CN118501716B - A method and system for predicting the aging state of a sodium ion battery - Google Patents
A method and system for predicting the aging state of a sodium ion battery Download PDFInfo
- Publication number
- CN118501716B CN118501716B CN202410931105.2A CN202410931105A CN118501716B CN 118501716 B CN118501716 B CN 118501716B CN 202410931105 A CN202410931105 A CN 202410931105A CN 118501716 B CN118501716 B CN 118501716B
- Authority
- CN
- China
- Prior art keywords
- actual
- capacity drop
- drop speed
- target
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/10—Analysis or design of chemical reactions, syntheses or processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明属于钠离子电池状态预测技术领域,尤其涉及一种钠离子电池的老化状态预测方法及系统。The present invention belongs to the technical field of sodium ion battery state prediction, and in particular relates to a method and system for predicting the aging state of a sodium ion battery.
背景技术Background Art
相比于锂,钠盐储量丰富、提取工艺成熟,同时钠和锂作为同族元素具有类似的电化学特性,因此钠离子电池研究在近年逐渐成为新的热点。钠离子电池作为电化学存储器件,其工作过程中存在各类副反应。这些副反应的发生不仅会导致电池老化,还会引发安全事故。因此,针对钠离子电池特性,对钠离子电池的老化状态预测,保证使用安全具有重要作用。Compared with lithium, sodium salt reserves are abundant and the extraction process is mature. At the same time, sodium and lithium have similar electrochemical properties as elements of the same family. Therefore, research on sodium-ion batteries has gradually become a new hot spot in recent years. As an electrochemical storage device, sodium-ion batteries have various side reactions during their operation. The occurrence of these side reactions will not only cause battery aging, but also cause safety accidents. Therefore, based on the characteristics of sodium-ion batteries, it is important to predict the aging state of sodium-ion batteries and ensure their safe use.
现有技术中,采用反复进行充放电后,再测定老化值的测定方式,再根据测定的老化值进行钠离子电池的老化状态预测。但是,测定时间较长,进而影响钠离子电池的老化状态预测效率。In the prior art, a method of measuring the aging value after repeated charge and discharge is adopted, and then the aging state of the sodium ion battery is predicted based on the measured aging value. However, the measurement time is long, which further affects the efficiency of the aging state prediction of the sodium ion battery.
发明内容Summary of the invention
本发明提供一种钠离子电池的老化状态预测方法及系统,用于解决测定时间较长,影响钠离子电池的老化状态预测效率的技术问题。The present invention provides a method and system for predicting the aging state of a sodium ion battery, which are used to solve the technical problem that the measurement time is long and affects the prediction efficiency of the aging state of the sodium ion battery.
第一方面,本发明提供一种钠离子电池的老化状态预测方法,包括:In a first aspect, the present invention provides a method for predicting the aging state of a sodium ion battery, comprising:
获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列;Obtaining the actual discharge capacity of the sodium ion battery after each cycle within a first preset time period, and sorting each actual discharge capacity based on a chronological order to obtain an actual discharge capacity sequence;
计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值;Calculate the actual capacity drop rate between any two adjacent actual discharge capacities in the actual discharge capacity sequence, and construct an actual capacity drop rate sequence, wherein the actual capacity drop rate is the ratio of the absolute value of the difference between any two adjacent actual discharge capacities to the interval time between any two adjacent actual discharge capacities;
判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值;Determine whether each actual capacity drop speed of the actual capacity drop speed sequence is greater than a preset threshold;
若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间;If all are not greater than the preset threshold, then the target capacity drop speed corresponding to each actual capacity drop speed and the interval time corresponding to each actual capacity drop speed are obtained;
获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值;Obtaining a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value;
根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值;Calculating an aging value of the sodium ion battery according to the first voltage value and the second voltage value;
根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。According to each actual capacity drop speed, the target capacity drop speed corresponding to each actual capacity drop speed, and the interval time corresponding to each actual capacity drop speed, the aging value is corrected using a preset correction rule to obtain a target aging value, and the current aging state of the sodium ion battery is determined according to the target aging value.
第二方面,本发明提供一种钠离子电池的老化状态预测系统,包括:In a second aspect, the present invention provides an aging state prediction system for a sodium ion battery, comprising:
第一获取模块,配置为获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列;A first acquisition module is configured to acquire an actual discharge capacity of the sodium ion battery after each cycle within a first preset time period, and sort each actual discharge capacity based on a chronological order to obtain an actual discharge capacity sequence;
第一计算模块,配置为计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值;A first calculation module is configured to calculate an actual capacity drop rate between any two adjacent actual discharge capacities in an actual discharge capacity sequence, and construct an actual capacity drop rate sequence, wherein the actual capacity drop rate is a ratio of an absolute value of a difference between any two adjacent actual discharge capacities to a time interval between any two adjacent actual discharge capacities;
判断模块,配置为判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值;A judgment module, configured to judge whether each actual capacity drop speed of the actual capacity drop speed sequence is greater than a preset threshold;
第二获取模块,配置为若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间;The second acquisition module is configured to acquire the target capacity drop speed corresponding to each actual capacity drop speed and the interval time corresponding to each actual capacity drop speed if all of them are not greater than a preset threshold;
第三获取模块,配置为获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值;A third acquisition module is configured to acquire a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value;
第二计算模块,配置为根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值;a second calculation module, configured to calculate an aging value of the sodium ion battery according to the first voltage value and the second voltage value;
修正模块,配置为根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。The correction module is configured to correct the aging value using a preset correction rule according to each actual capacity drop speed, a target capacity drop speed corresponding to each actual capacity drop speed, and an interval time corresponding to each actual capacity drop speed to obtain a target aging value, and determine the current aging state of the sodium ion battery according to the target aging value.
第三方面,提供一种电子设备,其包括:至少一个处理器,以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例的钠离子电池的老化状态预测方法的步骤。In a third aspect, an electronic device is provided, comprising: at least one processor, and a memory communicatively connected to the at least one processor, wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one processor can perform the steps of the method for predicting the aging state of a sodium ion battery of any embodiment of the present invention.
第四方面,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序指令被处理器执行时,使所述处理器执行本发明任一实施例的钠离子电池的老化状态预测方法的步骤。In a fourth aspect, the present invention further provides a computer-readable storage medium having a computer program stored thereon, wherein when the program instructions are executed by a processor, the processor executes the steps of the method for predicting the aging state of a sodium ion battery of any embodiment of the present invention.
本申请的钠离子电池的老化状态预测方法及系统,采用各个间隔时间比值将第三预设时间段划分为至少一个预设时间子段,得到至少一个间隔子时间值,实现了将静置钠离子电池的过程类比划分为多个实际放电容量变化的时间阶段,能够尽可能的模拟钠离子电池的放电环境,再有将老化值与至少一个间隔子时间值相乘,得到第一结果,并将第一结果与相应的容量跌落速度比值相乘,并将各个相乘结果进行叠加,得到目标老化值,这样相比传统需要反复进行充放电后,再测定老化值的测定方式,能够尽可能在保证得到的老化值准确的前提下,加快了老化状态预测的效率。The aging state prediction method and system of the sodium ion battery of the present application divide the third preset time period into at least one preset time sub-segment by using each interval time ratio to obtain at least one interval sub-time value, so as to realize the analogy division of the process of the stationary sodium ion battery into multiple time stages of actual discharge capacity change, and can simulate the discharge environment of the sodium ion battery as much as possible, and then multiply the aging value by at least one interval sub-time value to obtain a first result, and multiply the first result by the corresponding capacity drop speed ratio, and superimpose each multiplication result to obtain a target aging value. Compared with the traditional measurement method that requires repeated charging and discharging and then measuring the aging value, this method can speed up the efficiency of aging state prediction while ensuring the accuracy of the obtained aging value as much as possible.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following briefly introduces the drawings required for use in the description of the embodiments. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本发明一实施例提供的一种钠离子电池的老化状态预测方法的流程图;FIG1 is a flow chart of a method for predicting an aging state of a sodium ion battery provided by one embodiment of the present invention;
图2为本发明一实施例提供的一种钠离子电池的老化状态预测系统的结构框图;FIG2 is a structural block diagram of a sodium ion battery aging state prediction system provided by one embodiment of the present invention;
图3是本发明一实施例提供的电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
请参阅图1,其示出了本申请的一种钠离子电池的老化状态预测方法的流程图。Please refer to FIG1 , which shows a flow chart of a method for predicting the aging state of a sodium ion battery of the present application.
如图1所示,钠离子电池的老化状态预测方法具体包括以下步骤:As shown in FIG1 , the method for predicting the aging state of a sodium ion battery specifically includes the following steps:
步骤S101,获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列。Step S101, obtaining the actual discharge capacity of the sodium ion battery after each cycle within a first preset time period, and sorting each actual discharge capacity based on the chronological order to obtain an actual discharge capacity sequence.
在本步骤中,钠离子电池每次循环放电后,采用电池测试仪器获取此时的实际放电容量,得到在第一预设时间段内的各个实际放电容量,并根据获取实际放电容量的时刻对各个实际放电容量按照时间先后顺序排序,得到实际放电容量序列。In this step, after each cycle discharge of the sodium ion battery, a battery testing instrument is used to obtain the actual discharge capacity at this time, and each actual discharge capacity within the first preset time period is obtained. The actual discharge capacities are sorted in chronological order according to the time when the actual discharge capacity is obtained to obtain an actual discharge capacity sequence.
例如,实际放电容量序列依序有实际放电容量A1、实际放电容量B1、实际放电容量C1、实际放电容量D1和实际放电容量E1。For example, the actual discharge capacity sequence is, in order, actual discharge capacity A1, actual discharge capacity B1, actual discharge capacity C1, actual discharge capacity D1, and actual discharge capacity E1.
获取差值与采集实际放电容量A1的时刻a1至采集实际放电容量B1的时刻b1之间的第一间隔时间,再将实际放电容量A1与实际放电容量B1作差,得到第一差值,第一实际容量跌落速度即为第一差值与第一间隔时间的比值,同理可以得到第二实际容量跌落速度为第二差值与第二间隔时间的比值、第三实际容量跌落速度和第四实际容量跌落速度。Obtain the difference and the first interval time between the moment a1 when the actual discharge capacity A1 is collected and the moment b1 when the actual discharge capacity B1 is collected, then subtract the actual discharge capacity A1 from the actual discharge capacity B1 to obtain the first difference. The first actual capacity drop rate is the ratio of the first difference to the first interval time. Similarly, the second actual capacity drop rate is the ratio of the second difference to the second interval time, the third actual capacity drop rate and the fourth actual capacity drop rate can be obtained.
步骤S102,计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值。Step S102, calculating the actual capacity drop rate between any two adjacent actual discharge capacities in the actual discharge capacity sequence, and constructing an actual capacity drop rate sequence, wherein the actual capacity drop rate is the ratio of the absolute value of the difference between any two adjacent actual discharge capacities to the interval time between any two adjacent actual discharge capacities.
再例如,实际放电容量序列依序有实际放电容量A1、实际放电容量B1、实际放电容量C1、实际放电容量D1和实际放电容量E1。得到的实际容量跌落速度序列依序有第一实际容量跌落速度、第二实际容量跌落速度、第三实际容量跌落速度以及第四实际容量跌落速度。For another example, the actual discharge capacity sequence is the actual discharge capacity A1, the actual discharge capacity B1, the actual discharge capacity C1, the actual discharge capacity D1 and the actual discharge capacity E1. The obtained actual capacity drop speed sequence is the first actual capacity drop speed, the second actual capacity drop speed, the third actual capacity drop speed and the fourth actual capacity drop speed.
获取差值与采集实际放电容量A1的时刻a1至采集实际放电容量B1的时刻b1之间的第一间隔时间,再将实际放电容量A1与实际放电容量B1作差,得到第一差值,第一实际容量跌落速度即为第一差值与第一间隔时间的比值,同理可以得到第二实际容量跌落速度为第二差值与第二间隔时间的比值、第三实际容量跌落速度和第四实际容量跌落速度。Obtain the difference and the first interval time between the moment a1 when the actual discharge capacity A1 is collected and the moment b1 when the actual discharge capacity B1 is collected, then subtract the actual discharge capacity A1 from the actual discharge capacity B1 to obtain the first difference. The first actual capacity drop rate is the ratio of the first difference to the first interval time. Similarly, the second actual capacity drop rate is the ratio of the second difference to the second interval time, the third actual capacity drop rate and the fourth actual capacity drop rate can be obtained.
步骤S103,判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值。Step S103, determining whether each actual capacity drop speed in the actual capacity drop speed sequence is greater than a preset threshold.
在一个具体实施例中,若实际容量跌落速度序列中的某一实际容量跌落速度大于预设阈值,则将某一实际容量跌落速度在实际容量跌落速度序列中去除,得到更新后的实际容量跌落速度序列;获取与更新后的实际容量跌落速度序列中各个实际容量跌落速度相对应的目标容量跌落速度,以及与更新后的实际容量跌落速度序列中各个实际容量跌落速度相对应的间隔时间。In a specific embodiment, if a certain actual capacity drop speed in the actual capacity drop speed sequence is greater than a preset threshold, the certain actual capacity drop speed is removed from the actual capacity drop speed sequence to obtain an updated actual capacity drop speed sequence; the target capacity drop speed corresponding to each actual capacity drop speed in the updated actual capacity drop speed sequence and the interval time corresponding to each actual capacity drop speed in the updated actual capacity drop speed sequence are obtained.
步骤S104,若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间。Step S104: If all of them are not greater than the preset threshold, the target capacity drop speed corresponding to each actual capacity drop speed and the interval time corresponding to each actual capacity drop speed are obtained.
需要说明的是,目标容量跌落速度为任意两个相邻的目标放电容量之间差值的绝对值,与任意两个相邻的目标放电容量的间隔时间的比值。It should be noted that the target capacity drop rate is the ratio of the absolute value of the difference between any two adjacent target discharge capacities to the interval time between any two adjacent target discharge capacities.
在本步骤中,获取钠离子电池在第一预设时间段内的至少一个循环次数,根据至少一个循环次数计算相应的钠离子电池的目标放电容量,得到基于时间先后排序的目标放电容量序列,其中,一循环次数与一目标放电容量相对应;计算目标放电容量序列中任意两个相邻的目标放电容量之间的目标容量跌落速度;将任意两个相邻的实际放电容量之间的容量跌落速度,与位于相同时间节点的任意两个相邻的目标放电容量之间的目标容量跌落速度进行关联,得到关联关系;根据关联关系获取各个实际容量跌落速度相对应的目标容量跌落速度。In this step, at least one cycle number of the sodium ion battery within the first preset time period is obtained, and the target discharge capacity of the corresponding sodium ion battery is calculated according to the at least one cycle number to obtain a target discharge capacity sequence based on chronological order, wherein one cycle number corresponds to one target discharge capacity; the target capacity drop rate between any two adjacent target discharge capacities in the target discharge capacity sequence is calculated; the capacity drop rate between any two adjacent actual discharge capacities is associated with the target capacity drop rate between any two adjacent target discharge capacities at the same time node to obtain an associated relationship; and the target capacity drop rate corresponding to each actual capacity drop rate is obtained according to the associated relationship.
具体地,计算相应的所述钠离子电池的目标放电容量的表达式为:Specifically, the expression for calculating the target discharge capacity of the corresponding sodium ion battery is:
, ,
, ,
式中,为反应速率常数,为化学反应的活化能,为温度值,为循环次数,为循环次数的常数,为气体常数,为电池容量的衰减比例,为电池初始容量,为目标放电容量。In the formula, is the reaction rate constant, is the activation energy of the chemical reaction, is the temperature value, is the number of cycles, is a constant for the number of cycles, is the gas constant, is the attenuation ratio of the battery capacity, is the initial capacity of the battery, is the target discharge capacity.
例如,实际放电容量序列依序有实际放电容量A1、实际放电容量B1、实际放电容量C1、实际放电容量D1和实际放电容量E1。得到的实际容量跌落速度序列依序有第一实际容量跌落速度、第二实际容量跌落速度、第三实际容量跌落速度以及第四实际容量跌落速度。For example, the actual discharge capacity sequence is the actual discharge capacity A1, the actual discharge capacity B1, the actual discharge capacity C1, the actual discharge capacity D1 and the actual discharge capacity E1. The obtained actual capacity drop speed sequence is the first actual capacity drop speed, the second actual capacity drop speed, the third actual capacity drop speed and the fourth actual capacity drop speed.
目标放电容量序列依序会有目标放电容量A2、目标放电容量B2、目标放电容量C2、目标放电容量D2和目标放电容量E2。得到的目标容量跌落速度序列依序有第一目标容量跌落速度、第二目标容量跌落速度、第三目标容量跌落速度以及第四目标容量跌落速度。The target discharge capacity sequence includes target discharge capacity A2, target discharge capacity B2, target discharge capacity C2, target discharge capacity D2 and target discharge capacity E2 in sequence. The target capacity drop speed sequence includes first target capacity drop speed, second target capacity drop speed, third target capacity drop speed and fourth target capacity drop speed in sequence.
因此,将第一实际容量跌落速度与第一目标容量跌落速度进行关联,得到第一关联关系,同理可以得到,第二关联关系、第三关联关系以及第四关联关系。Therefore, the first actual capacity drop speed is associated with the first target capacity drop speed to obtain a first association relationship. Similarly, the second association relationship, the third association relationship and the fourth association relationship can be obtained.
步骤S105,获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值。Step S105, obtaining a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value.
具体地,预设的放电倍率可以是0.4C-0.6C的放电倍率。设定值可以是2V-2.5V。Specifically, the preset discharge rate may be a discharge rate of 0.4C-0.6C. The set value may be 2V-2.5V.
步骤S106,根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值。Step S106, calculating the aging value of the sodium ion battery according to the first voltage value and the second voltage value.
在本步骤中,计算钠离子电池的老化值的表达式为:In this step, the expression for calculating the aging value of the sodium ion battery is:
, ,
式中,为钠离子电池的老化值,为第一电压值,为第二电压值,为第三预设时间段。In the formula, is the aging value of the sodium-ion battery, is the first voltage value, is the second voltage value, It is the third preset time period.
步骤S107,根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。Step S107, according to each actual capacity drop speed, the target capacity drop speed corresponding to each actual capacity drop speed, and the interval time corresponding to each actual capacity drop speed, the aging value is corrected using a preset correction rule to obtain a target aging value, and the current aging state of the sodium ion battery is determined according to the target aging value.
在本步骤中,根据各个间隔时间比值将第三预设时间段划分为至少一个预设时间子段,得到至少一个间隔子时间值,其中,各个间隔时间比值为与各个实际容量跌落速度相对应的间隔时间,与总间隔时间的比值,总间隔时间为所有间隔时间之和;将老化值与至少一个间隔子时间值相乘,得到第一结果;将第一结果与相应的容量跌落速度比值相乘,并将各个相乘结果进行叠加,得到目标老化值,其中,容量跌落速度比值为实际容量跌落速度与目标容量跌落速度的比值。最后根据目标老化值确定钠离子电池的当前老化状态。In this step, the third preset time period is divided into at least one preset time sub-segment according to each interval time ratio, and at least one interval sub-time value is obtained, wherein each interval time ratio is the ratio of the interval time corresponding to each actual capacity drop speed to the total interval time, and the total interval time is the sum of all interval times; the aging value is multiplied by at least one interval sub-time value to obtain a first result; the first result is multiplied by the corresponding capacity drop speed ratio, and each multiplication result is superimposed to obtain a target aging value, wherein the capacity drop speed ratio is the ratio of the actual capacity drop speed to the target capacity drop speed. Finally, the current aging state of the sodium ion battery is determined according to the target aging value.
例如,与第一实际容量跌落速度、第二实际容量跌落速度、第三实际容量跌落速度以及第四实际容量跌落速度相对应的间隔时间具体有2h、2h、4h和4h,第三预设时间段为10h,因此,得到第一间隔子时间值(2/12)*10、第二间隔子时间值(2/12)*10、第三间隔子时间值(4/12)*10、第四间隔子时间值(4/12)*10。For example, the interval times corresponding to the first actual capacity drop speed, the second actual capacity drop speed, the third actual capacity drop speed and the fourth actual capacity drop speed are 2h, 2h, 4h and 4h, and the third preset time period is 10h. Therefore, the first interval sub-time value (2/12)*10, the second interval sub-time value (2/12)*10, the third interval sub-time value (4/12)*10 and the fourth interval sub-time value (4/12)*10 are obtained.
假设,第一实际容量跌落速度与第一目标容量跌落速度的比值为3/10、第二实际容量跌落速度与第二目标容量跌落速度的比值为3/10、第二实际容量跌落速度与第二目标容量跌落速度的比值为2/10以及第二实际容量跌落速度与第二目标容量跌落速度的比值为2/10。老化值为k=0.05。Assume that the ratio of the first actual capacity drop speed to the first target capacity drop speed is 3/10, the ratio of the second actual capacity drop speed to the second target capacity drop speed is 3/10, the ratio of the second actual capacity drop speed to the second target capacity drop speed is 2/10, and the ratio of the second actual capacity drop speed to the second target capacity drop speed is 2/10. The aging value is k=0.05.
通过计算可以得到修正后的k=[(20/12)0.05(3/10)]+(20/12)0.05(3/10)]+(20/12)0.05(3/10)]+(20/12)0.05(3/10)]=7/60。By calculation, we can get the corrected k=[(20/12) 0.05 (3/10)]+(20/12) 0.05 (3/10)]+(20/12) 0.05 (3/10)]+(20/12) 0.05 (3/10)]=7/60.
综上,本申请的方法,采用各个间隔时间比值将第三预设时间段划分为至少一个预设时间子段,得到至少一个间隔子时间值,实现了将静置钠离子电池的过程类比划分为多个实际放电容量变化的时间阶段,能够尽可能的模拟钠离子电池的放电环境,再有将老化值与至少一个间隔子时间值相乘,得到第一结果,并将第一结果与相应的容量跌落速度比值相乘,并将各个相乘结果进行叠加,得到目标老化值,这样相比传统需要反复进行充放电后,再测定老化值的测定方式,能够尽可能在保证得到的老化值准确的前提下,加快了老化状态预测的效率。In summary, the method of the present application uses various interval time ratios to divide the third preset time period into at least one preset time sub-segment, obtains at least one interval sub-time value, and realizes the analogy of dividing the process of the stationary sodium ion battery into multiple time stages of actual discharge capacity change, which can simulate the discharge environment of the sodium ion battery as much as possible, and then multiplies the aging value by at least one interval sub-time value to obtain a first result, and multiplies the first result by the corresponding capacity drop rate ratio, and superimposes the multiplication results to obtain a target aging value. Compared with the traditional method of repeatedly charging and discharging and then measuring the aging value, this method can speed up the efficiency of aging state prediction while ensuring the accuracy of the aging value obtained.
请参阅图2,其示出了本申请的一种钠离子电池的老化状态预测系统的结构框图。Please refer to FIG. 2 , which shows a structural block diagram of a sodium ion battery aging state prediction system of the present application.
如图2所示,老化状态预测系统200,包括第一获取模块210、第一计算模块220、判断模块230、第二获取模块240、第三获取模块250、第二计算模块260以及修正模块270。As shown in FIG. 2 , the aging state prediction system 200 includes a first acquisition module 210 , a first calculation module 220 , a determination module 230 , a second acquisition module 240 , a third acquisition module 250 , a second calculation module 260 and a correction module 270 .
其中,第一获取模块210,配置为获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列;第一计算模块220,配置为计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值;判断模块230,配置为判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值;第二获取模块240,配置为若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间;第三获取模块250,配置为获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值;第二计算模块260,配置为根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值;修正模块270,配置为根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。Among them, the first acquisition module 210 is configured to obtain the actual discharge capacity of the sodium ion battery after each cycle within the first preset time period, and sort each actual discharge capacity based on the chronological order to obtain an actual discharge capacity sequence; the first calculation module 220 is configured to calculate the actual capacity drop rate between any two adjacent actual discharge capacities in the actual discharge capacity sequence, and construct an actual capacity drop rate sequence, wherein the actual capacity drop rate is the ratio of the absolute value of the difference between any two adjacent actual discharge capacities to the interval time between any two adjacent actual discharge capacities; the judgment module 230 is configured to judge whether each actual capacity drop rate of the actual capacity drop rate sequence is greater than a preset threshold; the second acquisition module 240 is configured to obtain the target capacity drop rate corresponding to each actual capacity drop rate if they are not greater than the preset threshold, and each actual capacity drop rate. a third acquisition module 250, configured to acquire a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value; a second calculation module 260, configured to calculate an aging value of the sodium ion battery according to the first voltage value and the second voltage value; a correction module 270, configured to correct the aging value according to each actual capacity drop speed, a target capacity drop speed corresponding to each actual capacity drop speed, and an interval time corresponding to each actual capacity drop speed, using a preset correction rule to obtain a target aging value, and determine the current aging state of the sodium ion battery according to the target aging value.
应当理解,图2中记载的诸模块与参考图1中描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作和特征以及相应的技术效果同样适用于图2中的诸模块,在此不再赘述。It should be understood that the modules recorded in Figure 2 correspond to the steps in the method described with reference to Figure 1. Therefore, the operations and features described above for the method and the corresponding technical effects are also applicable to the modules in Figure 2 and will not be repeated here.
在另一些实施例中,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序指令被处理器执行时,使所述处理器执行上述任意方法实施例中的钠离子电池的老化状态预测方法;In some other embodiments, the embodiments of the present invention further provide a computer-readable storage medium having a computer program stored thereon, wherein when the program instructions are executed by a processor, the processor executes the method for predicting the aging state of a sodium ion battery in any of the above method embodiments;
作为一种实施方式,本发明的计算机可读存储介质存储有计算机可执行指令,计算机可执行指令设置为:As an implementation mode, the computer-readable storage medium of the present invention stores computer-executable instructions, and the computer-executable instructions are configured as follows:
获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列;Obtaining the actual discharge capacity of the sodium ion battery after each cycle within a first preset time period, and sorting each actual discharge capacity based on a chronological order to obtain an actual discharge capacity sequence;
计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值;Calculate the actual capacity drop rate between any two adjacent actual discharge capacities in the actual discharge capacity sequence, and construct an actual capacity drop rate sequence, wherein the actual capacity drop rate is the ratio of the absolute value of the difference between any two adjacent actual discharge capacities to the interval time between any two adjacent actual discharge capacities;
判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值;Determine whether each actual capacity drop speed of the actual capacity drop speed sequence is greater than a preset threshold;
若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间;If all are not greater than the preset threshold, then the target capacity drop speed corresponding to each actual capacity drop speed and the interval time corresponding to each actual capacity drop speed are obtained;
获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值;Obtaining a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value;
根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值;Calculating an aging value of the sodium ion battery according to the first voltage value and the second voltage value;
根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。According to each actual capacity drop speed, the target capacity drop speed corresponding to each actual capacity drop speed, and the interval time corresponding to each actual capacity drop speed, the aging value is corrected using a preset correction rule to obtain a target aging value, and the current aging state of the sodium ion battery is determined according to the target aging value.
计算机可读存储介质可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据钠离子电池的老化状态预测系统的使用所创建的数据等。此外,计算机可读存储介质可以包括高速随机存取存储器,还可以包括存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,计算机可读存储介质可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至钠离子电池的老化状态预测系统。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The computer-readable storage medium may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application required for at least one function; the data storage area may store data created according to the use of the sodium ion battery aging state prediction system, etc. In addition, the computer-readable storage medium may include a high-speed random access memory, and may also include a memory, such as at least one disk storage device, a flash memory device, or other non-volatile solid-state storage device. In some embodiments, the computer-readable storage medium may optionally include a memory remotely disposed relative to the processor, and these remote memories may be connected to the sodium ion battery aging state prediction system via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
图3是本发明实施例提供的电子设备的结构示意图,如图3所示,该设备包括:一个处理器310以及存储器320。电子设备还可以包括:输入装置330和输出装置340。处理器310、存储器320、输入装置330和输出装置340可以通过总线或者其他方式连接,图3中以通过总线连接为例。存储器320为上述的计算机可读存储介质。处理器310通过运行存储在存储器320中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例钠离子电池的老化状态预测方法。输入装置330可接收输入的数字或字符信息,以及产生与钠离子电池的老化状态预测系统的用户设置以及功能控制有关的键信号输入。输出装置340可包括显示屏等显示设备。FIG3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention. As shown in FIG3 , the device includes: a processor 310 and a memory 320. The electronic device may further include: an input device 330 and an output device 340. The processor 310, the memory 320, the input device 330 and the output device 340 may be connected via a bus or other means, and FIG3 takes the bus connection as an example. The memory 320 is the above-mentioned computer-readable storage medium. The processor 310 executes various functional applications and data processing of the server by running the non-volatile software programs, instructions and modules stored in the memory 320, that is, the aging state prediction method of the sodium ion battery of the above-mentioned method embodiment is realized. The input device 330 may receive input digital or character information, and generate key signal input related to the user settings and function control of the aging state prediction system of the sodium ion battery. The output device 340 may include a display device such as a display screen.
上述电子设备可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。The electronic device can execute the method provided by the embodiment of the present invention, and has the functional modules and beneficial effects corresponding to the execution method. For technical details not described in detail in this embodiment, please refer to the method provided by the embodiment of the present invention.
作为一种实施方式,上述电子设备应用于钠离子电池的老化状态预测系统中,用于客户端,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够:As an embodiment, the electronic device is applied to a sodium ion battery aging state prediction system and is used for a client, comprising: at least one processor; and a memory connected to the at least one processor in communication; wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one processor can:
获取钠离子电池在第一预设时间段内的每次循环后的实际放电容量,并基于时间先后顺序对各个实际放电容量进行排序,得到实际放电容量序列;Obtaining the actual discharge capacity of the sodium ion battery after each cycle within a first preset time period, and sorting each actual discharge capacity based on a chronological order to obtain an actual discharge capacity sequence;
计算实际放电容量序列中任意两个相邻的实际放电容量之间的实际容量跌落速度,并构建实际容量跌落速度序列,其中,实际容量跌落速度为任意两个相邻的实际放电容量之间差值的绝对值,与任意两个相邻的实际放电容量的间隔时间的比值;Calculate the actual capacity drop rate between any two adjacent actual discharge capacities in the actual discharge capacity sequence, and construct an actual capacity drop rate sequence, wherein the actual capacity drop rate is the ratio of the absolute value of the difference between any two adjacent actual discharge capacities to the interval time between any two adjacent actual discharge capacities;
判断所述实际容量跌落速度序列各个实际容量跌落速度是否大于预设阈值;Determine whether each actual capacity drop speed of the actual capacity drop speed sequence is greater than a preset threshold;
若均不大于预设阈值,则获取各个实际容量跌落速度相对应的目标容量跌落速度,以及各个实际容量跌落速度相对应的间隔时间;If all are not greater than the preset threshold, then the target capacity drop speed corresponding to each actual capacity drop speed and the interval time corresponding to each actual capacity drop speed are obtained;
获取所述钠离子电池基于预设放电条件在经过第二预设时间段放电后的第一电压值,以及经过第三预设时间段静置后的第二电压值,其中,所述预设放电条件为采用预设的放电倍率对所述钠离子电池进行放电,直至所述钠离子电池的电压达到设定值;Obtaining a first voltage value of the sodium ion battery after being discharged for a second preset time period based on a preset discharge condition, and a second voltage value after being left standing for a third preset time period, wherein the preset discharge condition is to discharge the sodium ion battery at a preset discharge rate until the voltage of the sodium ion battery reaches a set value;
根据所述第一电压值和所述第二电压值计算所述钠离子电池的老化值;Calculating an aging value of the sodium ion battery according to the first voltage value and the second voltage value;
根据各个实际容量跌落速度、与各个实际容量跌落速度相对应的目标容量跌落速度以及与各个实际容量跌落速度相对应的间隔时间,采用预设的修正规则对所述老化值进行修正,得到目标老化值,并根据所述目标老化值确定所述钠离子电池的当前老化状态。According to each actual capacity drop speed, the target capacity drop speed corresponding to each actual capacity drop speed, and the interval time corresponding to each actual capacity drop speed, the aging value is corrected using a preset correction rule to obtain a target aging value, and the current aging state of the sodium ion battery is determined according to the target aging value.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods of each embodiment or some parts of the embodiment.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410931105.2A CN118501716B (en) | 2024-07-12 | 2024-07-12 | A method and system for predicting the aging state of a sodium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410931105.2A CN118501716B (en) | 2024-07-12 | 2024-07-12 | A method and system for predicting the aging state of a sodium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118501716A CN118501716A (en) | 2024-08-16 |
CN118501716B true CN118501716B (en) | 2024-10-01 |
Family
ID=92231274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410931105.2A Active CN118501716B (en) | 2024-07-12 | 2024-07-12 | A method and system for predicting the aging state of a sodium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118501716B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112363075A (en) * | 2019-11-21 | 2021-02-12 | 万向一二三股份公司 | Lithium ion battery aging evaluation method |
CN115902653A (en) * | 2022-11-17 | 2023-04-04 | 潍柴动力股份有限公司 | Method and device for determining battery aging degree, storage medium and electronic equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1862279B (en) * | 2005-05-11 | 2010-04-28 | 苏州润源电气技术有限公司 | Method for estimating aging rate and testing fault of battery, and apparatus for managing and monitoring battery |
US10345391B2 (en) * | 2015-03-03 | 2019-07-09 | Samsung Electronics Co., Ltd. | Method and apparatus for predicting remaining useful life (RUL) of battery |
JP7395540B2 (en) * | 2021-06-01 | 2023-12-11 | 株式会社東芝 | Battery deterioration determination method, battery deterioration determination device, battery management system, battery equipped equipment, and battery deterioration determination program |
CN118068208A (en) * | 2022-11-23 | 2024-05-24 | 固德威技术股份有限公司 | Battery health state estimation method and device |
CN116047304A (en) * | 2022-12-20 | 2023-05-02 | 华东交通大学 | Combined estimation method for state of charge and state of health of energy storage battery |
CN117289164A (en) * | 2023-09-19 | 2023-12-26 | 欣旺达动力科技股份有限公司 | Method and device for estimating battery health state of lithium iron phosphate battery |
-
2024
- 2024-07-12 CN CN202410931105.2A patent/CN118501716B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112363075A (en) * | 2019-11-21 | 2021-02-12 | 万向一二三股份公司 | Lithium ion battery aging evaluation method |
CN115902653A (en) * | 2022-11-17 | 2023-04-04 | 潍柴动力股份有限公司 | Method and device for determining battery aging degree, storage medium and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN118501716A (en) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11408942B2 (en) | Method for predicting service life of retired power battery | |
CN106909716B (en) | Lithium iron phosphate battery modeling and SOC estimation method considering capacity loss | |
CN111913109B (en) | Method and device for predicting peak power of battery | |
CN112578298B (en) | Battery temperature estimation method, device, electronic equipment and storage medium | |
CN106772064A (en) | A kind of health state of lithium ion battery Forecasting Methodology and device | |
CN107085187A (en) | Method and device for determining consistency maintenance index of cascade utilization battery energy storage system | |
CN103399276A (en) | Lithium-ion battery capacity estimation and residual cycling life prediction method | |
CN105866700B (en) | A method for rapid screening of lithium-ion batteries | |
CN114371408B (en) | Method for estimating state of charge of battery, method and device for extracting charging curve | |
CN115270454A (en) | Battery life prediction method and related equipment | |
CN116579157A (en) | Modeling parameter acquisition method and device for lithium ion battery energy storage system and electronic equipment | |
CN114089204B (en) | Battery capacity diving inflection point prediction method and device | |
CN115395613A (en) | Battery charging management method and device, electronic equipment and storage medium | |
CN118501716B (en) | A method and system for predicting the aging state of a sodium ion battery | |
CN113805084A (en) | Method and device for calculating battery capacity attenuation, computer equipment and storage medium | |
CN118501717A (en) | A battery parameter identification method, system and product | |
CN112731160A (en) | Battery hysteresis model training method, and method and device for estimating battery SOC | |
CN117169742A (en) | Method, device, equipment and storage medium for calculating actual capacity of battery | |
CN116626519A (en) | Battery remaining energy determining method, device, equipment, storage medium and product | |
CN115639480A (en) | Method and device for detecting health state of battery | |
Zhang et al. | State-of-charge estimation for lithium primary batteries: Methods and verification | |
CN113884918A (en) | Method and device for predicting battery capacity | |
CN118011225B (en) | Method, device, storage medium and electronic device for correcting chargeable and dischargeable capacity | |
CN113075550A (en) | Method, device, medium and electronic device for obtaining electromotive force curve | |
CN113030750A (en) | Method and device for detecting residual use parameters of lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |