[go: up one dir, main page]

CN118525352A - 半导体工艺的绝缘膜制造方法 - Google Patents

半导体工艺的绝缘膜制造方法 Download PDF

Info

Publication number
CN118525352A
CN118525352A CN202380015737.8A CN202380015737A CN118525352A CN 118525352 A CN118525352 A CN 118525352A CN 202380015737 A CN202380015737 A CN 202380015737A CN 118525352 A CN118525352 A CN 118525352A
Authority
CN
China
Prior art keywords
pressure
insulating film
gas
manufacturing
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202380015737.8A
Other languages
English (en)
Inventor
赵星吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HPSP Co Ltd
Original Assignee
HPSP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HPSP Co Ltd filed Critical HPSP Co Ltd
Publication of CN118525352A publication Critical patent/CN118525352A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种半导体工艺的绝缘膜制造方法,其中,包括:将晶片配置在处理室内的步骤;向所述处理室以高于大气压的第一压力供应源气体,随着进行氧化工艺和氮化工艺中的至少一种工艺,在所述晶片形成绝缘膜的步骤;向所述处理室供应吹扫气体来吹扫所述源气体的步骤;以及向所述处理室以高于大气压的第二压力供应气氛气体,随着进行热处理工艺加强所述绝缘膜的步骤。

Description

半导体工艺的绝缘膜制造方法
技术领域
本发明涉及一种在半导体工艺中使用的绝缘膜制造方法。
背景技术
通常,半导体制造工艺大致分为前端工艺和后端工艺。在前端工艺中包括氧化、沉积、光刻、蚀刻、离子注入、布线等工艺。
通过氧化工艺或沉积工艺在晶片上形成绝缘膜。即使在形成电路图案之后,绝缘膜防止发生漏电。在以后的蚀刻工艺中,绝缘膜还做保护膜的作用。因此,绝缘膜的质量特性,例如密度等,必须确保在一定水平以上。
然而,根据现有沉积工艺或氧化工艺形成的绝缘膜不具有足够水平的质量特性。为了改善所述问题,需要长时间的工艺,或者工艺温度必须过高。长时间的工艺等成为降低半导体制造工艺的效率的因素。
发明内容
技术问题
本发明的一目的在于,提供一种即使不需要过多的工艺时间及温度,也可以制造质量特性优异的绝缘膜的半导体工艺的绝缘膜制造方法。
解决问题的手段
为了实现所述课题,根据本发明的一侧面的半导体工艺的绝缘膜制造方法,可以包括:将晶片配置在处理室内的步骤;向所述处理室以高于大气压的第一压力供应源气体,随着进行氧化工艺和氮化工艺中的至少一种工艺,在所述晶片形成绝缘膜的步骤;向所述处理室供应吹扫气体来吹扫所述源气体的步骤;以及向所述处理室以高于大气压的第二压力供应气氛气体,随着进行热处理工艺加强所述绝缘膜的步骤。
此处,所述第一压力可以是在5ATM至20ATM范围内确定的压力。
此处,向所述处理室以高于大气压的第一压力供应源气体,随着进行氧化工艺和氮化工艺中的至少一种工艺,在所述晶片形成绝缘膜的步骤可以是包括将所述源气体保持在第一温度的步骤,所述第一温度是在400℃至600℃的范围内确定的值。
此处,所述源气体可以包括氧气、水蒸气及氨气中的至少一种。
此处,向所述处理室供应吹扫气体来吹扫所述源气体的步骤,可以在将所述处理室保持在所述第一压力及所述第一温度的状态下进行。
此处,所述吹扫气体可以包括氮气、氩气及氦气中的一种。
此处,所述第二压力可以是在5ATM至20ATM范围内确定的压力。
此处,所述气氛气体可以包括氢气、氘气及氮气中的至少一种。
此处,还可以包括在所述处理室保持在所述第一压力及所述第二压力中的一种压力的过程中,将容纳所述处理室的容纳空间保持在高于所述第一压力及所述第二压力中的一种压力的步骤。
发明效果
根据如上所述构成的本发明的半导体工艺的绝缘膜制造方法,通过以高于大气压的第一压力的源气体进行氧化工艺或氮化工艺,在晶片形成绝缘膜之后,以高于大气压的第二压力的气氛气体进行热处理工艺,从而,在加强绝缘膜时,即使不依赖于过多的工艺时间及温度,也可以提高绝缘膜的质量特性。
附图说明
图1是根据本发明的一实施例的用于执行半导体工艺的绝缘膜制造方法的晶片高压处理装置100的概念图。
图2是用于说明图1的晶片高压处理装置100的可控操作的框图。
图3是用于说明根据本发明的一实施例的半导体工艺的绝缘膜制造方法的流程图。
图4是用于说明根据本发明的一实施例的用于执行半导体工艺的绝缘膜制造方法的压力及温度控制的流程图。
图5是根据图3的半导体工艺的绝缘膜制造方法中的一些步骤制造的绝缘膜的台阶覆盖性的比较曲线图。
图6是根据图3的半导体工艺的绝缘膜制造方法制造的绝缘膜的湿蚀刻率的比较曲线图。
具体实施方式
下面,将参考附图详细说明根据本发明的优选实施例的半导体工艺的绝缘膜制造方法。在本说明书中,即使不同的实施例,对相同或相似的构件标注相同或相似的附图标记,并且对其的说明用第一次的说明来代替。
图1是根据本发明的一实施例的用于执行半导体工艺的绝缘膜制造方法的晶片高压处理装置100的概念图。
参考图1,晶片高压处理装置100,可以包括:内部腔室110、外部腔室120、供气模块130及排气模块140。
内部腔室110具有用于对半导体晶片进行高压处理的处理室115。内部腔室110可以由非金属材料制成,例如石英,以减少在工艺环境中产生污染物(颗粒)的可能性。尽管在图中被简化,但在内部腔室110的下端具备用于打开处理室115的门(省略图示)。当所述门下降时,处理室115被打开,以在保持器(省略图示)安装半导体晶片的状态投入至处理室115中。通过配置于内部腔室110的外侧的加热器(省略图示)运行,处理室115的温度可以达到几百摄氏度。所述保持器可以是能够将半导体晶片层叠为多层的晶舟(wafer boat)。所述晶舟也可以由石英材料而形成。
外部腔室120是容纳内部腔室110的结构。外部腔室120与内部腔室110不同,由于没有半导体晶片被污染的忧虑,因此,可以由金属材料制成。外部腔室120具有用于容纳内部腔室110的容纳空间125。外部腔室120也在其下部具备门(省略图示),所述门可以与内部腔室110的门一起下降,打开容纳空间125。
供气模块130是向腔室110、120供应气体的结构。供气模块130具有与半导体工厂的公共设施相连通的气体供应器131。气体供应器131可以将源气体、吹扫气体及气氛气体供应至内部腔室110,具体为处理室115。所述源气体,例如可以包括氧气、水蒸气或氨气。所述吹扫气体,例如可以包括氮气、氩气或氦气。所述气氛气体,例如可以包括氢气、氘气、氚气、氮气或氩气。气体供应器131可以将例如氮气、氩气或氦气作为保护气体提供至容纳空间125。所述保护气体可以选择与所述吹扫气体相同类型的气体。注入到容纳空间125的所述保护气体,具体填充于容纳空间125中除内部腔室110以外的区域。这些气体分别通过内气管133或外气管135注入到处理室115或容纳空间125。
所述源气体、所述吹扫气体、所述气氛气体及所述保护气体可以以形成高于大气压的压力,例如达到数气压至数十气压的高压的方式供应至腔室110、120。另外,所述保护气体的压力可以被设置为与所述源气体、所述吹扫气体及所述气氛气体的压力具有预定关系。例如,后者可以设置为比前者稍微大,使得所述源气体、所述吹扫气体及所述气氛气体不会从处理室115泄露。
排气模块140是用于从腔室110、120排放所述源气体、所述吹扫气体、所述气氛气体及所述保护气体的结构。为了从内部腔室110,具体地从处理室115排放所述源气体、所述吹扫气体及所述气氛气体,在内部腔室110的上部连接排气管141。在排气管141可以设置气体排放器143。气体排放器143可以是用于控制所述源气体和所述气氛气体的排放的阀。
为了从外部腔室120,具体地从容纳空间125排放所述保护气体,可以具备与外部腔室120相连通的排气管145、以及设置于所述排气管的气体排放器147。由于这些排气管141、145相互连通,因此所述源气体和所述气氛气体以被所述保护气体稀释的状态被排出。
参考图2说明晶片高压处理装置100的控制结构。图2是用于说明图1的晶片高压处理装置100的可控操作的框图。
参考图2(及图1),晶片高压处理装置100,除了上述的供气模块130等之外,还可以包括加热模块150、感测模块160、控制模块170、及存储模块180。
加热模块150是包括上述加热器的结构。所述加热器可以配置于容纳空间125内。所述加热器加热所述源气体、所述吹扫气体及所述气氛气体以达到工艺温度。
感测模块160是用于感测腔室110、120的环境的结构。感测模块160可以包括压力计161和温度计165。压力计161和温度计165可以安装在每个腔室110、120中。
控制模块170是用于控制供气模块130、排气模块140等的结构。控制模块170可以基于感测模块160的感测结果来控制供气模块130等。
存储模块180是用于存储控制模块170为了进行控制而可以参考的数据、程序等的结构。存储模块180可以包括闪存(flash memory)、硬盘(hard disk)、磁盘及光盘中的至少一种类型的存储介质。
通过所述结构,控制模块170可以控制供气模块130等,以执行根据本发明的一实施例的半导体工艺的绝缘膜制造方法。
具体地,控制模块170可以基于通过压力计161获得的腔室110、120的压力来控制供气模块130的动作。根据供气模块130的动作,内部腔室110中充满所述工艺压力的所述源气体、所述吹扫气体或所述气氛气体。相对于此,在外部腔室120充满所述保护气体。
控制模块170还可以基于通过温度计165获得的腔室110、120的温度来控制加热模块150的动作。根据加热模块150的动作,所述源气体、所述吹扫气体或所述气氛气体可达到所述工艺温度。
将参考图3及图4说明利用以上的晶片高压处理装置100对晶片形成绝缘膜的详细方法。
图3是用于说明根据本发明的一实施例的半导体工艺的绝缘膜制造方法的流程图。
参考图3(以及图1、图2),在处理室115配置晶片(S1)。所述晶片可以在安置在所述晶片舟皿的状态投入到处理室115。
在处理室115中,在所述晶片上形成绝缘膜(S3)。所述绝缘膜可以是由氧化硅而成的氧化硅膜(SiO)、由氮化硅而成的氮化硅膜(SiN)、或含有氧化硅和氮化硅的氮化硅膜(SiON)。为了形成所述绝缘膜,在第一压力下在处理室115执行氧化工艺或氮化工艺。所述第一压力是高于大气压的压力。
在完成所述氧化工艺或所述氮化工艺之后,吹扫用于所述氧化工艺或所述氮化工艺中的气体(S5)。由此,处理室115成为可以进行与所述氧化处理或所述氮化处理不同的工艺的状态。
完成吹扫后,通过热处理工艺加强所述绝缘膜(S7)。所述热处理工艺在第二压力下进行。所述第二压力是高于大气压的压力。
图4是用于说明根据本发明的一实施例的用于执行半导体工艺的绝缘膜制造方法的压力及温度控制的流程图。
进一步参考图4,为了所述氧化工艺或所述氮化工艺,向处理室115以所述第一压力供应所述源气体(S11)。在所述源气体中,所述氧气是为了干法氧化(Dry Oxidation)而供应,所述水蒸气是为了湿法氧化(Wet Oxidation)而供应,所述氨气是为了氮化(Nitridation)而供应。所述第一压力可以在5ATM至20ATM的范围内确定。
为了使所述源气体达到所述工艺温度,处理室115被加热至第一温度(S13)。所述第一温度可以在400℃至950℃的范围内确定。由于所述源气体在高压(第一压力)下作用,因此,所述第一温度可以被设置为600℃以下。所述温度是与通常的沉积工艺的温度相比相对低的温度。
在完成所述氧化工艺或所述氮化工艺之后,可以在保持所述第一压力和所述第一温度的状态下向处理室115供应所述吹扫气体(S15)。控制模块170与供气模块130一起控制排气模块140,以使得吹扫所述源气体从处理室115排放。所述吹扫工艺所需的时间可以短于所述氧化工艺或所述氮化工艺。
为了进行所述热处理工艺,在处理室115以所述第二压力供应所述气氛气体(S17)。所述第二压力可以在5ATM至20ATM的范围内确定。所述第二压力与所述第一压力独立地设置。因此,所述第二压力可以与所述第一压力相同或不同。控制模块170与供气模块130一起控制排气模块140,从而将所述气氛气体供应至处理室115,并从处理室115排放所述吹扫气体。
为了使所述气氛气体达到在所述热处理工艺所需的工艺温度,处理室115可以调节至第二温度(S19)。所述第二温度可以在400℃至950℃的范围内确定。由于所述气氛气体在高压(第二压力)下作用,因此所述第二温度可以设置为600℃以下。所述第二温度也可以与所述第一温度独立地设置。为了调整温度,控制模块170可以额外地运行加热模块150、或冷却单元(省略图示)或保持现有温度。
参考图5及图6进一步说明所述第一压力及第二压力的设置。图5是根据图3的半导体工艺的绝缘膜制造方法中的一些步骤制造的绝缘膜的台阶覆盖性的比较曲线图,图6是根据图3的半导体工艺的绝缘膜制造方法制造的绝缘膜的湿蚀刻率的比较曲线图。具体地,图5示出通过所述氧化工艺在图案化硅晶片上形成二氧化硅膜(SiO2)并比较其膜的台阶覆盖性(Step Coverage)的结果。图6示出通过所述热处理工艺加强所述二氧化硅膜并比较经加强的膜的湿蚀刻率(Wet Etch Rate,WER)的结果。
所述氧化工艺执行湿式氧化工艺。在所述热处理工艺中,所述气氛气体为氢气。在所述氧化工艺及所述热处理工艺、以及其间进行的所述吹扫工艺中,工艺温度保持在600℃。所述氧化工艺及所述热处理工艺分别进行1小时,所述吹扫工艺进行20分钟。各工艺在处理室115中原位(In-Situ)进行。所述工艺压力在高压条件下(1ATM至20ATM的范围)调整。用于湿蚀刻的溶液是相对于100重量份的纯水混合1重量份的氟酸而成的。
参考图5,在所述氧化过程中,所述第一压力从1ATM增加到20ATM时,所述二氧化硅膜的台阶覆盖性也变高。
例如,在1ATM时,所述二氧化硅膜的台阶覆盖性为82%,在2ATM时为85.4%。在3ATM时,所述台阶覆盖性增加到85.9%,但增加幅度不大。
但是,在5ATM时,所述台阶覆盖性大幅度增加,达到96.7%。随着所述第一压力增加到10ATM、15ATM、20ATM,所述台阶覆盖性成为97.1%、98.2%及98.9%。
考虑到这种结果,从所述台阶覆盖性的观点来看,所述第一压力优选为5ATM以上。为了得到最高的台阶覆盖性,所述第一压力可以设置为20ATM。
参考图6,对于在所述氧化工艺(20ATM)中制造的所述二氧化硅膜,在所述第二压力下进行所述热处理工艺。由此可知,当所述第二压力从1ATM增加到20ATM时,所述二氧化硅膜的湿蚀刻率变低。所述湿蚀刻率与所述二氧化硅膜的密度具有反比关系。考虑到这种关系,可以通过所述湿蚀刻速率来确认根据本实施例的氧化膜的膜质改善(密度增加)效果。
然而,当所述第二压力为1ATM至3ATM时,所述湿蚀刻率高于为了获得低于的湿蚀刻率,需要将所述第二压力设置为5ATM以上。具体地,5ATM下的所述湿蚀刻率为回到所需范围内。
另外,随着所述第二压力增加到10ATM、15ATM、20ATM,所述湿蚀刻率成为
考虑到这些结果,从所述湿蚀刻率的观点来看,所述第二压力优选为5ATM以上。为了得到最高的湿蚀刻率,所述第二压力可以设置为20ATM。
如上所述的半导体工艺的绝缘膜制造方法不限于上述实施例的结构及操作方式。所述实施例还可以构成为选择性地组合每个实施例的全部或局部来进行各种变形。
产业上的可利用性
本发明在半导体工艺的绝缘膜制造领域具有产业上的可利用性。

Claims (9)

1.一种半导体工艺的绝缘膜制造方法,其中,包括:
将晶片配置在处理室内的步骤;
向所述处理室以高于大气压的第一压力供应源气体,随着进行氧化工艺和氮化工艺中的至少一种工艺,在所述晶片形成绝缘膜的步骤;
向所述处理室供应吹扫气体来吹扫所述源气体的步骤;以及
向所述处理室以高于大气压的第二压力供应气氛气体,随着进行热处理工艺加强所述绝缘膜的步骤。
2.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,所述第一压力是在5ATM至20ATM范围内确定的压力。
3.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,向所述处理室以高于大气压的第一压力供应源气体,随着进行氧化工艺和氮化工艺中的至少一种工艺,在所述晶片形成绝缘膜的步骤,包括将所述源气体保持在第一温度的步骤,
所述第一温度是在400℃至600℃的范围内确定的值。
4.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,所述源气体包括氧气、水蒸气及氨气中的至少一种。
5.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,向所述处理室供应吹扫气体来吹扫所述源气体的步骤,在将所述处理室保持在所述第一压力及所述第一温度的状态下进行。
6.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,所述吹扫气体包括氮气、氩气及氦气中的一种。
7.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,所述第二压力是在5ATM至20ATM范围内确定的压力。
8.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,所述气氛气体包括氢气、氘气及氮气中的至少一种。
9.根据权利要求1所述的半导体工艺的绝缘膜制造方法,其中,还包括在所述处理室保持在所述第一压力及所述第二压力中的一种压力的过程中,将容纳所述处理室的容纳空间保持在高于所述第一压力及所述第二压力中的一种压力的步骤。
CN202380015737.8A 2022-01-24 2023-01-05 半导体工艺的绝缘膜制造方法 Pending CN118525352A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2022-0009707 2022-01-24
KR20220009707 2022-01-24
PCT/KR2023/000212 WO2023140541A1 (ko) 2022-01-24 2023-01-05 반도체 공정의 절연막 제조 방법

Publications (1)

Publication Number Publication Date
CN118525352A true CN118525352A (zh) 2024-08-20

Family

ID=87348947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202380015737.8A Pending CN118525352A (zh) 2022-01-24 2023-01-05 半导体工艺的绝缘膜制造方法

Country Status (7)

Country Link
US (1) US20250105003A1 (zh)
EP (1) EP4471831A1 (zh)
JP (1) JP2025504485A (zh)
KR (1) KR20230114190A (zh)
CN (1) CN118525352A (zh)
TW (1) TWI852307B (zh)
WO (1) WO2023140541A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102774549B1 (ko) * 2023-09-21 2025-03-05 주식회사 에이치피에스피 고압 기상산화수소 제공 디바이스, 그리고 그를 이용하는 고압 기판 처리 장치 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW462093B (en) * 1997-03-05 2001-11-01 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device having a thin insulative film
WO2008081724A1 (ja) * 2006-12-28 2008-07-10 Tokyo Electron Limited 絶縁膜の形成方法および半導体装置の製造方法
US7951728B2 (en) * 2007-09-24 2011-05-31 Applied Materials, Inc. Method of improving oxide growth rate of selective oxidation processes
KR101248651B1 (ko) * 2008-02-08 2013-03-28 도쿄엘렉트론가부시키가이샤 절연막의 형성 방법, 컴퓨터 판독 가능한 기억 매체 및 처리 시스템
KR101229804B1 (ko) * 2011-05-06 2013-02-05 광주과학기술원 고압 수소 열처리를 이용한 나노선 전계효과 트랜지스터 메모리 소자 및 이의 제조 방법
US8901556B2 (en) * 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
KR102649241B1 (ko) * 2018-01-24 2024-03-18 어플라이드 머티어리얼스, 인코포레이티드 고압 어닐링을 사용한 심 힐링
US11037781B2 (en) * 2018-06-29 2021-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Device and method for high pressure anneal
WO2020190449A1 (en) * 2019-03-20 2020-09-24 Applied Materials, Inc. Method of growing thick oxide films at low temperature of thermal oxide quality

Also Published As

Publication number Publication date
KR20230114190A (ko) 2023-08-01
TW202331843A (zh) 2023-08-01
US20250105003A1 (en) 2025-03-27
WO2023140541A1 (ko) 2023-07-27
TWI852307B (zh) 2024-08-11
JP2025504485A (ja) 2025-02-12
EP4471831A1 (en) 2024-12-04

Similar Documents

Publication Publication Date Title
US9732421B2 (en) Substrate processing apparatus
JP5913414B2 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JPWO2007129568A1 (ja) 基板処理装置
JPWO2014148551A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
JP6415215B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP7047117B2 (ja) 半導体装置の製造方法、基板処理装置及び記録媒体
CN104064446B (zh) 层叠型半导体元件的制造方法、层叠型半导体元件及其制造装置
US20220403511A1 (en) Substrate processing apparatus, exhaust device and method of manufacturing semiconductor device
TWI852307B (zh) 半導體製程的絕緣膜製造方法
US20190304797A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP2013197421A (ja) 基板処理装置
KR102788074B1 (ko) 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
TWI867420B (zh) 使用雙高壓晶片處理設備的晶片高壓處理方法
JP6529956B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
CN112740377B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
TWI857430B (zh) 對晶片的薄膜的碳摻雜方法
JP7572124B2 (ja) 成膜方法
US12359314B2 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP2013197207A (ja) 基板処理装置
WO2019058477A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
TW202520380A (zh) 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置
CN115910748A (zh) 衬底处理方法、半导体器件的制造方法、衬底处理装置、和记录介质
JP2008182194A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination