the output end of the second signal amplifier 320 is connected to the second input end of the waveform shaping unit 200.
相位调整单元300设置在占空比调整模块10和波形整形单元200之间,与相位调整单元300设置在波形整形单元200之后相比,共模信号及差模信号的计算式相同,即相位调整单元300设置在占空比调整模块10和波形整形单元200之间,同样可以增大多个级联的占空比调整模块10的共模增益,提高共模信号的传递效率以及信号传输的精度和准确性。The phase adjustment unit 300 is arranged between the duty cycle adjustment module 10 and the waveform shaping unit 200. Compared with the case where the phase adjustment unit 300 is arranged after the waveform shaping unit 200, the calculation formulas for the common-mode signal and the differential-mode signal are the same, that is, the phase adjustment unit 300 is arranged between the duty cycle adjustment module 10 and the waveform shaping unit 200, which can also increase the common-mode gain of multiple cascaded duty cycle adjustment modules 10, thereby improving the transmission efficiency of the common-mode signal and the precision and accuracy of signal transmission.
相位调整单元300设置在占空比调整模块10和波形整形单元200之间时,第一信号放大器310和第二信号放大器320包括反相缓冲器或推挽共源放大器。When the phase adjustment unit 300 is disposed between the duty cycle adjustment module 10 and the waveform shaping unit 200 , the first signal amplifier 310 and the second signal amplifier 320 include an inverting buffer or a push-pull common source amplifier.
第一信号放大器310和第二信号放大器320为反相缓冲器时,与第一缓冲器210和第二缓冲器220结构可相同,从而可简化电路结构。When the first signal amplifier 310 and the second signal amplifier 320 are inverting buffers, the structures thereof may be the same as those of the first buffer 210 and the second buffer 220 , thereby simplifying the circuit structure.
在一些实施例中,占空比校正电路还包括检测模块和判断模块,检测模块用于检测时钟信号的占空比是否失真,判断模块连接检测模块和第一级的占空比调整模块10,判断模块输出反映占空比失真程度的反馈信号Vdcc至反馈信号输入端。In some embodiments, the duty cycle correction circuit also includes a detection module and a judgment module. The detection module is used to detect whether the duty cycle of the clock signal is distorted. The judgment module connects the detection module and the first-stage duty cycle adjustment module 10. The judgment module outputs a feedback signal Vdcc reflecting the degree of duty cycle distortion to the feedback signal input terminal.
占空比校正电路还包括检测模块、判断模块以及级联的占空比调整模块10,检测模块检测时钟信号的占空比是否失真,判断模块根据检测模块检测结果输出反映占空比失真程度的反馈信号Vdcc,级联的占空比调整模块10根据反馈信号Vdcc校正时钟信号的占空比,减少或消除占空比的失真,保证信号传输的准确性。The duty cycle correction circuit also includes a detection module, a judgment module and a cascaded duty cycle adjustment module 10. The detection module detects whether the duty cycle of the clock signal is distorted. The judgment module outputs a feedback signal Vdcc reflecting the degree of duty cycle distortion according to the detection result of the detection module. The cascaded duty cycle adjustment module 10 corrects the duty cycle of the clock signal according to the feedback signal Vdcc, reduces or eliminates the distortion of the duty cycle, and ensures the accuracy of signal transmission.
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。The terms "first", "second", etc. are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Thus, a feature defined as "first", "second", etc. may explicitly or implicitly include one or more of the feature. In the description of this application, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
在本申请中,除非另有明确的规定和限定,术语“装配”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In this application, unless otherwise clearly specified and limited, the terms "assembly", "connection" and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood according to specific circumstances.
在本说明书的描述中,参考术语“一些实施例”、“示例地”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "some embodiments", "exemplarily", etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present application. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,故但凡依本申请的权利要求和说明书所做的变化或修饰,皆应属于本申请专利涵盖的范围之内。Although the embodiments of the present application have been shown and described above, it can be understood that the above embodiments are exemplary and cannot be understood as limitations on the present application. Ordinary technicians in this field can change, modify, replace and modify the above embodiments within the scope of the present application. Therefore, any changes or modifications made in accordance with the claims and description of the present application should fall within the scope of the patent of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411064528.5A CN118590035B (en) | 2024-08-05 | 2024-08-05 | Duty cycle correction circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411064528.5A CN118590035B (en) | 2024-08-05 | 2024-08-05 | Duty cycle correction circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118590035A CN118590035A (en) | 2024-09-03 |
CN118590035B true CN118590035B (en) | 2024-11-05 |
Family
ID=92530358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411064528.5A Active CN118590035B (en) | 2024-08-05 | 2024-08-05 | Duty cycle correction circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118590035B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107425829A (en) * | 2016-06-01 | 2017-12-01 | 恩智浦美国有限公司 | Limited duty-cycle correction circuit |
CN115361004A (en) * | 2022-08-22 | 2022-11-18 | 长鑫存储技术有限公司 | Duty ratio adjusting circuit, adjusting method and memory |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8669799B1 (en) * | 2012-04-25 | 2014-03-11 | Altera Corporation | Duty cycle calibration of a clock signal |
KR101849944B1 (en) * | 2016-08-31 | 2018-04-18 | 광운대학교 산학협력단 | Duty-cycle corrector |
US11671085B2 (en) * | 2021-11-01 | 2023-06-06 | Nxp B.V. | Circuit to correct duty cycle and phase error of a differential signal with low added noise |
CN116743120A (en) * | 2023-06-15 | 2023-09-12 | 牛芯半导体(深圳)有限公司 | Duty cycle correction circuit |
-
2024
- 2024-08-05 CN CN202411064528.5A patent/CN118590035B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107425829A (en) * | 2016-06-01 | 2017-12-01 | 恩智浦美国有限公司 | Limited duty-cycle correction circuit |
CN115361004A (en) * | 2022-08-22 | 2022-11-18 | 长鑫存储技术有限公司 | Duty ratio adjusting circuit, adjusting method and memory |
Also Published As
Publication number | Publication date |
---|---|
CN118590035A (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106788434B (en) | Source follower buffer circuit | |
CN102130659B (en) | Circuit structure for reducing input offset voltage of two-stage operational amplifier | |
CN104242839A (en) | Programmable fully-differential gain-bootstrap operational transconductance amplifier | |
CN117631740B (en) | Differential reference voltage generating circuit and electronic equipment | |
CN102545806B (en) | Differential amplifier | |
CN111262537B (en) | A transconductance amplifier | |
CN101807893A (en) | Large-bandwidth continuous time common-mode feedback circuit and design method thereof | |
CN108599731A (en) | A kind of low-power consumption broadband mutual conductance error amplifier | |
CN118590035B (en) | Duty cycle correction circuit | |
JP2003158434A (en) | Artificial differential amplifier circuit and a/d converter using the same | |
CN113328711B (en) | Constant cross-rail-to-rail input differential output high-speed programmable gain amplifier | |
CN106411273A (en) | Transconductance amplifier adopting signal attenuation technology and method | |
Nandi et al. | A Fast Settling, High Slew Rate CMOS Recycling Folded Cascode Operational Transconductance Amplifier (OTA) for High Speed Applications | |
CN118232862A (en) | Fully differential Class-AB operational amplifier circuit and system | |
CN110855274B (en) | Low-loss track-to-track dynamic latching comparator | |
CN112511113A (en) | Transconductance amplifier with zero point compensation | |
CN107786185A (en) | Phase interpolator | |
CN116527020A (en) | Duty cycle calibration circuit and method | |
CN114614671B (en) | Power supply suitable for 5GNR broadband high-efficiency envelope tracking power amplifier | |
CN216390921U (en) | Power amplifier | |
CN203660996U (en) | Fully differential operational amplifier with high speed and high gain | |
CN114866041A (en) | DC offset cancellation circuit and method | |
CN114584089A (en) | Differential operational amplifier and chip | |
CN116846355B (en) | A Folded Cascode Operational Amplifier | |
JP5799462B2 (en) | Low distortion variable gain amplifier (VGA) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |