CN118553800A - A high-efficiency TOPCon battery and preparation method thereof - Google Patents
A high-efficiency TOPCon battery and preparation method thereof Download PDFInfo
- Publication number
- CN118553800A CN118553800A CN202410679884.1A CN202410679884A CN118553800A CN 118553800 A CN118553800 A CN 118553800A CN 202410679884 A CN202410679884 A CN 202410679884A CN 118553800 A CN118553800 A CN 118553800A
- Authority
- CN
- China
- Prior art keywords
- silicon wafer
- doped polysilicon
- layer
- oxide layer
- tunneling oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 121
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 121
- 239000010703 silicon Substances 0.000 claims abstract description 121
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 95
- 229920005591 polysilicon Polymers 0.000 claims abstract description 91
- 230000005641 tunneling Effects 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims description 16
- 238000002161 passivation Methods 0.000 claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 3
- 229910052755 nonmetal Inorganic materials 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 230000003071 parasitic effect Effects 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 83
- 239000000969 carrier Substances 0.000 description 10
- 230000006798 recombination Effects 0.000 description 10
- 238000005215 recombination Methods 0.000 description 10
- 238000001465 metallisation Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 1
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XGCTUKUCGUNZDN-UHFFFAOYSA-N [B].O=O Chemical compound [B].O=O XGCTUKUCGUNZDN-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/146—Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及新能源电池技术领域,更具体地说,涉及一种高效TOPCon电池及其制备方法。The present invention relates to the technical field of new energy batteries, and more specifically, to a high-efficiency TOPCon battery and a preparation method thereof.
背景技术Background Art
现有技术中,能源是世界经济和社会发展的基础,未来能源需求将随着世界经济的发展而增长,化石能源仍将是为世界经济提供动力的主要能源来源,但是能源结构转变的机遇即将到来。可再生能源增长迅速,光伏发电作为一种可持续的能源替代方式,近年飞速发展。In the existing technology, energy is the foundation of the world's economic and social development. In the future, energy demand will grow with the development of the world economy. Fossil energy will still be the main source of energy to power the world economy, but the opportunity for energy structure transformation is coming. Renewable energy is growing rapidly, and photovoltaic power generation, as a sustainable energy alternative, has developed rapidly in recent years.
目前主流量产的太阳能电池技术有IBC电池(交叉背电极接触电池,Interdigitated Back Contact)、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池、PERC电池(钝化发射极和背面电池,Passivated emitter and realcell)以及异质结电池。隧穿氧化层钝化接触电池(TOPCON)其核心为超薄氧化硅和掺杂多晶硅的一种钝化结构,选择性使得多子可以穿过隧穿氧化层,对少子起阻挡作用,实现少子多子在背面空间分离,极大的减少复合,高掺杂的多晶硅也利于背面金属化,因此TOPCON电池在开压上有明显优势,是目前高效电池的热门研究之一。但是,由于背面需要高掺杂多晶硅匹配丝网金属化,导致长波较严重的寄生吸收,会严重影响短路电流,同时正面发射极俄歇复合也会影响开压的进一步提升。因此,目前的太阳能电池转换效率仍有很大的提升空间。At present, the mainstream solar cell technologies are IBC cells (interdigitated back contact cells), TOPCON (tunnel oxide passivated contact) cells, PERC cells (passivated emitter and real cell) and heterojunction cells. The core of the tunnel oxide passivated contact cell (TOPCON) is a passivation structure of ultra-thin silicon oxide and doped polysilicon. The selectivity allows the majority carriers to pass through the tunnel oxide layer, which blocks the minority carriers and achieves the separation of the minority carriers and the majority carriers in the back space, greatly reducing the recombination. The highly doped polysilicon is also conducive to the back metallization. Therefore, the TOPCON cell has obvious advantages in the opening voltage and is one of the hot research of high-efficiency cells. However, since the back side needs high-doped polysilicon matching wire mesh metallization, it leads to serious parasitic absorption of long waves, which will seriously affect the short-circuit current. At the same time, the front emitter Auger recombination will also affect the further improvement of the opening voltage. Therefore, the current solar cell conversion efficiency still has a lot of room for improvement.
发明内容Summary of the invention
本申请的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本申请的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The content of this application is used to introduce concepts in a brief form, which will be described in detail in the detailed implementation section below. The content of this application is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.
本申请的一些实施例提出了一种高效TOPCon电池及其制备方法,来解决以上背景技术部分提到的技术问题。Some embodiments of the present application propose a high-efficiency TOPCon battery and a method for preparing the same to solve the technical problems mentioned in the above background technology section.
作为本申请的第一方面,本申请的一些实施例提供了一种高效TOPCon电池,其包括硅片,用于提供载流子移动的载体;其中,所述硅片包括正面和与所述正面相对的背面,在所述硅片的正面设有金属化区域和非金属化区域交替排布,在所述硅片的金属化区域叠加设置有第一隧穿氧化层以及第一掺杂多晶硅层,在所述硅片的金属化区域上烧结有正面电极,所述第一隧穿氧化层和第一掺杂多晶硅层在硅片正面的投影的宽度大于等于所述正面电极在硅片正面的投影的宽度。As a first aspect of the present application, some embodiments of the present application provide a high-efficiency TOPCon battery, which includes a silicon wafer for providing a carrier for carrier movement; wherein the silicon wafer includes a front side and a back side opposite to the front side, and metallized areas and non-metallized areas are arranged alternately on the front side of the silicon wafer, a first tunneling oxide layer and a first doped polysilicon layer are superimposed on the metallized area of the silicon wafer, and a front electrode is sintered on the metallized area of the silicon wafer, and the width of the projection of the first tunneling oxide layer and the first doped polysilicon layer on the front side of the silicon wafer is greater than or equal to the width of the projection of the front electrode on the front side of the silicon wafer.
进一步的,所述硅片正面的非金属化区域被构造成绒面结构。Furthermore, the non-metallized area on the front side of the silicon wafer is constructed into a velvet structure.
进一步的,所述硅片的背面依次叠加有第二隧穿氧化层、第二掺杂多晶硅层。Furthermore, a second tunneling oxide layer and a second doped polysilicon layer are sequentially stacked on the back side of the silicon wafer.
进一步的,还包括钝化层,所述钝化层设置于第一掺杂多晶硅层和\或第二掺杂多晶硅层远离所述硅片的一侧。Furthermore, it also includes a passivation layer, which is arranged on a side of the first doped polysilicon layer and/or the second doped polysilicon layer away from the silicon wafer.
进一步的,还包括背面电极,所述背面电极为银电极。Furthermore, it also includes a back electrode, and the back electrode is a silver electrode.
进一步的,所述第一隧穿氧化层和第一掺杂多晶硅层在硅片正面的投影的宽度范围是:15微米至200微米。Furthermore, the width of the projections of the first tunneling oxide layer and the first doped polysilicon layer on the front side of the silicon wafer ranges from 15 microns to 200 microns.
进一步的,所述正面电极在硅片正面的投影的宽度范围是:15微米至30微米。Furthermore, the width of the projection of the front electrode on the front side of the silicon wafer ranges from 15 microns to 30 microns.
进一步的,所述第一掺杂多晶硅层为磷元素掺杂的多晶硅层。Furthermore, the first doped polysilicon layer is a polysilicon layer doped with phosphorus.
进一步的,所述第二掺杂多晶硅层为硼元素掺杂的多晶硅层。Furthermore, the second doped polysilicon layer is a polysilicon layer doped with boron.
作为本申请的第一方面,本申请的一些实施例提供了一种高效TOPCon电池的制备方法,包括以下步骤:As a first aspect of the present application, some embodiments of the present application provide a method for preparing a high-efficiency TOPCon battery, comprising the following steps:
对硅片进行双面抛光;Double-sided polishing of silicon wafers;
对硅片进行双面制备第一隧穿氧化层以及第一掺杂多晶硅层以使第一掺杂多晶硅形成掺硼多晶硅同时形成PN结;Preparing a first tunneling oxide layer and a first doped polysilicon layer on both sides of the silicon wafer so that the first doped polysilicon forms boron-doped polysilicon and forms a PN junction at the same time;
去除硅片正面以及侧面的BSG;Remove BSG from the front and sides of the silicon wafer;
去除正面以及侧面的多晶硅;Remove the polysilicon on the front and sides;
对硅片再次进行双面制备第二隧穿氧化层以及第二掺杂多晶硅层以使第二掺杂多晶硅形成掺磷多晶硅;The second tunneling oxide layer and the second doped polysilicon layer are again prepared on both sides of the silicon wafer so that the second doped polysilicon forms phosphorus-doped polysilicon;
去除正面非金属区的PSG;Remove PSG from the non-metallic area on the front side;
去除背面和侧面的PSG并在正面非金属区域进行制绒、背面poly去除、正面金属区域PSG以及背面BSG去除;Remove PSG on the back and sides and perform texturing on the front non-metallic area, remove poly on the back, remove PSG on the front metal area, and remove BSG on the back;
对硅片背面沉积钝化层以及硅片正面和背面沉积减反射层;Depositing a passivation layer on the back of the silicon wafer and an anti-reflection layer on the front and back of the silicon wafer;
对硅片正面和背面的金属化区域进行金属化。Metallize the metallization areas on the front and back sides of the silicon wafer.
进一步的,所述的对硅片进行双面制备第一隧穿氧化层以及第一掺杂多晶硅层以使第一掺杂多晶硅形成掺硼多晶硅同时形成PN结包含:Furthermore, the step of preparing a first tunnel oxide layer and a first doped polysilicon layer on both sides of a silicon wafer so that the first doped polysilicon forms boron-doped polysilicon and simultaneously forms a PN junction comprises:
利用LP在硅片双面制备第一隧穿氧化层和本征非晶硅,其中第一隧穿氧化层厚度1纳米至3纳米,本征非晶硅厚度为180纳米至400纳米;Using LP to prepare a first tunneling oxide layer and intrinsic amorphous silicon on both sides of a silicon wafer, wherein the first tunneling oxide layer has a thickness of 1 nanometer to 3 nanometers, and the intrinsic amorphous silicon has a thickness of 180 nanometers to 400 nanometers;
对硅片背面进行硼元素扩散使硅片背面转变成掺硼多晶硅同时形成PN结,其中,背面硼扩散方阻范围是200至400Ω。Boron is diffused on the back of the silicon wafer to convert the back of the silicon wafer into boron-doped polysilicon and form a PN junction at the same time, wherein the square resistance range of the back boron diffusion is 200 to 400Ω.
进一步的,所述的对硅片再次进行双面制备第二隧穿氧化层以及第二掺杂多晶硅层以使第二掺杂多晶硅形成掺磷多晶硅的方法包括:Furthermore, the method of preparing a second tunneling oxide layer and a second doped polysilicon layer on both sides of the silicon wafer again so that the second doped polysilicon forms phosphorus-doped polysilicon includes:
利用LP在硅片双面制备第二隧穿氧化层和本征非晶硅,其中第一隧穿氧化层厚度1纳米至3纳米,本征非晶硅厚度为100纳米至180纳米;Using LP to prepare a second tunneling oxide layer and intrinsic amorphous silicon on both sides of a silicon wafer, wherein the first tunneling oxide layer has a thickness of 1 to 3 nanometers, and the intrinsic amorphous silicon has a thickness of 100 to 180 nanometers;
对硅片正面进行磷元素扩散使硅片背面转变成掺磷多晶硅。Phosphorus is diffused on the front side of the silicon wafer to convert the back side of the silicon wafer into phosphorus-doped polysilicon.
进一步的,所述的去除正面非金属区的PSG的方法包含:Furthermore, the method for removing PSG from the front non-metallic area comprises:
使用激光去除正面非金属区的PSG,其中,激光的波长为200-600nm,频率为100-500KHZ。The PSG in the non-metallic area on the front side is removed by using a laser, wherein the wavelength of the laser is 200-600nm and the frequency is 100-500KHZ.
本申请的有益效果在于:The beneficial effects of this application are:
1、使用隧穿多晶硅结构,发射极在电池背面,增加隧穿氧化层结构,使基体掺杂浓度降低,同时隧穿结构对载流子的选择性,极大的减少了发射极区域的复合,提升开路电压。1. Use a tunneling polysilicon structure with the emitter on the back of the battery. Add a tunneling oxide layer structure to reduce the doping concentration of the substrate. At the same time, the selectivity of the tunneling structure for carriers greatly reduces the recombination in the emitter area and increases the open circuit voltage.
2、在硅片正面使用选择性掺杂多晶硅结构,即金属化栅线区域使用隧穿氧化层和高浓度掺杂多晶硅结构,非金属化区域为正常绒面结构,极大程度的减少了寄生吸收,提升短路电流。2. A selectively doped polysilicon structure is used on the front of the silicon wafer, that is, a tunneling oxide layer and a high-concentration doped polysilicon structure are used in the metallized gate line area, and a normal velvet structure is used in the non-metallized area, which greatly reduces parasitic absorption and increases short-circuit current.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。The drawings constituting a part of this application are used to provide a further understanding of this application, so that other features, purposes and advantages of this application become more obvious. The drawings and descriptions of the exemplary embodiments of this application are used to explain this application and do not constitute an improper limitation on this application.
另外,贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。In addition, throughout the drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and that the components and elements are not necessarily drawn to scale.
在附图中:In the attached picture:
图1是根据本申请一种实施例的高效TOPCon电池的结构示意图;FIG1 is a schematic structural diagram of a high-efficiency TOPCon battery according to an embodiment of the present application;
图2是根据本申请一种实施例的高效TOPCon电池的制备方法步骤图;FIG2 is a step diagram of a method for preparing a high-efficiency TOPCon battery according to an embodiment of the present application;
图中标号的含义:Meaning of the symbols in the figure:
100、硅片;100. Silicon wafer;
200、第一掺杂多晶硅层;200, a first doped polysilicon layer;
300、第一隧穿氧化层;300, a first tunneling oxide layer;
400、正面电极;400, front electrode;
500、氮化硅层;500, silicon nitride layer;
600、第二隧穿氧化层;600, a second tunneling oxide layer;
700、第二掺杂多晶硅层;700, a second doped polysilicon layer;
800、背面电极。800. Back electrode.
具体实施方式DETAILED DESCRIPTION
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be construed as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes and are not intended to limit the scope of protection of the present disclosure.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。It should also be noted that, for ease of description, only the parts related to the invention are shown in the drawings. In the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other.
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present disclosure are only used for illustrative purposes and are not used to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.
如图1所示,本申请的一个实施例的一种高效TOPCon电池,其包括硅片100,用于提供载流子移动的载体;其中,所述硅片100包括正面和与所述正面相对的背面,在所述硅片100的正面设有金属化区域和非金属化区域交替排布,在所述硅片100的金属化区域叠加设置有第一隧穿氧化层300以及第一掺杂多晶硅层200,在所述硅片100的金属化区域上烧结有正面电极400,所述第一隧穿氧化层300和第一掺杂多晶硅层200在硅片100正面的投影面积的宽度大于等于所述正面电极400在硅片100正面的投影面积的宽度,所述硅片100正面的非金属化区域被构造成绒面结构,所述第一掺杂多晶硅层200为磷元素掺杂的多晶硅层。As shown in FIG1 , a high-efficiency TOPCon cell according to an embodiment of the present application includes a silicon wafer 100 for providing a carrier for carrier movement; wherein the silicon wafer 100 includes a front side and a back side opposite to the front side, a metallized area and a non-metallized area are arranged alternately on the front side of the silicon wafer 100, a first tunneling oxide layer 300 and a first doped polysilicon layer 200 are superimposed on the metallized area of the silicon wafer 100, a front electrode 400 is sintered on the metallized area of the silicon wafer 100, a width of a projected area of the first tunneling oxide layer 300 and the first doped polysilicon layer 200 on the front side of the silicon wafer 100 is greater than or equal to a width of a projected area of the front electrode 400 on the front side of the silicon wafer 100, the non-metallized area on the front side of the silicon wafer 100 is constructed into a velvet structure, and the first doped polysilicon layer 200 is a polysilicon layer doped with phosphorus.
具体而言,本申请所指的“正面”和“背面”是指:从太阳能电池的受光正面至背面的方向,靠近受光正面的称为“正面”,靠近背面的称为“背面”。硅片100为N型单晶硅,N型硅基体在受到光照时无硼氧复合,一定程度上减少光致衰减和热辅助光诱导衰减的情况。本申请中的硅片100的正面设有金属化区域和非金属区域交替排布,金属区域指的是金属化栅线区域,在所述硅片100的金属化区域上烧结有正面电极400。在金属化栅线区域叠加设置有第一隧穿氧化层300以及第一掺杂多晶硅层200,且在非金属化区域被构造成正常的绒面结构,极大程度的减少了电池背面需要高掺杂多晶硅匹配丝网金属化,导致长波较严重的寄生吸收的现象,提升了短路电流。Specifically, the "front" and "back" referred to in this application refer to: from the light-receiving front to the back of the solar cell, the side close to the light-receiving front is called the "front", and the side close to the back is called the "back". The silicon wafer 100 is N-type single crystal silicon, and the N-type silicon substrate has no boron-oxygen recombination when exposed to light, which reduces the photo-induced attenuation and thermally assisted light-induced attenuation to a certain extent. The front of the silicon wafer 100 in this application is provided with metallized areas and non-metallic areas arranged alternately, and the metal area refers to the metallized gate line area, and a front electrode 400 is sintered on the metallized area of the silicon wafer 100. A first tunneling oxide layer 300 and a first doped polysilicon layer 200 are superimposed on the metallized gate line area, and a normal velvet structure is constructed in the non-metallized area, which greatly reduces the need for high-doped polysilicon matching wire mesh metallization on the back of the battery, resulting in a phenomenon of more serious parasitic absorption of long waves, and improves the short-circuit current.
更具体的,第一隧穿氧化层300为氧化硅层,利用量子隧穿效应,既能让电子顺利通过,又可以阻止空穴的复合,全面积钝化表面使得无硅/金属接触界面,有利于提升开路电压Voc,而全面积地收集载流子,降低寿命敏感度,有利于提升填充因子FF;阻挡少子通过同时使多子无障碍的轻松通过,因此可以减少复合。可以抑制硅片100表面的载流子复合,提高硅片100的少子寿命和电池的开路电压,载流子选择收集钝化接触结构可以被应用到电池的全表面,而无需开孔形成局部钝化接触,这不仅简化了制造工艺同时载流子只需进行一维方向的输运而无需另外的横向传输,因而可以获得更高的填充因子。More specifically, the first tunneling oxide layer 300 is a silicon oxide layer, which utilizes the quantum tunneling effect to allow electrons to pass smoothly and prevent the recombination of holes. The full-area passivation surface makes the silicon/metal contact interface non-existent, which is beneficial to improving the open circuit voltage Voc, and the full-area collection of carriers reduces the lifetime sensitivity, which is beneficial to improving the fill factor FF; it blocks the passage of minority carriers while allowing majority carriers to pass easily without obstacles, thus reducing recombination. The carrier recombination on the surface of the silicon wafer 100 can be suppressed, and the minority carrier lifetime of the silicon wafer 100 and the open circuit voltage of the battery can be improved. The carrier selective collection passivation contact structure can be applied to the entire surface of the battery without opening holes to form local passivation contacts, which not only simplifies the manufacturing process, but also the carriers only need to be transported in one-dimensional direction without additional lateral transmission, so a higher fill factor can be obtained.
所述第一隧穿氧化层300和第一掺杂多晶硅层200在硅片100正面的投影的宽度范围是:15微米至200微米。所述正面电极400在硅片100正面的投影的宽度范围是:15微米至30微米。第一隧穿氧化层300和第一掺杂多晶硅层200在硅片100正面的投影的宽度大于等于正面电极400在硅片100正面投影的宽度的原因在于正面电极400需要烧结在第一隧穿氧化层300和第一掺杂多晶硅层200所处的金属化区域,现在的工艺还无法做到使得正面电极400在硅片100正面投影的宽度大于第一隧穿氧化层300和第一掺杂多晶硅层200在硅片100正面的投影的宽度。The width of the projection of the first tunneling oxide layer 300 and the first doped polysilicon layer 200 on the front of the silicon wafer 100 is in the range of 15 microns to 200 microns. The width of the projection of the front electrode 400 on the front of the silicon wafer 100 is in the range of 15 microns to 30 microns. The reason why the width of the projection of the first tunneling oxide layer 300 and the first doped polysilicon layer 200 on the front of the silicon wafer 100 is greater than or equal to the width of the projection of the front electrode 400 on the front of the silicon wafer 100 is that the front electrode 400 needs to be sintered in the metallization area where the first tunneling oxide layer 300 and the first doped polysilicon layer 200 are located, and the current process cannot make the width of the projection of the front electrode 400 on the front of the silicon wafer 100 greater than the width of the projection of the first tunneling oxide layer 300 and the first doped polysilicon layer 200 on the front of the silicon wafer 100.
采用铜金属催化刻蚀的方法在硅片100的顶面形成金字塔状的绒面结构。金字塔绒面由于其与阳光的入射角度具有一定的夹角,故其使得阳光反射后能够再次进入电池内部,能够增加阳光进入电池内部的入射量,由陷光原理可得知,当光入射到一定角度的斜面,光会反射到另一角度的斜面,形成二次或者多次吸收,从而增加了光的吸收率,最终能够提高光生电流密度,有效提高了电池的光电转化效率。A pyramid-shaped velvet structure is formed on the top surface of the silicon wafer 100 by using a copper metal catalytic etching method. Since the pyramid velvet has a certain angle with the incident angle of sunlight, it allows sunlight to enter the battery again after reflection, which can increase the amount of sunlight entering the battery. According to the light trapping principle, when light is incident on a slope at a certain angle, the light will be reflected to a slope at another angle, forming secondary or multiple absorption, thereby increasing the light absorption rate, and ultimately can increase the photocurrent density, effectively improving the photoelectric conversion efficiency of the battery.
更具体而言,所述硅片100的背面依次叠加有第二隧穿氧化层600、第二掺杂多晶硅层700。所述第二掺杂多晶硅层700为硼元素掺杂的多晶硅层。采用扩散硼元素到硅片100形成的P+层,从而形成PN结。将电池片的发射极设置在在电池背面,同时增加隧穿氧化层结构,使基体掺杂浓度降低,同时隧穿结构对载流子的选择性,极大的减少了发射极区域的复合,提升电池的开路电压。More specifically, the back of the silicon wafer 100 is sequentially stacked with a second tunneling oxide layer 600 and a second doped polysilicon layer 700. The second doped polysilicon layer 700 is a polysilicon layer doped with boron. The P+ layer formed by diffusing boron into the silicon wafer 100 is used to form a PN junction. The emitter of the battery cell is set on the back of the battery, and the tunneling oxide layer structure is added to reduce the doping concentration of the substrate. At the same time, the selectivity of the tunneling structure to carriers greatly reduces the recombination of the emitter region and improves the open circuit voltage of the battery.
在一个具体的实施方式中,TOPCon电池还包括钝化层,所述钝化层设置于第一掺杂多晶硅层200和\或第二掺杂多晶硅层700远离所述硅片100的一侧。在第一掺杂多晶硅层200和第二掺杂多晶硅层700远离硅片100的一侧设有钝化层能够有效的降低硅片100表面复合速率,增加光的二次反射。In a specific embodiment, the TOPCon cell further includes a passivation layer, which is disposed on the side of the first doped polysilicon layer 200 and/or the second doped polysilicon layer 700 away from the silicon wafer 100. Providing a passivation layer on the side of the first doped polysilicon layer 200 and the second doped polysilicon layer 700 away from the silicon wafer 100 can effectively reduce the surface recombination rate of the silicon wafer 100 and increase the secondary reflection of light.
具体而言,钝化层在背面包含了氧化铝层和氮化硅层500,氧化铝层能够有效的减少硅片100背面的复合现象同时增加二次反射,使用ALD设备在硅片100背面镀上一层氧化铝层,以提高硅片100表面的钝化及吸杂效果。主要是利用气态Al(CH3)3与水汽(H2O)反应,生成Al(OH)3,附着在硅片100表面,同时产生甲烷气体。硅片100的正面以及背面均设有氮化硅层500,其主要是为了减少表面反射,提高电池的转换效率,在硅片100的正反两面均沉积一层氮化硅减反射膜。利用薄膜干涉原理,可以使光的反射减少。具体的,采用PECVD设备制备氮化硅减反射膜。利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在硅片100表面形成固态薄膜即氮化硅层500。Specifically, the passivation layer includes an aluminum oxide layer and a silicon nitride layer 500 on the back. The aluminum oxide layer can effectively reduce the recombination phenomenon on the back of the silicon wafer 100 and increase the secondary reflection. A layer of aluminum oxide is plated on the back of the silicon wafer 100 using ALD equipment to improve the passivation and impurity absorption effect on the surface of the silicon wafer 100. It mainly uses the reaction of gaseous Al(CH3)3 with water vapor (H2O) to generate Al(OH)3, which adheres to the surface of the silicon wafer 100 and produces methane gas at the same time. The front and back of the silicon wafer 100 are provided with a silicon nitride layer 500, which is mainly to reduce surface reflection and improve the conversion efficiency of the battery. A layer of silicon nitride anti-reflection film is deposited on both the front and back sides of the silicon wafer 100. The thin film interference principle can reduce the reflection of light. Specifically, the silicon nitride anti-reflection film is prepared using PECVD equipment. The sample is heated to a predetermined temperature by glow discharge, and then an appropriate amount of reaction gases SiH4 and NH3 are introduced. The gases undergo a series of chemical reactions and plasma reactions to form a solid film, namely a silicon nitride layer 500, on the surface of the silicon wafer 100.
在一个具体的实施方式中,TOPCon电池还包括背面电极800,所述背面电极800为银电极。即TOPCon电池包括正面电极400和背面电极800,所述正面电极400和背面电极800分别设置于所述硅片100的两侧。所述背面电极800为银电极。所述正面电极400为银电极或铝电极。在硅片100正面和背面丝网印刷或烧结制备金属电极,上述的电极材料配置可获得更加的导电性能及与硅片100之间的连接拉力,在提升导电效果的同时,提升电池的结构稳定性。In a specific embodiment, the TOPCon battery further includes a back electrode 800, and the back electrode 800 is a silver electrode. That is, the TOPCon battery includes a front electrode 400 and a back electrode 800, and the front electrode 400 and the back electrode 800 are respectively arranged on both sides of the silicon wafer 100. The back electrode 800 is a silver electrode. The front electrode 400 is a silver electrode or an aluminum electrode. Metal electrodes are prepared by screen printing or sintering on the front and back of the silicon wafer 100. The above-mentioned electrode material configuration can obtain better conductive performance and connection tension between the silicon wafer 100, while improving the conductive effect, improving the structural stability of the battery.
如图2所示,本申请的另一个实施例提供了一种高效TOPCon电池的制备方法,包括以下步骤:As shown in FIG. 2 , another embodiment of the present application provides a method for preparing a high-efficiency TOPCon battery, comprising the following steps:
S100、对硅片100进行双面抛光。S100, performing double-sided polishing on the silicon wafer 100.
S200、对硅片100进行双面制备第一隧穿氧化层300以及第一掺杂多晶硅层200以使第一掺杂多晶硅形成掺硼多晶硅同时形成PN结。S200 , preparing a first tunneling oxide layer 300 and a first doped polysilicon layer 200 on both sides of the silicon wafer 100 so that the first doped polysilicon forms boron-doped polysilicon and forms a PN junction at the same time.
S300、去除硅片100正面以及侧面的BSG。S300 , removing BSG on the front and side surfaces of the silicon wafer 100 .
S400、去除正面以及侧面的多晶硅。S400, removing the polysilicon on the front and side surfaces.
S500、对硅片100再次进行双面制备第二隧穿氧化层600以及第二掺杂多晶硅层700以使第二掺杂多晶硅形成掺磷多晶硅。S500 , preparing a second tunneling oxide layer 600 and a second doped polysilicon layer 700 on both sides of the silicon wafer 100 again so that the second doped polysilicon forms phosphorus-doped polysilicon.
S600、去除正面非金属区的PSG。S600, remove the PSG in the non-metallic area on the front side.
S700、去除背面和侧面的PSG并在正面非金属区域进行制绒、背面poly去除、正面金属区域PSG以及背面BSG去除。S700, remove the PSG on the back and sides and perform texturing on the non-metallic area on the front, remove the poly on the back, remove the PSG on the metal area on the front, and remove the BSG on the back.
S800、对硅片100背面沉积钝化层以及硅片100正面和背面沉积减反射层。S800 , depositing a passivation layer on the back side of the silicon wafer 100 and depositing an anti-reflection layer on the front side and the back side of the silicon wafer 100 .
S900、对硅片100正面和背面的金属化区域进行金属化。S900 , metallizing the metallization areas on the front and back sides of the silicon wafer 100 .
具体而言,在步骤S100中,利用碱液对硅片100进行双面抛光。在步骤S200中,利用LP在硅片100双面制备第一隧穿氧化层300和本征非晶硅,其中第一隧穿氧化层300厚度1纳米至3纳米,本征非晶硅厚度为180纳米至400纳米。对硅片100背面进行硼元素扩散使硅片100背面转变成掺硼多晶硅同时形成PN结,其中,背面硼扩散方阻范围是200至400Ω。Specifically, in step S100, the silicon wafer 100 is double-sided polished using an alkali solution. In step S200, the first tunneling oxide layer 300 and intrinsic amorphous silicon are prepared on both sides of the silicon wafer 100 using LP, wherein the first tunneling oxide layer 300 has a thickness of 1 nanometer to 3 nanometers, and the intrinsic amorphous silicon has a thickness of 180 nanometers to 400 nanometers. Boron element diffusion is performed on the back side of the silicon wafer 100 to transform the back side of the silicon wafer 100 into boron-doped polysilicon and form a PN junction at the same time, wherein the back side boron diffusion square resistance ranges from 200 to 400Ω.
在步骤S300和步骤S400中,使用链式去BSG刻蚀去除硅片100边缘及正面的氧化层,裸露出绕镀的Poly硅,刻蚀过程中电池背面的氧化硅层用水膜进行保护,然后采用槽式刻蚀对硅片100进行处理,背面的氧化硅可作为掩膜层保护背面Poly-Si膜,边缘及正面的Poly-Si膜被刻蚀液腐蚀去除。In step S300 and step S400, chain BSG etching is used to remove the oxide layer at the edge and front of the silicon wafer 100 to expose the plated Poly silicon. During the etching process, the silicon oxide layer on the back of the battery is protected by a water film, and then the silicon wafer 100 is processed by trench etching. The silicon oxide on the back can be used as a mask layer to protect the Poly-Si film on the back, and the Poly-Si film on the edge and front is corroded and removed by the etching solution.
在步骤S500中,所述的对硅片100再次进行双面制备第二隧穿氧化层600以及第二掺杂多晶硅层700以使第二掺杂多晶硅形成掺磷多晶硅的方法包括:利用LP在硅片100双面制备第二隧穿氧化层600和本征非晶硅,其中第一隧穿氧化层300厚度1纳米至3纳米,本征非晶硅厚度为100纳米至180纳米。对硅片100正面进行磷元素扩散使硅片100背面转变成掺磷多晶硅。In step S500, the method of preparing the second tunneling oxide layer 600 and the second doped polysilicon layer 700 on both sides of the silicon wafer 100 again so that the second doped polysilicon forms phosphorus-doped polysilicon includes: using LP to prepare the second tunneling oxide layer 600 and intrinsic amorphous silicon on both sides of the silicon wafer 100, wherein the first tunneling oxide layer 300 has a thickness of 1 nanometer to 3 nanometers, and the intrinsic amorphous silicon has a thickness of 100 nanometers to 180 nanometers. Phosphorus is diffused on the front side of the silicon wafer 100 so that the back side of the silicon wafer 100 is converted into phosphorus-doped polysilicon.
在步骤S600中,使用激光去除正面非金属区的PSG,其中,激光的波长为200-600nm,频率为100-500KHZ。In step S600, a laser is used to remove the PSG in the front non-metallic area, wherein the wavelength of the laser is 200-600 nm and the frequency is 100-500 KHZ.
由上述步骤可知,步骤S500磷扩后对硅片100背面SE,形成N++重掺杂区,之后直接去除硅片100正面多晶硅绕镀;通过激光选择性掺杂在丝网金属化区域进行重掺杂,减少因金属化区域掺杂浓度低导致背电极接触电阻过大,非金属化区域浅掺杂,降低掺杂浓度减少寄生吸收提升短路电流,提升了电池的效率。It can be seen from the above steps that after the phosphorus diffusion in step S500, SE is applied to the back side of the silicon wafer 100 to form an N++ heavily doped area, and then the polysilicon plating on the front side of the silicon wafer 100 is directly removed; heavy doping is performed in the wire mesh metallization area through laser selective doping to reduce the excessive contact resistance of the back electrode due to the low doping concentration in the metallization area, and the non-metallization area is shallowly doped to reduce the doping concentration, reduce parasitic absorption, increase short-circuit current, and improve the efficiency of the battery.
将本申请的高效TOPCon电池的制备方法制备的高效TOPCon电池和产线现有技术进行对比,详情见表1:The high-efficiency TOPCon battery prepared by the preparation method of the high-efficiency TOPCon battery of the present application is compared with the existing technology of the production line, as shown in Table 1 for details:
表1Table 1
由表1可知,采用本申请制备TOPCon电池效率达到26.4%,其中Uoc、Isc提升明显,较产线现有技术组别高4.2mV、60mA,同时良率与产线持平,符合预期。As can be seen from Table 1, the efficiency of the TOPCon battery prepared by the present application reaches 26.4%, among which Uoc and Isc are significantly improved, which are 4.2mV and 60mA higher than the existing technical group of the production line. At the same time, the yield is on par with the production line, which is in line with expectations.
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are only some preferred embodiments of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solutions formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above invention concept. For example, the above features are replaced with (but not limited to) technical features with similar functions disclosed in the embodiments of the present disclosure.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410679884.1A CN118553800A (en) | 2024-05-29 | 2024-05-29 | A high-efficiency TOPCon battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410679884.1A CN118553800A (en) | 2024-05-29 | 2024-05-29 | A high-efficiency TOPCon battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118553800A true CN118553800A (en) | 2024-08-27 |
Family
ID=92452395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410679884.1A Pending CN118553800A (en) | 2024-05-29 | 2024-05-29 | A high-efficiency TOPCon battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118553800A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119050176A (en) * | 2024-10-29 | 2024-11-29 | 江苏中清先进电池制造有限公司 | Double-sided polycrystalline battery |
CN120152435A (en) * | 2025-05-14 | 2025-06-13 | 晶科能源(海宁)有限公司 | A method for preparing a solar cell and a solar cell |
-
2024
- 2024-05-29 CN CN202410679884.1A patent/CN118553800A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119050176A (en) * | 2024-10-29 | 2024-11-29 | 江苏中清先进电池制造有限公司 | Double-sided polycrystalline battery |
CN120152435A (en) * | 2025-05-14 | 2025-06-13 | 晶科能源(海宁)有限公司 | A method for preparing a solar cell and a solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9608131B2 (en) | Solar cell having doped semiconductor heterojunction contacts | |
WO2023050822A1 (en) | Method for manufacturing back-contact cell | |
CN118553800A (en) | A high-efficiency TOPCon battery and preparation method thereof | |
JP2009524916A (en) | Solar cell | |
CN112820793A (en) | Solar cell and preparation method thereof | |
CN117936616B (en) | Solar cell and manufacturing method thereof, photovoltaic module and photovoltaic system | |
CN114613866A (en) | Solar cell and preparation method thereof | |
CN116722053B (en) | Solar cell, preparation method thereof and photovoltaic module | |
CN214753785U (en) | A solar cell with single-sided passivated contact | |
KR102547804B1 (en) | Bifacial silicon solar cell and method for manufacturing the same | |
CN106449850B (en) | A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof | |
JP2025061207A (en) | Solar cell and its manufacturing method | |
CN118472056A (en) | Back contact battery, manufacturing method thereof and photovoltaic module | |
CN118380515B (en) | A process for preparing semiconductor silicon wafer for back contact solar cells | |
CN119170701A (en) | Photovoltaic cell and preparation method thereof | |
CN118841471A (en) | Solar cell | |
WO2025123527A1 (en) | Solar cell module and double-side-textured topcon structured cell thereof | |
CN215771167U (en) | Solar cell and photovoltaic module | |
CN116565034A (en) | Back contact battery and preparation method thereof | |
CN115985992A (en) | N-type monocrystalline silicon HBC solar cell structure and preparation method thereof | |
CN117321776A (en) | multi-junction solar cells | |
CN223157528U (en) | Solar cell and photovoltaic module | |
AU2024219405B2 (en) | Solar cell, method for manufacturing the same, photovoltaic module and photovoltaic system | |
CN116314462B (en) | Solar cell manufacturing method | |
CN222897497U (en) | Solar Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |