CN118551461B - GCL composite vertical barrier wall thickness determination method and device - Google Patents
GCL composite vertical barrier wall thickness determination method and device Download PDFInfo
- Publication number
- CN118551461B CN118551461B CN202411017687.XA CN202411017687A CN118551461B CN 118551461 B CN118551461 B CN 118551461B CN 202411017687 A CN202411017687 A CN 202411017687A CN 118551461 B CN118551461 B CN 118551461B
- Authority
- CN
- China
- Prior art keywords
- gcl
- determining
- parameters
- thickness
- barrier wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 112
- 239000002131 composite material Substances 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 167
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 123
- 231100000719 pollutant Toxicity 0.000 claims abstract description 123
- 230000015556 catabolic process Effects 0.000 claims abstract description 79
- 238000013508 migration Methods 0.000 claims abstract description 39
- 230000005012 migration Effects 0.000 claims abstract description 39
- 239000003673 groundwater Substances 0.000 claims abstract description 23
- 238000004364 calculation method Methods 0.000 claims description 63
- 238000001179 sorption measurement Methods 0.000 claims description 31
- 238000009792 diffusion process Methods 0.000 claims description 27
- 230000035699 permeability Effects 0.000 claims description 26
- 239000000356 contaminant Substances 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims 8
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 238000013461 design Methods 0.000 description 18
- 238000003860 storage Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000002910 solid waste Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003895 groundwater pollution Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Civil Engineering (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- Mining & Mineral Resources (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Hydrology & Water Resources (AREA)
- Architecture (AREA)
- Paleontology (AREA)
- Environmental & Geological Engineering (AREA)
- Evolutionary Computation (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明提供一种GCL复合竖向阻隔墙厚度确定方法及装置,该方法包括:识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。本发明实现简单可行,成本低廉,可快速准确地确定GCL复合竖向阻隔墙厚度。
The present invention provides a method and device for determining the thickness of a GCL composite vertical barrier wall, the method comprising: identifying pollutants in groundwater samples of a contaminated site, and detecting the source concentration of the pollutants; determining the breakdown concentration of the pollutants according to the groundwater function positioning of the contaminated site, and determining the breakdown time of the pollutants according to the expected service life of the GCL composite vertical barrier wall; determining the material parameters of the backfill material and the material parameters of the GCL in the GCL composite vertical barrier wall, and determining the migration parameters of the pollutants; determining the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL. The present invention is simple and feasible to implement, has low cost, and can quickly and accurately determine the thickness of the GCL composite vertical barrier wall.
Description
技术领域Technical Field
本发明涉及环境岩土治理技术领域,尤其涉及一种GCL复合竖向阻隔墙厚度确定方法及装置。The present invention relates to the technical field of environmental geotechnical treatment, and in particular to a method and device for determining the thickness of a GCL composite vertical barrier wall.
背景技术Background Art
垃圾填埋场、工业固废堆填场、尾矿库等污染场地是地下水和土壤污染的主要来源,对人类健康和生态环境造成巨大威胁。竖向阻隔墙,又称竖向阻隔屏障、竖向防污屏障、竖向防渗屏障,是一种可有效遏制污染场地内的污染物向周围环境迁移的原位控制方法。目前,由土工合成黏土衬垫(Geosynthetics Clay Liner,GCL)和回填土墙构成的GCL复合竖向阻隔墙已成为一种新型的复合屏障形式,其防渗和防污性能比传统阻隔墙得到显著提升。Landfills, industrial solid waste landfills, tailings ponds and other polluted sites are the main sources of groundwater and soil pollution, posing a huge threat to human health and the ecological environment. Vertical barrier walls, also known as vertical barrier barriers, vertical anti-pollution barriers, and vertical anti-seepage barriers, are an in-situ control method that can effectively prevent pollutants in contaminated sites from migrating to the surrounding environment. At present, the GCL composite vertical barrier wall composed of geosynthetics clay liner (GCL) and backfill wall has become a new type of composite barrier, and its anti-seepage and anti-pollution performance has been significantly improved compared with traditional barrier walls.
墙体厚度是确保竖向阻隔墙防污防渗性能达到预定目标的关键设计参数,污染物击穿时间不应小于屏障设计服役年限是设计中的关键要求。因此,分析竖向阻隔墙中污染物瞬态迁移过程对得到合适的设计墙体厚度至关重要。诸多学者使用封闭解析解和数值方法,例如有限元法、有限差分法对污染物在阻隔墙中的复杂运移过程进行了大量研究。然而,解析解的形式一般较为复杂,导致其在工程设计中难以使用,而数值方法需要价格昂贵的商业软件以及对设计人员进行耗时的专业培训,这增加了竖向阻隔墙设计的难度和成本,使得解析解和数值方法在实际工程中并不适用。Wall thickness is a key design parameter to ensure that the anti-fouling and anti-seepage performance of vertical barrier walls reaches the predetermined target. The pollutant breakdown time should not be less than the design service life of the barrier, which is a key requirement in the design. Therefore, analyzing the transient migration process of pollutants in vertical barrier walls is crucial to obtaining the appropriate design wall thickness. Many scholars have used closed analytical solutions and numerical methods, such as finite element method and finite difference method, to conduct extensive research on the complex migration process of pollutants in barrier walls. However, the form of analytical solutions is generally more complicated, making them difficult to use in engineering design, while numerical methods require expensive commercial software and time-consuming professional training for designers, which increases the difficulty and cost of vertical barrier wall design, making analytical solutions and numerical methods not applicable in actual engineering.
因此,本领域亟需一种简单可行、成本低廉、快速准确的GCL复合竖向阻隔墙厚度确定方法。Therefore, there is an urgent need in the art for a simple, feasible, low-cost, fast and accurate method for determining the thickness of a GCL composite vertical barrier wall.
发明内容Summary of the invention
本发明提供一种GCL复合竖向阻隔墙厚度确定方法及装置,用以解决现有技术中GCL复合竖向阻隔墙厚度计算复杂,成本高的缺陷,实现一种简单可行、成本低廉、快速准确的GCL复合竖向阻隔墙厚度确定方法。The present invention provides a method and device for determining the thickness of a GCL composite vertical barrier wall, which are used to solve the defects of complex calculation and high cost of the thickness of the GCL composite vertical barrier wall in the prior art, and realize a simple, feasible, low-cost, fast and accurate method for determining the thickness of the GCL composite vertical barrier wall.
本发明提供一种GCL复合竖向阻隔墙厚度确定方法,包括:The present invention provides a method for determining the thickness of a GCL composite vertical barrier wall, comprising:
识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;Identify contaminants in groundwater samples from contaminated sites and measure source concentrations of said contaminants;
根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;Determine the breakdown concentration of the pollutant according to the groundwater function location of the contaminated site, and determine the breakdown time of the pollutant according to the expected service life of the GCL composite vertical barrier wall;
确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;Determining material parameters of backfill materials in the GCL composite vertical barrier wall and material parameters of the GCL, and determining migration parameters of the pollutants;
根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。The thickness of the GCL composite vertical barrier wall is determined according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述GCL的材料参数包括所述GCL的厚度和所述GCL的渗透系数;According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the material parameters of the GCL include the thickness of the GCL and the permeability coefficient of the GCL;
所述回填材料的材料参数包括所述回填材料的渗透系数和所述回填材料的孔隙率;The material parameters of the backfill material include the permeability coefficient of the backfill material and the porosity of the backfill material;
所述运移参数包括所述污染物在所述GCL中的有效扩散系数、所述污染物在所述回填材料中的有效扩散系数、所述GCL对所述污染物的吸附阻滞因子以及所述回填材料对所述污染物的吸附阻滞因子。The migration parameters include an effective diffusion coefficient of the pollutant in the GCL, an effective diffusion coefficient of the pollutant in the backfill material, an adsorption retardation factor of the pollutant by the GCL, and an adsorption retardation factor of the pollutant by the backfill material.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度,包括:According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the thickness of the GCL composite vertical barrier wall is determined according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL, including:
根据所述GCL的渗透系数、所述回填材料的孔隙率和所述回填材料对所述污染物的吸附阻滞因子,确定第一中间参数;Determining a first intermediate parameter according to the permeability coefficient of the GCL, the porosity of the backfill material, and the adsorption retardation factor of the backfill material to the pollutant;
根据所述回填材料的渗透系数、所述GCL的厚度、所述回填材料的孔隙率、所述回填材料对所述污染物的吸附阻滞因子、所述回填材料中为便于表示和计算的参数、所述GCL的渗透系数、所述污染物在所述回填材料中的有效扩散系数和所述击穿时间,确定第二中间参数,所述回填材料中为便于表示和计算的参数根据所述污染物的源浓度、击穿浓度和所述GCL中为便于表示和计算的参数得到;Determine a second intermediate parameter according to the permeability coefficient of the backfill material, the thickness of the GCL, the porosity of the backfill material, the adsorption retardation factor of the backfill material to the pollutant, the parameters in the backfill material for the convenience of representation and calculation, the permeability coefficient of the GCL, the effective diffusion coefficient of the pollutant in the backfill material, and the breakdown time, wherein the parameters in the backfill material for the convenience of representation and calculation are obtained according to the source concentration of the pollutant, the breakdown concentration, and the parameters in the GCL for the convenience of representation and calculation;
根据所述GCL复合竖向阻隔墙两侧的水头差、所述回填材料的渗透系数、所述GCL的渗透系数、所述击穿时间、所述回填材料中为便于表示和计算的参数、所述GCL的厚度、所述回填材料的孔隙率、所述回填材料对所述污染物的吸附阻滞因子和所述污染物在所述回填材料中的有效扩散系数,确定第三中间参数;Determine a third intermediate parameter according to the water head difference on both sides of the GCL composite vertical barrier wall, the permeability coefficient of the backfill material, the permeability coefficient of the GCL, the breakdown time, the parameters in the backfill material for easy representation and calculation, the thickness of the GCL, the porosity of the backfill material, the adsorption retardation factor of the backfill material to the pollutant, and the effective diffusion coefficient of the pollutant in the backfill material;
根据所述第一中间参数、第二中间参数和第三中间参数,获得所述GCL复合竖向阻隔墙的厚度。The thickness of the GCL composite vertical barrier wall is obtained according to the first intermediate parameter, the second intermediate parameter and the third intermediate parameter.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述第一中间参数的计算公式为:According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the calculation formula of the first intermediate parameter is:
; ;
所述第二中间参数的计算公式为:The calculation formula of the second intermediate parameter is:
; ;
所述第三中间参数的计算公式为:The calculation formula of the third intermediate parameter is:
; ;
其中,α、β和γ分别为所述第一中间参数、第二中间参数和第三中间参数,kg和kw分别为所述GCL和所述回填材料的渗透系数,nw为所述回填材料的孔隙率,Rdw为所述回填材料对所述污染物的吸附阻滞因子,Lg为所述GCL的厚度,λw为所述回填材料中为便于表示和计算的参数,Dw为所述污染物在所述回填材料中的有效扩散系数,tb为所述击穿时间,h为所述水头差。Among them, α, β and γ are the first intermediate parameter, the second intermediate parameter and the third intermediate parameter respectively, kg and kW are the permeability coefficients of the GCL and the backfill material respectively, nw is the porosity of the backfill material, Rdw is the adsorption retardation factor of the backfill material to the pollutant, Lg is the thickness of the GCL, λw is a parameter in the backfill material for the convenience of representation and calculation, Dw is the effective diffusion coefficient of the pollutant in the backfill material, tb is the breakdown time, and h is the water head difference.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述回填材料中为便于表示和计算的参数的计算公式为:According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the calculation formula for the parameters in the backfill material for easy representation and calculation is:
; ;
其中,λw为所述回填材料中为便于表示和计算的参数,Cb为所述污染物的击穿浓度,C0为所述污染物的源浓度,λg为所述GCL中为便于表示和计算的参数,a1、a2和a3为预设常数。Wherein, λ w is a parameter in the backfill material for the convenience of representation and calculation, C b is the breakdown concentration of the pollutant, C 0 is the source concentration of the pollutant, λ g is a parameter in the GCL for the convenience of representation and calculation, and a 1 , a 2 and a 3 are preset constants.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述GCL中为便于表示和计算的参数根据所述污染物在所述GCL中的有效扩散系数、所述GCL对所述污染物的吸附阻滞因子、所述GCL的厚度和所述击穿时间得到。According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the parameters in the GCL for easy representation and calculation are obtained based on the effective diffusion coefficient of the pollutant in the GCL, the adsorption retardation factor of the GCL to the pollutant, the thickness of the GCL and the breakdown time.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述GCL中为便于表示和计算的参数的计算公式为:According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the calculation formula for the parameters in the GCL for easy representation and calculation is:
; ;
其中,为所述GCL中为便于表示和计算的参数,Dg为所述污染物在所述GCL中的 有效扩散系数,Rdg为所述GCL对所述污染物的吸附阻滞因子,Lg为所述GCL的厚度,tb为所述 击穿时间,a4和a5为预设常数。 in, is a parameter in the GCL for the convenience of expression and calculation, Dg is the effective diffusion coefficient of the pollutant in the GCL, Rdg is the adsorption retardation factor of the GCL to the pollutant, Lg is the thickness of the GCL, tb is the breakdown time, and a4 and a5 are preset constants.
根据本发明提供的一种GCL复合竖向阻隔墙厚度确定方法,所述GCL复合竖向阻隔墙的厚度的计算公式为:According to a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention, the calculation formula for the thickness of the GCL composite vertical barrier wall is:
; ;
其中,Lw为所述GCL复合竖向阻隔墙的厚度,α、β和γ分别为所述第一中间参数、第二中间参数和第三中间参数。Wherein, Lw is the thickness of the GCL composite vertical barrier wall, α, β and γ are the first intermediate parameter, the second intermediate parameter and the third intermediate parameter respectively.
本发明还提供一种GCL复合竖向阻隔墙厚度确定装置,包括:The present invention also provides a device for determining the thickness of a GCL composite vertical barrier wall, comprising:
检测模块,用于识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;a detection module for identifying pollutants in groundwater samples of a contaminated site and detecting source concentrations of said pollutants;
第一确定模块,用于根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;The first determination module is used to determine the breakdown concentration of the pollutant according to the groundwater function location of the contaminated site, and determine the breakdown time of the pollutant according to the expected service life of the GCL composite vertical barrier wall;
第二确定模块,用于确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;A second determination module is used to determine the material parameters of the backfill material in the GCL composite vertical barrier wall and the material parameters of the GCL, and to determine the migration parameters of the pollutants;
计算模块,用于根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。A calculation module is used to determine the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, and migration parameters of the pollutants, as well as the material parameters of the backfill material and the material parameters of the GCL.
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述GCL复合竖向阻隔墙厚度确定方法。The present invention also provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, a method for determining the thickness of a GCL composite vertical barrier wall as described above is implemented.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述GCL复合竖向阻隔墙厚度确定方法。The present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the method for determining the thickness of a GCL composite vertical barrier wall as described in any one of the above is implemented.
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述GCL复合竖向阻隔墙厚度确定方法。The present invention also provides a computer program product, comprising a computer program, wherein when the computer program is executed by a processor, the method for determining the thickness of a GCL composite vertical barrier wall as described above is implemented.
本发明提供的GCL复合竖向阻隔墙厚度确定方法及装置,通过考虑到对流、扩散和吸附作用对污染物迁移的影响,综合污染物的源浓度、击穿浓度、击穿时间、运移参数,以及回填材料的材料参数和GCL的材料参数进,直接计算得到GCL复合竖向阻隔墙的厚度,可达到工程设计精度的要求,无需使用复杂的解析解或数值方法求解偏微分方程,计算简单,成本低廉,快速准确,可广泛应用于污染场地和固废填埋场竖向阻隔墙设计和评估。The method and device for determining the thickness of the GCL composite vertical barrier wall provided by the present invention directly calculate the thickness of the GCL composite vertical barrier wall by taking into account the influence of convection, diffusion and adsorption on the migration of pollutants, and comprehensively considering the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL. The requirements of engineering design accuracy can be met without using complex analytical solutions or numerical methods to solve partial differential equations. The calculation is simple, low-cost, fast and accurate, and can be widely used in the design and evaluation of vertical barrier walls in contaminated sites and solid waste landfills.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的GCL复合竖向阻隔墙厚度确定方法的流程示意图;FIG1 is a schematic flow chart of a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention;
图2是本发明提供的GCL复合竖向阻隔墙厚度确定方法的计算模型示意图;FIG2 is a schematic diagram of a calculation model of a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention;
图3是本发明提供的GCL复合竖向阻隔墙厚度确定方法与解析解计算结果对比示意图;FIG3 is a schematic diagram showing a comparison between a method for determining the thickness of a GCL composite vertical barrier wall provided by the present invention and a result of an analytical solution;
图4是本发明提供的GCL复合竖向阻隔墙厚度确定装置的结构示意图;FIG4 is a schematic structural diagram of a device for determining the thickness of a GCL composite vertical barrier wall provided by the present invention;
图5是本发明提供的电子设备的结构示意图。FIG. 5 is a schematic diagram of the structure of an electronic device provided by the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面结合图1描述本发明的一种GCL复合竖向阻隔墙厚度确定方法,包括:A method for determining the thickness of a GCL composite vertical barrier wall according to the present invention is described below in conjunction with FIG. 1 , comprising:
步骤101,识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度C0(mg/L);Step 101, identifying pollutants in groundwater samples of a contaminated site, and detecting the source concentration C 0 (mg/L) of the pollutants;
可选用污染场地常见的重金属污染物铅离子作为特征污染物,检测得到铅离子的源浓度C0=0.1mg/L。Lead ions, which are common heavy metal pollutants in contaminated sites, can be selected as characteristic pollutants, and the source concentration of lead ions obtained by detection is C 0 =0.1 mg/L.
步骤102,根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度Cb(mg/L),并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间tb(s);Step 102, determining the breakdown concentration C b (mg/L) of the pollutant according to the groundwater function location of the contaminated site, and determining the breakdown time t b (s) of the pollutant according to the expected service life of the GCL composite vertical barrier wall;
污染物的击穿浓度Cb可为国家标准《地下水质量标准》GB/T 14848-2017规定的不同地下水质量分类中污染物浓度的限值。The breakdown concentration Cb of the pollutant can be the limit value of the pollutant concentration in different groundwater quality classifications specified in the national standard "Groundwater Quality Standard" GB/T 14848-2017.
可根据《地下水质量标准》GB/T 14848-2017选用Ⅲ类地下水质量限值作为击穿浓度Cb=0.01mg/L。GCL复合竖向阻隔墙的击穿时间可设为50年,即tb=50年=50×3.1536×107秒。击穿时间可根据实际情况进行设置。According to the Groundwater Quality Standard GB/T 14848-2017, the Class III groundwater quality limit can be selected as the breakdown concentration C b = 0.01 mg/L. The breakdown time of the GCL composite vertical barrier wall can be set to 50 years, that is, t b = 50 years = 50 × 3.1536 × 10 7 seconds. The breakdown time can be set according to actual conditions.
步骤103,确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;Step 103, determining the material parameters of the backfill material in the GCL composite vertical barrier wall and the material parameters of the GCL, and determining the migration parameters of the pollutants;
结合污染场地情况和工程经验初步选择GCL复合竖向阻隔墙中的回填材料及GCL,通过调查或试验确定材料参数和污染物运移参数。本实施例对材料参数和污染物运移参数的种类不作限定。The backfill material and GCL in the GCL composite vertical barrier wall are preliminarily selected based on the contaminated site conditions and engineering experience, and the material parameters and pollutant migration parameters are determined through investigation or experiment. This embodiment does not limit the types of material parameters and pollutant migration parameters.
步骤104,根据所述污染物的源浓度C0、击穿浓度Cb、击穿时间tb、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。Step 104 : Determine the thickness of the GCL composite vertical barrier wall according to the source concentration C 0 , the breakdown concentration C b , the breakdown time t b , the migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
污染物的击穿浓度Cb越大,击穿时间越长,GCL复合竖向阻隔墙的厚度越大。另外还考虑到污染物的运移参数、回填材料的材料参数和GCL的材料参数对GCL复合竖向阻隔墙性能的影响。The greater the breakdown concentration Cb of the pollutant, the longer the breakdown time, and the greater the thickness of the GCL composite vertical barrier wall. In addition, the influence of the migration parameters of the pollutants, the material parameters of the backfill material, and the material parameters of the GCL on the performance of the GCL composite vertical barrier wall is also considered.
本实施例通过考虑到对流、扩散和吸附作用对污染物迁移的影响,综合污染物的源浓度、击穿浓度、击穿时间、运移参数,以及回填材料的材料参数和GCL的材料参数,直接计算得到GCL复合竖向阻隔墙的厚度,可达到工程设计精度的要求,无需使用复杂的解析解或数值方法求解偏微分方程,计算简单,成本低廉,快速准确,可广泛应用于污染场地和固废填埋场竖向阻隔墙设计和评估。This embodiment takes into account the effects of convection, diffusion and adsorption on the migration of pollutants, and comprehensively considers the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, as well as the material parameters of the backfill material and the material parameters of the GCL, to directly calculate the thickness of the GCL composite vertical barrier wall, which can meet the requirements of engineering design accuracy. There is no need to use complex analytical solutions or numerical methods to solve partial differential equations. The calculation is simple, low-cost, fast and accurate, and can be widely used in the design and evaluation of vertical barrier walls in contaminated sites and solid waste landfills.
在上述实施例的基础上,本实施例中所述GCL的材料参数包括所述GCL的厚度Lg(m)和所述GCL的渗透系数kg(m/s);On the basis of the above embodiment, the material parameters of the GCL in this embodiment include the thickness L g (m) of the GCL and the permeability coefficient k g (m/s) of the GCL;
所述回填材料的材料参数包括所述回填材料的渗透系数kw(m/s)和所述回填材料的孔隙率nw;The material parameters of the backfill material include the permeability coefficient k w (m/s) of the backfill material and the porosity n w of the backfill material;
所述运移参数包括所述污染物在所述GCL中的有效扩散系数Dg(m2/s)、所述污染物在所述回填材料中的有效扩散系数Dw(m2/s)、所述GCL对所述污染物的吸附阻滞因子Rdg以及所述回填材料对所述污染物的吸附阻滞因子Rdw。The transport parameters include the effective diffusion coefficient D g (m 2 /s) of the pollutant in the GCL, the effective diffusion coefficient D w (m 2 /s) of the pollutant in the backfill material, the adsorption retardation factor R dg of the GCL to the pollutant, and the adsorption retardation factor R dw of the backfill material to the pollutant.
在上述实施例的基础上,本实施例中所述根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度,包括:On the basis of the above embodiment, the thickness of the GCL composite vertical barrier wall is determined according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL in this embodiment, including:
根据所述GCL的渗透系数kg、所述回填材料的孔隙率nw和所述回填材料对所述污染物的吸附阻滞因子Rdw,确定第一中间参数α(m/s);Determine a first intermediate parameter α (m/s) according to the permeability coefficient k g of the GCL, the porosity n w of the backfill material, and the adsorption retardation factor R dw of the backfill material to the pollutant;
根据所述回填材料的渗透系数kw、所述GCL的厚度Lg、所述回填材料的孔隙率nw、所述回填材料对所述污染物的吸附阻滞因子Rdw、所述回填材料中为便于表示和计算的参数λw、所述GCL的渗透系数kg、所述污染物在所述回填材料中的有效扩散系数Dw和所述击穿时间tb,确定第二中间参数β(m2/s),所述回填材料中为便于表示和计算的参数λw根据所述污染物的源浓度C0、击穿浓度Cb和所述GCL中为便于表示和计算的参数λg得到;Determine a second intermediate parameter β (m 2 /s) according to the permeability coefficient k w of the backfill material, the thickness L g of the GCL, the porosity n w of the backfill material, the adsorption retardation factor R dw of the backfill material to the pollutant, the parameter λ w in the backfill material for the convenience of representation and calculation, the permeability coefficient k g of the GCL, the effective diffusion coefficient D w of the pollutant in the backfill material, and the breakdown time t b , wherein the parameter λ w in the backfill material for the convenience of representation and calculation is obtained according to the source concentration C 0 of the pollutant, the breakdown concentration C b, and the parameter λ g in the GCL for the convenience of representation and calculation;
根据所述GCL复合竖向阻隔墙两侧的水头差h、所述回填材料的渗透系数kw、所述GCL的渗透系数kg、所述击穿时间tb、所述回填材料中为便于表示和计算的参数λw、所述GCL的厚度Lg、所述回填材料的孔隙率nw、所述回填材料对所述污染物的吸附阻滞因子Rdw和所述污染物在所述回填材料中的有效扩散系数Dw,确定第三中间参数γ(m3/s);Determine a third intermediate parameter γ (m 3 /s) according to the water head difference h on both sides of the GCL composite vertical barrier wall, the permeability coefficient k w of the backfill material, the permeability coefficient k g of the GCL, the breakdown time t b , the parameter λ w in the backfill material for easy representation and calculation, the thickness L g of the GCL , the porosity n w of the backfill material, the adsorption retardation factor R dw of the backfill material to the pollutant, and the effective diffusion coefficient D w of the pollutant in the backfill material;
根据所述第一中间参数、第二中间参数和第三中间参数,获得所述GCL复合竖向阻隔墙的厚度。The thickness of the GCL composite vertical barrier wall is obtained according to the first intermediate parameter, the second intermediate parameter and the third intermediate parameter.
第一中间参数、第二中间参数和第三中间参数反映对流、扩散和吸附作用对污染物迁移的影响。本实施例对第一中间参数、第二中间参数、第三中间参数和GCL复合竖向阻隔墙的厚度的计算公式不作限定。The first intermediate parameter, the second intermediate parameter and the third intermediate parameter reflect the influence of convection, diffusion and adsorption on the migration of pollutants. This embodiment does not limit the calculation formula of the first intermediate parameter, the second intermediate parameter, the third intermediate parameter and the thickness of the GCL composite vertical barrier wall.
在上述实施例的基础上,本实施例中所述第一中间参数的计算公式为:Based on the above embodiment, the calculation formula of the first intermediate parameter in this embodiment is:
; ;
所述第二中间参数的计算公式为:The calculation formula of the second intermediate parameter is:
; ;
所述第三中间参数的计算公式为:The calculation formula of the third intermediate parameter is:
; ;
其中,α、β和γ分别为所述第一中间参数、第二中间参数和第三中间参数,kg和kw分别为所述GCL和所述回填材料的渗透系数,nw为所述回填材料的孔隙率,Rdw为所述回填材料对所述污染物的吸附阻滞因子,Lg为所述GCL的厚度,λw为所述回填材料中为便于表示和计算的参数,Dw为所述污染物在所述回填材料中的有效扩散系数,tb为所述击穿时间,h为所述水头差。Among them, α, β and γ are the first intermediate parameter, the second intermediate parameter and the third intermediate parameter respectively, kg and kW are the permeability coefficients of the GCL and the backfill material respectively, nw is the porosity of the backfill material, Rdw is the adsorption retardation factor of the backfill material to the pollutant, Lg is the thickness of the GCL, λw is a parameter in the backfill material for the convenience of representation and calculation, Dw is the effective diffusion coefficient of the pollutant in the backfill material, tb is the breakdown time, and h is the water head difference.
GCL复合竖向阻隔墙厚度的计算模型如图2所示,具体参数可取值如下:GCL厚度Lg=0.01m,GCL复合竖向阻隔墙两侧的水头差设置为1m。The calculation model of the thickness of the GCL composite vertical barrier wall is shown in Figure 2. The specific parameters can be taken as follows: GCL thickness L g = 0.01m, and the water head difference on both sides of the GCL composite vertical barrier wall is set to 1m.
设置GCL材料参数和相关污染物运移参数,具体参数可取值如下:GCL渗透系数kg=5×10-11m/s,铅离子在GCL的有效扩散系数Dg=5.90×10-10m2/s,GCL对铅离子的吸附阻滞因子Rdg=38。Set GCL material parameters and related pollutant migration parameters. The specific parameters can be as follows: GCL permeability coefficient k g =5×10 -11 m/s, effective diffusion coefficient of lead ions in GCL D g =5.90×10 -10 m 2 /s, and adsorption retardation factor of GCL for lead ions R dg =38.
设置回填土材料参数和相关污染物运移参数,具体参数可取值如下:回填土渗透系数kw=1×10-9m/s,回填土孔隙率nw=0.42,铅离子在回填土的有效扩散系数Dg=2.34×10- 10m2/s,回填土对铅离子的吸附阻滞因子Rdg=15。The material parameters of backfill soil and related pollutant migration parameters are set. The specific parameters can be as follows: backfill soil permeability k w =1×10 -9 m/s, backfill soil porosity n w =0.42, effective diffusion coefficient of lead ions in backfill soil D g =2.34×10 - 10 m 2 /s, and adsorption retardation factor of backfill soil for lead ions R dg =15.
计算得到α=3.15×10-10m/s,β=-5.0251×10-11m2/s,γ=-1.0149×10-10m3/s,GCL复合竖向阻隔墙的设计厚度为0.65m。The calculated results show that α=3.15×10 -10 m/s, β=-5.0251×10 -11 m 2 / s, γ=-1.0149× 10 -10 m 3 /s, and the design thickness of the GCL composite vertical barrier wall is 0.65m.
在上述实施例的基础上,本实施例中所述回填材料中为便于表示和计算的参数的计算公式为:On the basis of the above embodiment, the calculation formula of the parameters of the backfill material in this embodiment for the convenience of expression and calculation is:
; ;
其中,λw为所述回填材料中为便于表示和计算的参数,Cb为所述污染物的击穿浓度,C0为所述污染物的源浓度,λg为所述GCL中为便于表示和计算的参数,a1、a2和a3为预设常数。Wherein, λ w is a parameter in the backfill material for the convenience of representation and calculation, C b is the breakdown concentration of the pollutant, C 0 is the source concentration of the pollutant, λ g is a parameter in the GCL for the convenience of representation and calculation, and a 1 , a 2 and a 3 are preset constants.
可取值3.56,可取值3.33,可取值0.142。 The possible value is 3.56. The possible value is 3.33. The possible value is 0.142.
在上述实施例的基础上,本实施例中所述GCL中为便于表示和计算的参数根据所述污染物在所述GCL中的有效扩散系数、所述GCL对所述污染物的吸附阻滞因子、所述GCL的厚度和所述击穿时间得到。On the basis of the above-mentioned embodiment, the parameters in the GCL in this embodiment for the convenience of representation and calculation are obtained according to the effective diffusion coefficient of the pollutant in the GCL, the adsorption retardation factor of the GCL to the pollutant, the thickness of the GCL and the breakdown time.
在上述实施例的基础上,本实施例中所述GCL中为便于表示和计算的参数的计算公式为:Based on the above embodiment, the calculation formula of the parameters in the GCL described in this embodiment for the convenience of representation and calculation is:
; ;
其中,为所述GCL中为便于表示和计算的参数,Dg为所述污染物在所述GCL中的 有效扩散系数,Rdg为所述GCL对所述污染物的吸附阻滞因子,Lg为所述GCL的厚度,tb为所述 击穿时间,a4和a5为预设常数。 in, is a parameter in the GCL for the convenience of expression and calculation, Dg is the effective diffusion coefficient of the pollutant in the GCL, Rdg is the adsorption retardation factor of the GCL to the pollutant, Lg is the thickness of the GCL, tb is the breakdown time, and a4 and a5 are preset constants.
a4可取值1.12405,a5可取值0.99992。a 4 can take the value 1.12405, and a 5 can take the value 0.99992.
在上述实施例的基础上,本实施例中所述GCL复合竖向阻隔墙的厚度的计算公式为:Based on the above embodiment, the calculation formula for the thickness of the GCL composite vertical barrier wall in this embodiment is:
; ;
其中,Lw为所述GCL复合竖向阻隔墙的厚度,α、β和γ分别为所述第一中间参数、第二中间参数和第三中间参数。Wherein, Lw is the thickness of the GCL composite vertical barrier wall, α, β and γ are the first intermediate parameter, the second intermediate parameter and the third intermediate parameter respectively.
图3中各点以本实施例中的简化设计方法所使用的击穿时间为x坐标,以简化设计方法计算所得的墙体厚度代入解析解中计算得到的击穿时间为y坐标。图3显示,各点基本在y=x直线上,表明本实施例提供的设计方法与解析解得到的结果十分接近,说明了本实施例中简化设计方法准确度高,且更简单好用。In FIG3 , the breakdown time used in the simplified design method of this embodiment is used as the x coordinate of each point, and the breakdown time calculated by substituting the wall thickness calculated by the simplified design method into the analytical solution is used as the y coordinate. FIG3 shows that each point is basically on the y=x straight line, indicating that the design method provided in this embodiment is very close to the result obtained by the analytical solution, which shows that the simplified design method in this embodiment has high accuracy and is simpler and easier to use.
本实例提供了一种GCL复合竖向阻隔墙厚度确定方法,能快速准确地确定GCL复合墙体厚度,有效地克服GCL复合竖向阻隔墙设计中污染物分析过程复杂,计算耗时,计算成本高的缺点。This example provides a method for determining the thickness of a GCL composite vertical barrier wall, which can quickly and accurately determine the thickness of the GCL composite wall, and effectively overcome the shortcomings of complex pollutant analysis process, time-consuming calculation, and high calculation cost in the design of the GCL composite vertical barrier wall.
下面对本发明提供的GCL复合竖向阻隔墙厚度确定装置进行描述,下文描述的GCL复合竖向阻隔墙厚度确定装置与上文描述的GCL复合竖向阻隔墙厚度确定方法可相互对应参照。The following is a description of the GCL composite vertical barrier wall thickness determination device provided by the present invention. The GCL composite vertical barrier wall thickness determination device described below and the GCL composite vertical barrier wall thickness determination method described above can be referenced to each other.
如图4所示,该装置包括检测模块401、第一确定模块402、第二确定模块403和计算模块404,其中:As shown in FIG4 , the device includes a detection module 401, a first determination module 402, a second determination module 403 and a calculation module 404, wherein:
检测模块401用于识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;The detection module 401 is used to identify pollutants in groundwater samples of contaminated sites and detect the source concentration of the pollutants;
第一确定模块402用于根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;The first determination module 402 is used to determine the breakdown concentration of the pollutant according to the groundwater function location of the contaminated site, and determine the breakdown time of the pollutant according to the expected service life of the GCL composite vertical barrier wall;
第二确定模块403用于确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;The second determination module 403 is used to determine the material parameters of the backfill material in the GCL composite vertical barrier wall and the material parameters of the GCL, and determine the migration parameters of the pollutants;
计算模块404用于根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。The calculation module 404 is used to determine the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
本实施例通过考虑到对流、扩散和吸附作用对污染物迁移的影响,综合污染物的源浓度、击穿浓度、击穿时间、运移参数,以及回填材料的材料参数和GCL的材料参数进,直接计算得到GCL复合竖向阻隔墙的厚度,可达到工程设计精度的要求,无需使用复杂的解析解或数值方法求解偏微分方程,计算简单,成本低廉,快速准确,可广泛应用于污染场地和固废填埋场竖向阻隔墙设计和评估。This embodiment takes into account the effects of convection, diffusion and adsorption on the migration of pollutants, and comprehensively considers the source concentration, breakdown concentration, breakdown time, migration parameters of pollutants, as well as the material parameters of the backfill material and the material parameters of the GCL, to directly calculate the thickness of the GCL composite vertical barrier wall, which can meet the requirements of engineering design accuracy. There is no need to use complex analytical solutions or numerical methods to solve partial differential equations. The calculation is simple, low-cost, fast and accurate, and can be widely used in the design and evaluation of vertical barrier walls in contaminated sites and solid waste landfills.
图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(Communications Interface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行GCL复合竖向阻隔墙厚度确定方法,该方法包括:识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。Figure 5 illustrates a schematic diagram of the physical structure of an electronic device. As shown in Figure 5, the electronic device may include: a processor (processor) 510, a communication interface (Communications Interface) 520, a memory (memory) 530 and a communication bus 540, wherein the processor 510, the communication interface 520, and the memory 530 communicate with each other through the communication bus 540. The processor 510 can call the logic instructions in the memory 530 to execute the method for determining the thickness of the GCL composite vertical barrier wall, which method includes: identifying pollutants in groundwater samples of the contaminated site and detecting the source concentration of the pollutants; determining the breakdown concentration of the pollutants according to the groundwater function positioning of the contaminated site, and determining the breakdown time of the pollutants according to the expected service life of the GCL composite vertical barrier wall; determining the material parameters of the backfill material and the material parameters of the GCL in the GCL composite vertical barrier wall, and determining the migration parameters of the pollutants; determining the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the logic instructions in the above-mentioned memory 530 can be implemented in the form of a software functional unit and can be stored in a computer-readable storage medium when it is sold or used as an independent product. Based on this understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc. Various media that can store program codes.
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的GCL复合竖向阻隔墙厚度确定方法,该方法包括:识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。On the other hand, the present invention also provides a computer program product, which includes a computer program. The computer program can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can execute the GCL composite vertical barrier wall thickness determination method provided by the above methods, the method including: identifying pollutants in groundwater samples of a contaminated site, and detecting the source concentration of the pollutants; determining the breakdown concentration of the pollutants according to the groundwater function positioning of the contaminated site, and determining the breakdown time of the pollutants according to the expected service life of the GCL composite vertical barrier wall; determining the material parameters of the backfill material and the material parameters of the GCL in the GCL composite vertical barrier wall, and determining the migration parameters of the pollutants; determining the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的GCL复合竖向阻隔墙厚度确定方法,该方法包括:识别污染场地的地下水样品中的污染物,并检测所述污染物的源浓度;根据所述污染场地的地下水功能定位确定所述污染物的击穿浓度,并根据GCL复合竖向阻隔墙的预计服役寿命确定所述污染物的击穿时间;确定所述GCL复合竖向阻隔墙中回填材料的材料参数和GCL的材料参数,并确定所述污染物的运移参数;根据所述污染物的源浓度、击穿浓度、击穿时间、运移参数,以及所述回填材料的材料参数和所述GCL的材料参数,确定所述GCL复合竖向阻隔墙的厚度。On the other hand, the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, is implemented to execute the GCL composite vertical barrier wall thickness determination method provided by the above-mentioned methods, the method comprising: identifying pollutants in groundwater samples of a contaminated site, and detecting the source concentration of the pollutants; determining the breakdown concentration of the pollutants according to the groundwater functional positioning of the contaminated site, and determining the breakdown time of the pollutants according to the expected service life of the GCL composite vertical barrier wall; determining the material parameters of the backfill material and the material parameters of the GCL in the GCL composite vertical barrier wall, and determining the migration parameters of the pollutants; determining the thickness of the GCL composite vertical barrier wall according to the source concentration, breakdown concentration, breakdown time, migration parameters of the pollutants, and the material parameters of the backfill material and the material parameters of the GCL.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative work.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411017687.XA CN118551461B (en) | 2024-07-29 | 2024-07-29 | GCL composite vertical barrier wall thickness determination method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411017687.XA CN118551461B (en) | 2024-07-29 | 2024-07-29 | GCL composite vertical barrier wall thickness determination method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118551461A CN118551461A (en) | 2024-08-27 |
CN118551461B true CN118551461B (en) | 2024-10-18 |
Family
ID=92455220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411017687.XA Active CN118551461B (en) | 2024-07-29 | 2024-07-29 | GCL composite vertical barrier wall thickness determination method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118551461B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119116352B (en) * | 2024-10-08 | 2025-03-18 | 江苏省环境科学研究院 | A 3D printing method for emergency isolation barriers at contaminated sites |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107780443A (en) * | 2017-12-04 | 2018-03-09 | 天津中联格林科技发展有限公司 | A kind of special GCL composite components of vertical seepage control and its laying method |
CN116609395A (en) * | 2023-03-13 | 2023-08-18 | 北京中岩大地环境科技有限公司 | Method for determining depth and thickness of vertical separation wall |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106677227B (en) * | 2016-12-14 | 2018-12-07 | 河海大学 | A kind of simple determining method of refuse landfill impervious lining breakdown time |
CN115710923A (en) * | 2022-11-14 | 2023-02-24 | 北京首创环境科技有限公司 | Composite separation wall for soft soil area and construction method thereof |
CN116770901A (en) * | 2023-08-14 | 2023-09-19 | 水利部交通运输部国家能源局南京水利科学研究院 | A double-layer vertical barrier wall structure and active control method for contaminated sites |
-
2024
- 2024-07-29 CN CN202411017687.XA patent/CN118551461B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107780443A (en) * | 2017-12-04 | 2018-03-09 | 天津中联格林科技发展有限公司 | A kind of special GCL composite components of vertical seepage control and its laying method |
CN116609395A (en) * | 2023-03-13 | 2023-08-18 | 北京中岩大地环境科技有限公司 | Method for determining depth and thickness of vertical separation wall |
Also Published As
Publication number | Publication date |
---|---|
CN118551461A (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chapman et al. | Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones | |
Shu et al. | Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach | |
CN118551461B (en) | GCL composite vertical barrier wall thickness determination method and device | |
Köhne et al. | Predicting solute transport in structured soil using pore network models | |
Oostrom et al. | A review of multidimensional, multifluid, intermediate-scale experiments: Flow behavior, saturation imaging, and tracer detection and quantification | |
Basheer et al. | ‘PERMIT’ion migration test for measuring the chloride ion transport of concrete on site | |
CN114662844A (en) | Site groundwater pollution risk evaluation method based on pollution process | |
Lee et al. | Investigation of consolidation-induced solute transport. II: Experimental and numerical results | |
Chen et al. | Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources | |
Augustsson et al. | Failure of generic risk assessment model framework to predict groundwater pollution risk at hundreds of metal contaminated sites: Implications for research needs | |
CN116818607A (en) | Method for predicting and evaluating karst landform pollutant migration | |
Niu et al. | Transport of ammonia nitrogen for groundwater pollution control in an informal low-permeability landfill site | |
Lehto | Principles and application in soils and sediments | |
JP2006116509A (en) | Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region | |
Krol et al. | Diffusion of TCE through soil-bentonite slurry walls | |
Ballarini et al. | Evaluation of the role of heterogeneities on transverse mixing in bench‐scale tank experiments by numerical modeling | |
Li et al. | Semi-analytical model for axisymmetric transport of contaminant through flawed geomembrane | |
Tino Balestra et al. | Nondestructive method for estimation of chloride profiles: correlation between electrical resistivity and holliday-empirical equation | |
Dong et al. | Examining fate and transport of heavy metal in landfill site through numerical environmental multimedia modeling approach | |
Tian et al. | Mechanisms and kinetic model for steel corrosion in unsaturated cementitious materials | |
Aisopou et al. | Dilution and volatilization of groundwater contaminant discharges in streams | |
Wang et al. | Decoding Methane Flow in Fractured Clay: A Semi‐Analytical Model With Matrix Diffusion and Advection | |
Rabideau et al. | Analytical models for the design of iron-based permeable reactive barriers | |
Suo et al. | A study on the monitoring of LNAPL migration using ERT | |
El-Zein et al. | Multiple-porosity contaminant transport by finite-element method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |