[go: up one dir, main page]

CN118588773A - A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same - Google Patents

A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same Download PDF

Info

Publication number
CN118588773A
CN118588773A CN202411053936.0A CN202411053936A CN118588773A CN 118588773 A CN118588773 A CN 118588773A CN 202411053936 A CN202411053936 A CN 202411053936A CN 118588773 A CN118588773 A CN 118588773A
Authority
CN
China
Prior art keywords
layer
passivation layer
silicon wafer
monocrystalline silicon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202411053936.0A
Other languages
Chinese (zh)
Inventor
黄浩
陆银川
董志民
赵庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Riyue Solar Energy Technology Co ltd
Original Assignee
Zhejiang Riyue Solar Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Riyue Solar Energy Technology Co ltd filed Critical Zhejiang Riyue Solar Energy Technology Co ltd
Priority to CN202411053936.0A priority Critical patent/CN118588773A/en
Publication of CN118588773A publication Critical patent/CN118588773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明涉及电池技术领域,具体为一种提高电池片耐UV衰减性能的电池片结构及其制备方法;包括单晶硅片,所述单晶硅片的底部依次设置有隧穿氧化层、第一掺杂层和第一减反射层,且单晶硅片的顶部依次设置有第二掺杂层、二氧化硅钝化层、氧化铝场钝化层和第一减反射层;本发明提供了四种新的增长氧化硅的工艺方式,即在烘干槽中增加臭氧气体,利用臭氧的强氧化性,在烘干过程中,于硅片表面二氧化硅钝化层,或加入双氧水,于硅片表面二氧化硅钝化层,或于湿氧环境下,使硅片表面形成二氧化硅钝化层,或于炉管内增加臭氧,于硅片表面二氧化硅钝化层,解决了TOPcon电池片UV衰减问题,提高电池片耐UV性能。

The invention relates to the field of battery technology, and in particular to a battery cell structure and a preparation method thereof for improving the UV attenuation resistance of a battery cell; the structure comprises a single crystal silicon wafer, wherein a tunneling oxide layer, a first doping layer and a first anti-reflection layer are sequentially arranged at the bottom of the single crystal silicon wafer, and a second doping layer, a silicon dioxide passivation layer, an aluminum oxide field passivation layer and a first anti-reflection layer are sequentially arranged at the top of the single crystal silicon wafer; the invention provides four new processes for growing silicon oxide, namely, adding ozone gas in a drying tank, utilizing the strong oxidizing property of ozone, forming a silicon dioxide passivation layer on the surface of the silicon wafer during the drying process, or adding hydrogen peroxide to form a silicon dioxide passivation layer on the surface of the silicon wafer, or forming a silicon dioxide passivation layer on the surface of the silicon wafer in a wet oxygen environment, or adding ozone in a furnace tube to form a silicon dioxide passivation layer on the surface of the silicon wafer, thereby solving the UV attenuation problem of TOPcon battery cells and improving the UV resistance of the battery cells.

Description

一种提高电池片耐UV衰减性能的电池片结构及其制备方法A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same

技术领域Technical Field

本发明涉及电池技术领域,具体为一种提高电池片耐UV衰减性能的电池片结构及其制备方法。The present invention relates to the technical field of batteries, and in particular to a battery cell structure capable of improving the UV attenuation resistance of a battery cell and a preparation method thereof.

背景技术Background Art

TOPCon电池技术,‌也称为隧穿氧化层钝化接触电池技术,‌是一种高效的光伏电池技术,电池前表面为硼扩散的发射极,使用Al2O3/SiN双层钝化膜,背面制备一层1~2nm的隧穿层氧化层,再沉积一层掺杂多晶硅,二者共同形成钝化接触结构,为硅片的背面提供良好的界面钝化。TOPCon cell technology, also known as tunneling oxide passivation contact cell technology, is a high-efficiency photovoltaic cell technology. The front surface of the cell is a boron-diffused emitter, using an Al 2 O 3 /SiN double-layer passivation film, a 1-2 nm tunneling oxide layer is prepared on the back, and then a layer of doped polysilicon is deposited. The two together form a passivation contact structure, providing good interface passivation for the back of the silicon wafer.

在申请号为“CN202311520474.4”,名称为“一种双面隧穿钝化接触太阳能电池结构及其制备方法”的专利文件中记载有“该结构包括硅基体,以及其正面非金属化区域设置的正面隧穿氧化层、第一N型掺杂多晶硅层、N型掺杂碳化硅层和正面减反层或透明导电氧化物薄膜,正面金属化区域设置的正面隧穿氧化层、第一N型掺杂多晶硅层、N型掺杂碳化硅层、第二N型掺杂多晶硅层、正面减反层或透明导电氧化物薄膜和正面电极,并形成欧姆接触。本发明中,在电池正面金属化区域和非金属化区域构建隧穿接触结构,不仅可以提高正面钝化效果,而且也能减少正面寄生吸收,提高正面光学利用率,从而构建得到钝化效果好、转换效率高的双面隧穿钝化接触电池结构,对于实现TOPCon电池的广泛应用具有重要意义”。In the patent document with application number "CN202311520474.4" and titled "A double-sided tunneling passivation contact solar cell structure and its preparation method", it is recorded that "the structure includes a silicon substrate, and a front tunneling oxide layer, a first N-type doped polysilicon layer, an N-type doped silicon carbide layer and a front anti-reflection layer or a transparent conductive oxide film are arranged in the front non-metallized area thereof, and a front tunneling oxide layer, a first N-type doped polysilicon layer, an N-type doped silicon carbide layer, a second N-type doped polysilicon layer, a front anti-reflection layer or a transparent conductive oxide film and a front electrode are arranged in the front metallized area, and an ohmic contact is formed. In the present invention, a tunneling contact structure is constructed in the metallized area and the non-metallized area on the front of the battery, which can not only improve the front passivation effect, but also reduce the front parasitic absorption and improve the front optical utilization, thereby constructing a double-sided tunneling passivation contact battery structure with good passivation effect and high conversion efficiency, which is of great significance for realizing the wide application of TOPCon batteries."

上述专利文件所制造的电池片虽然具有正面钝化效果好等优点,但是其本身耐UV性能相对不足,仍需进一步地改进。基于此,本发明提供了一种提高电池片耐UV衰减性能的电池片结构及其制备方法,以解决上述所提出的技术问题。Although the cell manufactured by the above patent document has advantages such as good front passivation effect, its UV resistance is relatively insufficient and still needs further improvement. Based on this, the present invention provides a cell structure and a preparation method for improving the UV attenuation resistance of the cell to solve the above technical problems.

发明内容Summary of the invention

本发明的目的在于提供一种提高电池片耐UV衰减性能的电池片结构及其制备方法,提供了四种新的增长氧化硅的工艺方式,解决了TOPcon电池片UV衰减问题,提高电池片耐UV性能。The purpose of the present invention is to provide a cell structure and a preparation method thereof for improving the UV attenuation resistance of the cell, provide four new processes for growing silicon oxide, solve the UV attenuation problem of TOPcon cells, and improve the UV resistance of the cells.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

本发明得到第一方面:提供了一种提高电池片耐UV衰减性能的电池片结构,包括单晶硅片,所述单晶硅片的底部依次设置有隧穿氧化层、第一掺杂层和第一减反射层,且单晶硅片的顶部依次设置有第二掺杂层、二氧化硅钝化层、氧化铝场钝化层和第一减反射层。The first aspect of the present invention provides a cell structure for improving the UV attenuation resistance of a cell, comprising a monocrystalline silicon wafer, wherein a tunneling oxide layer, a first doping layer and a first anti-reflection layer are sequentially arranged at the bottom of the monocrystalline silicon wafer, and a second doping layer, a silicon dioxide passivation layer, an aluminum oxide field passivation layer and a first anti-reflection layer are sequentially arranged at the top of the monocrystalline silicon wafer.

本发明进一步的设置为:所述单晶硅片上还设置有导电电极。The present invention is further configured as follows: a conductive electrode is also provided on the single crystal silicon wafer.

本发明的第二方面:还提供上述提高电池片耐UV衰减性能的电池片结构的制备方法,包括以下步骤:The second aspect of the present invention is to provide a method for preparing the above-mentioned cell structure for improving the UV attenuation resistance of the cell, comprising the following steps:

S1、将单晶硅片浸泡在制绒槽中70℃的浸泡液中115~155s,然后取出单晶硅片置于浓度为0.5~1.5%的碱性氢氧化钠溶液中360~480s,异性腐蚀形成金字塔结构;S1. Soak the single crystal silicon wafer in a 70°C soaking solution in a texturing tank for 115 to 155 seconds, then take out the single crystal silicon wafer and place it in an alkaline sodium hydroxide solution with a concentration of 0.5 to 1.5% for 360 to 480 seconds to form a pyramid structure by anisotropic corrosion;

S2、利用高温管式扩散炉,将三氯化硼扩散80~120min后,再通氧气于高温下在单晶硅片的正表面形成第二掺杂层;S2, using a high-temperature tubular diffusion furnace, diffusing boron trichloride for 80 to 120 minutes, and then passing oxygen at high temperature to form a second doping layer on the front surface of the single crystal silicon wafer;

S3、利用浓度为20~25%的氢氟酸常温下刻蚀单晶硅片的背面,然后利用浓度为3~7%的氢氧化钠,于60~70℃的条件下清洗3~7min,然后碱抛;S3, using 20-25% hydrofluoric acid to etch the back of the single crystal silicon wafer at room temperature, then using 3-7% sodium hydroxide to clean at 60-70°C for 3-7 minutes, and then alkaline polishing;

S4、利用等离子体增强化学气相沉积PECVD方式在单晶硅片的背面沉积厚度为1~3nm的隧穿氧化层,然后将硅烷、笑气和磷烷的混合气体在隧穿氧化层的表面沉积10min,形成一层混有非晶硅掺杂惨杂的第一掺杂层;S4, depositing a tunneling oxide layer with a thickness of 1 to 3 nm on the back of the single crystal silicon wafer by plasma enhanced chemical vapor deposition (PECVD), and then depositing a mixed gas of silane, laughing gas and phosphine on the surface of the tunneling oxide layer for 10 minutes to form a first doped layer mixed with amorphous silicon;

S5、采用高温退火炉,将所得单晶硅片在退火温度为880~950℃的条件下退火时间20~60min;S5, using a high temperature annealing furnace, annealing the obtained single crystal silicon wafer at an annealing temperature of 880 to 950° C. for 20 to 60 minutes;

S6、于单晶硅片上形成二氧化硅钝化层;S6, forming a silicon dioxide passivation layer on the single crystal silicon wafer;

S7、利用原子层沉积方式ALD于温度为200~300℃,将流量为2000~4000sccm的三甲基铝和流量为2000~3000sccm的水反应,在硅片正面沉积10min,形成氧化铝场钝化层,然后再利用PECVD沉积形成,第一减反射层;S7, using atomic layer deposition (ALD) at a temperature of 200-300° C., reacting trimethylaluminum with a flow rate of 2000-4000 sccm and water with a flow rate of 2000-3000 sccm, depositing on the front side of the silicon wafer for 10 minutes to form an aluminum oxide field passivation layer, and then using PECVD deposition to form a first anti-reflection layer;

S8、利用等离子体增强化学气相沉积PECVD方式,采用混合气体沉积形成第一减反射层;S8, using a plasma enhanced chemical vapor deposition (PECVD) method to form a first anti-reflection layer by using a mixed gas deposition method;

S9、再依次经过丝印烧结、光衰恢复和LECO烧结,得到含有导电电极的电池片结构。S9, and then sequentially undergoing silk screen sintering, light decay recovery and LECO sintering to obtain a cell structure containing a conductive electrode.

本发明进一步的设置为:在所述步骤S1中,所述浸泡液由氢氧化钠、双氧水及纯水按1:6:340的质量比混合而成。The present invention is further configured as follows: in step S1, the soaking liquid is formed by mixing sodium hydroxide, hydrogen peroxide and pure water in a mass ratio of 1:6:340.

本发明进一步的设置为:在所述步骤S1中,金字塔绒面尺寸为1.1~2.1um,反射率8~12%。The present invention is further configured as follows: in step S1, the size of the pyramid velvet surface is 1.1-2.1 um, and the reflectivity is 8-12%.

本发明进一步的设置为:在所述步骤S2中,所述三氯化硼的流量为150~350sccm,扩散温度为850~950℃,扩散时间为25~35min,所述氧气的流量为20000~30000sccm,高温的温度为1000~1060℃,高温处理时间为100~150min。The present invention is further configured as follows: in step S2, the flow rate of the boron trichloride is 150-350 sccm, the diffusion temperature is 850-950°C, the diffusion time is 25-35 min, the flow rate of the oxygen is 20000-30000 sccm, the high temperature is 1000-1060°C, and the high temperature treatment time is 100-150 min.

本发明进一步的设置为:在所述步骤S2中,第一减反射层的扩散方阻260~550Ω/sqr。The present invention is further configured as follows: in step S2, the diffusion sheet resistance of the first anti-reflection layer is 260-550Ω/sqr.

本发明进一步的设置为:在所述步骤S3中,碱抛减重0.14~0.26g,反射率38%~48%,塔基尺寸2~14um。The present invention is further configured as follows: in step S3, the alkali polishing reduces weight by 0.14 to 0.26 g, the reflectivity is 38% to 48%, and the tower base size is 2 to 14 um.

本发明进一步的设置为:在所述步骤S4中,所述第一掺杂层的厚度为90~130nm。The present invention is further configured as follows: in the step S4, the thickness of the first doping layer is 90-130 nm.

本发明进一步的设置为:在所述步骤S5中,退火方阻35~75Ω。The present invention is further configured as follows: in step S5, the annealing square resistance is 35-75Ω.

本发明进一步的设置为:在所述步骤S6中,所述形成二氧化硅钝化层的过程如下:The present invention is further configured as follows: in step S6, the process of forming the silicon dioxide passivation layer is as follows:

利用浓度为25~35%的氢氟酸,常温下刻蚀单晶硅片的正面,然后利用浓度为3~7%氢氧化钠及浓度为25~35%的氢氟酸去单晶硅片的正面残留物;Use hydrofluoric acid with a concentration of 25-35% to etch the front side of the single crystal silicon wafer at room temperature, and then use sodium hydroxide with a concentration of 3-7% and hydrofluoric acid with a concentration of 25-35% to remove the residue on the front side of the single crystal silicon wafer;

向清洗烘干槽中通入臭氧气体,利用臭氧气体的强氧化性,在烘干过程中,于单晶硅片表面反应形成二氧化硅钝化层;Ozone gas is introduced into the cleaning and drying tank, and the strong oxidizing property of the ozone gas is utilized to react on the surface of the single crystal silicon wafer to form a silicon dioxide passivation layer during the drying process;

其中,臭氧气体的流量300~700sccm,时间为5~15min;The ozone gas flow rate is 300 to 700 sccm, and the time is 5 to 15 minutes;

所述二氧化硅钝化层的厚度为0.3~1.5nm。The thickness of the silicon dioxide passivation layer is 0.3-1.5 nm.

本发明进一步的设置为:所述清洗烘干槽为RCA工序的烘干槽。The present invention is further configured as follows: the cleaning and drying tank is a drying tank for an RCA process.

本发明进一步的设置为:在所述步骤S6中,所述形成二氧化硅钝化层的过程如下:The present invention is further configured as follows: in step S6, the process of forming the silicon dioxide passivation layer is as follows:

利用浓度为25~35%的氢氟酸,常温下刻蚀单晶硅片的正面,然后利用浓度为3~7%氢氧化钠及浓度为25~35%的氢氟酸去单晶硅片的正面残留物;Use hydrofluoric acid with a concentration of 25-35% to etch the front side of the single crystal silicon wafer at room temperature, and then use sodium hydroxide with a concentration of 3-7% and hydrofluoric acid with a concentration of 25-35% to remove the residue on the front side of the single crystal silicon wafer;

再利用浓度为30%的双氧水处理12~18min,干燥后,在单晶硅片表面形成二氧化硅钝化层;Then, the silicon wafer is treated with 30% hydrogen peroxide for 12 to 18 minutes and dried to form a silicon dioxide passivation layer on the surface of the single crystal silicon wafer.

所述二氧化硅钝化层的厚度为0.3~1.5nm。The thickness of the silicon dioxide passivation layer is 0.3-1.5 nm.

本发明进一步的设置为:所述双氧水处理是将双氧水置于RCA工序的慢提拉槽中对单晶硅片处理12~18min。The present invention is further configured as follows: the hydrogen peroxide treatment is to place the hydrogen peroxide in the slow pull tank of the RCA process to treat the single crystal silicon wafer for 12 to 18 minutes.

本发明进一步的设置为:在所述步骤S6中,所述形成二氧化硅钝化层的过程如下:The present invention is further configured as follows: in step S6, the process of forming the silicon dioxide passivation layer is as follows:

利用浓度为25~35%的氢氟酸,常温下刻蚀单晶硅片的正面,然后利用浓度为3~7%氢氧化钠及浓度为25~35%的氢氟酸去单晶硅片的正面残留物;Use hydrofluoric acid with a concentration of 25-35% to etch the front side of the single crystal silicon wafer at room temperature, and then use sodium hydroxide with a concentration of 3-7% and hydrofluoric acid with a concentration of 25-35% to remove the residue on the front side of the single crystal silicon wafer;

干燥后,于湿氧环境下湿度为40~60%的条件下静置6~24h,在单晶硅片表面形成二氧化硅钝化层;After drying, the wafer is placed in a wet oxygen environment at a humidity of 40 to 60% for 6 to 24 hours to form a silicon dioxide passivation layer on the surface of the single crystal silicon wafer;

所述二氧化硅钝化层的厚度为0.3~1.5nm。The thickness of the silicon dioxide passivation layer is 0.3-1.5 nm.

本发明进一步的设置为:在所述步骤S6中,所述形成二氧化硅钝化层的过程如下:The present invention is further configured as follows: in step S6, the process of forming the silicon dioxide passivation layer is as follows:

利用浓度为25~35%的氢氟酸,常温下刻蚀单晶硅片的正面,然后利用浓度为3~7%氢氧化钠及浓度为25~35%的氢氟酸去单晶硅片的正面残留物;Use hydrofluoric acid with a concentration of 25-35% to etch the front side of the single crystal silicon wafer at room temperature, and then use sodium hydroxide with a concentration of 3-7% and hydrofluoric acid with a concentration of 25-35% to remove the residue on the front side of the single crystal silicon wafer;

于炉管内通入臭氧,于温度为210~310℃、流量为4000~6000sccm的条件下处理2~8min,在单晶硅片表面形成二氧化硅钝化层;Ozone is introduced into the furnace tube, and the treatment is carried out for 2 to 8 minutes at a temperature of 210 to 310° C. and a flow rate of 4000 to 6000 sccm to form a silicon dioxide passivation layer on the surface of the single crystal silicon wafer;

所述二氧化硅钝化层的厚度为0.3~1.5nm。The thickness of the silicon dioxide passivation layer is 0.3-1.5 nm.

本发明进一步的设置为:所述炉管为正膜氧化铝工艺炉管。The present invention is further configured as follows: the furnace tube is a positive film alumina process furnace tube.

本发明进一步的设置为:在所述步骤S7中,所述氧化铝场钝化层的厚度为6~14nm。The present invention is further configured as follows: in step S7, the thickness of the aluminum oxide field passivation layer is 6-14 nm.

本发明进一步的设置为:在所述步骤S7中,所述第二减反射层的厚度为65~85nm,折射率1.98%~2.14%。The present invention is further configured as follows: in the step S7, the thickness of the second anti-reflection layer is 65-85 nm, and the refractive index is 1.98%-2.14%.

本发明进一步的设置为:在所述步骤S8中,所述形成第一减反射层的混合气体中硅烷的流量为2000~3000sccm、笑气的流量为8000~10000sccm和氨气的流量为9900~10500sccm,时间为20min。The present invention is further configured as follows: in the step S8, the flow rate of silane in the mixed gas for forming the first anti-reflection layer is 2000-3000 sccm, the flow rate of nitrous oxide is 8000-10000 sccm, and the flow rate of ammonia is 9900-10500 sccm, and the time is 20 minutes.

本发明进一步的设置为:在所述步骤S8中,所述第一减反射层的厚度为70~90nm,反射率2.01~2.17%。The present invention is further configured as follows: in the step S8, the thickness of the first anti-reflection layer is 70-90 nm, and the reflectivity is 2.01-2.17%.

本发明进一步的设置为:在所述步骤S9中,采用网印银(Ag)/银铝(Ag/Al)金属电极以收集电流;干燥硅片上的浆料,燃尽浆料的有机组分,使浆料和硅片形成良好的欧姆接触。The present invention is further configured as follows: in step S9, screen-printed silver (Ag)/silver aluminum (Ag/Al) metal electrodes are used to collect current; the slurry on the silicon wafer is dried to burn out the organic components of the slurry so that the slurry and the silicon wafer form a good ohmic contact.

本发明进一步的设置为:在所述步骤S10中,光衰恢复是在高温800℃持续光照2min激活SiNx薄膜中的H降低硅片体内H-X复合。The present invention is further configured as follows: in the step S10, the light decay recovery is to activate the H in the SiNx film and reduce the H-X recombination in the silicon wafer by continuous illumination at a high temperature of 800°C for 2 minutes.

本发明进一步的设置为:在所述步骤S11中,LECO烧结是利用高强度激光照射电池片激发电荷载流子,同时施加10V或以上的偏转电压,由此产生数安培的局部电流,对应处发生烧结引发银浆与硅的互相扩散,会显著降低金属与半导体之间的接触电阻。The present invention is further configured as follows: in the step S11, LECO sintering utilizes high-intensity laser irradiation of the cell to excite charge carriers, and simultaneously applies a deflection voltage of 10V or more, thereby generating a local current of several amperes, and sintering occurs at the corresponding location to induce mutual diffusion of silver paste and silicon, which will significantly reduce the contact resistance between the metal and the semiconductor.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the present invention has the following beneficial effects:

本发明提供了四种新的增长氧化硅的工艺方式,即在烘干槽中增加臭氧气体,利用臭氧的强氧化性,在烘干过程中,于硅片表面二氧化硅钝化层,或加入双氧水,于硅片表面二氧化硅钝化层,或于湿氧环境下,使硅片表面形成二氧化硅钝化层,或于炉管内增加臭氧,于硅片表面二氧化硅钝化层,解决了TOPcon电池片UV衰减问题,提高电池片耐UV性能;本发明所提供的提高电池片耐UV衰减性能的电池片结构及其制备方法,具有更广阔的市场前景,更适宜推广。The present invention provides four new process methods for growing silicon oxide, namely, adding ozone gas in a drying tank, utilizing the strong oxidizing property of ozone to form a silicon dioxide passivation layer on the surface of a silicon wafer during the drying process, or adding hydrogen peroxide to form a silicon dioxide passivation layer on the surface of a silicon wafer, or forming a silicon dioxide passivation layer on the surface of a silicon wafer in a wet oxygen environment, or adding ozone in a furnace tube to form a silicon dioxide passivation layer on the surface of a silicon wafer, thereby solving the UV attenuation problem of TOPcon cells and improving the UV resistance of the cells. The cell structure and preparation method thereof for improving the UV attenuation resistance of cells provided by the present invention have broader market prospects and are more suitable for promotion.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为提高电池片耐UV衰减性能的电池片结构的结构示意图。FIG. 1 is a schematic diagram of a cell structure for improving the UV attenuation resistance of a cell.

图例说明:100、单晶硅片;200、隧穿氧化层;300、第一掺杂层;400、第一减反射层;500、第二掺杂层;600、二氧化硅钝化层;700、氧化铝场钝化层;800、第二减反射层;900、导电电极。Legend: 100, single crystal silicon wafer; 200, tunneling oxide layer; 300, first doping layer; 400, first anti-reflection layer; 500, second doping layer; 600, silicon dioxide passivation layer; 700, aluminum oxide field passivation layer; 800, second anti-reflection layer; 900, conductive electrode.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will be combined with the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

实施例1Example 1

如图1所示,本实施例提供了一种提高电池片耐UV衰减性能的电池片结构,包括单晶硅片100,单晶硅片100的底部依次设置有隧穿氧化层200、第一掺杂层300和第一减反射层400,且单晶硅片100的顶部依次设置有第二掺杂层500、二氧化硅钝化层600、氧化铝场钝化层700和第二减反射层800。As shown in FIG1 , the present embodiment provides a cell structure for improving the UV attenuation resistance of a cell, including a monocrystalline silicon wafer 100, wherein a tunneling oxide layer 200, a first doping layer 300 and a first anti-reflection layer 400 are sequentially arranged at the bottom of the monocrystalline silicon wafer 100, and a second doping layer 500, a silicon dioxide passivation layer 600, an aluminum oxide field passivation layer 700 and a second anti-reflection layer 800 are sequentially arranged at the top of the monocrystalline silicon wafer 100.

其中,单晶硅片100上还设置有导电电极900。A conductive electrode 900 is also disposed on the single crystal silicon wafer 100 .

此外,第二减反射层800为减反射SiN层;In addition, the second anti-reflection layer 800 is an anti-reflection SiN layer;

氧化铝场钝化层700为Al2O3氧化铝场钝化层;The aluminum oxide field passivation layer 700 is an Al 2 O 3 aluminum oxide field passivation layer;

二氧化硅钝化层600为SiO2化学钝化层;The silicon dioxide passivation layer 600 is a SiO 2 chemical passivation layer;

第二掺杂层500为P型B掺杂层;The second doping layer 500 is a P-type B doping layer;

单晶硅片100为N型单晶硅片;The single crystal silicon wafer 100 is an N-type single crystal silicon wafer;

隧穿氧化层200为SiO2隧穿氧化层;The tunneling oxide layer 200 is a SiO 2 tunneling oxide layer;

第一掺杂层300为N型P掺杂层;The first doped layer 300 is an N-type P-doped layer;

第一减反射层400为SIN减反射层;The first anti-reflection layer 400 is a SIN anti-reflection layer;

导电电极900为Ag导电电极,与第一减反射层400形成欧姆接触。The conductive electrode 900 is a Ag conductive electrode, and forms an ohmic contact with the first anti-reflection layer 400 .

此外,本实施例还提供上述提高电池片耐UV衰减性能的电池片结构的制备方法,包括以下步骤:In addition, this embodiment also provides a method for preparing the above-mentioned cell structure for improving the UV attenuation resistance of the cell, comprising the following steps:

S1、将单晶硅片100浸泡在制绒槽中70℃的浸泡液中115s,然后取出单晶硅片100置于浓度为0.5%的碱性氢氧化钠溶液中360~480s,异性腐蚀形成金字塔结构。S1. Soak the single crystal silicon wafer 100 in a 70°C soaking solution in a texturing tank for 115 seconds, then take out the single crystal silicon wafer 100 and place it in an alkaline sodium hydroxide solution with a concentration of 0.5% for 360 to 480 seconds to form a pyramid structure by anisotropic corrosion.

其中,浸泡液由氢氧化钠、双氧水及纯水按1:6:340的质量比混合而成。The soaking liquid is a mixture of sodium hydroxide, hydrogen peroxide and pure water in a mass ratio of 1:6:340.

金字塔绒面尺寸为1.1um,反射率8%。The size of the pyramid velvet is 1.1um and the reflectivity is 8%.

S2、利用高温管式扩散炉,将三氯化硼扩散80min后,再通氧气于高温下在单晶硅片100的正表面形成第二掺杂层500,S2, using a high-temperature tubular diffusion furnace, diffusing boron trichloride for 80 minutes, and then passing oxygen at high temperature to form a second doping layer 500 on the front surface of the single crystal silicon wafer 100,

其中,三氯化硼的流量为150sccm,扩散温度为850℃,扩散时间为25min,氧气的流量为20000sccm,高温的温度为1000℃,高温处理时间为100min。Among them, the flow rate of boron trichloride is 150sccm, the diffusion temperature is 850°C, the diffusion time is 25min, the flow rate of oxygen is 20000sccm, the high temperature temperature is 1000°C, and the high temperature treatment time is 100min.

S3、利用浓度为20%的氢氟酸常温下刻蚀单晶硅片100的背面,然后利用浓度为3%的氢氧化钠,于60℃的条件下清洗3min,然后碱抛;S3, etching the back side of the single crystal silicon wafer 100 with hydrofluoric acid having a concentration of 20% at room temperature, then cleaning with sodium hydroxide having a concentration of 3% at 60° C. for 3 minutes, and then alkaline polishing;

S4、利用等离子体增强化学气相沉积PECVD方式在单晶硅片100的背面沉积厚度为1nm的隧穿氧化层200,然后将硅烷(SiH4)、笑气(N2O)和磷烷(PH3)的混合气体在隧穿氧化层200的表面沉积10min,形成一层混有非晶硅和P掺杂的第一掺杂层300;S4, depositing a tunnel oxide layer 200 with a thickness of 1 nm on the back side of the single crystal silicon wafer 100 by plasma enhanced chemical vapor deposition (PECVD), and then depositing a mixed gas of silane (SiH 4 ), nitrous oxide (N 2 O) and phosphine (PH 3 ) on the surface of the tunnel oxide layer 200 for 10 minutes to form a first doped layer 300 mixed with amorphous silicon and P doping;

S5、采用高温退火炉,将所得单晶硅片100在退火温度为880℃的条件下退火时间20min;S5, using a high temperature annealing furnace, annealing the obtained single crystal silicon wafer 100 at an annealing temperature of 880° C. for 20 minutes;

S6、于单晶硅片100上形成二氧化硅钝化层600。S6 , forming a silicon dioxide passivation layer 600 on the single crystal silicon wafer 100 .

其中,形成二氧化硅钝化层600的过程如下:The process of forming the silicon dioxide passivation layer 600 is as follows:

利用浓度为25%的氢氟酸,常温下刻蚀单晶硅片100的正面,然后利用浓度为3%氢氧化钠及浓度为25%的氢氟酸去单晶硅片100的正面残留物;Using 25% hydrofluoric acid to etch the front side of the single crystal silicon wafer 100 at room temperature, and then using 3% sodium hydroxide and 25% hydrofluoric acid to remove the residue on the front side of the single crystal silicon wafer 100;

向清洗烘干槽中通入臭氧气体,利用臭氧气体的强氧化性,在烘干过程中,于单晶硅片100表面反应形成二氧化硅钝化层600;Ozone gas is introduced into the cleaning and drying tank, and the strong oxidizing property of the ozone gas is utilized to react on the surface of the single crystal silicon wafer 100 to form a silicon dioxide passivation layer 600 during the drying process;

其中,臭氧气体的流量300sccm,时间为5min。The ozone gas flow rate is 300 sccm and the time is 5 minutes.

S7、利用原子层沉积方式ALD于温度为200℃,将流量为2000sccm的三甲基铝和流量为2000sccm的水反应,在硅片正面沉积10min,形成氧化铝场钝化层700,然后再利用PECVD沉积形成第二减反射层800;S7, using atomic layer deposition (ALD) at a temperature of 200° C., reacting trimethylaluminum with a flow rate of 2000 sccm and water with a flow rate of 2000 sccm, and depositing on the front side of the silicon wafer for 10 minutes to form an aluminum oxide field passivation layer 700, and then using PECVD deposition to form a second anti-reflection layer 800;

S8、利用等离子体增强化学气相沉积PECVD方式,采用混合气体沉积形成第一减反射层400。S8. Using plasma enhanced chemical vapor deposition (PECVD) to form a first anti-reflection layer 400 using mixed gas deposition.

其中,形成第一减反射层400的混合气体中硅烷(SiH4)的流量为2000sccm、笑气(N2O)的流量为8000sccm和氨气(NH3)的流量为9900sccm,时间为20min。The mixed gas used to form the first anti-reflection layer 400 has a flow rate of silane (SiH 4 ) of 2000 sccm, a flow rate of nitrous oxide (N 2 O) of 8000 sccm, and a flow rate of ammonia (NH 3 ) of 9900 sccm, and the time is 20 minutes.

S9、再依次经过丝印烧结、光衰恢复和LECO烧结,得到含有导电电极900的电池片结构。S9, and then sequentially undergoing silk screen sintering, light decay recovery and LECO sintering to obtain a cell structure containing a conductive electrode 900.

实施例2Example 2

如图1所示,本实施例提供了一种提高电池片耐UV衰减性能的电池片结构,包括单晶硅片100,单晶硅片100的底部依次设置有隧穿氧化层200、第一掺杂层300和第一减反射层400,且单晶硅片100的顶部依次设置有第二掺杂层500、二氧化硅钝化层600、氧化铝场钝化层700和第二减反射层800。As shown in FIG1 , the present embodiment provides a cell structure for improving the UV attenuation resistance of a cell, including a monocrystalline silicon wafer 100, wherein a tunneling oxide layer 200, a first doping layer 300 and a first anti-reflection layer 400 are sequentially arranged at the bottom of the monocrystalline silicon wafer 100, and a second doping layer 500, a silicon dioxide passivation layer 600, an aluminum oxide field passivation layer 700 and a second anti-reflection layer 800 are sequentially arranged at the top of the monocrystalline silicon wafer 100.

其中,单晶硅片100上还设置有导电电极900。A conductive electrode 900 is also disposed on the single crystal silicon wafer 100 .

此外,第二减反射层800为减反射SiN层;In addition, the second anti-reflection layer 800 is an anti-reflection SiN layer;

氧化铝场钝化层700为Al2O3氧化铝场钝化层;The aluminum oxide field passivation layer 700 is an Al 2 O 3 aluminum oxide field passivation layer;

二氧化硅钝化层600为SiO2化学钝化层;The silicon dioxide passivation layer 600 is a SiO 2 chemical passivation layer;

第二掺杂层500为P型B掺杂层;The second doped layer 500 is a P-type B doped layer;

单晶硅片100为N型单晶硅片;The single crystal silicon wafer 100 is an N-type single crystal silicon wafer;

隧穿氧化层200为SiO2隧穿氧化层;The tunneling oxide layer 200 is a SiO 2 tunneling oxide layer;

第一掺杂层300为N型P掺杂层;The first doped layer 300 is an N-type P-doped layer;

第一减反射层400为SIN减反射层;The first anti-reflection layer 400 is a SIN anti-reflection layer;

导电电极900为Ag导电电极,与第一减反射层400形成欧姆接触。The conductive electrode 900 is a Ag conductive electrode, and forms an ohmic contact with the first anti-reflection layer 400 .

此外,本实施例还提供上述提高电池片耐UV衰减性能的电池片结构的制备方法,包括以下步骤:In addition, this embodiment also provides a method for preparing the above-mentioned cell structure for improving the UV attenuation resistance of the cell, comprising the following steps:

S1、将单晶硅片100浸泡在制绒槽中70℃的浸泡液中125s,然后取出单晶硅片100置于浓度为0.7%的碱性氢氧化钠溶液中380s,异性腐蚀形成金字塔结构。S1. Soak the single crystal silicon wafer 100 in a 70°C soaking solution in a texturing tank for 125 seconds, then take out the single crystal silicon wafer 100 and place it in an alkaline sodium hydroxide solution with a concentration of 0.7% for 380 seconds to form a pyramid structure by anisotropic corrosion.

其中,浸泡液由氢氧化钠、双氧水及纯水按1:6:340的质量比混合而成。The soaking liquid is a mixture of sodium hydroxide, hydrogen peroxide and pure water in a mass ratio of 1:6:340.

金字塔绒面尺寸为1.4um,反射率9%。The size of the pyramid velvet is 1.4um and the reflectivity is 9%.

S2、利用高温管式扩散炉,将三氯化硼扩散90min后,再通氧气于高温下在单晶硅片100的正表面形成第二掺杂层500,S2, using a high-temperature tubular diffusion furnace, diffusing boron trichloride for 90 minutes, and then passing oxygen at high temperature to form a second doping layer 500 on the front surface of the single crystal silicon wafer 100,

其中,三氯化硼的流量为200sccm,扩散温度为860℃,扩散时间为27min,氧气的流量为25000sccm,高温的温度为1020℃,高温处理时间为110min。Among them, the flow rate of boron trichloride is 200 sccm, the diffusion temperature is 860°C, the diffusion time is 27 minutes, the flow rate of oxygen is 25000 sccm, the high temperature temperature is 1020°C, and the high temperature treatment time is 110 minutes.

S3、利用浓度为21%的氢氟酸常温下刻蚀单晶硅片100的背面,然后利用浓度为3%的氢氧化钠,于62℃的条件下清洗4min,然后碱抛;S3, etching the back side of the single crystal silicon wafer 100 with hydrofluoric acid having a concentration of 21% at room temperature, then cleaning with sodium hydroxide having a concentration of 3% at 62° C. for 4 minutes, and then alkaline polishing;

S4、利用等离子体增强化学气相沉积PECVD方式在单晶硅片100的背面沉积厚度为2nm的隧穿氧化层200,然后将硅烷(SiH4)、笑气(N2O)和磷烷(PH3)的混合气体在隧穿氧化层200的表面沉积10min,形成一层混有非晶硅和P掺杂的第一掺杂层300;S4, depositing a tunnel oxide layer 200 with a thickness of 2 nm on the back side of the single crystal silicon wafer 100 by plasma enhanced chemical vapor deposition (PECVD), and then depositing a mixed gas of silane (SiH 4 ), nitrous oxide (N 2 O) and phosphine (PH 3 ) on the surface of the tunnel oxide layer 200 for 10 minutes to form a first doped layer 300 mixed with amorphous silicon and P doping;

S5、采用高温退火炉,将所得单晶硅片100在退火温度为890℃的条件下退火时间30min;S5, using a high temperature annealing furnace, annealing the obtained single crystal silicon wafer 100 at an annealing temperature of 890° C. for 30 minutes;

S6、于单晶硅片100上形成二氧化硅钝化层600。S6 , forming a silicon dioxide passivation layer 600 on the single crystal silicon wafer 100 .

其中,形成二氧化硅钝化层600的过程如下:The process of forming the silicon dioxide passivation layer 600 is as follows:

利用浓度为28%的氢氟酸,常温下刻蚀单晶硅片100的正面,然后利用浓度为4%氢氧化钠及浓度为28%的氢氟酸去单晶硅片100的正面残留物;Using hydrofluoric acid with a concentration of 28% to etch the front side of the single crystal silicon wafer 100 at room temperature, and then using sodium hydroxide with a concentration of 4% and hydrofluoric acid with a concentration of 28% to remove the residue on the front side of the single crystal silicon wafer 100;

再利用浓度为30%的双氧水处理13min,干燥后,在单晶硅片100表面形成二氧化硅钝化层600;Then, the single crystal silicon wafer 100 is treated with 30% hydrogen peroxide for 13 minutes and dried to form a silicon dioxide passivation layer 600 on the surface of the single crystal silicon wafer 100;

二氧化硅钝化层600的厚度为0.4nm。The thickness of the silicon dioxide passivation layer 600 is 0.4 nm.

S7、利用原子层沉积方式ALD于温度为210℃,将流量为2500sccm的三甲基铝和流量为2500sccm的水反应,在硅片正面沉积10min,形成氧化铝场钝化层700,然后再利用PECVD沉积形成第二减反射层800;S7, using atomic layer deposition (ALD) at a temperature of 210° C., reacting trimethylaluminum with a flow rate of 2500 sccm and water with a flow rate of 2500 sccm, and depositing on the front side of the silicon wafer for 10 minutes to form an aluminum oxide field passivation layer 700, and then using PECVD deposition to form a second anti-reflection layer 800;

S8、利用等离子体增强化学气相沉积PECVD方式,采用混合气体沉积形成第一减反射层400。S8. Using plasma enhanced chemical vapor deposition (PECVD) to form a first anti-reflection layer 400 using mixed gas deposition.

其中,形成第一减反射层400的混合气体中硅烷(SiH4)的流量为2500sccm、笑气(N2O)的流量为9000sccm和氨气(NH3)的流量为10000sccm,时间为20min。The mixed gas used to form the first anti-reflection layer 400 has a flow rate of silane (SiH 4 ) of 2500 sccm, a flow rate of nitrous oxide (N 2 O) of 9000 sccm, and a flow rate of ammonia (NH 3 ) of 10000 sccm, and the time is 20 minutes.

S9、再依次经过丝印烧结、光衰恢复和LECO烧结,得到含有导电电极900的电池片结构。S9, and then sequentially undergoing silk screen sintering, light decay recovery and LECO sintering to obtain a cell structure containing a conductive electrode 900.

实施例3Example 3

如图1所示,本实施例提供了一种提高电池片耐UV衰减性能的电池片结构,包括单晶硅片100,单晶硅片100的底部依次设置有隧穿氧化层200、第一掺杂层300和第一减反射层400,且单晶硅片100的顶部依次设置有第二掺杂层500、二氧化硅钝化层600、氧化铝场钝化层700和第二减反射层800。As shown in FIG1 , the present embodiment provides a cell structure for improving the UV attenuation resistance of a cell, including a monocrystalline silicon wafer 100, wherein a tunneling oxide layer 200, a first doping layer 300 and a first anti-reflection layer 400 are sequentially arranged at the bottom of the monocrystalline silicon wafer 100, and a second doping layer 500, a silicon dioxide passivation layer 600, an aluminum oxide field passivation layer 700 and a second anti-reflection layer 800 are sequentially arranged at the top of the monocrystalline silicon wafer 100.

其中,单晶硅片100上还设置有导电电极900。A conductive electrode 900 is also disposed on the single crystal silicon wafer 100 .

此外,第二减反射层800为减反射SiN层;In addition, the second anti-reflection layer 800 is an anti-reflection SiN layer;

氧化铝场钝化层700为Al2O3氧化铝场钝化层;The aluminum oxide field passivation layer 700 is an Al 2 O 3 aluminum oxide field passivation layer;

二氧化硅钝化层600为SiO2化学钝化层;The silicon dioxide passivation layer 600 is a SiO 2 chemical passivation layer;

第二掺杂层500为P型B掺杂层;The second doping layer 500 is a P-type B doping layer;

单晶硅片100为N型单晶硅片;The single crystal silicon wafer 100 is an N-type single crystal silicon wafer;

隧穿氧化层200为SiO2隧穿氧化层;The tunneling oxide layer 200 is a SiO 2 tunneling oxide layer;

第一掺杂层300为N型P掺杂层;The first doped layer 300 is an N-type P-doped layer;

第一减反射层400为SIN减反射层;The first anti-reflection layer 400 is a SIN anti-reflection layer;

导电电极900为Ag导电电极,与第一减反射层400形成欧姆接触。The conductive electrode 900 is a Ag conductive electrode, and forms an ohmic contact with the first anti-reflection layer 400 .

此外,本实施例还提供上述提高电池片耐UV衰减性能的电池片结构的制备方法,包括以下步骤:In addition, this embodiment also provides a method for preparing the above-mentioned cell structure for improving the UV attenuation resistance of the cell, comprising the following steps:

S1、将单晶硅片100浸泡在制绒槽中70℃的浸泡液中135s,然后取出单晶硅片100置于浓度为1%的碱性氢氧化钠溶液中360~480s,异性腐蚀形成金字塔结构。S1. Soak the single crystal silicon wafer 100 in a 70°C soaking solution in a texturing tank for 135 seconds, then take out the single crystal silicon wafer 100 and place it in a 1% alkaline sodium hydroxide solution for 360 to 480 seconds to form a pyramid structure by anisotropic corrosion.

其中,浸泡液由氢氧化钠、双氧水及纯水按1:6:340的质量比混合而成。The soaking liquid is a mixture of sodium hydroxide, hydrogen peroxide and pure water in a mass ratio of 1:6:340.

金字塔绒面尺寸为1.6um,反射率10%。The size of the pyramid velvet is 1.6um and the reflectivity is 10%.

S2、利用高温管式扩散炉,将三氯化硼扩散100min后,再通氧气于高温下在单晶硅片100的正表面形成第二掺杂层500,S2, using a high-temperature tubular diffusion furnace, diffusing boron trichloride for 100 minutes, and then passing oxygen at high temperature to form a second doping layer 500 on the front surface of the single crystal silicon wafer 100,

其中,三氯化硼的流量为250sccm,扩散温度为900℃,扩散时间为30min,氧气的流量为25000sccm,高温的温度为1030℃,高温处理时间为120min。Among them, the flow rate of boron trichloride is 250sccm, the diffusion temperature is 900°C, the diffusion time is 30min, the flow rate of oxygen is 25000sccm, the high temperature temperature is 1030°C, and the high temperature treatment time is 120min.

S3、利用浓度为22%的氢氟酸常温下刻蚀单晶硅片100的背面,然后利用浓度为5%的氢氧化钠,于65℃的条件下清洗5min,然后碱抛;S3, etching the back side of the single crystal silicon wafer 100 at room temperature using hydrofluoric acid having a concentration of 22%, then cleaning it at 65° C. for 5 minutes using sodium hydroxide having a concentration of 5%, and then alkaline polishing;

S4、利用等离子体增强化学气相沉积PECVD方式在单晶硅片100的背面沉积厚度为2nm的隧穿氧化层200,然后将硅烷(SiH4)、笑气(N2O)和磷烷(PH3)的混合气体在隧穿氧化层200的表面沉积10min,形成一层混有非晶硅和P掺杂的第一掺杂层300;S4, depositing a tunnel oxide layer 200 with a thickness of 2 nm on the back side of the single crystal silicon wafer 100 by plasma enhanced chemical vapor deposition (PECVD), and then depositing a mixed gas of silane (SiH 4 ), nitrous oxide (N 2 O) and phosphine (PH 3 ) on the surface of the tunnel oxide layer 200 for 10 minutes to form a first doped layer 300 mixed with amorphous silicon and P doping;

S5、采用高温退火炉,将所得单晶硅片100在退火温度为915℃的条件下退火时间40min;S5, using a high temperature annealing furnace, annealing the obtained single crystal silicon wafer 100 at an annealing temperature of 915° C. for 40 minutes;

S6、于单晶硅片100上形成二氧化硅钝化层600。S6 , forming a silicon dioxide passivation layer 600 on the single crystal silicon wafer 100 .

其中,形成二氧化硅钝化层600的过程如下:The process of forming the silicon dioxide passivation layer 600 is as follows:

利用浓度为30%的氢氟酸,常温下刻蚀单晶硅片100的正面,然后利用浓度为5%氢氧化钠及浓度为30%的氢氟酸去单晶硅片100的正面残留物;Using 30% hydrofluoric acid to etch the front side of the single crystal silicon wafer 100 at room temperature, and then using 5% sodium hydroxide and 30% hydrofluoric acid to remove the residue on the front side of the single crystal silicon wafer 100;

干燥后,于湿氧环境下湿度为50%的条件下静置15h,在单晶硅片100表面形成二氧化硅钝化层600;After drying, the single crystal silicon wafer 100 is placed in a wet oxygen environment with a humidity of 50% for 15 hours to form a silicon dioxide passivation layer 600 on the surface of the single crystal silicon wafer 100;

二氧化硅钝化层600的厚度为0.5nm。The thickness of the silicon dioxide passivation layer 600 is 0.5 nm.

S7、利用原子层沉积方式ALD于温度为250℃,将流量为3000sccm的三甲基铝和流量为2500sccm的水反应,在硅片正面沉积10min,形成氧化铝场钝化层700,然后再利用PECVD沉积形成第二减反射层800;S7, using atomic layer deposition (ALD) at a temperature of 250° C., reacting trimethylaluminum with a flow rate of 3000 sccm and water with a flow rate of 2500 sccm, and depositing on the front side of the silicon wafer for 10 minutes to form an aluminum oxide field passivation layer 700, and then using PECVD deposition to form a second anti-reflection layer 800;

S8、利用等离子体增强化学气相沉积PECVD方式,采用混合气体沉积形成第一减反射层400。S8. Using plasma enhanced chemical vapor deposition (PECVD) to form a first anti-reflection layer 400 using mixed gas deposition.

其中,形成第一减反射层400的混合气体中硅烷(SiH4)的流量为2500sccm、笑气(N2O)的流量为9000sccm和氨气(NH3)的流量为9900~10500sccm,时间为20min。The mixed gas used to form the first anti-reflection layer 400 has a flow rate of silane (SiH 4 ) of 2500 sccm, a flow rate of nitrous oxide (N 2 O) of 9000 sccm, and a flow rate of ammonia (NH 3 ) of 9900-10500 sccm, and the time is 20 minutes.

S9、再依次经过丝印烧结、光衰恢复和LECO烧结,得到含有导电电极900的电池片结构。S9, and then sequentially undergoing silk screen sintering, light decay recovery and LECO sintering to obtain a cell structure containing a conductive electrode 900.

实施例4Example 4

如图1所示,本实施例提供了一种提高电池片耐UV衰减性能的电池片结构,包括单晶硅片100,单晶硅片100的底部依次设置有隧穿氧化层200、第一掺杂层300和第一减反射层400,且单晶硅片100的顶部依次设置有第二掺杂层500、二氧化硅钝化层600、氧化铝场钝化层700和第二减反射层800。As shown in FIG1 , the present embodiment provides a cell structure for improving the UV attenuation resistance of a cell, including a monocrystalline silicon wafer 100, wherein a tunneling oxide layer 200, a first doping layer 300 and a first anti-reflection layer 400 are sequentially arranged at the bottom of the monocrystalline silicon wafer 100, and a second doping layer 500, a silicon dioxide passivation layer 600, an aluminum oxide field passivation layer 700 and a second anti-reflection layer 800 are sequentially arranged at the top of the monocrystalline silicon wafer 100.

其中,单晶硅片100上还设置有导电电极900。A conductive electrode 900 is also disposed on the single crystal silicon wafer 100 .

此外,第二减反射层800为减反射SiN层;In addition, the second anti-reflection layer 800 is an anti-reflection SiN layer;

氧化铝场钝化层700为Al2O3氧化铝场钝化层;The aluminum oxide field passivation layer 700 is an Al 2 O 3 aluminum oxide field passivation layer;

二氧化硅钝化层600为SiO2化学钝化层;The silicon dioxide passivation layer 600 is a SiO 2 chemical passivation layer;

第二掺杂层500为P型B掺杂层;The second doping layer 500 is a P-type B doping layer;

单晶硅片100为N型单晶硅片;The single crystal silicon wafer 100 is an N-type single crystal silicon wafer;

隧穿氧化层200为SiO2隧穿氧化层;The tunneling oxide layer 200 is a SiO 2 tunneling oxide layer;

第一掺杂层300为N型P掺杂层;The first doped layer 300 is an N-type P-doped layer;

第一减反射层400为SIN减反射层;The first anti-reflection layer 400 is a SIN anti-reflection layer;

导电电极900为Ag导电电极,与第一减反射层400形成欧姆接触。The conductive electrode 900 is a Ag conductive electrode, and forms an ohmic contact with the first anti-reflection layer 400 .

此外,本实施例还提供上述提高电池片耐UV衰减性能的电池片结构的制备方法,包括以下步骤:In addition, this embodiment also provides a method for preparing the above-mentioned cell structure for improving the UV attenuation resistance of the cell, comprising the following steps:

S1、将单晶硅片100浸泡在制绒槽中70℃的浸泡液中155s,然后取出单晶硅片100置于浓度为1.5%的碱性氢氧化钠溶液中480s,异性腐蚀形成金字塔结构。S1. Soak the single crystal silicon wafer 100 in a 70°C soaking solution in a texturing tank for 155 seconds, then take out the single crystal silicon wafer 100 and place it in an alkaline sodium hydroxide solution with a concentration of 1.5% for 480 seconds to form a pyramid structure by anisotropic corrosion.

其中,浸泡液由氢氧化钠、双氧水及纯水按1:6:340的质量比混合而成。The soaking liquid is a mixture of sodium hydroxide, hydrogen peroxide and pure water in a mass ratio of 1:6:340.

金字塔绒面尺寸为2.1um,反射率12%。The size of the pyramid velvet is 2.1um and the reflectivity is 12%.

S2、利用高温管式扩散炉,将三氯化硼扩散120min后,再通氧气于高温下在单晶硅片100的正表面形成第二掺杂层500,S2, using a high-temperature tubular diffusion furnace, diffusing boron trichloride for 120 minutes, and then passing oxygen at high temperature to form a second doping layer 500 on the front surface of the single crystal silicon wafer 100,

其中,三氯化硼的流量为350sccm,扩散温度为950℃,扩散时间为35min,氧气的流量为30000sccm,高温的温度为1060℃,高温处理时间为150min。Among them, the flow rate of boron trichloride is 350sccm, the diffusion temperature is 950°C, the diffusion time is 35min, the flow rate of oxygen is 30000sccm, the high temperature temperature is 1060°C, and the high temperature treatment time is 150min.

S3、利用浓度为25%的氢氟酸常温下刻蚀单晶硅片100的背面,然后利用浓度为7%的氢氧化钠,于70℃的条件下清洗7min,然后碱抛;S3, etching the back side of the single crystal silicon wafer 100 with hydrofluoric acid having a concentration of 25% at room temperature, then cleaning with sodium hydroxide having a concentration of 7% at 70° C. for 7 minutes, and then alkaline polishing;

S4、利用等离子体增强化学气相沉积PECVD方式在单晶硅片100的背面沉积厚度为3nm的隧穿氧化层200,然后将硅烷(SiH4)、笑气(N2O)和磷烷(PH3)的混合气体在隧穿氧化层200的表面沉积10min,形成一层混有非晶硅和P掺杂的第一掺杂层300;S4, depositing a tunnel oxide layer 200 with a thickness of 3 nm on the back side of the single crystal silicon wafer 100 by plasma enhanced chemical vapor deposition (PECVD), and then depositing a mixed gas of silane (SiH 4 ), nitrous oxide (N 2 O) and phosphine (PH 3 ) on the surface of the tunnel oxide layer 200 for 10 minutes to form a first doped layer 300 mixed with amorphous silicon and P doping;

S5、采用高温退火炉,将所得单晶硅片100在退火温度为950℃的条件下退火时间60min;S5, using a high temperature annealing furnace, annealing the obtained single crystal silicon wafer 100 at an annealing temperature of 950° C. for 60 minutes;

S6、于单晶硅片100上形成二氧化硅钝化层600。S6 , forming a silicon dioxide passivation layer 600 on the single crystal silicon wafer 100 .

其中,形成二氧化硅钝化层600的过程如下:The process of forming the silicon dioxide passivation layer 600 is as follows:

利用浓度为35%的氢氟酸,常温下刻蚀单晶硅片100的正面,然后利用浓度为7%氢氧化钠及浓度为35%的氢氟酸去单晶硅片100的正面残留物;Using 35% hydrofluoric acid to etch the front side of the single crystal silicon wafer 100 at room temperature, and then using 7% sodium hydroxide and 35% hydrofluoric acid to remove the residue on the front side of the single crystal silicon wafer 100;

于炉管内通入臭氧,于温度为310℃、流量为6000sccm的条件下处理8min,在单晶硅片100表面形成二氧化硅钝化层600;Ozone is introduced into the furnace tube, and the treatment is carried out for 8 minutes at a temperature of 310° C. and a flow rate of 6000 sccm to form a silicon dioxide passivation layer 600 on the surface of the single crystal silicon wafer 100;

二氧化硅钝化层600的厚度为1.5nm。The thickness of the silicon dioxide passivation layer 600 is 1.5 nm.

S7、利用原子层沉积方式ALD于温度为300℃,将流量为4000sccm的三甲基铝和流量为3000sccm的水反应,在硅片正面沉积10min,形成氧化铝场钝化层700,然后再利用PECVD沉积形成第二减反射层800;S7, using atomic layer deposition (ALD) at a temperature of 300° C., reacting trimethylaluminum with a flow rate of 4000 sccm and water with a flow rate of 3000 sccm, and depositing on the front side of the silicon wafer for 10 minutes to form an aluminum oxide field passivation layer 700, and then using PECVD deposition to form a second anti-reflection layer 800;

S8、利用等离子体增强化学气相沉积PECVD方式,采用混合气体沉积形成第一减反射层400。S8. Using plasma enhanced chemical vapor deposition (PECVD) to form a first anti-reflection layer 400 using mixed gas deposition.

其中,形成第一减反射层400的混合气体中硅烷(SiH4)的流量为3000sccm、笑气(N2O)的流量为10000sccm和氨气(NH3)的流量为10500sccm,时间为20min。The mixed gas used to form the first anti-reflection layer 400 has a flow rate of silane (SiH 4 ) of 3000 sccm, a flow rate of nitrous oxide (N 2 O) of 10000 sccm, and a flow rate of ammonia (NH 3 ) of 10500 sccm, and the time is 20 minutes.

S9、再依次经过丝印烧结、光衰恢复和LECO烧结,得到含有导电电极900的电池片结构。S9, and then sequentially undergoing silk screen sintering, light decay recovery and LECO sintering to obtain a cell structure containing a conductive electrode 900.

对比例1:与实施例1的区别在于:本实施例中未向清洗烘干槽中通入臭氧气体。Comparative Example 1: The difference from Example 1 is that in this example, ozone gas is not introduced into the cleaning and drying tank.

对比例2:与实施例2的区别在于:本实施例中未利用浓度为30%的双氧水处理13min。Comparative Example 2: The difference from Example 2 is that: in this example, the 30% hydrogen peroxide solution was not used for treatment for 13 minutes.

对比例3:与实施例3的区别在于:本实施例中未于湿氧环境下湿度为50%的条件下静置15h。Comparative Example 3: The difference from Example 3 is that: in this example, the sample was not left to stand for 15 hours in a wet oxygen environment with a humidity of 50%.

对比例4:与实施例4的区别在于:本实施例中未于炉管内通入臭氧。Comparative Example 4: The difference from Example 4 is that in this example, ozone is not introduced into the furnace tube.

性能测试:将实施例1~4及对比例1~4提供的电池片样品分别标记为实施例1~4及对比例1~4;并分别对实施例1~4及对比例1~4提供的电池片的相关性能进行如下测试:Performance test: The battery cell samples provided in Examples 1 to 4 and Comparative Examples 1 to 4 are marked as Examples 1 to 4 and Comparative Examples 1 to 4, respectively; and the relevant performances of the battery cells provided in Examples 1 to 4 and Comparative Examples 1 to 4 are tested as follows:

测试:测试电池效率Eta后,将电池片同时置于美能光伏UV测试箱中,按IEC(国际电工委员会)UV30测试标准,进行UV条件设置:辐照强度600w/m2,辐照温度40℃,累计辐照量30 kW·h,待实验结束后,测试电池片效率。Test: After testing the cell efficiency Eta, place the cells in the MeiNeng Photovoltaic UV test box at the same time. According to the IEC (International Electrotechnical Commission) UV30 test standard, set the UV conditions: irradiation intensity 600w/ m2 , irradiation temperature 40℃, cumulative irradiation 30 kW·h. After the experiment is over, test the cell efficiency.

所得测试数据记录于下表1~表4:The obtained test data are recorded in Tables 1 to 4 below:

表1:路径1测试结果Table 1: Path 1 test results

表2:路径2测试结果Table 2: Path 2 test results

表3:路径3测试结果Table 3: Path 3 test results

表4:路径4测试结果Table 4: Path 4 test results

通过对比及分析表1~表4中的相关数据可知,本发明所制备的电池片解决TOPcon电池片UV衰减问题,提高电池片耐UV性能,有效地保证了其质量及品质。由此表明本发明所提供的提高电池片耐UV衰减性能的电池片结构及其制备方法具有更广阔的市场前景,更适宜推广。By comparing and analyzing the relevant data in Tables 1 to 4, it can be seen that the cell prepared by the present invention solves the UV attenuation problem of TOPcon cell, improves the UV resistance of the cell, and effectively guarantees its quality. This shows that the cell structure and preparation method for improving the UV attenuation resistance of the cell provided by the present invention have a broader market prospect and are more suitable for promotion.

在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description with reference to the terms "one embodiment", "example", "specific example", etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described can be combined in any one or more embodiments or examples in a suitable manner.

以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。The preferred embodiments of the present invention disclosed above are only used to help illustrate the present invention. The preferred embodiments do not describe all the details in detail, nor do they limit the invention to the specific implementation methods described. Obviously, many modifications and changes can be made according to the content of this specification. This specification selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present invention, so that those skilled in the art can understand and use the present invention well. The present invention is limited only by the claims and their full scope and equivalents.

Claims (10)

1. The utility model provides an improve battery piece structure of resistant UV decay performance of battery piece, its characterized in that includes monocrystalline silicon piece (100), tunneling oxide layer (200), first doped layer (300) and first antireflection layer (400) have been set gradually to the bottom of monocrystalline silicon piece (100), and monocrystalline silicon piece (100) top has set gradually second doped layer (500), silica passivation layer (600), alumina field passivation layer (700) and second antireflection layer (800).
2. The cell structure for improving the UV attenuation resistance of a cell according to claim 1, wherein a conductive electrode (900) is further provided on the monocrystalline silicon piece (100).
3. The preparation method of the battery piece structure for improving the UV attenuation resistance of the battery piece is characterized by comprising the following steps of:
s1, soaking a monocrystalline silicon wafer (100) in a soaking solution at 70 ℃ in a texturing groove for 115-155S, then taking out the monocrystalline silicon wafer (100), placing the monocrystalline silicon wafer in an alkaline sodium hydroxide solution with the concentration of 0.5-1.5% for 360-480S, and carrying out anisotropic etching to form a pyramid structure;
s2, using a high-temperature tube type diffusion furnace to diffuse boron trichloride for 80-120 min, and then introducing oxygen to form a second doping layer (500) on the front surface of the monocrystalline silicon wafer (100) at high temperature;
S3, etching the back surface of the monocrystalline silicon piece (100) at normal temperature by using hydrofluoric acid with the concentration of 20-25%, then cleaning for 3-7 min at the temperature of 60-70 ℃ by using sodium hydroxide with the concentration of 3-7%, and then performing alkali polishing;
S4, depositing a tunneling oxide layer (200) with the thickness of 1-3 nm on the back surface of the monocrystalline silicon wafer (100) by utilizing a plasma enhanced chemical vapor deposition PECVD mode, and then depositing mixed gas of silane, laughing gas and phosphane on the surface of the tunneling oxide layer (200) for 10min to form a first doped layer (300) mixed with amorphous silicon and P;
s5, annealing the monocrystalline silicon piece (100) for 20-60 min at the annealing temperature of 880-950 ℃ by adopting a high-temperature annealing furnace;
s6, forming a silicon dioxide passivation layer (600) on the monocrystalline silicon piece (100);
s7, utilizing an atomic layer deposition mode ALD to react trimethyl aluminum with the flow rate of 2000-4000 sccm and water with the flow rate of 2000-3000 sccm at the temperature of 200-300 ℃, depositing for 10min on the front surface of a silicon wafer to form an aluminum oxide field passivation layer (700), and then utilizing PECVD to deposit to form a second anti-reflection layer (800);
S8, forming a first anti-reflection layer (400) by adopting a plasma enhanced chemical vapor deposition PECVD mode through mixed gas deposition;
And S9, sequentially performing screen printing sintering, light attenuation recovery and LECO sintering to obtain the battery piece structure containing the conductive electrode (900).
4. The method for manufacturing a battery piece structure for improving UV attenuation resistance of a battery piece according to claim 3, wherein in the step S1, the soaking solution is prepared from sodium hydroxide, hydrogen peroxide and pure water according to a ratio of 1:6:340 by mass ratio.
5. The method of claim 3, wherein in the step S2, the flow rate of boron trichloride is 150-350 sccm, the diffusion temperature is 850-950 ℃, the diffusion time is 25-35 min, the flow rate of oxygen is 20000-30000 sccm, the high temperature is 1000-1060 ℃, and the high temperature treatment time is 100-150 min.
6. A method for manufacturing a battery cell structure for improving UV attenuation resistance of a battery cell according to claim 3, wherein in the step S6, the process of forming the silicon dioxide passivation layer (600) is as follows:
Etching the front surface of the monocrystalline silicon piece (100) at normal temperature by using hydrofluoric acid with the concentration of 25-35%, and removing front surface residues of the monocrystalline silicon piece (100) by using sodium hydroxide with the concentration of 3-7% and hydrofluoric acid with the concentration of 25-35%;
Ozone gas is introduced into the cleaning and drying groove, and a silicon dioxide passivation layer (600) is formed on the surface of the monocrystalline silicon wafer (100) in the drying process by utilizing the strong oxidizing property of the ozone gas;
wherein, the flow rate of the ozone gas is 300-700 sccm, and the time is 5-15 min;
the thickness of the silicon dioxide passivation layer (600) is 0.3-1.5 nm.
7. A method for manufacturing a battery cell structure for improving UV attenuation resistance of a battery cell according to claim 3, wherein in the step S6, the process of forming the silicon dioxide passivation layer (600) is as follows:
Etching the front surface of the monocrystalline silicon piece (100) at normal temperature by using hydrofluoric acid with the concentration of 25-35%, and removing front surface residues of the monocrystalline silicon piece (100) by using sodium hydroxide with the concentration of 3-7% and hydrofluoric acid with the concentration of 25-35%;
Then hydrogen peroxide with the concentration of 30% is used for treatment for 12-18 min, and a silicon dioxide passivation layer (600) is formed on the surface of the monocrystalline silicon wafer (100) after drying;
the thickness of the silicon dioxide passivation layer (600) is 0.3-1.5 nm.
8. A method for manufacturing a battery cell structure for improving UV attenuation resistance of a battery cell according to claim 3, wherein in the step S6, the process of forming the silicon dioxide passivation layer (600) is as follows:
Etching the front surface of the monocrystalline silicon piece (100) at normal temperature by using hydrofluoric acid with the concentration of 25-35%, and removing front surface residues of the monocrystalline silicon piece (100) by using sodium hydroxide with the concentration of 3-7% and hydrofluoric acid with the concentration of 25-35%;
After drying, standing for 6-24 hours under the condition that the humidity is 40-60% in a wet oxygen environment, and forming a silicon dioxide passivation layer (600) on the surface of the monocrystalline silicon wafer (100);
the thickness of the silicon dioxide passivation layer (600) is 0.3-1.5 nm.
9. A method for manufacturing a battery cell structure for improving UV attenuation resistance of a battery cell according to claim 3, wherein in the step S6, the process of forming the silicon dioxide passivation layer (600) is as follows:
Etching the front surface of the monocrystalline silicon piece (100) at normal temperature by using hydrofluoric acid with the concentration of 25-35%, and removing front surface residues of the monocrystalline silicon piece (100) by using sodium hydroxide with the concentration of 3-7% and hydrofluoric acid with the concentration of 25-35%;
Ozone is introduced into the furnace tube, the treatment is carried out for 2 to 8 minutes under the conditions that the temperature is 210 to 310 ℃ and the flow is 4000 to 6000sccm, and a silicon dioxide passivation layer (600) is formed on the surface of the monocrystalline silicon wafer (100);
the thickness of the silicon dioxide passivation layer (600) is 0.3-1.5 nm.
10. The method of claim 3, wherein in the step S8, the flow rate of silane in the mixed gas for forming the first anti-reflection layer (400) is 2000-3000 sccm, the flow rate of laughing gas is 8000-10000 sccm, and the flow rate of ammonia gas is 9900-10500 sccm, for 20min.
CN202411053936.0A 2024-08-02 2024-08-02 A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same Pending CN118588773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411053936.0A CN118588773A (en) 2024-08-02 2024-08-02 A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411053936.0A CN118588773A (en) 2024-08-02 2024-08-02 A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same

Publications (1)

Publication Number Publication Date
CN118588773A true CN118588773A (en) 2024-09-03

Family

ID=92528488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411053936.0A Pending CN118588773A (en) 2024-08-02 2024-08-02 A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same

Country Status (1)

Country Link
CN (1) CN118588773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118969914A (en) * 2024-10-21 2024-11-15 润马光能科技(金华)有限公司 Topcon battery and preparation method thereof, photovoltaic module, and photovoltaic system
CN119907345A (en) * 2025-04-01 2025-04-29 晶科能源(海宁)有限公司 Back contact photovoltaic cell sheet, back contact photovoltaic cell assembly and preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157570A (en) * 2011-01-11 2011-08-17 上海太阳能电池研究与发展中心 Composite passivated anti-reflection film used for crystalline silicon solar battery and preparation method thereof
CN103594556A (en) * 2013-11-15 2014-02-19 英利集团有限公司 Method for forming silicon dioxide film on surface of silicon substrate, method for manufacturing crystalline silicon battery and crystalline silicon battery
CN106611807A (en) * 2016-11-28 2017-05-03 江苏福克斯新能源科技有限公司 Manufacturing method of crystalline silicon solar cell resistant to PID effect
CN108321244A (en) * 2018-03-26 2018-07-24 厦门芯荣光电科技有限公司 UV photodetector and preparation method thereof for ultraviolet IR dual spectral detection
CN115148832A (en) * 2022-07-14 2022-10-04 上饶捷泰新能源科技有限公司 N-TOPCon battery and manufacturing method thereof
CN116469947A (en) * 2023-05-29 2023-07-21 滁州捷泰新能源科技有限公司 A kind of TOPCon battery structure and preparation method thereof
CN117080306A (en) * 2023-08-31 2023-11-17 一道新能源科技股份有限公司 Large-size battery texturing equipment and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157570A (en) * 2011-01-11 2011-08-17 上海太阳能电池研究与发展中心 Composite passivated anti-reflection film used for crystalline silicon solar battery and preparation method thereof
CN103594556A (en) * 2013-11-15 2014-02-19 英利集团有限公司 Method for forming silicon dioxide film on surface of silicon substrate, method for manufacturing crystalline silicon battery and crystalline silicon battery
CN106611807A (en) * 2016-11-28 2017-05-03 江苏福克斯新能源科技有限公司 Manufacturing method of crystalline silicon solar cell resistant to PID effect
CN108321244A (en) * 2018-03-26 2018-07-24 厦门芯荣光电科技有限公司 UV photodetector and preparation method thereof for ultraviolet IR dual spectral detection
CN115148832A (en) * 2022-07-14 2022-10-04 上饶捷泰新能源科技有限公司 N-TOPCon battery and manufacturing method thereof
CN116469947A (en) * 2023-05-29 2023-07-21 滁州捷泰新能源科技有限公司 A kind of TOPCon battery structure and preparation method thereof
CN117080306A (en) * 2023-08-31 2023-11-17 一道新能源科技股份有限公司 Large-size battery texturing equipment and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上海市科学技术编译馆: "《平面晶体管》", 31 December 1965, pages: 20 - 23 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118969914A (en) * 2024-10-21 2024-11-15 润马光能科技(金华)有限公司 Topcon battery and preparation method thereof, photovoltaic module, and photovoltaic system
CN119907345A (en) * 2025-04-01 2025-04-29 晶科能源(海宁)有限公司 Back contact photovoltaic cell sheet, back contact photovoltaic cell assembly and preparation method

Similar Documents

Publication Publication Date Title
CN109994553B (en) A three-layer dielectric passivation film PERC solar cell and its manufacturing process
CN116525708B (en) Front-side wide band gap doped combined passivation back contact solar cell and preparation method thereof
CN110459615B (en) A composite dielectric passivation layer structure solar cell and its preparation process
CN109346536B (en) A contact passivation crystalline silicon solar cell structure and preparation method
CN111933752B (en) Solar cell and preparation method thereof
CN118588773A (en) A cell structure for improving the UV attenuation resistance of a cell and a method for preparing the same
CN113964212B (en) A kind of solar cell and its preparation method, photovoltaic module
CN115458612B (en) Solar cell and preparation method thereof
CN105576083A (en) N-type double-side solar cell based on APCVD technology and preparation method thereof
CN116487448B (en) Film and preparation method thereof, solar cell and preparation method thereof, and photovoltaic module
CN115394863A (en) Solar cell and preparation method thereof
CN115101627B (en) Double-sided passivated contact solar cell and preparation method thereof
WO2024131475A1 (en) Solar cell and preparation method therefor
WO2024131177A1 (en) Solar cell and preparation method therefor
CN115425114A (en) Manufacturing method of heterojunction solar cell
CN104465799B (en) A kind of crystal silicon solar energy battery and preparation method thereof
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
CN118315451A (en) Front surface heterojunction field passivation full-back TOPCon solar cell and preparation method thereof
CN117199186B (en) A method for manufacturing an N-TOPCon battery
WO2024160214A1 (en) Solar cell and preparation method therefor
CN111564521A (en) Preparation method of all-matte IBC solar cell
CN117577729A (en) Preparation method of solar cell and solar cell
CN114497282B (en) A method for preparing a solar cell and a solar cell
CN117153941A (en) Selective doping structure, preparation method of solar cell, solar cell
CN116190470A (en) Boron-doped selective emitter TOPCon battery and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20240903