CN118574565A - In-ear microphone and device for AR/VR applications - Google Patents
In-ear microphone and device for AR/VR applications Download PDFInfo
- Publication number
- CN118574565A CN118574565A CN202380016993.9A CN202380016993A CN118574565A CN 118574565 A CN118574565 A CN 118574565A CN 202380016993 A CN202380016993 A CN 202380016993A CN 118574565 A CN118574565 A CN 118574565A
- Authority
- CN
- China
- Prior art keywords
- user
- waveform
- acoustic signal
- signal
- ear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 46
- 210000000613 ear canal Anatomy 0.000 claims abstract description 36
- 230000003190 augmentative effect Effects 0.000 claims abstract description 6
- 230000036772 blood pressure Effects 0.000 claims description 43
- 210000002216 heart Anatomy 0.000 claims description 39
- 230000003205 diastolic effect Effects 0.000 claims description 28
- 230000033001 locomotion Effects 0.000 claims description 19
- 239000004984 smart glass Substances 0.000 claims description 19
- 230000005236 sound signal Effects 0.000 claims description 17
- 230000003595 spectral effect Effects 0.000 claims description 8
- 210000003027 ear inner Anatomy 0.000 claims description 3
- 230000001902 propagating effect Effects 0.000 claims description 3
- 210000001835 viscera Anatomy 0.000 claims description 2
- 230000000644 propagated effect Effects 0.000 abstract description 8
- 238000004891 communication Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 15
- 238000013186 photoplethysmography Methods 0.000 description 14
- 230000036541 health Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 210000000707 wrist Anatomy 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 210000000038 chest Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000036760 body temperature Effects 0.000 description 5
- 238000000537 electroencephalography Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 101100521334 Mus musculus Prom1 gene Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002570 electrooculography Methods 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 210000003454 tympanic membrane Anatomy 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007177 brain activity Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 210000000883 ear external Anatomy 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000013515 script Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
提供了一种用于耳内使用的设备。该设备包括:入耳式固定器,该入耳式固定器被配置为密封用户的耳道;内部传声器,该内部传声器被耦合以接收通过用户的耳道传播的内部声学信号;外部传声器,该外部传声器被耦合以接收通过用户的环境传播的外部声学信号;以及处理器,该处理器被耦合到增强现实头戴式设备,该处理器被配置为基于内部声学信号和外部声学信号中的至少一者来识别用户的生命体征。一种存储器存储有多个指令,这些指令在被处理器执行时使得进行使用上述设备来识别用户的生命体征的方法。还提供了该存储器、该处理器和该方法。
A device for in-ear use is provided. The device includes: an in-ear holder configured to seal the ear canal of a user; an internal microphone coupled to receive an internal acoustic signal propagated through the ear canal of the user; an external microphone coupled to receive an external acoustic signal propagated through the user's environment; and a processor coupled to an augmented reality head-mounted device, the processor configured to identify the user's vital signs based on at least one of the internal acoustic signal and the external acoustic signal. A memory stores a plurality of instructions that, when executed by the processor, cause a method of using the above device to identify the user's vital signs to be performed. The memory, the processor, and the method are also provided.
Description
技术领域Technical Field
本公开涉及在虚拟现实和增强现实环境中使用的入耳式传声器和设备。更具体地说,本公开涉及传声器,该传声器被配置为接收耳内和耳外的声学输入,以利用用于沉浸式现实应用的入耳式设备进行健康监测。The present disclosure relates to in-ear microphones and devices for use in virtual reality and augmented reality environments. More specifically, the present disclosure relates to microphones configured to receive acoustic inputs inside and outside the ear for health monitoring using in-ear devices for immersive reality applications.
背景技术Background Art
用于移动和沉浸式应用的当前的入耳式设备(例如,助听器、可听设备、耳机和耳塞等)对于用户来说通常是笨重且不舒服的。向入耳式设备添加健康检测功能受阻于此类设备所期望的小的形状要素(form factor)以及涉及的复杂数据处理和分析。Current in-ear devices (e.g., hearing aids, hearables, headphones, and earbuds, etc.) used for mobile and immersive applications are often bulky and uncomfortable for the user. Adding health monitoring functionality to in-ear devices is hampered by the small form factor expected of such devices and the complex data processing and analysis involved.
本公开试图至少部分地解决上述缺点和劣势中的任何或全部缺点和劣势。The present disclosure attempts to at least partially address any or all of the above-mentioned shortcomings and disadvantages.
发明内容Summary of the invention
根据本公开的第一方面,提供了一种设备,该设备包括:入耳式固定器,该入耳式固定器被配置为密封用户的耳道;内部传声器,该内部传声器被耦合以接收通过用户的耳道传播的内部声学信号;以及处理器,该处理器耦合到增强现实头戴式设备(headset),该处理器被配置为基于内部声学信号中的至少一者来识别用户的生命体征。According to a first aspect of the present disclosure, a device is provided, comprising: an in-ear holder configured to seal an ear canal of a user; an internal microphone coupled to receive internal acoustic signals propagated through the ear canal of the user; and a processor coupled to an augmented reality head-mounted device (headset), the processor being configured to identify a vital sign of the user based on at least one of the internal acoustic signals.
在一些实施例中,该设备还可以包括外部传声器,该外部传声器被耦合以接收通过用户的环境传播的外部声学信号,并且处理器还被配置为基于该外部声学信号来识别用户的生命体征。In some embodiments, the device may further include an external microphone coupled to receive an external acoustic signal propagating through the user's environment, and the processor is further configured to identify a vital sign of the user based on the external acoustic signal.
在一些实施例中,该设备还可以包括第一电极,该第一电极安装在入耳式固定器上并且被配置为接收来自用户耳道中的皮肤的电子信号,并且处理器可以被配置为基于内部声学信号和电子信号中的至少一者来识别用户的生命体征。In some embodiments, the device may also include a first electrode mounted on the in-ear holder and configured to receive electronic signals from the skin in the user's ear canal, and the processor may be configured to identify the user's vital signs based on at least one of the internal acoustic signals and the electronic signals.
在一些实施例中,该设备还可以包括第一电极,该第一电极安装在入耳式固定器上并且被配置为接收来自用户耳道中的皮肤的电子信号,并且为了识别用户的生命体征,处理器可以被配置为基于电子信号和内部声学信号之间的时间延迟来确定血压值。In some embodiments, the device may also include a first electrode mounted on the in-ear holder and configured to receive electronic signals from the skin in the user's ear canal, and in order to identify the user's vital signs, the processor may be configured to determine a blood pressure value based on a time delay between the electronic signal and the internal acoustic signal.
在一些实施例中,内部传声器可以是接触式传声器,并且内部声学信号可以指示用户的内脏器官的运动。In some embodiments, the internal microphones may be contact microphones and the internal acoustic signals may be indicative of movement of the user's internal organs.
在一些实施例中,该设备还可以包括:外部传声器,该外部传声器被耦合以接收通过用户的环境传播的外部声学信号;以及扬声器,该扬声器位于入耳式固定器上并且面向用户的耳道,其中处理器可以被配置为利用内部声学信号对外部声学信号进行滤波以形成声学波形,并向扬声器提供该声学波形。In some embodiments, the device may also include: an external microphone coupled to receive an external acoustic signal propagated through the user's environment; and a speaker located on the in-ear holder and facing the user's ear canal, wherein the processor may be configured to filter the external acoustic signal using the internal acoustic signal to form an acoustic waveform, and provide the acoustic waveform to the speaker.
在一些实施例中,处理器可以被配置为利用内部声学信号形成波形并生成该波形的频谱图(spectrogram),并且其中,为了识别用户的生命体征,处理器可以被配置为从该频谱图中提取心率。In some embodiments, the processor may be configured to form a waveform using the internal acoustic signal and generate a spectrogram of the waveform, and wherein, in order to identify the vital signs of the user, the processor may be configured to extract the heart rate from the spectrogram.
在一些实施例中,处理器可以被配置为利用内部声学信号形成波形并生成该波形的频谱图,并且其中,为了识别用户的生命体征,处理器可以被配置为从该频谱图中提取血压值。In some embodiments, the processor may be configured to form a waveform using the internal acoustic signal and generate a spectrogram of the waveform, and wherein, in order to identify the vital signs of the user, the processor may be configured to extract a blood pressure value from the spectrogram.
在一些实施例中,处理器可以被配置为利用内部声学信号形成波形,以识别该波形的心脏收缩期部分(systolic portion)和心脏舒张期部分(diastolic portion),并且其中,用户的生命体征可以是从该波形的心脏收缩期部分和心脏舒张期部分导出的血压。In some embodiments, the processor can be configured to form a waveform using the internal acoustic signal to identify a systolic portion and a diastolic portion of the waveform, and wherein the user's vital sign can be blood pressure derived from the systolic portion and the diastolic portion of the waveform.
在一些实施例中,为了识别用户的生命体征,处理器可以被配置为:利用内部声学信号形成波形,并且基于该波形的心脏收缩期部分和心脏舒张期部分的比率来确定用户的血压。In some embodiments, to identify a user's vital signs, the processor may be configured to form a waveform using the internal acoustic signal and determine the user's blood pressure based on a ratio of a systolic portion to a diastolic portion of the waveform.
在一些实施例中,为了识别用户的生命体征,处理器可以被配置为:利用内部声学信号形成波形,并从该波形中选择亚赫兹声学范围内的频谱分量。In some embodiments, to identify a user's vital signs, the processor may be configured to form a waveform using the internal acoustic signal and select spectral components within the sub-Hertz acoustic range from the waveform.
根据本公开的第二方面,提供了一种计算机实现的方法,该方法包括:从第一传声器的来自入耳式监测器的用户的第一耳道的第一声学信号,利用第一声学信号形成第一波形,以及基于第一波形识别用户的生命体征。According to a second aspect of the present disclosure, there is provided a computer-implemented method comprising: generating a first acoustic signal from a first ear canal of a user of an in-ear monitor from a first microphone, forming a first waveform using the first acoustic signal, and identifying a vital sign of the user based on the first waveform.
在一些实施例中,第一声学信号可以是来自用户身体的内部信号,并且识别用户的生命体征可以包括:基于第一波形确定用户的心率。In some embodiments, the first acoustic signal may be an internal signal from the user's body, and identifying the user's vital signs may include determining the user's heart rate based on the first waveform.
在一些实施例中,计算机实现的方法还可以包括:从第二传声器接收来自入耳式监测器的用户的第一耳道的第二声学信号;利用根据第二声学信号滤波后的第一声学信号形成第二波形;以及经由扬声器向用户提供第二波形,其中第二声学信号可以是来自用户的外部环境的音频信号。In some embodiments, the computer-implemented method may further include: receiving a second acoustic signal from a first ear canal of a user of the in-ear monitor from a second microphone; forming a second waveform using the first acoustic signal filtered according to the second acoustic signal; and providing the second waveform to the user via a speaker, wherein the second acoustic signal may be an audio signal from the user's external environment.
在一些实施例中,计算机实现的方法还可以包括接收来自入耳式监测器中的电极的电子信号;并且其中,识别用户的生命体征可以包括:基于电子信号与第一波形的相关性来确定用户的心率。In some embodiments, the computer-implemented method may further include receiving electronic signals from electrodes in the in-ear monitor; and wherein identifying the user's vital signs may include determining the user's heart rate based on a correlation of the electronic signals with the first waveform.
在一些实施例中,计算机实现的方法还可以包括接收来自电极的电子信号;并且其中,识别用户的生命体征可以包括:基于电子信号与第一声学信号的相关性来识别第一波形的心脏收缩期部分和心脏舒张期部分;并且利用第一波形的心脏收缩期部分和心脏舒张期部分来确定血压值。In some embodiments, the computer-implemented method may further include receiving an electronic signal from the electrode; and wherein identifying the user's vital signs may include: identifying the systolic portion and the diastolic portion of the first waveform based on the correlation of the electronic signal with the first acoustic signal; and determining the blood pressure value using the systolic portion and the diastolic portion of the first waveform.
在一些实施例中,计算机实现的方法还可以包括:识别第一波形的心脏收缩期部分和心脏舒张期部分,其中识别用户的生命体征可以包括:基于第一波形的心脏收缩期部分和心脏舒张期部分来确定血压值。In some embodiments, the computer-implemented method may further include identifying a systolic portion and a diastolic portion of the first waveform, wherein identifying the user's vital signs may include determining a blood pressure value based on the systolic portion and the diastolic portion of the first waveform.
在一些实施例中,识别用户的生命体征可以包括:生成第一波形的频谱图;并且从第一波形的频谱图识别心率值或血压值中的至少一者。In some embodiments, identifying the vital sign of the user may include: generating a spectrogram of the first waveform; and identifying at least one of a heart rate value or a blood pressure value from the spectrogram of the first waveform.
在一些实施例中,识别用户的生命体征可以包括:识别第一波形的心脏收缩期部分和心脏舒张期部分,并且基于与第一波形的心脏收缩期部分的幅度相比的心脏舒张期部分的幅度来确定血压值。In some embodiments, identifying a vital sign of the user may include identifying a systolic portion and a diastolic portion of the first waveform, and determining a blood pressure value based on an amplitude of the diastolic portion compared to an amplitude of the systolic portion of the first waveform.
在一些实施例中,计算机实现的方法还可以包括:利用扬声器为用户提供进入第一耳道的声音信号,其中第一声学信号可以包括声音信号从内耳的后向反射(backreflection),并且其中,识别用户的生命体征可以包括:基于声音信号的后向反射的延迟和幅度来确定用户的听力状况。In some embodiments, the computer-implemented method may also include: using a speaker to provide a sound signal to the user that enters the first ear canal, wherein the first acoustic signal may include a backreflection of the sound signal from the inner ear, and wherein identifying the user's vital signs may include: determining the user's hearing condition based on the delay and amplitude of the backreflection of the sound signal.
在一些实施例中,第一声学信号可以包括由用户生成的声音姿态(soundgesture)作为输入命令,并且还可以包括:从第一波形识别输入命令,并且使智能眼镜中的处理器执行输入命令。In some embodiments, the first acoustic signal may include a sound gesture generated by a user as an input command, and may also include: identifying the input command from the first waveform, and causing a processor in the smart glasses to execute the input command.
根据本公开的第三方面,提供了一种非暂态计算机可读介质,该非暂态计算机可读介质存储指令,这些指令在由处理器执行时使得计算机执行一种方法。该方法包括:从第一传声器接收来自入耳式监测器的用户的第一耳道的第一声学信号;利用第一声学信号形成第一波形;并且基于第一波形识别用户的生命体征。According to a third aspect of the present disclosure, a non-transitory computer-readable medium is provided, which stores instructions that, when executed by a processor, cause a computer to perform a method, the method comprising: receiving a first acoustic signal from a first ear canal of a user of an in-ear monitor from a first microphone; forming a first waveform using the first acoustic signal; and identifying a vital sign of the user based on the first waveform.
在本公开的其他实施例和方面中,一种系统包括用于存储指令的第一装置、以及用于执行这些指令以使系统执行一种方法的第二装置。该方法包括:从第一传声器接收来自入耳式监测器的用户的第一耳道的第一声学信号;利用第一声学信号形成第一波形;并且基于第一波形识别用户的生命体征。In other embodiments and aspects of the present disclosure, a system includes a first device for storing instructions and a second device for executing the instructions to cause the system to perform a method. The method includes: receiving a first acoustic signal from a first ear canal of a user of an in-ear monitor from a first microphone; forming a first waveform using the first acoustic signal; and identifying a vital sign of the user based on the first waveform.
考虑到以下内容,这些和其他实施例对于本领域普通技术人员来说将是显而易见的。These and other embodiments will be apparent to those of ordinary skill in the art in view of the following.
将理解的是,本文描述为适合于结合到本公开的一个或多个方面或实施例中的任何特征旨在在本公开的任何和所有的方面和实施例具有普遍性。根据本公开的说明书、权利要求和附图,本领域技术人员可以理解本公开的其它方面。上述总体描述和以下详细描述仅是示例性和说明性的,而不是对权利要求的限制。It will be understood that any feature described herein as being suitable for incorporation into one or more aspects or embodiments of the present disclosure is intended to be universal in any and all aspects and embodiments of the present disclosure. Other aspects of the present disclosure may be understood by those skilled in the art based on the specification, claims and drawings of the present disclosure. The above general description and the following detailed description are exemplary and illustrative only, and are not limitations of the claims.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了根据本公开的一个或多个实施例被配置为评估用户的健康的架构中的人工现实(AR)头戴式设备和入耳式监测器(in-ear monitor,IEM)。FIG. 1 illustrates an artificial reality (AR) head mounted device and an in-ear monitor (IEM) in a framework configured to assess a user's health according to one or more embodiments of the present disclosure.
图2示出了根据本公开的一个或多个实施例的增强现实生态系统,该增强现实生态系统包括耳内的可穿戴设备和腕部的可穿戴设备以评估用户的健康。FIG. 2 illustrates an augmented reality ecosystem including an in-ear wearable device and a wrist wearable device to assess a user's health according to one or more embodiments of the present disclosure.
图3A至图3D示出了根据本公开的一个或多个实施例的入耳式监测器(IEM)的不同实施例。3A-3D illustrate different embodiments of an in-ear monitor (IEM) according to one or more embodiments of the present disclosure.
图4示出了根据本公开的一个或多个实施例的由IEM中的内部传声器收集的声学信号的频域分析。4 illustrates a frequency domain analysis of acoustic signals collected by an internal microphone in an IEM, according to one or more embodiments of the present disclosure.
图5A至图5C示出了根据本公开的一个或多个实施例的佩戴入耳式传声器(IEM)和外耳式传声器(outer-ear microphone,OEM)的用户,以及来自IEM信号的声学波形的频谱图,IEM信号与心电子信号(electro-cardiography,ECG)和血压回归图的组合。Figures 5A to 5C show a user wearing an in-ear microphone (IEM) and an outer-ear microphone (OEM) according to one or more embodiments of the present disclosure, as well as a spectrogram of an acoustic waveform from an IEM signal, a combination of the IEM signal with an electro-cardiography (ECG) signal, and a blood pressure regression graph.
图6示出了根据本公开的一个或多个实施例的利用IEM中的接触式传声器获得的用于确定用户心率的波形。FIG. 6 illustrates a waveform obtained using a contact microphone in an IEM for determining a user's heart rate according to one or more embodiments of the present disclosure.
图7是示出了根据本公开的一个或多个实施例的用于使用入耳式监测器中的传声器来评估头戴式设备或智能眼镜的用户的健康的方法700中的步骤的流程图。7 is a flow chart illustrating steps in a method 700 for assessing the health of a user of a head mounted device or smart glasses using microphones in in-ear monitors, according to one or more embodiments of the present disclosure.
图8是示出了根据本公开一个或多个实施例的示例性计算机系统的框图,利用该计算机系统可以实现头戴式设备和其他客户端设备以及图7中的方法。FIG. 8 is a block diagram illustrating an exemplary computer system according to one or more embodiments of the present disclosure, with which a head mounted device and other client devices and the method of FIG. 7 may be implemented.
在附图中,除非另外明确说明,否则具有相同或相似附图标记的元件与相同或相似属性和特征相关联。In the drawings, unless explicitly stated otherwise, elements with the same or similar reference numerals are associated with the same or similar attributes and features.
具体实施方式DETAILED DESCRIPTION
在以下详细描述中,阐述了许多具体的细节,以提供对本公开的透彻理解。然而,对于本领域普通技术人员来说显而易见的是,可以在没有这些具体细节中的一些具体细节的情况下,对本公开的各实施例进行实践。在其他实例中,没有详细示出众所周知的结构和技术,以免模糊本公开。In the following detailed description, many specific details are set forth to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that various embodiments of the present disclosure may be practiced without some of these specific details. In other instances, well-known structures and techniques are not shown in detail to avoid obscuring the present disclosure.
总体概述General Overview
头部穿戴设备(例如,头上穿戴的设备,包括但不限于听觉设备、智能眼镜、AR/VR头戴式设备和智能眼镜等)提供获取有价值的健康信息的机会。Head-worn devices (e.g., devices worn on the head, including but not limited to hearing devices, smart glasses, AR/VR headsets and smart glasses, etc.) provide opportunities to obtain valuable health information.
耳朵(例如,耳道和耳廓)非常接近大脑、身体化学物质、指示大脑活动、心肺活动和体内温度的血管。更具体地说,可以将传感器(包括电极、惯性运动单元(inertialmotion unit,IMU)、加速度计和传声器)放置在耳道内或耳朵周围(在AR/VR头戴式设备或智能眼镜的情况下),以感测大脑、心脏和眼睛的电生理活动(例如,脑电图(electro-encephalography,EEG)、心电图(ECG)、眼电图(electro-oculography,EOG)和皮肤电活动(electrodermal activity,EDA)等);或感测生命体征(心率、呼吸频率、血压和体温等);或感测身体化学物质(例如,血液酒精水平和血糖估计等)。The ear (e.g., ear canal and auricle) is in close proximity to the brain, body chemicals, blood vessels that indicate brain activity, cardiopulmonary activity, and body temperature. More specifically, sensors (including electrodes, inertial motion units (IMUs), accelerometers, and microphones) can be placed in the ear canal or around the ear (in the case of AR/VR headsets or smart glasses) to sense electrophysiological activity of the brain, heart, and eyes (e.g., electroencephalography (EEG), electrocardiogram (ECG), electro-oculography (EOG), and electrodermal activity (EDA), etc.); or to sense vital signs (heart rate, respiratory rate, blood pressure, and body temperature, etc.); or to sense body chemicals (e.g., blood alcohol level and blood sugar estimation, etc.).
本文公开的传声器可以包括用于检测运动的接触式传声器、内部传声器和外部传声器、以及声学传声器等。除了传声器之外,本文公开的入耳式设备还可以包括扬声器,以产生声音信号并向入耳式设备的用户提供声音信号。The microphone disclosed herein may include a contact microphone for detecting motion, an internal microphone and an external microphone, an acoustic microphone, etc. In addition to the microphone, the in-ear device disclosed herein may further include a speaker to generate and provide a sound signal to a user of the in-ear device.
本文公开的各实施例中的电极可用于EOG测量、ECG测量和EEG测量,例如以用于确定听觉注意力、心率估计和呼吸频率等、听觉稳态响应(Auditory Steady StateResponse,ASSR)、听觉脑干反应(auditory brainstem response,ABR)。在一些实施例中,本文公开的入耳式电极可用于测量可追踪松弛/活动的静息状态电振荡(EEG中的阿尔法波)。与其他测量(例如,光电容积脉搏波描记法(photoplethysmography,PPG))相结合,诊断可能性的一个新分支是开放的。可以应用入耳EEG测量来追踪用户注意力(例如,区分注意力焦点和眼睛凝视方向)。The electrodes in the embodiments disclosed herein can be used for EOG measurements, ECG measurements, and EEG measurements, for example, to determine auditory attention, heart rate estimation and breathing rate, etc., Auditory Steady State Response (ASSR), Auditory Brainstem Response (ABR). In some embodiments, the in-ear electrodes disclosed herein can be used to measure resting state electrical oscillations (alpha waves in EEG) that can track relaxation/activity. In combination with other measurements (e.g., photoplethysmography (PPG)), a new branch of diagnostic possibilities is open. In-ear EEG measurements can be applied to track user attention (e.g., distinguishing between focus of attention and direction of eye gaze).
本文公开的方法和设备包括AR/VR头戴式设备用户的耳朵内和耳朵周围的光学传感器、声学传感器、运动传感器、化学传感器和温度传感器,结合由上述传感器提供的信号的软件相关性,以生成对用户的全面诊断和健康评估。The methods and devices disclosed herein include optical sensors, acoustic sensors, motion sensors, chemical sensors, and temperature sensors in and around the ears of a user of an AR/VR head-mounted device, combined with software correlation of signals provided by the above sensors to generate a comprehensive diagnosis and health assessment of the user.
本文公开的各特征中的一些特征包括使用红外感测和光谱技术的耳内体温感测或头部穿戴体温感测。在一些实施例中,本文公开的传感器的接触区域包括耳内耳道(像入耳式耳塞)和耳甲腔内(在人类耳廓中)、人耳顶部的区域(眼镜所处的位置)、以及头戴式设备或智能眼镜的鼻托中的区域(眼镜位于鼻子上的位置)。一些测量可以包括耳朵内或耳朵周围的血糖水平感测、酒精感测、体温和血压等。一些实施例包括眼镜/头戴式设备使用光信号和电信号的组合(例如,分别为PPG传感器+ECG传感器)或使用电信息和声学或基于运动的信息的组合(例如,分别为ECG传感器+声学或运动传感器)来估计血压的脉搏传导时间(pulse transit time,PTT)方法。一些实施例包括眼镜/头戴式设备使用(例如,使用具有多于一个不同波长的PPG传感器)从多个不同波长收集的光学信号的组合来估计血压的基于光学的脉搏传导时间(PTT)方法。一些实施例使用光学感测技术(PPG)与用于使用PPG信息和对应的真实(ground-truth)血压信息这两者来训练网络的深度神经网络相结合,来获得用户的血压。一些实施例包括使用运动传感器和电信号(例如,分别是IMU+ECG传感器)的组合来针对眼镜/头戴式设备估计血压的基于运动的脉搏传导时间(PTT)方法。神经网络一旦被完全训练,就可以仅使用PPG信息并利用这个预先训练的网络来量化和预测用户的血压。为了进一步提高准确度,可能期望进行一些主观校准。在一些实施例中,在本文公开的IEM设备中收集的PPG信号可能能够通过分析到大脑的充氧和去氧血流(氧合血红蛋白和脱氧血红蛋白)来估计用户的认知负荷。一些实施例结合通过耳朵周围的排放物来感测酒精水平。一些实施例包括耳朵接触点周围的化学感测摄入(chemical sensing intake)。在一些实施例中,IEM设备可以执行酒精监测和用户锻炼期间的脂肪燃烧。Some of the features disclosed herein include in-ear body temperature sensing or head-worn body temperature sensing using infrared sensing and spectroscopy technology. In some embodiments, the contact area of the sensor disclosed herein includes the in-ear ear canal (like in-ear earplugs) and the cavum concha (in the human auricle), the area on the top of the human ear (where the glasses are located), and the area in the nose pads of the head-mounted device or smart glasses (where the glasses are located on the nose). Some measurements may include blood sugar level sensing, alcohol sensing, body temperature and blood pressure in or around the ear. Some embodiments include glasses/head-mounted devices using a combination of optical signals and electrical signals (e.g., PPG sensors + ECG sensors, respectively) or using a combination of electrical information and acoustic or motion-based information (e.g., ECG sensors + acoustic or motion sensors, respectively) to estimate the pulse transit time (PTT) method of blood pressure. Some embodiments include glasses/head-mounted devices using (e.g., using a PPG sensor with more than one different wavelength) a combination of optical signals collected from multiple different wavelengths to estimate blood pressure based on optical pulse transit time (PTT) methods. Some embodiments use optical sensing technology (PPG) combined with a deep neural network for training the network using both PPG information and corresponding ground-truth blood pressure information to obtain the user's blood pressure. Some embodiments include a motion-based pulse transit time (PTT) method for estimating blood pressure for glasses/head-mounted devices using a combination of motion sensors and electrical signals (e.g., IMU+ECG sensors, respectively). Once the neural network is fully trained, it is possible to quantify and predict the user's blood pressure using only PPG information and this pre-trained network. To further improve accuracy, some subjective calibration may be desired. In some embodiments, the PPG signal collected in the IEM device disclosed herein may be able to estimate the user's cognitive load by analyzing oxygenated and deoxygenated blood flow (oxyhemoglobin and deoxyhemoglobin) to the brain. Some embodiments combine sensing alcohol levels through emissions around the ears. Some embodiments include chemical sensing intake around the ear contact point. In some embodiments, the IEM device can perform alcohol monitoring and fat burning during user exercise.
示例系统架构Example system architecture
图1示出了根据一些实施例的被配置为评估用户101的健康的架构10中的AR头戴式设备110-1和入耳式监测器(IEM)100。IEM 100被插入到用户101的耳朵170中,到达耳道161。AR头戴式设备110-1可以包括智能眼镜,该智能眼镜具有存储指令的存储器电路120和处理器电路112,处理器电路112被配置为执行指令以执行本文公开的方法中的步骤。AR头戴式设备110-1(或智能眼镜)还可以包括通信模块118,该通信模块118被配置为在AR头戴式设备110-1(和/或入耳式设备100、和/或智能手表、或上述设备的组合)与用户的移动设备110-2之间无线传输信息(例如,数据集103-1)(AR头戴式设备110-1和移动设备110-2在下文中将统称为“客户端设备110”)。通信模块118被配置为与网络150接合,以向网络150上的其他设备发送和接收信息(诸如数据集103-1、数据集103-2、数据集103-3、请求、响应和命令)。在一些实施例中,通信模块118可以包括例如调制解调器或以太网卡。客户端设备110继而可以通过网络150与远程服务器130和数据库152通信地耦合,并且彼此传输/共享信息和文件等(例如,数据集103-2和数据集103-3)。数据集103-1、103-2和103-3在下文中被统称为“数据集103”。例如,网络150可以包括以下中的任何一者或多者:局域网(localarea network,LAN)、广域网(wide area network,WAN)和互联网等。此外,该网络可以包括但不限于以下网络拓扑中的任何一者或多者,这些网络拓扑包括总线网络、星形网络、环形网络、网状网络、星形总线网络、以及树形网络或分层网络等。FIG. 1 illustrates an AR head mounted device 110 - 1 and an in-ear monitor (IEM) 100 in an architecture 10 configured to assess the health of a user 101 according to some embodiments. The IEM 100 is inserted into the ear 170 of the user 101, reaching the ear canal 161. The AR head mounted device 110 - 1 may include smart glasses having a memory circuit 120 storing instructions and a processor circuit 112, the processor circuit 112 being configured to execute the instructions to perform the steps in the method disclosed herein. The AR head mounted device 110 - 1 (or smart glasses) may also include a communication module 118, which is configured to wirelessly transmit information (e.g., data set 103 - 1) between the AR head mounted device 110 - 1 (and/or in-ear device 100, and/or smart watch, or a combination of the above devices) and the user's mobile device 110 - 2 (the AR head mounted device 110 - 1 and the mobile device 110 - 2 will be collectively referred to as "client device 110" hereinafter). The communication module 118 is configured to interface with the network 150 to send and receive information (such as data set 103-1, data set 103-2, data set 103-3, requests, responses, and commands) to other devices on the network 150. In some embodiments, the communication module 118 may include, for example, a modem or an Ethernet card. The client device 110 can then be communicatively coupled with the remote server 130 and the database 152 through the network 150, and transmit/share information and files, etc. (e.g., data set 103-2 and data set 103-3) with each other. Data sets 103-1, 103-2, and 103-3 are collectively referred to as "data sets 103" hereinafter. For example, the network 150 may include any one or more of the following: a local area network (LAN), a wide area network (WAN), and the Internet, etc. In addition, the network may include, but is not limited to, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star bus network, and a tree network or a hierarchical network, etc.
在一些实施例中,本文公开的方法中的多个步骤中的至少一个步骤由处理器112执行,该处理器112将数据集103-1提供给移动设备110-2。移动设备110-2可以进一步处理信号,并通过网络150向数据库152提供数据集103-2。远程服务器130可以以该形式从多个AR头戴式设备110-1和移动设备110-2收集数据集103-2,并执行进一步的计算。此外,在聚集了来自多个个体的群体的数据之后,远程服务器可以执行有意义的统计。只要所涉及的多个用户中的每个用户都同意使用非个性化或匿名化的数据,就可以建立该数据循环(cycle)。在一些实施例中,远程服务器130和数据库152可以由医疗网络或医疗设施或机构(例如,医院、大学、政府机构、诊所和健康保险网络等)托管。移动设备110-2、AR头戴式设备110-1、入耳式设备100以及其中的应用可以由不同的服务提供商(例如,网络运营商和应用开发商等)托管。此外,AR头戴式设备110-1和移动设备110-2可以来自不同的制造商。用户101最终是数据集103-1以及从其导出的所有数据(例如,数据集103)的唯一所有者,因此所有数据流(例如,数据集103)虽然由不同实体提供、处理或控制,但是由用户101授权,并由网络150、服务器130、数据库152和移动设备110-2保护,以保证隐私和安全。In some embodiments, at least one of the multiple steps in the method disclosed herein is performed by a processor 112, which provides a data set 103-1 to a mobile device 110-2. The mobile device 110-2 can further process the signal and provide the data set 103-2 to the database 152 via the network 150. The remote server 130 can collect the data set 103-2 from multiple AR head-mounted devices 110-1 and mobile devices 110-2 in this form and perform further calculations. In addition, after aggregating data from a group of multiple individuals, the remote server can perform meaningful statistics. As long as each of the multiple users involved agrees to use non-personalized or anonymized data, the data cycle can be established. In some embodiments, the remote server 130 and the database 152 can be hosted by a medical network or medical facility or institution (e.g., a hospital, university, government agency, clinic, and health insurance network, etc.). The mobile device 110-2, the AR head-mounted device 110-1, the in-ear device 100, and the applications therein can be hosted by different service providers (e.g., network operators and application developers, etc.). In addition, the AR head mounted device 110-1 and the mobile device 110-2 may be from different manufacturers. The user 101 is ultimately the sole owner of the dataset 103-1 and all data derived therefrom (e.g., dataset 103), so all data flows (e.g., dataset 103), although provided, processed, or controlled by different entities, are authorized by the user 101 and protected by the network 150, server 130, database 152, and mobile device 110-2 to ensure privacy and security.
图2示出了根据一些实施例的增强现实生态系统200,该增强现实生态系统200包括耳内的可穿戴设备205-1(例如,IEM)、腕部的可穿戴设备205-2、胸部的可穿戴设备205-3和智能眼镜传感器205-4,以评估用户201的健康。在一些实施例中,IEM 205-1还包括光学传感器,该光学传感器被配置为经由数据采集模块(data acquisition module,DAQ)230向计算机240中的处理器提供光学信号220-1。IEM 205-1还可以包括被配置为经由数据采集模块(DAQ)230向计算机240中的处理器提供电信号的一个或多个接触电极。计算机240被配置为基于来自IEM 205-1的第一电子信号和光学信号220-1来识别用户201的心血管状况。在一些实施例中,IEM 205-1还包括运动传感器(例如,加速度计、接触式传声器或IMU),该运动传感器被配置为经由DAQ 230向计算机240提供基于运动的信号。在一些实施例中,一对IEM 205将放置在两只耳朵中,并且不同的光学传感器、电传感器(电极)、声学传感器(传声器)或运动传感器(加速度计、IMU、接触式传声器等)可以放置在两侧中;或者在一些情况下,一些传感器可以放置在一侧(例如,右侧),而一些其他传感器可以放置在另一侧(例如,左侧)。计算机240被配置为基于来自IEM 205-1的第一电子信号和运动信号来识别用户的心血管状况。光学传感器可以是光电容积脉搏波描记法(PPG)传感器,并且光学信号220-1可以包括指示用户201的耳朵内的血管活动的数字或模拟信号。胸部传感器205-3和智能眼镜传感器205-4可以包括分别从用户201的胸部和面部(例如,耳朵外部、下巴和鼻子)周围的一个或多个区域提供分布式信号220-3和220-4的ECG传感器(或者可替代地,可以从放置在头部区域上的一些电极或从放置在IEM 205-1中的电极或从放置在腕部设备205-2上的电极收集ECG),并且设备205-2中的腕部PPG传感器可以为用户201的腕部周围的血管活动提供单独的信号220-2。在下文中,IEM 205-1、腕部传感器205-2、胸部传感器205-3和智能眼镜传感器205-4将统称为可穿戴设备(和传感器)205。血压(blood pressure,BP)测量结果可以使用袖带或无袖带BP监测器210来获得,并且还可以通过比较PPG信号220-1和220-2来确定。信号220-1、220-2、220-3和220-4(在下文中统称为“信号220”)可以由计算机240中的DAQ 230收集和数字化,以供处理。在一些实施例中,信号220和其他信号可以是有线的或无线的。在一些实施例中,可能优选在不同的可穿戴设备205与用户201之间进行无线信号通信。在一些实施例中,可穿戴设备和传感器205可以包括一个或多个运动传感器,并且可以对从智能眼镜、IEM、胸部或腕部收集的基于运动的信息进行组合以创建更有意义的信息。2 shows an augmented reality ecosystem 200 according to some embodiments, which includes an in-ear wearable device 205-1 (e.g., IEM), a wrist wearable device 205-2, a chest wearable device 205-3, and a smart glasses sensor 205-4 to assess the health of a user 201. In some embodiments, the IEM 205-1 also includes an optical sensor configured to provide an optical signal 220-1 to a processor in a computer 240 via a data acquisition module (DAQ) 230. The IEM 205-1 may also include one or more contact electrodes configured to provide an electrical signal to a processor in the computer 240 via the data acquisition module (DAQ) 230. The computer 240 is configured to identify the cardiovascular condition of the user 201 based on the first electronic signal from the IEM 205-1 and the optical signal 220-1. In some embodiments, the IEM 205-1 also includes a motion sensor (e.g., an accelerometer, a contact microphone, or an IMU) configured to provide a motion-based signal to the computer 240 via the DAQ 230. In some embodiments, a pair of IEMs 205 will be placed in two ears, and different optical sensors, electrical sensors (electrodes), acoustic sensors (microphones), or motion sensors (accelerometers, IMUs, contact microphones, etc.) can be placed in both sides; or in some cases, some sensors can be placed on one side (e.g., the right side), while some other sensors can be placed on the other side (e.g., the left side). The computer 240 is configured to identify the cardiovascular condition of the user based on the first electronic signal and the motion signal from the IEM 205-1. The optical sensor can be a photoplethysmography (PPG) sensor, and the optical signal 220-1 can include a digital or analog signal indicating vascular activity in the ear of the user 201. The chest sensor 205-3 and the smart glasses sensor 205-4 may include ECG sensors that provide distributed signals 220-3 and 220-4 from one or more areas around the chest and face (e.g., outside the ears, chin, and nose) of the user 201, respectively (or alternatively, ECG may be collected from some electrodes placed on the head area or from electrodes placed in the IEM 205-1 or from electrodes placed on the wrist device 205-2), and the wrist PPG sensor in the device 205-2 may provide a separate signal 220-2 for vascular activity around the wrist of the user 201. Hereinafter, the IEM 205-1, the wrist sensor 205-2, the chest sensor 205-3, and the smart glasses sensor 205-4 will be collectively referred to as the wearable device (and sensor) 205. Blood pressure (BP) measurements may be obtained using a cuff or cuffless BP monitor 210, and may also be determined by comparing the PPG signals 220-1 and 220-2. Signals 220-1, 220-2, 220-3, and 220-4 (hereinafter collectively referred to as "signals 220") can be collected and digitized by DAQ 230 in computer 240 for processing. In some embodiments, signal 220 and other signals can be wired or wireless. In some embodiments, wireless signal communication between different wearable devices 205 and user 201 may be preferred. In some embodiments, wearable devices and sensors 205 may include one or more motion sensors, and motion-based information collected from smart glasses, IEMs, chests, or wrists may be combined to create more meaningful information.
图3A至图3D示出了根据一些实施例的入耳式监测器(IEM)300A、300B、300C和300D(在下文中统称为“IEM 300”)的不同实施例。IEM 300可以包括前端301-1和后端301-2,该前端301-1包括传感器并且朝向耳道361和鼓膜362,后端301-2包括处理器312。IEM 300可以包括传感器,例如:用于感测电信号的电极305、声学传感器325-1和325-2(例如,在下文中统称为“传声器325”)、运动传感器327(例如,加速度计、接触式传声器和惯性运动单元(IMU)等)、温度传感器329、以及包括发射器321和检测器323的光学传感器(例如,PPG传感器中的LED和PD、基于傅里叶变换的功能性近红外光谱(functional near-infraredSpectroscopy,fNIRS)传感器、基于光谱的)。电极305可以包括用于诸如EEG、ECG、EOG和EDA等应用的生物电位电极)。在一些实施例中,入耳式固定器340(也称为耳塞)可以完全由软导电材料制成;因此,整个耳塞将是导电的并且将充当软电极。此外,处理器312可以经由数模转换器和/或模数转换器(DAC/ADC)330来对部件和传感器321、323、324(扬声器)、325-1(内部传声器)、325-2(外部传声器)(在下文中统称为传声器325)、327和329的信号采集和控制中的至少一些操作进行处理。处理器312可以包括前馈阶段311ff和反馈阶段311fb,该前馈阶段和反馈阶段协作以处理来自传感器的信号:降噪、平衡、滤波和放大。3A to 3D show different embodiments of in-ear monitors (IEMs) 300A, 300B, 300C, and 300D (hereinafter collectively referred to as "IEM 300") according to some embodiments. IEM 300 may include a front end 301-1 and a rear end 301-2, wherein the front end 301-1 includes a sensor and faces the ear canal 361 and the tympanic membrane 362, and the rear end 301-2 includes a processor 312. The IEM 300 may include sensors such as: electrodes 305 for sensing electrical signals, acoustic sensors 325-1 and 325-2 (e.g., collectively referred to as "microphones 325" hereinafter), motion sensors 327 (e.g., accelerometers, contact microphones, and inertial motion units (IMUs), etc.), temperature sensors 329, and optical sensors including emitters 321 and detectors 323 (e.g., LEDs and PDs in PPG sensors, functional near-infrared spectroscopy (fNIRS) sensors based on Fourier transforms, spectroscopy-based). The electrodes 305 may include biopotential electrodes for applications such as EEG, ECG, EOG, and EDA). In some embodiments, the in-ear holder 340 (also referred to as an earplug) may be made entirely of a soft conductive material; therefore, the entire earplug will be conductive and will act as a soft electrode. In addition, the processor 312 can handle at least some operations in signal acquisition and control of components and sensors 321, 323, 324 (speakers), 325-1 (internal microphone), 325-2 (external microphone) (hereinafter collectively referred to as microphone 325), 327 and 329 via digital-to-analog converters and/or analog-to-digital converters (DAC/ADC) 330. The processor 312 can include a feedforward stage 311ff and a feedback stage 311fb, which cooperate to process the signals from the sensors: noise reduction, balancing, filtering and amplification.
在一些实施例中,电极305包括接触电极,该接触电极被配置为从用户的耳道中的皮肤传递电流。在一些实施例中,电极305涂覆有金层、银层、氯化银层或其组合中的至少一者。在一些实施例中,电极305包括电容耦合电极,该电容耦合电极被布置为与用户的皮肤足够接近但不接触。在一些实施例中,IEM 300还包括安装在入耳式固定器340上的至少一个第二电极305,该第二电极305被配置为接收来自耳道361中的皮肤的第二电子信号。在一些实施例中,入耳式固定器340可以完全由软导电材料(例如,导电聚合物、导电粘合剂、导电涂料等)制成;因此,整个耳塞将是导电的,并且将充当从耳道皮肤收集电信号的软电极。在一些实施例中,处理器312被配置为在第一电子信号的质量高于预选阈值时选择第一电子信号。在一些实施例中,处理器312被配置为利用第二电子信号来降低第一电子信号中的噪声背景。在一些实施例中,处理器312被配置为根据第一电子信号确定用户的心率。在一些实施例中,处理器312被配置为根据与在外部传声器中接收的声刺激对应的第一电子信号确定大脑活动。In some embodiments, the electrode 305 includes a contact electrode configured to pass current from the skin in the ear canal of the user. In some embodiments, the electrode 305 is coated with at least one of a gold layer, a silver layer, a silver chloride layer, or a combination thereof. In some embodiments, the electrode 305 includes a capacitive coupling electrode arranged to be close enough to the user's skin but not in contact. In some embodiments, the IEM 300 also includes at least one second electrode 305 mounted on the in-ear retainer 340, which is configured to receive a second electronic signal from the skin in the ear canal 361. In some embodiments, the in-ear retainer 340 can be made entirely of a soft conductive material (e.g., a conductive polymer, a conductive adhesive, a conductive coating, etc.); therefore, the entire earplug will be conductive and will act as a soft electrode for collecting electrical signals from the ear canal skin. In some embodiments, the processor 312 is configured to select the first electronic signal when the quality of the first electronic signal is higher than a preselected threshold. In some embodiments, the processor 312 is configured to use the second electronic signal to reduce the noise background in the first electronic signal. In some embodiments, the processor 312 is configured to determine the user's heart rate based on the first electronic signal. In some embodiments, processor 312 is configured to determine brain activity based on the first electronic signal corresponding to the acoustic stimulus received in the external microphone.
AR头戴式设备或智能眼镜中的IEM 300可以包括被配置为密闭地(hermetically)密封用户的耳道的入耳式固定器340、安装在入耳式固定器340上并被配置为接收来自耳道361中的皮肤的第一电子信号的第一电极305、以及被耦合以接收通过耳道361传播的内部声学信号的内部传声器325-1。声学前端包括内部传声器325-1,该内部传声器325-1被配置为检测由体内产生并通过耳道361传播的声波(xBC(t))(例如,心率约<100赫兹、呼吸频率约50-1000赫兹、以及喉腔中的其他声音)。外部传声器325-2被耦合以接收通过用户环境传播的外部声学信号x(t)。在一些实施例中,内部信号xBC(t)结合外部信号x(t)可用于诸如音频流传输(streaming)、透听(hear-through)、主动降噪(active noise cancelation,ANC)、听力校正、虚拟存在和空间音频和通话服务等声学过程。在一些实施例中,在左耳IEM监测器300和右耳IEM监测器300之间结合执行上述过程中的至少一些过程。The IEM 300 in an AR head mounted device or smart glasses may include an in-ear holder 340 configured to hermetically seal the user's ear canal, a first electrode 305 mounted on the in-ear holder 340 and configured to receive a first electronic signal from the skin in the ear canal 361, and an internal microphone 325-1 coupled to receive an internal acoustic signal propagated through the ear canal 361. The acoustic front end includes the internal microphone 325-1, which is configured to detect sound waves (x BC (t)) generated by the body and propagated through the ear canal 361 (e.g., heart rate of about <100 Hz, breathing rate of about 50-1000 Hz, and other sounds in the laryngeal cavity). The external microphone 325-2 is coupled to receive the external acoustic signal x(t) propagated through the user's environment. In some embodiments, the internal signal x BC (t) in combination with the external signal x(t) can be used for acoustic processes such as audio streaming, hear-through, active noise cancelation (ANC), hearing correction, virtual presence and spatial audio and call services. In some embodiments, at least some of the above processes are performed in combination between the left ear IEM monitor 300 and the right ear IEM monitor 300.
在一些实施例中,扬声器324和内部传声器325-1可以是自混合干涉仪(self-mixing interferometer,SMI)的一部分。SMI是一种紧凑、低功率、廉价和灵敏的声学干涉测量设备,该声学干涉测量设备被配置为基于发射的声波的一部分与从皮肤反射的声波之间的声学干涉图案来测量皮肤的位移。在一些实施例中,利用SMI获得的皮肤位移与(例如,来自PPG传感器、运动传感器或ECG电极的)心率测量结果相结合,以测量血压和心率,或者甚至鼓膜的振动;该鼓膜也充当内部传声器。In some embodiments, the speaker 324 and the internal microphone 325-1 can be part of a self-mixing interferometer (SMI). An SMI is a compact, low-power, inexpensive, and sensitive acoustic interferometry device that is configured to measure displacement of the skin based on the acoustic interference pattern between a portion of the emitted sound waves and the sound waves reflected from the skin. In some embodiments, the skin displacement obtained using the SMI is combined with heart rate measurements (e.g., from a PPG sensor, motion sensor, or ECG electrodes) to measure blood pressure and heart rate, or even the vibration of the eardrum; the eardrum also acts as an internal microphone.
IEM 300B包括密封垫341,该密封垫将耳道361的内部与环境分开,留下包括用于压力均衡器(pressure equalizer,PEQ)管342的声阻性网344(acoustically resistivemesh)的背容式(back-volume)通气部(vent),以与阻性网344(也在IEM 300C中示出)通气。密封腔可以在低功率使用和小的形状要素下实现呼吸和心率监测(例如,将信号与内部声学传声器325-1隔离)。IEM 300B includes a sealing cushion 341 that separates the interior of the ear canal 361 from the environment, leaving a back-volume vent including an acoustically resistive mesh 344 for a pressure equalizer (PEQ) tube 342 to vent to the resistive mesh 344 (also shown in IEM 300C). The sealed chamber enables respiration and heart rate monitoring (e.g., isolating the signal from the internal acoustic microphone 325-1) with low power usage and a small form factor.
IEM 300C示出了处理器电路312,该处理器电路312用于基于第一电子信号、内部声学信号和外部声学信号(例如,来自传声器325)中的至少一者来识别用户的心血管状况或神经状况。一些实施例可以包括下部电缆345,该下部电缆345将IEM与VR头戴式设备或智能眼镜电耦合,该下部电缆345包括应变消除器343。The IEM 300C shows a processor circuit 312 for identifying a cardiovascular condition or a neurological condition of a user based on at least one of a first electronic signal, an internal acoustic signal, and an external acoustic signal (e.g., from a microphone 325). Some embodiments may include a lower cable 345 that electrically couples the IEM to a VR headset or smart glasses, the lower cable 345 including a strain relief 343.
IEM 300D示出了柔性印刷电路板(flexible,printed circuit board,FPCB)342,该FPCB提供了到不同的部件和传感器321、323、324、325、327和329的内部电连接。The IEM 300D shows a flexible printed circuit board (FPCB) 342 that provides internal electrical connections to the various components and sensors 321 , 323 , 324 , 325 , 327 , and 329 .
图4是示出了根据一些实施例的由IEM中的内部传声器收集的声学信号的频域图410的图表400。横坐标401表示时间(例如,秒),纵坐标402a表示频率(例如,赫兹)。灰度402b表示功率谱密度(以每赫兹分贝(分贝/赫兹(dB/Hz))为单位)。较高功率密度区域(亮黄色)指示用户心跳417的频谱内容(spectral content)。FIG4 is a diagram 400 showing a frequency domain graph 410 of an acoustic signal collected by an internal microphone in an IEM according to some embodiments. The abscissa 401 represents time (e.g., seconds) and the ordinate 402a represents frequency (e.g., Hertz). The grayscale 402b represents the power spectral density (in decibels per Hertz (dB/Hz)). The higher power density area (bright yellow) indicates the spectral content of the user's heartbeat 417.
图5A至图5C示出了佩戴入耳式传声器(IEM)500和外耳式传声器(OEM)的用户501,以及来自IEM 500收集的信号的声学波形510的频谱图530。根据一些实施例,声学波形510与ECG信号515和血压501c回归图520(例如,相关性502c)组合。(IEM)捕获的音频信号由处理器处理以将音频信号的各部分分类为对应于指示用户心跳的不同阶段的不同心音。该处理器还被配置为:分析所识别的心音的属性,以例如基于第一心音与第二心音的强度比、第一心音的开始与第二心音的开始之间的时间延迟、第二心音的频谱内容、或其某种组合来估计用户的血压水平。5A to 5C show a user 501 wearing an in-ear microphone (IEM) 500 and an external ear microphone (OEM), and a spectrogram 530 of an acoustic waveform 510 of a signal collected from the IEM 500. According to some embodiments, the acoustic waveform 510 is combined with an ECG signal 515 and a regression graph 520 (e.g., correlation 502c) of blood pressure 501c. The audio signal captured by the (IEM) is processed by a processor to classify portions of the audio signal into different heart sounds corresponding to different phases indicating the user's heartbeat. The processor is also configured to: analyze the properties of the identified heart sounds to estimate the user's blood pressure level, for example, based on an intensity ratio of a first heart sound to a second heart sound, a time delay between the start of the first heart sound and the start of the second heart sound, a spectral content of the second heart sound, or some combination thereof.
频谱图530显示随时间502b和频率501b变化的声学波形510的频谱分解(decomposition)(例如,幅度503b)。通过分析声学波形510的不同频谱分量的时间演变,可以确定患者的生命体征,例如血压501c等。The spectrogram 530 shows the spectral decomposition (eg, amplitude 503b) of the acoustic waveform 510 as a function of time 502b and frequency 501b. By analyzing the temporal evolution of the different spectral components of the acoustic waveform 510, vital signs of the patient, such as blood pressure 501c, etc., can be determined.
在一些实施例中,入耳式传声器信号(参见入耳式传声器325-1)形成可与由入耳式电极(参见电极305)或布置在可穿戴设备(例如,智能手表或腕带205等)上的任何电极提供的ECG信号515重叠的声学波形510。ECG信号515提供心脏脉搏开始的参考时间,根据该参考时间可以识别声学波形510的心脏收缩期部分505和心脏舒张期部分507。因此,初始电子脉冲和心脏舒张期部分507之间的时间间隔517可以指示用户的血压501c或与用户的血压501c直接相关。用于确定用户的血压501c的其他相关因素可以包括心脏收缩期部分505的幅度与心脏舒张期部分507的幅度之间的比率502c。In some embodiments, the in-ear microphone signal (see in-ear microphone 325-1) forms an acoustic waveform 510 that can be overlapped with an ECG signal 515 provided by an in-ear electrode (see electrode 305) or any electrode arranged on a wearable device (e.g., a smart watch or wristband 205, etc.). The ECG signal 515 provides a reference time for the start of the heart pulse, from which the systolic portion 505 and the diastolic portion 507 of the acoustic waveform 510 can be identified. Therefore, the time interval 517 between the initial electronic pulse and the diastolic portion 507 can be indicative of the user's blood pressure 501c or directly related to the user's blood pressure 501c. Other relevant factors for determining the user's blood pressure 501c can include a ratio 502c between the amplitude of the systolic portion 505 and the amplitude of the diastolic portion 507.
在一些实施例中,(IEM)捕获的音频信号由处理器处理以将音频信号的各部分分类为对应于指示用户心跳的不同阶段的不同心音。该处理器还被配置为:分析所识别的心音的属性,以例如基于第一心音与第二心音的强度比、第一心音的开始与第二心音的开始之间的时间延迟、第二心音的频谱内容、或其某种组合来估计用户的血压水平。In some embodiments, the audio signal captured by the (IEM) is processed by a processor to classify portions of the audio signal into different heart sounds corresponding to different phases of the user's heartbeat. The processor is further configured to analyze properties of the identified heart sounds to estimate the user's blood pressure level, for example, based on an intensity ratio of a first heart sound to a second heart sound, a time delay between the start of the first heart sound and the start of the second heart sound, a spectral content of the second heart sound, or some combination thereof.
在一些实施例中,心脏收缩期部分505和心脏舒张期部分507的频谱特征也可以指示用户的生命体征。通常观察到,心脏收缩期部分505包括较窄的频率带宽,而心脏舒张期部分507具有较宽的带宽。In some embodiments, the frequency spectrum characteristics of the systolic portion 505 and the diastolic portion 507 may also indicate vital signs of the user. It is generally observed that the systolic portion 505 includes a narrower frequency bandwidth, while the diastolic portion 507 has a wider bandwidth.
图6示出了根据一些实施例的包括利用IEM中的接触式传声器获得的用于确定用户心率的波形610的图表600。图表600包括横坐标601(该横坐标表示时间)和纵坐标602a和602b(信号幅度),以下将纵坐标602a和602b统称为“纵坐标602”。从IEM用户的耳道内的接触式传声器获得波形610。在一些实施例中,可以利用IMU和加速度计等获得类似的波形。真实ECG包括R峰617的位置(例如,心跳)。FIG6 shows a chart 600 including a waveform 610 obtained using a contact microphone in an IEM for determining a user's heart rate according to some embodiments. Chart 600 includes a horizontal axis 601 (which represents time) and vertical axes 602a and 602b (signal amplitude), which are collectively referred to as "vertical axes 602" below. Waveform 610 is obtained from a contact microphone in the ear canal of an IEM user. In some embodiments, similar waveforms can be obtained using an IMU, an accelerometer, etc. A true ECG includes the location of an R peak 617 (e.g., a heartbeat).
从(来自接触式传声器的)波形610可获得的其他测量结果除了心率和呼吸频率之外,还可以包括但不限于:步数、姿势估计和跌倒检测。此外,一些实施例使得能够使用结合了接触式传声器/运动传感器和ECG传感器的脉搏传导时间(PTT)技术来估计血压。Other measurements that can be obtained from waveform 610 (from the contact microphone) may include, in addition to heart rate and respiratory rate, but are not limited to: step count, posture estimation, and fall detection. In addition, some embodiments enable the use of pulse transit time (PTT) technology that combines contact microphones/motion sensors and ECG sensors to estimate blood pressure.
在一些实施例中,入耳式传声器和接触式传声器可以恢复与用户的生命体征相关联的身体传播次声(body-borne infrasound)和低频声音。信号处理技术与人工智能(artificial intelligence,AI)处理相结合可用于从这些声学波形(例如,心率、心率变异性、呼吸频率和血压)中提取用户的生命体征。In some embodiments, the in-ear microphones and contact microphones can recover body-borne infrasound and low-frequency sounds associated with the user's vital signs. Signal processing techniques combined with artificial intelligence (AI) processing can be used to extract the user's vital signs from these acoustic waveforms (e.g., heart rate, heart rate variability, respiratory rate, and blood pressure).
图7是根据一些实施例的用于使用入耳式监测器中的传声器来评估头戴式设备或智能眼镜的用户的健康的方法700中的各步骤的流程图。在一些实施例中,方法700中的各步骤中的至少一个或多个步骤可以通过处理器执行多个指令来执行,这些指令存储在用户身体部位(例如,头部、手臂、腕部、腿部、脚踝、手指、脚趾、膝盖、肩部、胸部和背部等)上的智能眼镜或其他可穿戴设备的任一者中的存储器中。在一些实施例中,方法700中的各步骤中的至少一个或多个步骤可以通过处理器执行存储在存储器中的指令来执行,其中处理器或存储器或这两者是经由网络彼此通信地耦合的用户的移动设备、远程服务器或数据库的一部分(参见处理器112、312和存储器120、客户端设备110、服务器130、数据库152和网络150)。此外,移动设备、智能眼镜和可穿戴设备可以经由无线通信系统和协议(例如,通信模块118、无线电、Wi-Fi、蓝牙和近场通信(near-field communication,NFC)等)彼此通信地耦合。在一些实施例中,与本公开一致的方法可以包括来自方法700中的以任意顺序、同时、准同时或时间上重叠执行的一个或多个步骤。FIG7 is a flowchart of the steps in a method 700 for evaluating the health of a user of a head-mounted device or smart glasses using a microphone in an in-ear monitor according to some embodiments. In some embodiments, at least one or more of the steps in the method 700 may be performed by a processor executing a plurality of instructions stored in a memory in any one of the smart glasses or other wearable devices on a user's body part (e.g., head, arm, wrist, leg, ankle, finger, toe, knee, shoulder, chest, back, etc.). In some embodiments, at least one or more of the steps in the method 700 may be performed by a processor executing instructions stored in a memory, wherein the processor or the memory or both are part of a user's mobile device, a remote server, or a database that is communicatively coupled to each other via a network (see processors 112, 312 and memory 120, client device 110, server 130, database 152, and network 150). In addition, the mobile device, smart glasses, and wearable devices may be communicatively coupled to each other via wireless communication systems and protocols (e.g., communication module 118, radio, Wi-Fi, Bluetooth, and near-field communication (NFC), etc.). In some embodiments, methods consistent with the present disclosure may include one or more steps from method 700 performed in any order, simultaneously, quasi-simultaneously, or overlapping in time.
步骤702包括:从第一传声器接收来自入耳式监测器的用户的第一耳道的第一声学信号。Step 702 includes receiving, from a first microphone, a first acoustic signal from a first ear canal of a user of an in-ear monitor.
步骤704包括:利用第一声学信号形成第一波形。在一些实施例中,步骤704包括:接收来自第二传声器的来自入耳式监测器的用户的第一耳道的第二声学信号;利用根据第二声学信号滤波后的第一声学信号形成第二波形;以及经由扬声器向用户提供第二波形,其中第二声学信号是来自用户的外部环境的音频信号。Step 704 includes: forming a first waveform using the first acoustic signal. In some embodiments, step 704 includes: receiving a second acoustic signal from a first ear canal of a user of the in-ear monitor from a second microphone; forming a second waveform using the first acoustic signal filtered according to the second acoustic signal; and providing the second waveform to the user via a speaker, wherein the second acoustic signal is an audio signal from an external environment of the user.
步骤706包括:基于第一波形识别用户的生命体征。在一些实施例中,第一声学信号是来自用户身体的内部信号,并且步骤706包括:基于第一波形确定用户的心率。在一些实施例中,步骤706包括:从由第一声学信号收集的声学信号中识别和分类心音的S1段和S2段,并形成(S1/S2)的比率以实现用户的实时血压监测。Step 706 includes: identifying a vital sign of the user based on the first waveform. In some embodiments, the first acoustic signal is an internal signal from the user's body, and step 706 includes: determining the user's heart rate based on the first waveform. In some embodiments, step 706 includes: identifying and classifying the S1 segment and the S2 segment of the heart sound from the acoustic signal collected by the first acoustic signal, and forming a ratio of (S1/S2) to enable real-time blood pressure monitoring of the user.
在一些实施例中,步骤706包括:接收来自入耳式监测器中的电极的电子信号;并且其中识别用户的生命体征包括:基于电子信号与第一波形的相关性来确定用户的心率。在一些实施例中,步骤706包括:接收来自电极的电子信号;并且其中识别用户的生命体征包括:基于电子信号与第一声学信号的相关性来识别第一波形的心脏收缩期部分和心脏舒张期部分,以及利用第一波形的心脏收缩期部分和心脏舒张期部分来确定血压值。在一些实施例中,步骤706包括:识别第一波形的心脏收缩期部分和心脏舒张期部分,其中识别用户的生命体征包括:基于第一波形的心脏收缩期部分和心脏舒张期部分来确定血压值。在一些实施例中,步骤706包括:生成第一波形的频谱图;以及从第一波形的频谱图识别心率值或血压值中的至少一者。在一些实施例中,步骤706包括:识别第一波形的心脏收缩期部分和心脏舒张期部分,并且基于与第一波形的心脏舒张期部分的幅度相比较的心脏收缩期部分的幅度来确定血压值。在一些实施例中,步骤706包括:利用扬声器为用户提供进入第一耳道的声音信号,其中第一声学信号包括声音信号从内耳的后向反射,并且其中识别用户的生命体征包括:基于声音信号的后向反射的延迟和幅度来确定用户的听力状况。在一些实施例中,第一声学信号包括由用户生成的声音姿态作为输入命令,并且步骤706包括:从第一波形识别输入命令,并且使智能眼镜中的处理器执行该输入命令。In some embodiments, step 706 includes: receiving an electronic signal from an electrode in the in-ear monitor; and wherein identifying the vital sign of the user includes: determining the heart rate of the user based on the correlation of the electronic signal with the first waveform. In some embodiments, step 706 includes: receiving an electronic signal from the electrode; and wherein identifying the vital sign of the user includes: identifying the systolic portion and the diastolic portion of the first waveform based on the correlation of the electronic signal with the first acoustic signal, and determining the blood pressure value using the systolic portion and the diastolic portion of the first waveform. In some embodiments, step 706 includes: identifying the systolic portion and the diastolic portion of the first waveform, wherein identifying the vital sign of the user includes: determining the blood pressure value based on the systolic portion and the diastolic portion of the first waveform. In some embodiments, step 706 includes: generating a spectrogram of the first waveform; and identifying at least one of a heart rate value or a blood pressure value from the spectrogram of the first waveform. In some embodiments, step 706 includes: identifying the systolic portion and the diastolic portion of the first waveform, and determining the blood pressure value based on the amplitude of the systolic portion compared to the amplitude of the diastolic portion of the first waveform. In some embodiments, step 706 includes: providing a sound signal entering a first ear canal for the user using a speaker, wherein the first acoustic signal includes a rear reflection of the sound signal from the inner ear, and wherein identifying the vital sign of the user includes: determining the hearing condition of the user based on a delay and an amplitude of the rear reflection of the sound signal. In some embodiments, the first acoustic signal includes a sound gesture generated by the user as an input command, and step 706 includes: identifying the input command from the first waveform, and causing a processor in the smart glasses to execute the input command.
硬件概述Hardware Overview
图8是示出了根据一些实施例示例性计算机系统800的框图,利用该计算机系统可以实现头戴式设备和其他客户端设备110以及方法700。在某些方面,可以使用硬件、或软件和硬件的组合,来实现计算机系统800,该硬件、或软件和硬件的组合要么在专用服务器中、要么集成到另一实体中、要么跨多个实体分布。计算机系统800可以包括台式计算机、膝上型计算机、平板电脑、平板手机、智能手机、功能手机或服务器计算机等。服务器计算机可以远程地位于数据中心或被存放在本地。FIG8 is a block diagram showing an exemplary computer system 800 according to some embodiments, with which the head mounted device and other client devices 110 and the method 700 may be implemented. In some aspects, the computer system 800 may be implemented using hardware, or a combination of software and hardware, which may be in a dedicated server, integrated into another entity, or distributed across multiple entities. The computer system 800 may include a desktop computer, a laptop computer, a tablet computer, a tablet phone, a smart phone, a feature phone, or a server computer, etc. The server computer may be located remotely in a data center or stored locally.
计算机系统800包括总线808或用于传送信息的其他通信机制、以及与总线808耦合以用于处理信息的处理器802(例如,处理器112)。作为示例,计算机系统800可以用一个或多个处理器802来实现。处理器802可以是通用微处理器、微控制器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific IntegratedCircuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、可编程逻辑器件(Programmable Logic Device,PLD)、控制器、状态机、门逻辑、分立的多个硬件部件、或可执行对信息的计算或其他操纵的任何其他合适的实体。The computer system 800 includes a bus 808 or other communication mechanism for communicating information, and a processor 802 (e.g., processor 112) coupled to the bus 808 for processing information. As an example, the computer system 800 may be implemented with one or more processors 802. The processor 802 may be a general-purpose microprocessor, a microcontroller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), a controller, a state machine, gate logic, a plurality of discrete hardware components, or any other suitable entity that can perform calculations or other manipulations of information.
除了硬件之外,计算机系统800还可以包括创建用于所讨论的计算机程序的执行环境的代码,例如,构成存储在所包括的存储器804(例如,存储器120)中的以下内容的代码:处理器固件、协议栈、数据库管理系统、操作系统、或它们中的一者或多者的组合,该存储器例如为随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除PROM(Erasable PROM,EPROM)、寄存器、硬盘、可移除磁盘、紧凑型光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或任何其它合适的存储设备,该存储器与总线808耦合以用于存储信息和待由处理器802执行的指令。处理器802和存储器804可以由专用逻辑电路补充或被并入专用逻辑电路中。In addition to the hardware, the computer system 800 may also include code that creates an execution environment for the computer program in question, such as code that constitutes the following stored in the included memory 804 (e.g., memory 120): processor firmware, protocol stack, database management system, operating system, or a combination of one or more of them, such as random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), erasable PROM (Erasable PROM, EPROM), registers, hard disk, removable disk, compact disc read-only memory (CD-ROM), digital versatile disk (DVD) or any other suitable storage device, which is coupled to the bus 808 for storing information and instructions to be executed by the processor 802. The processor 802 and the memory 804 may be supplemented by or incorporated in special purpose logic circuitry.
指令可以被存储在存储器804中,并且可以在一个或多个计算机程序产品中实现,该一个或多个计算机程序产品例如为多个计算机程序指令的一个或多个模块,这些计算机程序指令被编码在计算机可读介质上、以用于由计算机系统800执行或控制该计算机系统的操作,并且根据本领域技术人员众所周知的任何方法,这些计算机程序指令包括但不限于诸如面向数据的语言(例如,SQL、dBase)、系统语言(例如,C、扩充C的面向对象编程语言(Objective-C)、C++、汇编)、结构性语言(例如,Java、.NET)以及应用程序语言(例如,PHP、Ruby、Perl、Python)等计算机语言。指令还可以以诸如阵列语言、面向方面语言、汇编语言、创作语言(authoring language)、命令行接口语言、编译语言、并发语言、波形括号语言(curly-bracket language)、数据流语言、数据结构化语言、声明性语言、深奥的语言(esoteric language)、扩展语言(extension language)、第四代语言、函数式语言、交互模式语言、解释型语言、迭代式语言(iterative language)、基于列表的语言(list-basedlanguage)、小语言(little language)、基于逻辑的语言、机器语言、宏语言、元编程语言、多范式语言(multiparadigm language)、数值分析、非基于英语的语言(non-English-based language)、基于类的面向对象语言、基于原型的面向对象语言、越位规则语言(off-side rule language)、过程式语言、反射式语言(reflective language)、基于规则的语言、脚本语言、基于堆栈的语言、同步式语言、语法处理语言(syntax handling language)、视觉语言、Wirth语言和基于XML的语言等计算机语言实现。存储器804还可以用于在执行要由处理器802执行的指令期间,存储临时变量或其它中间信息。Instructions may be stored in memory 804 and may be implemented in one or more computer program products, such as one or more modules of multiple computer program instructions encoded on a computer-readable medium for execution by computer system 800 or for controlling the operation of the computer system, and according to any method well known to those skilled in the art, including but not limited to computer languages such as data-oriented languages (e.g., SQL, dBase), system languages (e.g., C, object-oriented programming languages extending C (Objective-C), C++, assembly), structured languages (e.g., Java, .NET), and application languages (e.g., PHP, Ruby, Perl, Python). The instructions may also be implemented in computer languages such as array languages, aspect-oriented languages, assembly languages, authoring languages, command line interface languages, compiled languages, concurrent languages, curly-bracket languages, data flow languages, data structured languages, declarative languages, esoteric languages, extension languages, fourth generation languages, functional languages, interactive mode languages, interpreted languages, iterative languages, list-based languages, little languages, logic-based languages, machine languages, macro languages, metaprogramming languages, multiparadigm languages, numerical analysis, non-English-based languages, class-based object-oriented languages, prototype-based object-oriented languages, off-side rule languages, procedural languages, reflective languages, rule-based languages, scripting languages, stack-based languages, synchronous languages, syntax handling languages, visual languages, Wirth languages, and XML-based languages. Memory 804 may also be used to store temporary variables or other intermediate information during execution of instructions to be executed by processor 802 .
如本文所论述的计算机程序不一定对应于文件系统中的文件。程序可以存储在保存有其它程序或数据的文件的一部分(例如,存储在标记语言文档中的一个或多个脚本)中、专用于所讨论的程序的单个文件中、或者多个协同文件(例如,存储有一个或多个模块、子程序、或部分代码的文件)中。计算机程序可以被部署为在一台计算机或多台计算机上执行,该多台计算机位于一个站点处或跨越多个站点分布且通过通信网络互连。本说明书中描述的过程和逻辑流可以由一个或多个可编程处理器执行一个或多个计算机程序而执行,以通过对输入数据进行操作并生成输出来执行功能。Computer programs as discussed herein do not necessarily correspond to files in a file system. A program may be stored in a portion of a file storing other programs or data (e.g., one or more scripts stored in a markup language document), a single file dedicated to the program in question, or multiple collaborative files (e.g., a file storing one or more modules, subroutines, or partial codes). A computer program may be deployed to execute on one or more computers, which are located at a site or distributed across multiple sites and interconnected by a communication network. The processes and logic flows described in this specification may be executed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating outputs.
计算机系统800还包括诸如磁盘或光盘等数据存储设备806,该数据存储设备与总线808耦合以存储信息和指令。计算机系统800可以经由输入/输出模块810耦合至各种设备。输入/输出模块810可以是任何输入/输出模块。示例性输入/输出模块810包括诸如通用串行总线(USB)端口等数据端口。该输入/输出模块810被配置为连接至通信模块812。示例性通信模块812包括网络接口卡,例如以太网卡和调制解调器。在某些方面,输入/输出模块810被配置为连接至多个设备,例如,输入设备814和/或输出设备816。示例性输入设备814包括键盘和定点设备(例如,鼠标或追踪球),用户可以通过键盘和定点设备向计算机系统800提供输入。其它种类的输入设备814也可以用于提供与用户的交互,其它种类的输入设备814例如为触觉输入设备、视觉输入设备、音频输入设备、或脑机接口设备。例如,提供给用户的反馈可以是任何形式的感官反馈,例如视觉反馈、听觉反馈或触觉反馈;并且来自用户的输入可以以包括声音输入、语音输入、触觉输入或脑电波输入的任何形式来接收。示例性输出设备816包括用于向用户显示信息的显示设备,例如液晶显示器(liquid crystaldisplay,LCD)监测器。The computer system 800 also includes a data storage device 806 such as a disk or optical disk, which is coupled to the bus 808 to store information and instructions. The computer system 800 can be coupled to various devices via an input/output module 810. The input/output module 810 can be any input/output module. An exemplary input/output module 810 includes a data port such as a universal serial bus (USB) port. The input/output module 810 is configured to be connected to a communication module 812. An exemplary communication module 812 includes a network interface card, such as an Ethernet card and a modem. In some aspects, the input/output module 810 is configured to be connected to multiple devices, such as an input device 814 and/or an output device 816. An exemplary input device 814 includes a keyboard and a pointing device (e.g., a mouse or a tracking ball), and a user can provide input to the computer system 800 through the keyboard and the pointing device. Other types of input devices 814 can also be used to provide interaction with the user, and other types of input devices 814 are, for example, tactile input devices, visual input devices, audio input devices, or brain-computer interface devices. For example, the feedback provided to the user can be any form of sensory feedback, such as visual feedback, auditory feedback, or tactile feedback; and the input from the user can be received in any form including sound input, voice input, tactile input, or brain wave input. Exemplary output device 816 includes a display device for displaying information to the user, such as a liquid crystal display (LCD) monitor.
根据本公开的一个方面,可以使用计算机系统800响应于处理器802执行存储器804中包含的一个或多个指令的一个或多个序列,来至少部分地实现头戴式设备和客户端设备110。可以将这些指令从另一机器可读介质(例如,数据存储设备806)读入到存储器804中。对包含在主存储器804中的指令序列的执行,使得处理器802执行本文所描述的过程步骤。还可以采用多处理配置中的一个或多个处理器来执行包含在存储器804中的指令序列。在替代方面,可以使用硬连线电路来代替软件指令,或可以将硬连接线路与软件指令组合使用,以实现本公开的各种方面。因此,本公开各方面不限于硬件电路和软件的任何特定组合。According to one aspect of the present disclosure, the head mounted device and the client device 110 may be implemented at least in part using a computer system 800 in response to a processor 802 executing one or more sequences of one or more instructions contained in a memory 804. These instructions may be read into the memory 804 from another machine-readable medium (e.g., a data storage device 806). The execution of the sequence of instructions contained in the main memory 804 causes the processor 802 to perform the process steps described herein. One or more processors in a multi-processing configuration may also be employed to execute the sequence of instructions contained in the memory 804. In alternative aspects, hard-wired circuitry may be used in place of software instructions, or hard-wired circuitry may be used in combination with software instructions to implement various aspects of the present disclosure. Therefore, aspects of the present disclosure are not limited to any specific combination of hardware circuitry and software.
本说明书中所描述的主题的各方面可以在计算系统中实现,该计算系统包括后端部件(例如,数据服务器)、或包括中间软部件(例如,应用服务器)、或者包括前端部件(例如,具有图形用户界面或网页浏览器的客户端计算机,用户可以通过该图形用户界面或网页浏览器与本说明书中所描述的主题的实施方式进行交互);或者本说明书中所描述的主题的各方面可以在一个或多个这种后端部件、一个或多个这种中间件部件或一个或多个这种前端部件的任意组合中实现。该系统的各部件可以通过数字数据通信的任何形式或媒介(例如,通信网络)互连。通信网络可以例如包括LAN、WAN和互联网等中的任何一种或多种。此外,例如,通信网络可以包括但不限于以下网络拓扑中的任何一种或多种,这些网络拓扑包括总线网络、星形网络、环形网络、网状网络、星形总线网络、或树形或分层网络等。通信模块例如可以是调制解调器或以太网卡。Aspects of the subject matter described in this specification may be implemented in a computing system that includes a back-end component (e.g., a data server), or includes an intermediate software component (e.g., an application server), or includes a front-end component (e.g., a client computer with a graphical user interface or a web browser, through which a user can interact with an implementation of the subject matter described in this specification); or aspects of the subject matter described in this specification may be implemented in any combination of one or more such back-end components, one or more such middleware components, or one or more such front-end components. The components of the system may be interconnected by any form or medium of digital data communication (e.g., a communication network). The communication network may, for example, include any one or more of a LAN, a WAN, and the Internet, etc. In addition, for example, the communication network may include, but is not limited to, any one or more of the following network topologies, including a bus network, a star network, a ring network, a mesh network, a star bus network, or a tree or hierarchical network, etc. The communication module may, for example, be a modem or an Ethernet card.
计算机系统800可以包括客户端和服务器。客户端和服务器通常彼此远离,并且通常通过通信网络进行交互。客户端和服务器的关系是借助于运行在各自的计算机上且彼此之间具有客户端-服务器关系的计算机程序而生成的。计算机系统800可以例如是但不限于:台式计算机、膝上型计算机或平板电脑。计算机系统800还可以嵌入在另一设备中,该另一设备例如是但不限于:移动电话、个人数字助理(PDA)、移动音频播放器、全球定位系统(Global Positioning System,GPS)接收机、视频游戏控制台和/或电视机顶盒。Computer system 800 can include client and server.Client and server are usually far away from each other, and usually interact through communication network.The relationship between client and server is generated by means of computer programs running on respective computers and having client-server relationship between each other.Computer system 800 can be, for example, but not limited to: desktop computer, laptop computer or tablet computer.Computer system 800 can also be embedded in another device, and this another device is, for example, but not limited to: mobile phone, personal digital assistant (PDA), mobile audio player, global positioning system (Global Positioning System, GPS) receiver, video game console and/or TV set-top box.
如本文所使用的术语“机器可读存储介质”或“计算机可读介质”是指参与向处理器802提供指令以用于执行的任何一个或多个介质。此类介质可以采取许多形式,这些形式包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质例如包括光盘或磁盘,例如数据存储设备806。易失性介质包括动态存储器,例如存储器804。传输介质包括同轴电缆、铜线和光纤,上述同轴电缆、铜线和光纤包括形成总线808的导线。机器可读介质的常见形式包括例如软盘(floppy disk)、软盘(flexible disk)、硬盘、磁带、任何其他磁介质、CD-ROM、DVD、任何其他光学介质、穿孔卡、纸带、具有孔图案的任何其他物理介质、RAM、PROM、EPROM、FLASH EPROM、任何其他存储器芯片或卡带、或计算机可以读取的任何其他介质。机器可读存储介质可以是机器可读存储设备、机器可读存储基体、存储器设备、影响机器可读传播信号的物质的组合、或者它们中的一者或多者的组合。As used herein, the term "machine-readable storage medium" or "computer-readable medium" refers to any one or more media that participate in providing instructions to processor 802 for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as data storage device 806. Volatile media include dynamic memory, such as memory 804. Transmission media include coaxial cables, copper wires, and optical fibers, including the wires that form bus 808. Common forms of machine-readable media include, for example, floppy disks, flexible disks, hard disks, magnetic tape, any other magnetic media, CD-ROMs, DVDs, any other optical media, punch cards, paper tape, any other physical media with a pattern of holes, RAM, PROMs, EPROMs, FLASH EPROMs, any other memory chips or cassettes, or any other media that a computer can read. The machine-readable storage medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.
如本文所使用的,在一系列项之后的短语“中的至少一个”,与用于分隔这些项中任何一者的术语“和”或“或”一起在整体上修饰列表,而不是修饰该列表的每个成员(例如,每个项)。短语“中的至少一个”并不要求选择至少一个项;而是,该短语的意思是包括这些项中的任何一项中的至少一个,和/或这些项的任何组合中的至少一者,和/或这些项中的每项中的至少一个。作为示例,短语“A、B和C中的至少一个”或“A、B或C中的至少一个”均指的是:仅A、仅B或仅C;A、B和C的任意组合;和/或,A、B和C中的每项中的至少一个。As used herein, the phrase "at least one of" following a list of items, together with the terms "and" or "or" used to separate any of the items, modifies the list as a whole, rather than modifying each member of the list (e.g., each item). The phrase "at least one of" does not require selection of at least one item; rather, the phrase is meant to include at least one of any of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. As an example, the phrase "at least one of A, B, and C" or "at least one of A, B, or C" both refer to: only A, only B, or only C; any combination of A, B, and C; and/or, at least one of each of A, B, and C.
本文使用词语“示例性”来意指“用作示例、实例或说明”。本文中被描述为“示例性”的任何实施例不一定被解释为比其它实施例优选或有利。诸如一方面、该方面、另一方面、一些方面、一个或多个方面、一个实施方式、该实施方式、另一个实施方式、一些实施方式、一个或多个实施方式、一个实施例、该实施例、另一个实施例、一些实施例、一个或多个实施例、一个配置、该配置、另一配置、一些配置、一个或多个配置、本主题技术、该公开、本公开的短语、及其的其他变型等均是为了方便,并非暗示与此类短语相关的公开对本主题技术是必不可少的,也非暗示此类公开适用于本主题技术的所有配置。与此类短语相关的公开可以适用于所有配置、或一个或多个配置。与此类短语相关的公开可以提供一个或多个示例。诸如一方面或某些方面之类的短语可以指一个或多个方面,反之亦然,这同样适用于上述其他短语。The word "exemplary" is used herein to mean "serving as an example, instance, or illustration". Any embodiment described herein as "exemplary" is not necessarily to be construed as being preferred or advantageous over other embodiments. Phrases such as on the one hand, this aspect, on the other hand, some aspects, one or more aspects, one embodiment, this embodiment, another embodiment, some embodiments, one or more embodiments, one embodiment, this embodiment, another embodiment, some embodiments, one or more embodiments, one configuration, this configuration, another configuration, some configurations, one or more configurations, the subject technology, the disclosure, the phrases of the disclosure, and other variations thereof are for convenience and do not imply that the disclosure associated with such phrases is essential to the subject technology or that such disclosure applies to all configurations of the subject technology. The disclosure associated with such phrases may apply to all configurations, or one or more configurations. The disclosure associated with such phrases may provide one or more examples. Phrases such as on the one hand or some aspects may refer to one or more aspects, and vice versa, and the same applies to the other phrases mentioned above.
除非特别说明,否则提及单数形式的元素并非旨在意指“一个且仅一个”,而是“一个或多个”。阳性代词(例如,他的)包括阴性和中性代词(例如,她的和它的),反之亦然。术语“一些”指的是一个或多个。带下划线和/或斜体的标题和副标题仅为了方便而使用,不限制本主题技术,也不指与本主题技术的描述的解释有关。诸如第一和第二等相关术语可用于将一个实体或动作与另一个实体或动作进行区分,而不必要求或暗示这些实体或动作之间的任何实际这种关系或顺序。本领域普通技术人员已知或以后将知晓的、贯穿本公开所描述的各种配置的元素的所有结构和功能等同物均通过引用明确地并入本文,并旨在被本主题技术所包含。此外,本文所公开的任何内容均不旨在奉献给公众,无论这种公开是否明确记载在以上描述中。Unless otherwise specified, reference to an element in the singular is not intended to mean "one and only one", but rather "one or more". Positive pronouns (e.g., his) include feminine and neuter pronouns (e.g., her and its), and vice versa. The term "some" refers to one or more. Underlined and/or italicized titles and subtitles are used for convenience only and do not limit the subject technology or refer to the interpretation of the description of the subject technology. Relative terms such as first and second can be used to distinguish one entity or action from another entity or action without requiring or implying any actual such relationship or order between these entities or actions. All structural and functional equivalents of the elements of the various configurations described throughout the present disclosure that are known or will be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be included by the subject technology. In addition, nothing disclosed herein is intended to be dedicated to the public, whether or not such disclosure is explicitly recorded in the above description.
尽管本说明书包含许多具体细节,但是这些具体细节不应被解释为对可能被描述的内容的范围的限制,而应被解释为对本主题的特定实施方式的描述。在本说明书中在不同实施例的上下文中描述的某些特征也可以在单个实施例中组合实现。相反地,在单个实施例的上下文中描述的各种特征也可以在多个实施例中单独实现或以任何合适的子组合实现。此外,尽管特征可能在以上被描述为在某些组合中起作用并且甚至最初被描述为如此,但是在一些情况下,来自所描述的组合的一个或多个特征可以从该组合中被去除,并且所描述的组合可以针对子组合或子组合的变型。Although this specification includes many specific details, these specific details should not be interpreted as limiting the scope of the content that may be described, but should be interpreted as a description of the specific implementation of this theme. Certain features described in the context of different embodiments in this specification may also be implemented in combination in a single embodiment. On the contrary, the various features described in the context of a single embodiment may also be implemented separately or in any suitable sub-combination in multiple embodiments. In addition, although features may be described above as working in certain combinations and even initially described as such, in some cases, one or more features from the described combination may be removed from the combination, and the described combination may be for a sub-combination or a variation of the sub-combination.
已经在特定方面描述了本说明书的主题,但其他方面可以被实现并且在所附权利要求的范围内。例如,尽管在附图中以特定顺序描绘了各操作,但是这不应当被理解为要求以所示出的特定顺序或以连续顺序执行这些操作,或者要求执行所有示出的操作以实现期望的结果。权利要求中所记载的动作可以以不同的顺序执行,并且仍然实现了期望的结果。作为一个示例,附图中所描绘的过程不一定要求所示出的特定顺序或连续顺序来实现期望的结果。在某些情况下,多任务并行处理可能是有利的。此外,不应将上述多个方面中的各个系统部件的分开理解为要求在所有方面中都进行这样的分开,而应理解的是,所描述的程序组件和系统通常可以在一个软件产品中集成在一起或封装在多个软件产品中。The subject matter of this specification has been described in particular aspects, but other aspects may be implemented and are within the scope of the appended claims. For example, although the operations are depicted in a particular order in the drawings, this should not be understood as requiring the operations to be performed in the particular order shown or in a continuous order, or requiring the execution of all the operations shown to achieve the desired results. The actions recorded in the claims can be performed in different orders and still achieve the desired results. As an example, the process depicted in the drawings does not necessarily require the particular order shown or the continuous order to achieve the desired results. In some cases, multi-tasking parallel processing may be advantageous. In addition, the separation of the various system components in the above-mentioned multiple aspects should not be understood as requiring such separation in all aspects, but it should be understood that the described program components and systems can generally be integrated together in one software product or packaged in multiple software products.
名称、背景技术、附图说明、摘要和附图在此被并入本公开中,并且作为本公开的说明性示例而非限制性描述来提供。应理解的是,它们将不用于限制权利要求的范围或含义。此外,在具体实施方式中,可以看出的是,本说明书提供了说明性示例,并且出于简化本公开的目的,在各种实施方式中将各种特征分组在一起。本公开的方法不应被解释为反映以下意图:所描述的主题需要比在每项权利要求中明确记载的特征更多的特征。相反,根据权利要求所反映的,发明主题在于比单个公开的配置或操作的所有特征少。权利要求书在此被并入具体实施方式中,每项权利要求独立地作为单独描述的主题。The names, background technology, figure descriptions, abstracts, and drawings are incorporated herein into the present disclosure and are provided as illustrative examples of the present disclosure rather than as limiting descriptions. It should be understood that they will not be used to limit the scope or meaning of the claims. In addition, in the detailed description, it can be seen that the present specification provides illustrative examples and that various features are grouped together in various embodiments for the purpose of simplifying the present disclosure. The method of the present disclosure should not be interpreted as reflecting the following intention: the described subject matter requires more features than those explicitly recited in each claim. On the contrary, as reflected in the claims, the inventive subject matter lies in less than all the features of a single disclosed configuration or operation. The claims are incorporated herein into the detailed description, and each claim is independently a subject described separately.
权利要求不旨在被限制为本文所描述的方面,而是应被赋予与语言权利要求一致的全部范围并且涵盖所有合法的等同物。尽管如此,权利要求中没有一个权利要求旨在包含不能满足适用专利法的要求的主题,也不应该以这种方式解释它们。The claims are not intended to be limited to the aspects described herein, but rather should be given the full scope consistent with the language of the claims and encompassing all legal equivalents. Nevertheless, no claim is intended to encompass subject matter that would not satisfy the requirements of applicable patent law, nor should they be interpreted in such a manner.
Claims (15)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63/305,932 | 2022-02-02 | ||
US63/356,864 | 2022-06-29 | ||
US63/356,851 | 2022-06-29 | ||
US63/356,883 | 2022-06-29 | ||
US63/356,877 | 2022-06-29 | ||
US63/356,860 | 2022-06-29 | ||
US63/356,872 | 2022-06-29 | ||
US18/069,096 US20230277130A1 (en) | 2022-02-02 | 2022-12-20 | In-ear microphones for ar/vr applications and devices |
US18/069,096 | 2022-12-20 | ||
PCT/US2023/012198 WO2023150213A1 (en) | 2022-02-02 | 2023-02-02 | In-ear microphones for ar/vr applications and devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118574565A true CN118574565A (en) | 2024-08-30 |
Family
ID=92468559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380016993.9A Pending CN118574565A (en) | 2022-02-02 | 2023-02-02 | In-ear microphone and device for AR/VR applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118574565A (en) |
-
2023
- 2023-02-02 CN CN202380016993.9A patent/CN118574565A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Oesense: employing occlusion effect for in-ear human sensing | |
US20240023892A1 (en) | Method and system for collecting and processing bioelectrical signals | |
CN111867475B (en) | Infrasound biosensor system and method | |
Goverdovsky et al. | Hearables: Multimodal physiological in-ear sensing | |
CA2953539C (en) | Voice affect modification | |
US10291977B2 (en) | Method and system for collecting and processing bioelectrical and audio signals | |
US20220218941A1 (en) | A Wearable System for Behind-The-Ear Sensing and Stimulation | |
Montanari et al. | Earset: A multi-modal dataset for studying the impact of head and facial movements on in-ear ppg signals | |
US20230240610A1 (en) | In-ear motion sensors for ar/vr applications and devices | |
US20230107691A1 (en) | Closed Loop System Using In-ear Infrasonic Hemodynography and Method Therefor | |
TW202345746A (en) | In-ear temperature sensors for ar/vr applications and devices | |
CN118574565A (en) | In-ear microphone and device for AR/VR applications | |
US20230277130A1 (en) | In-ear microphones for ar/vr applications and devices | |
CN118574567A (en) | In-ear motion sensor and device for AR/VR applications | |
TW202332408A (en) | In-ear motion sensors for ar/vr applications and devices | |
EP4473744A2 (en) | In-ear sensors and methods of use thereof for ar/vr applications and devices | |
CN118575487A (en) | In-ear sensor for AR/VR applications and devices and methods of use thereof | |
CN118541080A (en) | In-ear temperature sensor and device for AR/VR applications | |
WO2023150220A1 (en) | In-ear electrodes for ar/vr applications and devices | |
Hu et al. | A Survey of Earable Technology: Trends, Tools, and the Road Ahead | |
WO2023073956A1 (en) | Program, information processing method, and information processing device | |
Kawsar | EarSet: a Multi-Modal Dataset for Studying the Impact of Head and Facial Movements on In-Ear PPG Signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |