CN118569363A - A spin-scale adaptive Ising annealing circuit - Google Patents
A spin-scale adaptive Ising annealing circuit Download PDFInfo
- Publication number
- CN118569363A CN118569363A CN202411060058.5A CN202411060058A CN118569363A CN 118569363 A CN118569363 A CN 118569363A CN 202411060058 A CN202411060058 A CN 202411060058A CN 118569363 A CN118569363 A CN 118569363A
- Authority
- CN
- China
- Prior art keywords
- spin
- calculation
- spins
- computing
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000137 annealing Methods 0.000 title claims abstract description 41
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 69
- 238000012545 processing Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000015654 memory Effects 0.000 claims description 25
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- -1 isooctyl Chemical group 0.000 abstract 1
- 230000005366 Ising model Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/78—Architectures of general purpose stored program computers comprising a single central processing unit
- G06F15/7807—System on chip, i.e. computer system on a single chip; System in package, i.e. computer system on one or more chips in a single package
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Complex Calculations (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及伊辛模型技术领域,尤其涉及一种自旋规模自适应的伊辛退火处理电路。The invention relates to the technical field of Ising models, and in particular to a spin-scale adaptive Ising annealing processing circuit.
背景技术Background Art
伊辛退火处理器已经成为一种快速求解组合优化问题的有效方法。这种处理器以伊辛模型为自身与组合优化问题的桥梁,且通过模拟固体物质的退火过程快速寻找问题解。当前退火处理器可以有效地支持固定的、预先定义好的自旋数量,并且使用固定的计算方法和固定的硬件电路来实现伊辛模型退火过程。通常,不同类型和规模的组合优化问题在映射到伊辛模型时需要不同的自旋数,并且在伊辛模型退火过程中不同迭代步的实时状态翻转自旋数也不同。然而,当前退火处理器在面对这些情况时,其自身硬件资源利用率很低,浪费了很多电路资源。因此,必要开发一种能够自适应总自旋数和实时翻转自旋数的伊辛退火处理电路。Ising annealing processor has become an effective method for quickly solving combinatorial optimization problems. This processor uses the Ising model as a bridge between itself and the combinatorial optimization problem, and quickly finds the solution to the problem by simulating the annealing process of solid matter. The current annealing processor can effectively support a fixed, predefined number of spins, and use a fixed calculation method and a fixed hardware circuit to implement the Ising model annealing process. Generally, combinatorial optimization problems of different types and sizes require different spin numbers when mapped to the Ising model, and the real-time state flip spin number of different iterations in the Ising model annealing process is also different. However, when facing these situations, the current annealing processor has a very low utilization rate of its own hardware resources, wasting a lot of circuit resources. Therefore, it is necessary to develop an Ising annealing processing circuit that can adapt to the total spin number and the real-time flip spin number.
发明内容Summary of the invention
本发明目的在于提供一种自旋规模自适应的伊辛退火处理电路,以解决上述现有技术存在的问题。The present invention aims to provide a spin-scale adaptive Ising annealing processing circuit to solve the problems existing in the above-mentioned prior art.
本发明中所述一种自旋规模自适应的伊辛退火处理电路,包括:The spin-scale adaptive Ising annealing processing circuit described in the present invention comprises:
接口,用于完成用户和所述伊辛退火处理电路之间的信息交换;An interface, used to complete information exchange between a user and the Ising annealing processing circuit;
顶层控制器,用于根据自适应计算方法将退火任务均匀分配给各个自旋计算节点,平衡自旋计算节点的工作负载;The top-level controller is used to evenly distribute the annealing tasks to each spin computing node according to the adaptive computing method, so as to balance the workload of the spin computing nodes;
片外存储器,用于存储自旋连接权重;Off-chip memory for storing spin connection weights;
存储控制器,用于管理片外存储器的刷新、读、写操作,且为各个自旋计算节点提供相应的连接权重;A storage controller is used to manage the refresh, read, and write operations of the off-chip memory and provide corresponding connection weights for each spin computing node;
自旋计算节点,用于根据所述自适应计算方法以串行或并行的模式处理被分配到的各个自旋;A spin calculation node, used for processing each assigned spin in a serial or parallel mode according to the adaptive calculation method;
系数通道,用于将自旋连接权重传输到自旋计算节点;The coefficient channel is used to transmit the spin connection weights to the spin calculation nodes;
读出网络,用于将计算结果读出至外部或其它自旋计算节点;A readout network, used to read out the calculation results to the outside or other spin calculation nodes;
写回网络,用于将顶层控制器产生的指令流传输至自旋计算节点;The write-back network is used to transmit the instruction stream generated by the top-level controller to the spin computing nodes;
结果通道,用于将自旋计算节点的计算结果传递至下一级自旋计算节点;The result channel is used to transfer the calculation result of the spin calculation node to the next level spin calculation node;
所述自适应计算方法包括自旋分配和计算方法确定两部分;The adaptive calculation method includes two parts: spin allocation and calculation method determination;
自旋分配:(E-R)个自旋均匀分配至(E-R)个自旋计算节点,剩余的自旋均匀分配至余下的R个自旋计算节点;Spin Allocation: (ER) spins are evenly distributed to (ER) spin computing nodes, and the remaining spins are evenly distributed to the remaining R spin computing nodes;
计算方法确定:如果F>L,每个自旋计算节点将以串行计算模式独立处理个自旋,而其余R个自旋将由所有自旋计算节点以并行计算模式协同处理;否则,每个自旋计算节点将在串行计算模式下独立处理其分配的所有自旋;Calculation method determination: If F>L, each spin calculation node will be processed independently in serial calculation mode spins, and the remaining R spins will be processed collaboratively by all spin computing nodes in parallel computing mode; otherwise, each spin computing node will independently process all its assigned spins in serial computing mode;
其中,N是自旋总数、E是具有乘累加器的自旋计算节点数量、F是上一次迭代中翻转自旋的数量、L是层次化树状网络的深度,且L<<E、R是N除以E的余数即R=N%E。Among them, N is the total number of spins, E is the number of spin calculation nodes with multiplier accumulators, F is the number of flipped spins in the previous iteration, L is the depth of the hierarchical tree network, and L<<E, R is the remainder of N divided by E, that is, R=N%E.
本发明中所述一种自旋规模自适应的伊辛退火处理电路,其优点在于:电路资源利用率高,成本更低。The spin-scale adaptive Ising annealing processing circuit described in the present invention has the advantages of high circuit resource utilization and lower cost.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明中所述伊辛退火处理电路的结构示意图。FIG. 1 is a schematic diagram of the structure of the Ising annealing processing circuit described in the present invention.
图2是本发明中所述自旋计算节点的结构示意图。FIG. 2 is a schematic diagram of the structure of the spin calculation node described in the present invention.
图3是本发明中所述伊辛退火处理电路在串行计算方法下的模式示意图。FIG. 3 is a schematic diagram of a mode of the Ising annealing processing circuit in the present invention under the serial calculation method.
图4是本发明中所述伊辛退火处理电路在并行计算方法下的模式示意图。FIG. 4 is a schematic diagram of a mode of the Ising annealing processing circuit in the present invention under a parallel computing method.
具体实施方式DETAILED DESCRIPTION
如图1至图4所示,本发明基于所提出的自适应计算方法的一种自旋规模自适应的伊辛退火处理电路包括多个子电路:接口、顶层控制器、片外存储器、存储控制器、自旋计算节点、系数通道、读出网络、写回网络和结果通道。As shown in Figures 1 to 4, a spin-scale adaptive Ising annealing processing circuit based on the proposed adaptive computing method of the present invention includes multiple sub-circuits: an interface, a top-level controller, an off-chip memory, a storage controller, a spin computing node, a coefficient channel, a readout network, a write-back network and a result channel.
自适应计算方法基于层次化树状拓扑结构完成伊辛退火过程,以平衡硬件资源与实际计算需求。具体来说,它可以用几个参数来表示: 自旋总数N、具有乘累加器的自旋计算节点数量E、上一次迭代中翻转自旋的数量F、层次化树状网络的深度L,且LE、第一层自旋计算节点的输入端口总数P、N除以E的余数R,即R=N%E。该方法包括两个关键阶段:自旋分配和计算方法确定。前者将N个自旋分配给E个自旋计算节点,后者根据上述变量的实时值确定伊辛退火的最佳计算方式。The adaptive computing method completes the Ising annealing process based on a hierarchical tree topology to balance hardware resources and actual computing needs. Specifically, it can be represented by several parameters: the total number of spins N, the number of spin computing nodes with multiplier accumulators E, the number of flipped spins in the previous iteration F, the depth L of the hierarchical tree network, and L E, the total number of input ports P of the first layer spin computing nodes, and the remainder R of N divided by E, that is, R=N%E. The method includes two key stages: spin allocation and calculation method determination. The former allocates N spins to E spin computing nodes, and the latter determines the best calculation method for Ising annealing based on the real-time values of the above variables.
自旋分配:(E-R)个自旋均匀分配至(E-R)个自旋计算节点,即每一个自旋计算节点接收,剩余的自旋均匀分配至余下的R个自旋计算节点,即余下的每一个自旋计算节点接收。使得每一个自旋计算节点分配了几乎相同数量的自旋。Spin Allocation: (ER) spins are evenly distributed to (ER) spin computing nodes, that is, each spin computing node receives , the remaining spins are evenly distributed to the remaining R spin computing nodes, that is, each of the remaining spin computing nodes receives . This ensures that each spin computing node is assigned almost the same amount of spin.
计算方法确定:如果F>L,每个自旋计算节点将以串行计算模式独立处理个自旋,而其余R个自旋将由所有自旋计算节点以并行计算模式协同处理。否则,每个节点将在串行计算模式下独立处理其分配的所有自旋。Calculation method determination: If F>L, each spin calculation node will be processed independently in serial calculation mode spins, and the remaining R spins will be processed collaboratively by all spin computing nodes in parallel computing mode. Otherwise, each node will independently process all its assigned spins in serial computing mode.
接口用于完成用户和电路之间的信息交换。The interface is used to complete the information exchange between the user and the circuit.
顶层控制器由寄存器堆、退火单元、数据流管理单元、状态机和指令生成器组成。它根据自适应计算方法将退火任务均匀分配给63个自旋计算节点,平衡自旋计算节点的工作负载,提高硬件资源利用率。The top-level controller consists of a register file, an annealing unit, a data flow management unit, a state machine, and an instruction generator. It evenly distributes annealing tasks to 63 spin computing nodes based on an adaptive computing method, balancing the workload of the spin computing nodes and improving hardware resource utilization.
片外存储器存储自旋连接权重,自旋动量耦合权重存储在片上的动量存储器中。一般来说,随着自旋数量的增大,自旋连接权重的数量呈指数增长,而动量耦合权重数量呈线性增长。在退火过程中,所需连接权重的数量逐渐减少,而每个迭代都需要所有的动量耦合权重。上述混合存储能够在片上电路成本和退火速度之间取得平衡。The off-chip memory stores the spin connection weights, and the spin-momentum coupling weights are stored in the on-chip momentum memory. Generally speaking, as the number of spins increases, the number of spin connection weights increases exponentially, while the number of momentum coupling weights increases linearly. During the annealing process, the number of required connection weights gradually decreases, while all momentum coupling weights are required for each iteration. The above hybrid storage can strike a balance between on-chip circuit cost and annealing speed.
存储控制器由控制逻辑和95个系数FIFO存储器组成,管理片外存储器的刷新、读、写操作,且为63个自旋计算节点提供相应的连接权重。The memory controller consists of control logic and 95 coefficient FIFO memories, manages the refresh, read, and write operations of the off-chip memory, and provides corresponding connection weights for 63 spin computing nodes.
自旋计算节点是本发明电路的算力核心,63个自旋计算节点通过读出网络、写回网络以及结果通道互联在一个树型网络中,形成高度并行的计算电路。每个自旋计算节点包含1024个全连接自旋,本发明电路总共支持64512个自旋。自旋计算节点受指令控制以计算自旋局部场和更新自旋态。自旋计算节点采用全流水线电路设计,由指令译码器、数据译码器、源选择单元、局部场单元和状态更新单元组成。当前自旋计算节点通过写回网络接收由顶层控制器产生的指令流,指令译码器和数据译码器分别从指令流中提取实时命令和操作数据。指令译码器中部署了多个两输入比较器,且并行运行,以快速比较接收到的指令与预定义指令,从而减少了退火过程的时间消耗。源选择单元由局部场存储器、部分和存储器、动量存储器、参数寄存器堆、线性反馈移位寄存器LFSR、两个多路复用器和一个数字乘法器组成。局部场存储器存储了当前自旋计算节点的1024个自旋的局部场值、外部场与自旋状态,部分和存储器中存放着局部场部分和值,动量存储器存放着动量耦合权重。参数寄存器堆存储当前与上一迭代的丢弃率值和动量缩放因子、实时退火温度、分配给当前自旋计算节点的自旋数以及其它退火参数。线性反馈移位寄存器负责为自旋状态更新和实时动量耦合权重计算产生伪随机数r。当计算实时耦合权重时,动量缩放因子将加载至乘法器的上输入端口,丢弃率和动量耦合权重加载至乘法器下输入端口所连接的多路复用器。如果丢弃率超过随机数则动量耦合权重将传输至乘法器的下输入端口;否则,0将加载至乘法器的下输入端口。最后,数字乘法器产生,并转发到局部场单元。当计算自选局部场部分和时,乘法器计算,并将结果发送至状态更新单元,用于计算自旋的下一状态。这些操作共享相同的数字乘法器,这有助于降低电路成本。局部场单元首先进行乘法运算,其中乘数为自旋状态-1或1,然后对来自源选择单元和外部端口的数据进行加法运算,主要由两个多路复用器、一个加法器、两个查找表LUT、两个移位寄存器SR和几个外部端口组成。外部端口分别连接系数通道、写回网络与读出网络。LUT存放了不同翻转自旋数下选择信号,用于并行计算模式,SR存储当前自旋计算节点所需的翻转自旋状态。局部场单元在串行计算模式下根据接收到的命令动态选择加法器的操作数,而在并行计算模式下根据LUT动态选择加法器的操作数。状态更新单元根据来自局部场单元的数据计算出自旋的下一个状态,并与前一步状态进行比较。如果两个状态相反,新状态和相应的索引将发送至顶层控制器,且这种相反状态组合的数量由计数器记录。The spin computing node is the computing power core of the circuit of the present invention. 63 spin computing nodes are interconnected in a tree network through a readout network, a write-back network and a result channel to form a highly parallel computing circuit. Each spin computing node contains 1024 fully connected spins, and the circuit of the present invention supports a total of 64512 spins. The spin computing node is controlled by instructions to calculate the spin local field and update the spin state. The spin computing node adopts a full pipeline circuit design and consists of an instruction decoder, a data decoder, a source selection unit, a local field unit and a state update unit. The current spin computing node receives the instruction stream generated by the top-level controller through the write-back network, and the instruction decoder and the data decoder extract real-time commands and operation data from the instruction stream respectively. Multiple two-input comparators are deployed in the instruction decoder and run in parallel to quickly compare the received instructions with predefined instructions, thereby reducing the time consumption of the annealing process. The source selection unit consists of a local field memory, a partial sum memory, a momentum memory, a parameter register stack, a linear feedback shift register LFSR, two multiplexers and a digital multiplier. The local field memory stores the local field values of the 1024 spins of the current spin calculation node. , external field With spin state The partial sum memory stores the local field partial sum value, and the momentum memory stores the momentum coupling weight The parameter register stack stores the discard rate values of the current and previous iterations. and momentum scaling factor , real-time annealing temperature , the number of spins assigned to the current spin calculation node, and other annealing parameters. The linear feedback shift register is responsible for generating pseudo-random numbers r for spin state updates and real-time momentum coupling weight calculations. When calculating real-time coupling weights When the momentum scaling factor will be loaded into the upper input port of the multiplier, discarding the rate and momentum coupling weight Loaded to the multiplexer connected to the input port of the multiplier. If the random number is exceeded, the momentum coupling weight will be transferred to the lower input port of the multiplier; otherwise, 0 will be loaded into the lower input port of the multiplier. Finally, the digital multiplier produces , and forwarded to the local field unit. When calculating the self-selected local field part and When , and sends the result to the state update unit for calculating the next state of the spin. These operations share the same digital multiplier, which helps reduce circuit costs. The local field unit first performs a multiplication operation, where the multiplier is the spin state -1 or 1, and then adds the data from the source selection unit and the external port. It is mainly composed of two multiplexers, an adder, two lookup tables LUT, two shift registers SR and several external ports. The external ports are respectively connected to the coefficient channel, the write-back network and the read-out network. The LUT stores the selection signals under different flip spin numbers for parallel computing mode, and the SR stores the flip spin state required for the current spin computing node. The local field unit dynamically selects the operand of the adder according to the received command in the serial computing mode, and dynamically selects the operand of the adder according to the LUT in the parallel computing mode. The state update unit calculates the next state of the spin based on the data from the local field unit and compares it with the previous state. If the two states are opposite, the new state and the corresponding index are sent to the top-level controller, and the number of such opposite state combinations is recorded by a counter.
系数通道负责将自旋连接权重传输到自旋计算节点,所述自旋连接权重由系数FIFO存储器从片外存储器读取。此外,在伊辛退火过程中存在多种数据类型,如退火参数、自旋状态、局部场部分和、翻转自旋的索引等。这些数据必须在用户、顶层控制器和其他子电路之间交换才能实现完整的伊辛退火过程。它们的传输地址、数据格式、数据量、通信模式差异巨大。读出网络和写回网络通过相反的通信方向、交叉开关、路由表、混合通信模式实现了对多种数据的传输,减少了电路成本。自旋计算节点的计算结果通过结果通道传递至下一级自旋计算节点,用于并行累加多个局部场部分和或统计翻转自旋数量。总的来说,所有的数据都以循序渐进的方式在本发明电路的多个通道和网络上传输,完全避免了全局总线,简化了整个系统的复杂性,提升了电路运行频率路。相对现有技术,本发明至少具有以下技术优点:The coefficient channel is responsible for transmitting the spin connection weight to the spin calculation node, and the spin connection weight is read from the off-chip memory by the coefficient FIFO memory. In addition, there are multiple data types in the Ising annealing process, such as annealing parameters, spin states, local field partial sums, flip spin indexes, etc. These data must be exchanged between users, top-level controllers and other subcircuits to achieve a complete Ising annealing process. Their transmission addresses, data formats, data volumes, and communication modes are very different. The read-out network and the write-back network realize the transmission of multiple data through opposite communication directions, cross switches, routing tables, and hybrid communication modes, reducing circuit costs. The calculation results of the spin calculation node are transmitted to the next-level spin calculation node through the result channel for parallel accumulation of multiple local field partial sums or counting the number of flip spins. In general, all data are transmitted in a step-by-step manner on multiple channels and networks of the circuit of the present invention, completely avoiding the global bus, simplifying the complexity of the entire system, and improving the circuit operation frequency. Compared with the prior art, the present invention has at least the following technical advantages:
(1)电路资源利用率高:计算方法上,自适应计算方法根据不同组合优化问题所要求的自旋数量与退火过程中的实时翻转自旋数量,将自旋均分部署至所有自旋计算节点并动态地确定最佳计算方式;电路上,每一个自旋计算节点基于实时变化的自旋数量动态选择操作数,多个自旋计算节点能够共同完成自旋下一状态的更新,极大地提高了电路资源利用率。(1) High circuit resource utilization: In terms of computing methods, the adaptive computing method evenly distributes spins to all spin computing nodes and dynamically determines the optimal computing method based on the number of spins required by different combinatorial optimization problems and the number of real-time flipped spins during the annealing process. In terms of circuits, each spin computing node dynamically selects operands based on the real-time changing number of spins. Multiple spin computing nodes can jointly complete the update of the next state of the spin, greatly improving the circuit resource utilization.
(2)电路支持大规模自旋处理,包含63个自旋处理节点,最大可处理64512个自旋。(2) The circuit supports large-scale spin processing, contains 63 spin processing nodes, and can process a maximum of 64,512 spins.
(3)电路成本低:海量的自旋连接权重存储在便宜的片外DDR存储器中,只有少量的动量耦合权重和中间数据存储在片上,极大地降低了片上成本;状态更新与实时共享动量耦合权重计算共享同一个数字乘法器;多种类型的数据通信仅由读出网络和写回网络完成,减少了通信电路成本。(3) Low circuit cost: A large number of spin connection weights are stored in cheap off-chip DDR memory, and only a small amount of momentum coupling weights and intermediate data are stored on-chip, which greatly reduces the on-chip cost; state updates and real-time shared momentum coupling weight calculations share the same digital multiplier; multiple types of data communications are only completed by read-out networks and write-back networks, reducing communication circuit costs.
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and concepts described above, and all of these changes and deformations should fall within the protection scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411060058.5A CN118569363B (en) | 2024-08-05 | 2024-08-05 | Self-adaptive I Xin Tuihuo processing circuit of spin scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411060058.5A CN118569363B (en) | 2024-08-05 | 2024-08-05 | Self-adaptive I Xin Tuihuo processing circuit of spin scale |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118569363A true CN118569363A (en) | 2024-08-30 |
CN118569363B CN118569363B (en) | 2024-10-01 |
Family
ID=92467379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411060058.5A Active CN118569363B (en) | 2024-08-05 | 2024-08-05 | Self-adaptive I Xin Tuihuo processing circuit of spin scale |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118569363B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5354233B2 (en) * | 2011-03-01 | 2013-11-27 | 大学共同利用機関法人情報・システム研究機構 | Ising model quantum computing device and Ising model quantum computing method |
WO2017156318A1 (en) * | 2016-03-10 | 2017-09-14 | Raytheon Bbn Technologies Corp. | Optical ising-model solver using quantum annealing |
CN114444702A (en) * | 2022-02-02 | 2022-05-06 | 上海图灵智算量子科技有限公司 | A Method for Realizing Ising Solving by Variational Quantum Circuits and a System for Realizing Ising Model |
US20220343202A1 (en) * | 2019-10-29 | 2022-10-27 | Hitachi, Ltd. | Arithmetic circuit, arithmetic device, information processing apparatus, and method for searching for ground state of ising model |
CN115907005A (en) * | 2023-01-05 | 2023-04-04 | 华南理工大学 | A large-scale fully connected Ising model annealing circuit based on a network-on-chip |
-
2024
- 2024-08-05 CN CN202411060058.5A patent/CN118569363B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5354233B2 (en) * | 2011-03-01 | 2013-11-27 | 大学共同利用機関法人情報・システム研究機構 | Ising model quantum computing device and Ising model quantum computing method |
WO2017156318A1 (en) * | 2016-03-10 | 2017-09-14 | Raytheon Bbn Technologies Corp. | Optical ising-model solver using quantum annealing |
US20220343202A1 (en) * | 2019-10-29 | 2022-10-27 | Hitachi, Ltd. | Arithmetic circuit, arithmetic device, information processing apparatus, and method for searching for ground state of ising model |
CN114444702A (en) * | 2022-02-02 | 2022-05-06 | 上海图灵智算量子科技有限公司 | A Method for Realizing Ising Solving by Variational Quantum Circuits and a System for Realizing Ising Model |
CN115907005A (en) * | 2023-01-05 | 2023-04-04 | 华南理工大学 | A large-scale fully connected Ising model annealing circuit based on a network-on-chip |
Non-Patent Citations (1)
Title |
---|
李庆;周翠琴;陈含爽;: "模块网络上伊辛模型成核的最优外场分配", 安庆师范学院学报(自然科学版), no. 02, 30 June 2016 (2016-06-30), pages 19 - 21 * |
Also Published As
Publication number | Publication date |
---|---|
CN118569363B (en) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111176727B (en) | Computing device and computing method | |
TW202022644A (en) | Operation device and operation method | |
CN108733348A (en) | The method for merging vector multiplier and carrying out operation using it | |
CN107590085B (en) | A kind of dynamic reconfigurable array data path and its control method with multi-level buffer | |
CN108564168A (en) | A kind of design method to supporting more precision convolutional neural networks processors | |
CN108596331A (en) | A kind of optimization method of cell neural network hardware structure | |
CN112118312A (en) | A network burst load evacuation method for edge servers | |
CN111130904A (en) | A Virtual Network Function Migration Optimization Algorithm Based on Deep Deterministic Policy Gradient | |
JP7110278B2 (en) | Method, apparatus, apparatus, computer readable storage medium and computer program for load balancing | |
CN111368484B (en) | Numerical simulation optimization method and system of universe N-body based on Shenwei architecture | |
CN116962438B (en) | Gradient data synchronization method, system, electronic equipment and readable storage medium | |
CN111563598A (en) | Method and system for estimating simulation time of quantum computing | |
KR20210081663A (en) | Interconnect device, operation method of interconnect device, and artificial intelligence(ai) accelerator system | |
CN118569363B (en) | Self-adaptive I Xin Tuihuo processing circuit of spin scale | |
CN111966327A (en) | Mixed-precision space-time multiplexing multiplier based on NAS search and its control method | |
CN116151171B (en) | A fully connected Ising model annealing circuit based on parallel tempering | |
CN115496190A (en) | Efficient reconfigurable hardware accelerator for convolutional neural network training | |
CN116739054A (en) | An FPGA-based A3C deep reinforcement learning algorithm accelerator | |
CN113377333B (en) | Hardware Computing System and Method for Finding N-time Radix of Complex Numbers Based on Parabolic Synthesis Method | |
TWI843934B (en) | A method and system for processing unstructured source data | |
CN115358389A (en) | Neural network training error reduction method, neural network training error reduction device, electronic device, and medium | |
CN114358269A (en) | Neural network processing component and multi-neural network processing method | |
CN111865678A (en) | A Distributed Asynchronous Optimization Method Based on Continuous Convex Approximation | |
CN219552890U (en) | Digital Signal Generator Based on Wide Parameter Double Scroll Conservative Chaotic System | |
CN106550036A (en) | A kind of heuristic cloud computing resources distribution and dispatching method towards energy-conservation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |